1
|
Chen Y, He X, Cai J, Li Q. Functional aspects of the brain lymphatic drainage system in aging and neurodegenerative diseases. J Biomed Res 2024; 38:206-221. [PMID: 38430054 PMCID: PMC11144931 DOI: 10.7555/jbr.37.20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
The phenomenon of an aging population is advancing at a precipitous rate. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common age-associated neurodegenerative diseases, both of which are primarily characterized by the accumulation of toxic proteins and the progressive demise of neuronal structures. Recent discoveries about the brain lymphatic drainage system have precipitated a growing body of investigations substantiating its novel roles, including the clearance of macromolecular waste and the trafficking of immune cells. Notably, aquaporin 4-mediated glymphatic transport, crucial for maintaining neural homeostasis, becomes disrupted during the aging process and is further compromised in the pathogenesis of AD and PD. Functional meningeal lymphatic vessels, which facilitate the drainage of cerebrospinal fluid into the deep cervical lymph nodes, are integral in bridging the central nervous system with peripheral immune responses. Dysfunction in these meningeal lymphatic vessels exacerbates pathological trajectory of the age-related neurodegenerative disease. This review explores modulatory influence of the glymphatic system and meningeal lymphatic vessels on the aging brain and its associated neurodegenerative disorders. It also encapsulates the insights of potential mechanisms and prospects of the targeted non-pharmacological interventions.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxin He
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
2
|
Amlerova Z, Chmelova M, Anderova M, Vargova L. Reactive gliosis in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2024; 18:1335849. [PMID: 38481632 PMCID: PMC10933082 DOI: 10.3389/fncel.2024.1335849] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/01/2024] [Indexed: 01/03/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the most common pathological conditions impacting the central nervous system (CNS). A neurological deficit associated with TBI results from a complex of pathogenetic mechanisms including glutamate excitotoxicity, inflammation, demyelination, programmed cell death, or the development of edema. The critical components contributing to CNS response, damage control, and regeneration after TBI are glial cells-in reaction to tissue damage, their activation, hypertrophy, and proliferation occur, followed by the formation of a glial scar. The glial scar creates a barrier in damaged tissue and helps protect the CNS in the acute phase post-injury. However, this process prevents complete tissue recovery in the late/chronic phase by producing permanent scarring, which significantly impacts brain function. Various glial cell types participate in the scar formation, but this process is mostly attributed to reactive astrocytes and microglia, which play important roles in several brain pathologies. Novel technologies including whole-genome transcriptomic and epigenomic analyses, and unbiased proteomics, show that both astrocytes and microglia represent groups of heterogenic cell subpopulations with different genomic and functional characteristics, that are responsible for their role in neurodegeneration, neuroprotection and regeneration. Depending on the representation of distinct glia subpopulations, the tissue damage as well as the regenerative processes or delayed neurodegeneration after TBI may thus differ in nearby or remote areas or in different brain structures. This review summarizes TBI as a complex process, where the resultant effect is severity-, region- and time-dependent and determined by the model of the CNS injury and the distance of the explored area from the lesion site. Here, we also discuss findings concerning intercellular signaling, long-term impacts of TBI and the possibilities of novel therapeutical approaches. We believe that a comprehensive study with an emphasis on glial cells, involved in tissue post-injury processes, may be helpful for further research of TBI and be the decisive factor when choosing a TBI model.
Collapse
Affiliation(s)
- Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Miroslava Anderova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Badaut J, Hippauf L, Malinconi M, Noarbe BP, Obenaus A, Dubois CJ. Endocannabinoid-mediated rescue of somatosensory cortex activity, plasticity and related behaviors following an early in life concussion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577914. [PMID: 38352553 PMCID: PMC10862852 DOI: 10.1101/2024.01.30.577914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Due to the assumed plasticity of immature brain, early in life brain alterations are thought to lead to better recoveries in comparison to the mature brain. Despite clinical needs, how neuronal networks and associated behaviors are affected by early in life brain stresses, such as pediatric concussions, have been overlooked. Here we provide first evidence in mice that a single early in life concussion durably increases neuronal activity in the somatosensory cortex into adulthood, disrupting neuronal integration while the animal is performing sensory-related tasks. This represents a previously unappreciated clinically relevant mechanism for the impairment of sensory-related behavior performance. Furthermore, we demonstrate that pharmacological modulation of the endocannabinoid system a year post-concussion is well-suited to rescue neuronal activity and plasticity, and to normalize sensory-related behavioral performance, addressing the fundamental question of whether a treatment is still possible once post-concussive symptoms have developed, a time-window compatible with clinical treatment.
Collapse
Affiliation(s)
- J Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - L Hippauf
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - M Malinconi
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| | - B P Noarbe
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - A Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - C J Dubois
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Obenaus A, Noarbe BP, Lee JB, Panchenko PE, Noarbe SD, Lee YC, Badaut J. Progressive lifespan modifications in the corpus callosum following a single juvenile concussion in male mice monitored by diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572925. [PMID: 38187748 PMCID: PMC10769374 DOI: 10.1101/2023.12.21.572925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Introduction The sensitivity of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, particularly in preclinical rodent models, there is lacking a comprehensive longitudinal study spanning the lifespan of the mouse. We previously reported early modifications to WM using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi. For the first time, we assess corpus callosum (CC) integrity across the lifespan after a single juvenile concussion utilizing diffusion MRI (dMRI). Methods C57Bl/6 mice were exposed to sham or two severities of closed-head concussion (Grade 1, G1, speed 2 m/sec, depth 1mm; Grade 2, G2, 3m/sec, 3mm) using an electromagnetic impactor at postnatal day 17. In vivo diffusion tensor imaging was conducted at 1, 3, 6, 12 and 18 mpi (21 directions, b=2000 mm2/sec) and processed for dMRI parametric maps: fractional anisotropy (FA), axial (AxD), radial (RD) and mean diffusivity (MD). Whole CC and regional CC data were extracted. To identify the biological basis of altered dMRI metrics, astrocyte and microglia in the CC were characterized at 1 and 12 mpi by immunohistochemistry. Results Whole CC analysis revealed altered FA and RD trajectories following juvenile concussion. Shams exhibited a temporally linear increase in FA with age while G1/G2 mice had plateaued FA values. G2 concussed mice exhibited high variance of dMRI metrics at 12mpi, which was attributed to the heterogeneity of TBI on the anterior CC. Regional analysis of dMRI metrics at the impact site unveiled significant differences between G2 and sham mice. The dMRI findings appear to be driven, in part, by loss of astrocyte process lengths and increased circularity and decreased cell span ratios in microglia. Conclusion For the first time, we demonstrate progressive perturbations to WM of male mice after a single juvenile concussion across the mouse lifespan. The CC alterations were dependent on concussion severity with elevated sensitivity in the anterior CC that was related to astrocyte and microglial morphology. Our findings suggest that long-term monitoring of children with juvenile concussive episodes using dMRI is warranted, focusing on vulnerable WM tracts.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jeong Bin Lee
- Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, US
| | | | - Sean D. Noarbe
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yu Chiao Lee
- Department of Pediatrics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
6
|
Kamali A, Dieckhaus L, Peters EC, Preszler CA, Witte RS, Pires PW, Hutchinson EB, Laksari K. Ultrasound, photoacoustic, and magnetic resonance imaging to study hyperacute pathophysiology of traumatic and vascular brain injury. J Neuroimaging 2023; 33:534-546. [PMID: 37183044 PMCID: PMC10525021 DOI: 10.1111/jon.13115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebrovascular dynamics and pathomechanisms that evolve in the minutes and hours following traumatic vascular injury in the brain remain largely unknown. We investigated the pathophysiology evolution in mice within the first 3 hours after closed-head traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH), two significant traumatic vascular injuries. METHODS We took a multimodal imaging approach using photoacoustic imaging, color Doppler ultrasound, and MRI to track injury outcomes using a variety of metrics. RESULTS Brain oxygenation and velocity-weighted volume of blood flow (VVF) values significantly decreased from baseline to 15 minutes after both TBI and SAH. TBI resulted in 19.2% and 41.0% ipsilateral oxygenation and VVF reductions 15 minutes postinjury, while SAH resulted in 43.9% and 85.0% ipsilateral oxygenation and VVF reduction (p < .001). We found partial recovery of oxygenation from 15 minutes to 3 hours after injury for TBI but not SAH. Hemorrhage, edema, reduced perfusion, and altered diffusivity were evident from MRI scans acquired 90-150 minutes after injury in both injury models, although the spatial distribution was mostly focal for TBI and diffuse for SAH. CONCLUSIONS The results reveal that the cerebral oxygenation deficits immediately following injuries are reversible for TBI and irreversible for SAH. Our findings can inform future studies on mitigating these early responses to improve long-term recovery.
Collapse
Affiliation(s)
- Ali Kamali
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Laurel Dieckhaus
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Emily C. Peters
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| | - Collin A. Preszler
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Russel S. Witte
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, AZ
- College of Optical Sciences, University of Arizona, Tucson, AZ
| | - Paulo W. Pires
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ
| | - Elizabeth B. Hutchinson
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona College of Engineering, Tucson, AZ
- Department of Aerospace and Mechanical Engineering, University of Arizona College of Engineering, Tucson, AZ
| |
Collapse
|
7
|
Obenaus A, Rodriguez-Grande B, Lee JB, Dubois CJ, Fournier ML, Cador M, Caille S, Badaut J. A single mild juvenile TBI in male mice leads to regional brain tissue abnormalities at 12 months of age that correlate with cognitive impairment at the middle age. Acta Neuropathol Commun 2023; 11:32. [PMID: 36859364 PMCID: PMC9976423 DOI: 10.1186/s40478-023-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/12/2023] [Indexed: 03/03/2023] Open
Abstract
Traumatic brain injury (TBI) has the highest incidence amongst the pediatric population and its mild severity represents the most frequent cases. Moderate and severe injuries as well as repetitive mild TBI result in lasting morbidity. However, whether a single mild TBI sustained during childhood can produce long-lasting modifications within the brain is still debated. We aimed to assess the consequences of a single juvenile mild TBI (jmTBI) at 12 months post-injury in a mouse model. Non-invasive diffusion tensor imaging (DTI) revealed significant microstructural alterations in the hippocampus and the in the substantia innominata/nucleus basalis (SI/NB), structures known to be involved in spatial learning and memory. DTI changes paralled neuronal loss, increased astrocytic AQP4 and microglial activation in the hippocampus. In contrast, decreased astrocytic AQP4 expression and microglia activation were observed in SI/NB. Spatial learning and memory were impaired and correlated with alterations in DTI-derived derived fractional ansiotropy (FA) and axial diffusivity (AD). This study found that a single juvenile mild TBI leads to significant region-specific DTI microstructural alterations, distant from the site of impact, that correlated with cognitive discriminative novel object testing and spatial memory impairments at 12 months after a single concussive injury. Our findings suggest that exposure to jmTBI leads to a chronic abnormality, which confirms the need for continued monitoring of symptoms and the development of long-term treatment strategies to intervene in children with concussions.
Collapse
Affiliation(s)
- Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Jeong Bin Lee
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Christophe J Dubois
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | | | - Martine Cador
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Stéphanie Caille
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France
| | - Jerome Badaut
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
- CNRS, EPHE, INCIA UMR5287, University of Bordeaux, F33000, Bordeaux, France.
- CNRS UMR 5536 RMSB, University of Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
8
|
Leyba K, Paiyabhroma N, Salvas JP, Damen FW, Janvier A, Zub E, Bernis C, Rouland R, Dubois CJ, Badaut J, Richard S, Marchi N, Goergen CJ, Sicard P. Neurovascular hypoxia after mild traumatic brain injury in juvenile mice correlates with heart-brain dysfunctions in adulthood. Acta Physiol (Oxf) 2023; 238:e13933. [PMID: 36625322 DOI: 10.1111/apha.13933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
AIM Retrospective studies suggest that mild traumatic brain injury (mTBI) in pediatric patients may lead to an increased risk of cardiac events. However, the exact functional and temporal dynamics and the associations between heart and brain pathophysiological trajectories are not understood. METHODS A single impact to the left somatosensory cortical area of the intact skull was performed on juvenile mice (17 days postnatal). Cerebral 3D photoacoustic imaging was used to measure the oxygen saturation (sO2 ) in the impacted area 4 h after mTBI followed by 2D and 4D echocardiography at days 7, 30, 90, and 190 post-impact. At 8 months, we performed a dobutamine stress test to evaluate cardiac function. Lastly, behavioral analyses were conducted 1 year after initial injury. RESULTS We report a rapid and transient decrease in cerebrovascular sO2 and increased hemoglobin in the impacted left brain cortex. Cardiac analyses showed long-term diastolic dysfunction and a diminished systolic strain response under stress in the mTBI group. At the molecular level, cardiac T-p38MAPK and troponin I expression was pathologic modified post-mTBI. We found linear correlations between brain sO2 measured immediately post-mTBI and long-term cardiac strain after 8 months. We report that initial cerebrovascular hypoxia and chronic cardiac dysfunction correlated with long-term behavioral changes hinting at anxiety-like and memory maladaptation. CONCLUSION Experimental juvenile mTBI induces time-dependent cardiac dysfunction that corresponds to the initial neurovascular sO2 dip and is associated with long-term behavioral modifications. These imaging biomarkers of the heart-brain axis could be applied to improve clinical pediatric mTBI management.
Collapse
Affiliation(s)
- Katherine Leyba
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Nitchawat Paiyabhroma
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| | - John P Salvas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alicia Janvier
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emma Zub
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Corinne Bernis
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm/Université Paul Sabatier UMR1048, Toulouse, France
| | | | | | - Jerome Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
| | - Sylvain Richard
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| | - Nicola Marchi
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Pierre Sicard
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| |
Collapse
|
9
|
Sun CC, Zhang YW, Xing XX, Yang Q, Cao LY, Cheng YF, Zhao JW, Zhou ST, Cheng DD, Zhang Y, Hua XY, Wang H, Xu DS. Modified constraint-induced movement therapy enhances cortical plasticity in a rat model of traumatic brain injury: a resting-state functional MRI study. Neural Regen Res 2023; 18:410-415. [PMID: 35900438 PMCID: PMC9396520 DOI: 10.4103/1673-5374.344832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Modified constraint-induced movement therapy (mCIMT) has shown beneficial effects on motor function improvement after brain injury, but the exact mechanism remains unclear. In this study, amplitude of low frequency fluctuation (ALFF) metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control cortical impact (CCI) rat model simulating traumatic brain injury. At 3 days after control cortical impact model establishment, we found that the mean ALFF (mALFF) signals were decreased in the left motor cortex, somatosensory cortex, insula cortex and the right motor cortex, and were increased in the right corpus callosum. After 3 weeks of an 8-hour daily mCIMT treatment, the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively. The mALFF signal values of left corpus callosum, left somatosensory cortex, right medial prefrontal cortex, right motor cortex, left postero dorsal hippocampus, left motor cortex, right corpus callosum, and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group. Finally, we identified brain regions with significantly decreased mALFF values at 3 days postoperatively. Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions. Our findings suggest that functional cortical plasticity changes after brain injury, and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric cortical remodeling. mALFF values correlate with behavioral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.
Collapse
|
10
|
San Martín Molina I, Fratini M, Campi G, Burghammer M, Grünewald TA, Salo RA, Narvaez O, Aggarwal M, Tohka J, Sierra A. A multiscale tissue assessment in a rat model of mild traumatic brain injury. J Neuropathol Exp Neurol 2022; 82:71-83. [PMID: 36331507 PMCID: PMC9764078 DOI: 10.1093/jnen/nlac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SμXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SμXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SμXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.
Collapse
Affiliation(s)
| | - Michela Fratini
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Tilman A Grünewald
- European Synchrotron Radiation Facility, Grenoble Cedex, France,Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Omar Narvaez
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- Send correspondence to: Alejandra Sierra, PhD, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland (Kuopio Campus), PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland; E-mail:
| |
Collapse
|
11
|
Dadgostar E, Rahimi S, Nikmanzar S, Nazemi S, Naderi Taheri M, Alibolandi Z, Aschner M, Mirzaei H, Tamtaji OR. Aquaporin 4 in Traumatic Brain Injury: From Molecular Pathways to Therapeutic Target. Neurochem Res 2022; 47:860-871. [PMID: 35088218 DOI: 10.1007/s11064-021-03512-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is known as an acute degenerative pathology of the central nervous system, and has been shown to increase brain aquaporin 4 (AQP4) expression. Various molecular mechanisms affect AQP4 expression, including neuronal high mobility group box 1, forkhead box O3a, vascular endothelial growth factor, hypoxia-inducible factor-1 α (HIF-1 α) sirtuin 2, NF-κB, Malat1, nerve growth factor and Angiotensin II receptor type 1. In addition, inhibition of AQP4 with FK-506, MK-801 (indirectly by targeting N-methyl-D-aspartate receptor), inactivation of adenosine A2A receptor, levetiracetam, adjudin, progesterone, estrogen, V1aR inhibitor, hypertonic saline, erythropoietin, poloxamer 188, brilliant blue G, HIF-1alpha inhibitor, normobaric oxygen therapy, astaxanthin, epigallocatechin-3-gallate, sesamin, thaliporphine, magnesium, prebiotic fiber, resveratrol and omega-3, as well as AQP4 gene silencing lead to reduced edema upon TBI. This review summarizes current knowledge and evidence on the relationship between AQP4 and TBI, and the potential mechanisms involved.
Collapse
Affiliation(s)
- Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rahimi
- School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Nazemi
- Tracheal Disease Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Naderi Taheri
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Alibolandi
- Anatomical Science Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Omid Reza Tamtaji
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Lu Q, Xiong J, Yuan Y, Ruan Z, Zhang Y, Chai B, Li L, Cai S, Xiao J, Wu Y, Huang P, Zhang H. Minocycline improves the functional recovery after traumatic brain injury via inhibition of aquaporin-4. Int J Biol Sci 2022; 18:441-458. [PMID: 34975343 PMCID: PMC8692149 DOI: 10.7150/ijbs.64187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.
Collapse
Affiliation(s)
- Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of pharmacy, Hangzhou Red Cross Hospital, Zhejiang Province Hospital of Integrated Traditional Chinese and Western Medicine, 310003, Hangzhou, Zhejiang, China
| | - Zhanwei Ruan
- Department of Emergency, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Bo Chai
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Lei Li
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Shufang Cai
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, 325035, Wenzhou, Zhejiang, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, 325035, Wenzhou, Zhejiang, China
| | - Peng Huang
- Department of Pharmacy, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.,Department of Pharmacy, Zhuji People's Hospital, The Affiliated Hospital of Wenzhou Medical University, 311899, Shaoxing, Zhejiang, China
| |
Collapse
|
13
|
Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, Lin Q, Chen X, Deng Y. Melatonin Reduces Neuroinflammation and Improves Axonal Hypomyelination by Modulating M1/M2 Microglia Polarization via JAK2-STAT3-Telomerase Pathway in Postnatal Rats Exposed to Lipopolysaccharide. Mol Neurobiol 2021; 58:6552-6576. [PMID: 34585328 PMCID: PMC8639545 DOI: 10.1007/s12035-021-02568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Microglia activation and associated inflammation are implicated in the periventricular white matter damage (PWMD) in septic postnatal rats. This study investigated whether melatonin would mitigate inflammation and alleviate the axonal hypomyelination in the corpus callosum in septic postnatal rats. We further explored if this might be related to the modulation of microglial polarization from M1 phenotype to M2 through the JAK2/STAT3/telomerase pathway. We reported here that indeed melatonin not only can it reduce the neurobehavioral disturbances in LPS-injected rats, but it can also dampen microglia-mediated inflammation. Thus, in LPS + melatonin group, the expression of proinflammatory mediators in M1 phenotype microglia was downregulated. As opposed to this, M2 microglia were increased which was accompanied by upregulated expression of anti-inflammatory mediators along with telomerase reverse transcriptase or melatonin receptor 1(MT1). In parallel to this was decreased NG2 expression but increased expression of myelin and neurofilament proteins. Melatonin can improve hypomyelination which was confirmed by electron microscopy. In vitro in primary microglia stimulated by LPS, melatonin decreased the expression of proinflammatory mediators significantly; but it increased the expression of anti-inflammatory mediators. Additionally, the expression levels of p-JAK2 and p-STAT3 were significantly elevated in microglia after melatonin treatment. Remarkably, the effect of melatonin on LPS-treated microglia was blocked by melatonin receptor, JAK2, STAT3 and telomerase reverse transcriptase inhibitors, respectively. Taken together, it is concluded that melatonin can attenuate PWMD through shifting M1 microglia towards M2 via MT1/JAK2/STAT3/telomerase pathway. The results suggest a new therapeutic strategy whereby melatonin may be adopted to convert microglial polarization from M1 to M2 phenotype that would ultimately contribute to the attenuation of PWMD.
Collapse
Affiliation(s)
- Qiuping Zhou
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfen Lin
- Department of Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Haiyan Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Huifang Wang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuqi Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peixian Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiongyu Lin
- Department of Critical Care Medicine, Jieyang People's Hospital, Jieyang, 522000, Guangdong, China
| | - Xuan Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College (FCS), Shantou, 515063, China
| | - Yiyu Deng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
15
|
Wiegand TLT, Sollmann N, Bonke EM, Umeasalugo KE, Sobolewski KR, Plesnila N, Shenton ME, Lin AP, Koerte IK. Translational neuroimaging in mild traumatic brain injury. J Neurosci Res 2021; 100:1201-1217. [PMID: 33789358 DOI: 10.1002/jnr.24840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI.
Collapse
Affiliation(s)
- Tim L T Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Elena M Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kosisochukwu E Umeasalugo
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kristen R Sobolewski
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Lee JK, Liu D, Jiang D, Kulikowicz E, Tekes A, Liu P, Qin Q, Koehler RC, Aggarwal M, Zhang J, Martin LJ. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J Comp Neurol 2021; 529:2750-2770. [PMID: 33543493 DOI: 10.1002/cne.25121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The specific cytopathology that causes abnormal fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) after neonatal hypoxia-ischemia (HI) is not completely understood. The panoply of cell types in the brain might contribute differentially to changes in DTI metrics. Because glia are the predominant cell type in brain, we hypothesized that changes in FA and MD would signify perturbations in glial microstructure. Using a 3-Tesla clinical scanner, we conducted in vivo DTI MRI in nine neonatal piglets at 20-96 h after excitotoxic brain injury from striatal quinolinic acid injection or global HI. FA and MD from putamen, caudate, and internal capsule in toto were correlated with astrocyte swelling, neuronal excitotoxicity, and white matter injury. Low FA correlated with more swollen astrocytes immunophenotyped by aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and glutamate transporter-1 (GLT-1). Low FA was also related to the loss of neurons with perineuronal GLT-1+ astrocyte decorations, large myelin swellings, lower myelin density, and oligodendrocyte cell death identified by 2',3'-cyclic nucleotide 3'-phosphodiesterase, bridging integrator-1, and nuclear morphology. MD correlated with degenerating oligodendrocytes and depletion of normal GFAP+ astrocytes but not with astrocyte or myelin swelling. We conclude that FA is associated with cytotoxic edema in astrocytes and oligodendrocyte processes as well as myelin injury at the cellular level. MD can detect glial cell death and loss, but it may not discern subtle pathology in swollen astrocytes, oligodendrocytes, or myelin. This study provides a cytopathologic basis for interpreting DTI in the neonatal brain after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manisha Aggarwal
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University, New York, New York, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Janigro D, Bailey DM, Lehmann S, Badaut J, O'Flynn R, Hirtz C, Marchi N. Peripheral Blood and Salivary Biomarkers of Blood-Brain Barrier Permeability and Neuronal Damage: Clinical and Applied Concepts. Front Neurol 2021; 11:577312. [PMID: 33613412 PMCID: PMC7890078 DOI: 10.3389/fneur.2020.577312] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology Case Western Reserve University, Cleveland, OH, United States.,FloTBI Inc., Cleveland, OH, United States
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, United Kingdom
| | - Sylvain Lehmann
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Jerome Badaut
- Brain Molecular Imaging Lab, CNRS UMR 5287, INCIA, University of Bordeaux, Bordeaux, France
| | - Robin O'Flynn
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Christophe Hirtz
- IRMB, INM, UFR Odontology, University Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
18
|
To XV, Nasrallah FA. A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 2021; 9:2. [PMID: 33407949 PMCID: PMC7789702 DOI: 10.1186/s40478-020-01098-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Concussion or mild traumatic brain injury is the most common form of traumatic brain injury with potentially long-term consequences. Current objective diagnosis and treatment options are limited to clinical assessment, cognitive rest, and symptom management, which raises the real danger of concussed patients being released back into activities where subsequent and cumulative injuries may cause disproportionate damages. This study conducted a cross-sectional multi-modal examination investigation of the temporal changes in behavioural and brain changes in a mouse model of concussion using magnetic resonance imaging. Sham and concussed mice were assessed at day 2, day 7, and day 14 post-sham or injury procedures following a single concussion event for motor deficits, psychological symptoms with open field assessment, T2-weighted structural imaging, diffusion tensor imaging (DTI), neurite orientation density dispersion imaging (NODDI), stimulus-evoked and resting-state functional magnetic resonance imaging (fMRI). Overall, a mismatch in the temporal onsets and durations of the behavioural symptoms and structural/functional changes in the brain was seen. Deficits in behaviour persisted until day 7 post-concussion but recovered at day 14 post-concussion. DTI and NODDI changes were most extensive at day 7 and persisted in some regions at day 14 post-concussion. A persistent increase in connectivity was seen at day 2 and day 14 on rsfMRI. Stimulus-invoked fMRI detected increased cortical activation at day 7 and 14 post-concussion. Our results demonstrate the capabilities of advanced MRI in detecting the effects of a single concussive impact in the brain, and highlight a mismatch in the onset and temporal evolution of behaviour, structure, and function after a concussion. These results have significant translational impact in developing methods for the detection of human concussion and the time course of brain recovery.
Collapse
|
19
|
Logsdon AF, Lucke-Wold BP, Turner RC, Collins SM, Reeder EL, Huber JD, Rosen CL, Robson MJ, Plattner F. Low-intensity Blast Wave Model for Preclinical Assessment of Closed-head Mild Traumatic Brain Injury in Rodents. J Vis Exp 2020:10.3791/61244. [PMID: 33226021 PMCID: PMC8179023 DOI: 10.3791/61244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a large-scale public health problem. Mild TBI is the most prevalent form of neurotrauma and accounts for a large number of medical visits in the United States. There are currently no FDA-approved treatments available for TBI. The increased incidence of military-related, blast-induced TBI further accentuates the urgent need for effective TBI treatments. Therefore, new preclinical TBI animal models that recapitulate aspects of human blast-related TBI will greatly advance the research efforts into the neurobiological and pathophysiological processes underlying mild to moderate TBI as well as the development of novel therapeutic strategies for TBI. Here we present a reliable, reproducible model for the investigation of the molecular, cellular, and behavioral effects of mild to moderate blast-induced TBI. We describe a step-by-step protocol for closed-head, blast-induced mild TBI in rodents using a bench-top setup consisting of a gas-driven shock tube equipped with piezoelectric pressure sensors to ensure consistent test conditions. The benefits of the setup that we have established are its relative low-cost, ease of installation, ease of use and high-throughput capacity. Further advantages of this non-invasive TBI model include the scalability of the blast peak overpressure and the generation of controlled reproducible outcomes. The reproducibility and relevance of this TBI model has been evaluated in a number of downstream applications, including neurobiological, neuropathological, neurophysiological and behavioral analyses, supporting the use of this model for the characterization of processes underlying the etiology of mild to moderate TBI.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs; Division of Gerontology and Geriatric Medicine, University of Washington
| | | | - Ryan C Turner
- Department of Neurosurgery, West Virginia University
| | - Sean M Collins
- Division of Pharmaceutical Sciences, University of Cincinnati
| | - Evan L Reeder
- Division of Pharmaceutical Sciences, University of Cincinnati
| | - Jason D Huber
- Department of Neurosurgery, West Virginia University
| | | | | | | |
Collapse
|
20
|
Moro F, Fossi F, Magliocca A, Pascente R, Sammali E, Baldini F, Tolomeo D, Micotti E, Citerio G, Stocchetti N, Fumagalli F, Magnoni S, Latini R, Ristagno G, Zanier ER. Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. Br J Anaesth 2020; 126:256-264. [PMID: 32977957 DOI: 10.1016/j.bja.2020.08.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue.
Collapse
Affiliation(s)
- Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Fossi
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Aurora Magliocca
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Sammali
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federico Baldini
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Nino Stocchetti
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Francesca Fumagalli
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sandra Magnoni
- Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari Della Provincia di Trento-APSS, Trento, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giuseppe Ristagno
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
21
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
22
|
Wu Y, Wu H, Guo X, Pluimer B, Zhao Z. Blood-Brain Barrier Dysfunction in Mild Traumatic Brain Injury: Evidence From Preclinical Murine Models. Front Physiol 2020; 11:1030. [PMID: 32973558 PMCID: PMC7472692 DOI: 10.3389/fphys.2020.01030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mild traumatic brain injury (mTBI) represents more than 80% of total TBI cases and is a robust environmental risk factor for neurodegenerative diseases including Alzheimer’s disease (AD). Besides direct neuronal injury and neuroinflammation, blood–brain barrier (BBB) dysfunction is also a hallmark event of the pathological cascades after mTBI. However, the vascular link between BBB impairment caused by mTBI and subsequent neurodegeneration remains undefined. In this review, we focus on the preclinical evidence from murine models of BBB dysfunction in mTBI and provide potential mechanistic links between BBB disruption and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingxi Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Haijian Wu
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinying Guo
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brock Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Ledreux A, Pryhoda MK, Gorgens K, Shelburne K, Gilmore A, Linseman DA, Fleming H, Koza LA, Campbell J, Wolff A, Kelly JP, Margittai M, Davidson BS, Granholm AC. Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Front Neurosci 2020; 14:761. [PMID: 32848549 PMCID: PMC7406890 DOI: 10.3389/fnins.2020.00761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Moira K. Pryhoda
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Kevin Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Daniel A. Linseman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Holly Fleming
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Lilia A. Koza
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Julie Campbell
- Pioneer Health and Performance, University of Denver, Denver, CO, United States
| | - Adam Wolff
- Denver Neurological Clinic, Denver, CO, United States
| | - James P. Kelly
- Marcus Institute for Brain Health, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | | |
Collapse
|
24
|
Petrushina I, Hovakimyan A, Harahap-Carrillo IS, Davtyan H, Antonyan T, Chailyan G, Kazarian K, Antonenko M, Jullienne A, Hamer MM, Obenaus A, King O, Zagorski K, Blurton-Jones M, Cribbs DH, Lander H, Ghochikyan A, Agadjanyan MG. Characterization and preclinical evaluation of the cGMP grade DNA based vaccine, AV-1959D to enter the first-in-human clinical trials. Neurobiol Dis 2020; 139:104823. [PMID: 32119976 PMCID: PMC8772258 DOI: 10.1016/j.nbd.2020.104823] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 02/03/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study. Biodistribution studies two days after the injection demonstrated high copy numbers of AV-1959D plasmid after single immunization of Tg2576 mice at the injection sites but not in the tissues of distant organs. Plasmids persisted at the injection sites of some mice 60 days after vaccination. In Tg2576 mice with established amyloid pathology, we did not observe short- or long-term toxicities after multiple immunizations with three doses of AV-1959D. Assessment of the repeated dose acute safety of AV-1959D in cerebral amyloid angiopathy (CAA) prone Tg-SwDI mice did not reveal any immunotherapy-induced vasogenic edema detected by magnetic resonance imaging (MRI) or increased microhemorrhages. Multiple immunizations of Tg-SwDI mice with AV-1959D did not induce T and B cell infiltration, glial activation, vascular deposition of Aβ, or neuronal degeneration (necrosis and apoptosis) greater than that in the control group determined by immunohistochemistry of brain tissues. Taken together, the safety data from two different mouse models of AD substantiate a favorable safety profile of the cGMP grade AV-1959D vaccine supporting its progression to first-in-human clinical trials.
Collapse
Affiliation(s)
- Irina Petrushina
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Armine Hovakimyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | | | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA
| | - Tatevik Antonyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Gor Chailyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Konstantin Kazarian
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Maxim Antonenko
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Amandine Jullienne
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mary M Hamer
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California, Irvine, CA, USA; Preclinical and Translational Imaging Center, University of California, Irvine, CA, USA
| | - Olga King
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Karen Zagorski
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Harry Lander
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA, USA.
| |
Collapse
|
25
|
Ichkova A, Rodriguez-Grande B, Zub E, Saudi A, Fournier ML, Aussudre J, Sicard P, Obenaus A, Marchi N, Badaut J. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol Dis 2020; 141:104952. [PMID: 32442681 DOI: 10.1016/j.nbd.2020.104952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical evidence suggests that a mild traumatic brain injury occurring at a juvenile age (jmTBI) may be sufficient to elicit pathophysiological modifications. However, clinical reports are not adequately integrated with experimental studies examining brain changes occurring post-jmTBI. We monitored the cerebrovascular modifications and assessed the long-term behavioral and electrographic changes resulting from experimental jmTBI. In vivo photoacoustic imaging demonstrated a decrease of cerebrovascular oxygen saturation levels in the impacted area hours post-jmTBI. Three days post-jmTBI oxygenation returned to pre-jmTBI levels, stabilizing at 7 and 30 days after the injury. At the functional level, cortical arterioles displayed no NMDA vasodilation response, while vasoconstriction induced by thromboxane receptor agonist was enhanced at 1 day post-jmTBI. Arterioles showed abnormal NMDA vasodilation at 3 days post-jmTBI, returning to normality at 7 days post injury. Histology showed changes in vessel diameters from 1 to 30 days post-jmTBI. Neurological evaluation indicated signs of anxiety-like behavior up to 30 days post-jmTBI. EEG recordings performed at the cortical site of impact 30 days post-jmTBI did not indicate seizures activity, although it revealed a reduction of gamma waves as compared to age matched sham. Histology showed decrease of neuronal filament staining. In conclusion, experimental jmTBI triggers an early cerebrovascular hypo‑oxygenation in vivo and faulty vascular reactivity. The exact topographical coherence and the direct casualty between early cerebrovascular changes and the observed long-term neurological modifications remain to be investigated. A potential translational value for cerebro-vascular oxygen monitoring in jmTBI is discussed.
Collapse
Affiliation(s)
| | | | - Emma Zub
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | - Amel Saudi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France
| | | | | | - Pierre Sicard
- INSERM, CNRS, Université de Montpellier, PhyMedExp, IPAM, Montpellier, France
| | - André Obenaus
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA; Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Nicola Marchi
- Cerebrovascular and Glia Research Laboratory, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS-U1191 INSERM, University of Montpellier), Montpellier, France.
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
26
|
Dinet V, Petry KG, Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front Neurosci 2019; 13:1178. [PMID: 31780883 PMCID: PMC6861304 DOI: 10.3389/fnins.2019.01178] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of death and disability in children and young adults. Clinical and preclinical research efforts have been carried out to understand the acute, life-threatening pathophysiological events happening after TBI. In the past few years, however, it was recognized that TBI causes significant morbidity weeks, months, or years after the initial injury, thereby contributing substantially to the overall burden of TBI and the decrease of life expectancy in these patients. Long-lasting sequels of TBI include cognitive decline/dementia, sensory-motor dysfunction, and psychiatric disorders, and most important for patients is the need for socio-economic rehabilitation affecting their quality of life. Cerebrovascular alterations have been described during the first week after TBI for direct consequence development of neuroinflammatory process in relation to brain edema. Within the brain-immune interactions, the complement system, which is a family of blood and cell surface proteins, participates in the pathophysiology process. In fact, the complement system is part of the primary defense and clearance component of innate and adaptive immune response. In this review, the complement activation after TBI will be described in relation to the activation of the microglia and astrocytes as well as the blood-brain barrier dysfunction during the first week after the injury. Considering the neuroinflammatory activity as a causal element of neurological handicaps, some major parallel lines of complement activity in multiple sclerosis and Alzheimer pathologies with regard to cognitive impairment will be discussed for chronic TBI. A better understanding of the role of complement activation could facilitate the development of new therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Virginie Dinet
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Klaus G. Petry
- INSERM U1029, Angiogenesis and Neuroinflammation Group, University of Bordeaux, Bordeaux, France
| | - Jerome Badaut
- CNRS UMR 5287, INCIA, Brain molecular Imaging Team, University of Bordeaux, Bordeaux, France
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
27
|
Clément T, Lee JB, Ichkova A, Rodriguez-Grande B, Fournier ML, Aussudre J, Ogier M, Haddad E, Canini F, Koehl M, Abrous DN, Obenaus A, Badaut J. Juvenile mild traumatic brain injury elicits distinct spatiotemporal astrocyte responses. Glia 2019; 68:528-542. [PMID: 31670865 DOI: 10.1002/glia.23736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Mild-traumatic brain injury (mTBI) represents ~80% of all emergency room visits and increases the probability of developing long-term cognitive disorders in children. To date, molecular and cellular mechanisms underlying post-mTBI cognitive dysfunction are unknown. Astrogliosis has been shown to significantly alter astrocytes' properties following brain injury, potentially leading to significant brain dysfunction. However, such alterations have never been investigated in the context of juvenile mTBI (jmTBI). A closed-head injury model was used to study jmTBI on postnatal-day 17 mice. Astrogliosis was evaluated using glial fibrillary acidic protein (GFAP), vimentin, and nestin immunolabeling in somatosensory cortex (SSC), dentate gyrus (DG), amygdala (AMY), and infralimbic area (ILA) of prefrontal cortex in both hemispheres from 1 to 30 days postinjury (dpi). In vivo T2-weighted-imaging (T2WI) and diffusion tensor imaging (DTI) were performed at 7 and 30 dpi to examine tissue level structural alterations. Increased GFAP-labeling was observed up to 30 dpi in the ipsilateral SSC, the initial site of the impact. However, vimentin and nestin expression was not perturbed by jmTBI. The morphology of GFAP positive cells was significantly altered in the SSC, DG, AMY, and ILA up to 7 dpi that some correlated with magnetic resonance imaging changes. T2WI and DTI values were significantly altered at 30 dpi within these brain regions most prominently in regions distant from the impact site. Our data show that jmTBI triggers changes in astrocytic phenotype with a distinct spatiotemporal pattern. We speculate that the presence and time course of astrogliosis may contribute to pathophysiological processes and long-term structural alterations following jmTBI.
Collapse
Affiliation(s)
| | - Jeong B Lee
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | | | | | | | | | - Michael Ogier
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Elizabeth Haddad
- Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Frederic Canini
- Département des Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Muriel Koehl
- Neurocentre Magendie INSERM U1215, Bordeaux, France
| | | | - Andre Obenaus
- Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Pediatrics, University of California, Irvine, Irvine, California
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Physiology, Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
28
|
Cannella LA, McGary H, Ramirez SH. Brain interrupted: Early life traumatic brain injury and addiction vulnerability. Exp Neurol 2019; 317:191-201. [PMID: 30862466 PMCID: PMC6544498 DOI: 10.1016/j.expneurol.2019.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Recent reports provide evidence for increased risk of substance use disorders (SUD) among patients with a history of early-life traumatic brain injury (TBI). Preclinical research utilizing animal models of TBI have identified injury-induced inflammation, blood-brain barrier permeability, and changes to synapses and neuronal networks within regions of the brain associated with the perception of reward. Importantly, these reward pathway networks are underdeveloped during childhood and adolescence, and early-life TBI pathology may interrupt ongoing maturation. As such, maladaptive changes induced by juvenile brain injury may underlie increased susceptibility to SUD. In this review, we describe the available clinical and preclinical evidence that identifies SUD as a persistent psychiatric consequence of pediatric neurotrauma by discussing (1) the incidence of early-life TBI, (2) how preclinical studies model TBI and SUD, (3) TBI-induced neuropathology and neuroinflammation in the corticostriatal regions of the brain, and (4) the link between childhood or adolescent TBI and addiction in adulthood. In summary, preclinical research utilizes an innovative combination of models of early-life TBI and SUD to recapitulate clinical features and to determine how TBI promotes a risk for the development of SUD. However, causal processes that link TBI and SUD remain unclear. Additional research to identify and therapeutically target underlying mechanisms of aberrant reward pathway development will provide a launching point for TBI and SUD treatment strategies.
Collapse
Affiliation(s)
- Lee Anne Cannella
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hannah McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
29
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
30
|
Badaut J, Adami A, Huang L, Obenaus A. Noninvasive magnetic resonance imaging stratifies injury severity in a rodent model of male juvenile traumatic brain injury. J Neurosci Res 2019; 98:129-140. [PMID: 30916808 DOI: 10.1002/jnr.24415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Age and severity are significant predictors of traumatic brain injury (TBI) outcomes in the immature brain. TBI studies have segregated TBI injury into three severity groups: mild, moderate, and severe. While mild TBI is most frequent form in children and adults, there is debate over the indicators used to denote mild injury. Clinically, magnetic resonance imaging (MRI) and computed tomography (CT) are used to diagnose the TBI severity when medically warranted. Herein, we induced mild, moderate, and severe TBI in juvenile rats (jTBI) using the controlled cortical impact model. We characterized the temporal and spatial injury after graded jTBI in vivo using high-field MRI at 0.25 (6 hr), 1 and 3 days post-injury (dpi) with comparative histology. Susceptibility-weighted imaging (SWI) for blood and T2-weighted imaging (T2WI) for edema were quantified over the 0.25-3 dpi. Edema volumes increased linearly with severity at 0.25 dpi that slowly continued to decrease over the 3 dpi. In contrast, blood volumes did not decrease over time. Mild TBI had the least amount of blood visible on SWI. Fluoro-jade B (FJB) staining for cell death confirmed increased cellular death with increasing severity and increased FJB + cells in the corpus callosum (CC). Interestingly, the strongest correlation was observed for cell death and the presence of extravascular blood. A clear understanding of acute brain injury (jTBI) and how blood/edema contribute to mild, moderate, and severe jTBI is needed prior to embarking on therapeutic interventions. Noninvasive imaging should be used in mild jTBI to verify lack of overt injury.
Collapse
Affiliation(s)
- Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Arash Adami
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lei Huang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, UC Riverside, Riverside, California.,Department of Pediatrics, University of California Irvine, Irvine, California
| |
Collapse
|
31
|
Llufriu-Dabén G, Meffre D, Massaad C, Jafarian-Tehrani M. A novel model of trauma-induced cerebellar injury and myelin loss in mouse organotypic cerebellar slice cultures using live imaging. J Neurosci Methods 2019; 311:385-393. [DOI: 10.1016/j.jneumeth.2018.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
|