1
|
Lin L, Chen Y, He K, Metwally S, Jha R, Capuk O, Bhuiyan MIH, Singh G, Cao G, Yin Y, Sun D. Carotid artery vascular stenosis causes the blood-CSF barrier damage and neuroinflammation. J Neuroinflammation 2024; 21:220. [PMID: 39256783 PMCID: PMC11385148 DOI: 10.1186/s12974-024-03209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) helps maintain the homeostasis of the brain by forming the blood-CSF barrier via tight junctions (TJ) at the choroid plexus epithelial cells, and subsequently preventing neuroinflammation by restricting immune cells infiltration into the central nervous system. However, whether chronic cerebral hypoperfusion causes ChP structural damage and blood-CSF barrier impairment remains understudied. METHODS The bilateral carotid stenosis (BCAS) model in adult male C57BL/6 J mice was used to induce cerebral hypoperfusion, a model for vascular contributions to cognitive impairment and dementia (VCID). BCAS-mediated changes of the blood-CSF barrier TJ proteins, apical secretory Na+-K+-Cl- cotransporter isoform 1 (NKCC1) protein and regulatory serine-threonine kinases SPAK, and brain infiltration of myeloid-derived immune cells were assessed. RESULTS BCAS triggered dynamic changes of TJ proteins (claudin 1, claudin 5) accompanied with stimulation of SPAK-NKCC1 complex and NF-κB in the ChP epithelial cells. These changes impacted the integrity of the blood-CSF barrier, as evidenced by ChP infiltration of macrophages/microglia, neutrophils and T cells. Importantly, pharmacological blockade of SPAK with its potent inhibitor ZT1a in BCAS mice attenuated brain immune cell infiltration and improved cognitive neurological function. CONCLUSIONS BCAS causes chronic ChP blood-CSF damage and immune cell infiltration. Our study sheds light on the SPAK-NKCC1 complex as a therapeutic target in neuroinflammation.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Chen
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai He
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Gazal Singh
- Biomedical Masters Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical Center, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Bielanin JP, Metwally SAH, Oft HCM, Paruchuri SS, Lin L, Capuk O, Pennock ND, Song S, Sun D. NHE1 Protein in Repetitive Mild TBI-Mediated Neuroinflammation and Neurological Function Impairment. Antioxidants (Basel) 2024; 13:836. [PMID: 39061904 PMCID: PMC11274226 DOI: 10.3390/antiox13070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mild traumatic brain injuries (mTBIs) are highly prevalent and can lead to chronic behavioral and cognitive deficits often associated with the development of neurodegenerative diseases. Oxidative stress and formation of reactive oxygen species (ROS) have been implicated in mTBI-mediated axonal injury and pathogenesis. However, the underlying mechanisms and contributing factors are not completely understood. In this study, we explore these pathogenic mechanisms utilizing a murine model of repetitive mTBI (r-mTBI) involving five closed-skull concussions in young adult C57BL/6J mice. We observed a significant elevation of Na+/H+ exchanger protein (NHE1) expression in GFAP+ reactive astrocytes, IBA1+ microglia, and OLIG2+ oligodendrocytes across various brain regions (including the cerebral cortex, corpus callosum, and hippocampus) after r-mTBI. This elevation was accompanied by astrogliosis, microgliosis, and the accumulation of amyloid precursor protein (APP). Mice subjected to r-mTBI displayed impaired motor learning and spatial memory. However, post-r-mTBI administration of a potent NHE1 inhibitor, HOE642, attenuated locomotor and cognitive functional deficits as well as pathological signatures of gliosis, oxidative stress, axonal damage, and white matter damage. These findings indicate NHE1 upregulation plays a role in r-mTBI-induced oxidative stress, axonal damage, and gliosis, suggesting NHE1 may be a promising therapeutic target to alleviate mTBI-induced injuries and restore neurological function.
Collapse
Affiliation(s)
- John P. Bielanin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shamseldin A. H. Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Helena C. M. Oft
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Satya S. Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lin Lin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas D. Pennock
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Benkő S, Dénes Á. Microglial Inflammatory Mechanisms in Stroke: The Jury Is Still Out. Neuroscience 2024; 550:43-52. [PMID: 38364965 DOI: 10.1016/j.neuroscience.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Microglia represent the main immune cell population in the CNS with unique homeostatic roles and contribution to broad neurological conditions. Stroke is associated with marked changes in microglial phenotypes and induction of inflammatory responses, which emerge as key modulators of brain injury, neurological outcome and regeneration. However, due to the limited availability of functional studies with selective targeting of microglia and microglia-related inflammatory pathways in stroke, the vast majority of observations remain correlative and controversial. Because extensive review articles discussing the role of inflammatory mechanisms in different forms of acute brain injury are available, here we focus on some specific pathways that appear to be important for stroke pathophysiology with assumed contribution by microglia. While the growing toolkit for microglia manipulation increasingly allows targeting inflammatory pathways in a cell-specific manner, reconsideration of some effects devoted to microglia may also be required. This may particularly concern the interpretation of inflammatory mechanisms that emerge in response to stroke as a form of sterile injury and change markedly in chronic inflammation and common stroke comorbidities.
Collapse
Affiliation(s)
- Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1083, Hungary.
| |
Collapse
|
4
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
6
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
7
|
Song S, Oft H, Metwally S, Paruchuri S, Bielanin J, Fiesler V, Sneiderman C, Kohanbash G, Sun D. Deletion of Slc9a1 in Cx3cr1 + cells stimulated microglial subcluster CREB1 signaling and microglia-oligodendrocyte crosstalk. J Neuroinflammation 2024; 21:69. [PMID: 38509618 PMCID: PMC10953158 DOI: 10.1186/s12974-024-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| | - Helena Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satya Paruchuri
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Bielanin
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria Fiesler
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Li Z, Wu J, Zhao T, Wei Y, Xu Y, Liu Z, Li X, Chen X. Microglial activation in spaceflight and microgravity: potential risk of cognitive dysfunction and poor neural health. Front Cell Neurosci 2024; 18:1296205. [PMID: 38425432 PMCID: PMC10902453 DOI: 10.3389/fncel.2024.1296205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Due to the increased crewed spaceflights in recent years, it is vital to understand how the space environment affects human health. A lack of gravitational force is known to risk multiple physiological functions of astronauts, particularly damage to the central nervous system (CNS). As innate immune cells of the CNS, microglia can transition from a quiescent state to a pathological state, releasing pro-inflammatory cytokines that contribute to neuroinflammation. There are reports indicating that microglia can be activated by simulating microgravity or exposure to galactic cosmic rays (GCR). Consequently, microglia may play a role in the development of neuroinflammation during spaceflight. Prolonged spaceflight sessions raise concerns about the chronic activation of microglia, which could give rise to various neurological disorders, posing concealed risks to the neural health of astronauts. This review summarizes the risks associated with neural health owing to microglial activation and explores the stressors that trigger microglial activation in the space environment. These stressors include GCR, microgravity, and exposure to isolation and stress. Of particular focus is the activation of microglia under microgravity conditions, along with the proposal of a potential mechanism.
Collapse
Affiliation(s)
- Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jiarui Wu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yiyun Wei
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yajing Xu
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaoqiong Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Chen Y, Lin L, Bhuiyan MIH, He K, Jha R, Song S, Fiesler VM, Begum G, Yin Y, Sun D. Transient ischemic stroke triggers sustained damage of the choroid plexus blood-CSF barrier. Front Cell Neurosci 2023; 17:1279385. [PMID: 38107410 PMCID: PMC10725199 DOI: 10.3389/fncel.2023.1279385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Kai He
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Victoria M. Fiesler
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yan Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Metwally SAH, Paruchuri SS, Yu L, Capuk O, Pennock N, Sun D, Song S. Pharmacological Inhibition of NHE1 Protein Increases White Matter Resilience and Neurofunctional Recovery after Ischemic Stroke. Int J Mol Sci 2023; 24:13289. [PMID: 37686096 PMCID: PMC10488118 DOI: 10.3390/ijms241713289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.
Collapse
Affiliation(s)
- Shamseldin Ayman Hassan Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Satya Siri Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lauren Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas Pennock
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (S.A.H.M.); (S.S.P.); (L.Y.); (O.C.); (N.P.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
13
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
14
|
Xu B, Shimauchi-Ohtaki H, Yoshimoto Y, Sadakata T, Ishizaki Y. Transplanted human iPSC-derived vascular endothelial cells promote functional recovery by recruitment of regulatory T cells to ischemic white matter in the brain. J Neuroinflammation 2023; 20:11. [PMID: 36650518 PMCID: PMC9847196 DOI: 10.1186/s12974-023-02694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ischemic stroke in white matter of the brain induces not only demyelination, but also neuroinflammation. Peripheral T lymphocytes, especially regulatory T cells (Tregs), are known to infiltrate into ischemic brain and play a crucial role in modulation of inflammatory response there. We previously reported that transplantation of vascular endothelial cells generated from human induced pluripotent stem cells (iVECs) ameliorated white matter infarct. The aim of this study is to investigate contribution of the immune system, especially Tregs, to the mechanism whereby iVEC transplantation ameliorates white matter infarct. METHODS iVECs and human Tregs were transplanted into the site of white matter lesion seven days after induction of ischemia. The egress of T lymphocytes from lymph nodes was sequestered by treating the animals with fingolimod (FTY720). The infarct size was evaluated by magnetic resonance imaging. Immunohistochemistry was performed to detect the activated microglia and macrophages, T cells, Tregs, and oligodendrocyte lineage cells. Remyelination was examined by Luxol fast blue staining. RESULTS iVEC transplantation reduced ED-1+ inflammatory cells and CD4+ T cells, while increased Tregs in the white matter infarct. Treatment of the animals with FTY720 suppressed neuroinflammation and reduced the number of both CD4+ T cells and Tregs in the lesion, suggesting the importance of infiltration of these peripheral immune cells into the lesion in aggravation of neuroinflammation. Suppression of neuroinflammation by FTY720 per se, however, did not promote remyelination in the infarct. FTY720 treatment negated the increase in the number of Tregs by iVEC transplantation in the infarct, and attenuated remyelination promoted by transplanted iVECs, while it did not affect the number of oligodendrocyte lineage cells increased by iVEC transplantation. Transplantation of Tregs together with iVECs into FTY720-treated ischemic white matter did not affect the number of oligodendrocyte lineage cells, while it remarkably promoted myelin regeneration. CONCLUSIONS iVEC transplantation suppresses neuroinflammation, but suppression of neuroinflammation per se does not promote remyelination. Recruitment of Tregs by transplanted iVECs contributes significantly to promotion of remyelination in the injured white matter.
Collapse
Affiliation(s)
- Bin Xu
- grid.256642.10000 0000 9269 4097Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511 Japan ,grid.452661.20000 0004 1803 6319Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Hiroya Shimauchi-Ohtaki
- grid.256642.10000 0000 9269 4097Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Yuhei Yoshimoto
- grid.256642.10000 0000 9269 4097Department of Neurosurgery, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Tetsushi Sadakata
- grid.256642.10000 0000 9269 4097Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Yasuki Ishizaki
- grid.256642.10000 0000 9269 4097Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, 3-39-22 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
15
|
Liang Z, Lou Y, Hao Y, Li H, Feng J, Liu S. The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. Curr Neuropharmacol 2023; 21:2465-2480. [PMID: 37464832 PMCID: PMC10616922 DOI: 10.2174/1570159x21666230718104634] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 07/20/2023] Open
Abstract
Ischemic stroke is the predominant cause of severe morbidity and mortality worldwide. Post-stroke neuroinflammation has recently received increasing attention with the aim of providing a new effective treatment strategy for ischemic stroke. Microglia and astrocytes are major components of the innate immune system of the central nervous system. They can be involved in all phases of ischemic stroke, from the early stage, contributing to the first wave of neuronal cell death, to the late stage involving phagocytosis and repair. In the early stage of ischemic stroke, a vicious cycle exists between the activation of microglia and astrocytes (through astrocytic connexin 43 hemichannels), aggravating neuroinflammatory injury post-stroke. However, in the late stage of ischemic stroke, repeatedly activated microglia can induce the formation of glial scars by triggering reactive astrogliosis in the peri-infarct regions, which may limit the movement of activated microglia in reverse and restrict the diffusion of inflammation to healthy brain tissues, alleviating the neuroinflammatory injury poststroke. In this review, we elucidated the various roles of astrocytes and microglia and summarized their relationship with neuroinflammation. We also examined how astrocytes and microglia influence each other at different stages of ischemic stroke. Several potential therapeutic approaches targeting astrocytes and microglia in ischemic stroke have been reviewed. Understanding the details of astrocytemicroglia interaction processes will contribute to a better understanding of the mechanisms underlying ischemic stroke, contributing to the identification of new therapeutic interventions.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
16
|
Song S, Hasan MN, Yu L, Paruchuri SS, Bielanin JP, Metwally S, Oft HCM, Fischer SG, Fiesler VM, Sen T, Gupta RK, Foley LM, Hitchens TK, Dixon CE, Cambi F, Sen N, Sun D. Microglial-oligodendrocyte interactions in myelination and neurological function recovery after traumatic brain injury. J Neuroinflammation 2022; 19:246. [PMID: 36199097 PMCID: PMC9533529 DOI: 10.1186/s12974-022-02608-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Differential microglial inflammatory responses play a role in regulation of differentiation and maturation of oligodendrocytes (OLs) in brain white matter. How microglia-OL crosstalk is altered by traumatic brain injury (TBI) and its impact on axonal myelination and neurological function impairment remain poorly understood. In this study, we investigated roles of a Na+/H+ exchanger (NHE1), an essential microglial pH regulatory protein, in microglial proinflammatory activation and OL survival and differentiation in a murine TBI model induced by controlled cortical impact. Similar TBI-induced contusion volumes were detected in the Cx3cr1-CreERT2 control (Ctrl) mice and selective microglial Nhe1 knockout (Cx3cr1-CreERT2;Nhe1flox/flox, Nhe1 cKO) mice. Compared to the Ctrl mice, the Nhe1 cKO mice displayed increased resistance to initial TBI-induced white matter damage and accelerated chronic phase of OL regeneration at 30 days post-TBI. The cKO brains presented increased anti-inflammatory phenotypes of microglia and infiltrated myeloid cells, with reduced proinflammatory transcriptome profiles. Moreover, the cKO mice exhibited accelerated post-TBI sensorimotor and cognitive functional recovery than the Ctrl mice. These phenotypic outcomes in cKO mice were recapitulated in C57BL6J wild-type TBI mice receiving treatment of a potent NHE1 inhibitor HOE642 for 1-7 days post-TBI. Taken together, these findings collectively demonstrated that blocking NHE1 protein stimulates restorative microglial activation in oligodendrogenesis and neuroprotection, which contributes to accelerated brain repair and neurological function recovery after TBI.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Lauren Yu
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Satya S Paruchuri
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - John P Bielanin
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shamseldin Metwally
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helena C M Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sydney G Fischer
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victoria M Fiesler
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rajaneesh K Gupta
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - C Edward Dixon
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Franca Cambi
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA. .,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
17
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
18
|
DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory Responses After Ischemic Stroke. Semin Immunopathol 2022; 44:625-648. [PMID: 35767089 DOI: 10.1007/s00281-022-00943-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022]
Abstract
Ischemic stroke generates an immune response that contributes to neuronal loss as well as tissue repair. This is a complex process involving a range of cell types and effector molecules and impacts tissues outside of the CNS. Recent reviews address specific aspects of this response, but several years have passed and important advances have been made since a high-level review has summarized the overall state of the field. The present review examines the initiation of the inflammatory response after ischemic stroke, the complex impacts of leukocytes on patient outcome, and the potential of basic science discoveries to impact the development of therapeutics. The information summarized here is derived from broad PubMed searches and aims to reflect recent research advances in an unbiased manner. We highlight valuable recent discoveries and identify gaps in knowledge that have the potential to advance our understanding of this disease and therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Howard DeLong
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Naomi Ohashi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Charles O'Connor
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Hachmann Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
20
|
Bhuiyan MIH, Young CB, Jahan I, Hasan MN, Fischer S, Meor Azlan NF, Liu M, Chattopadhyay A, Huang H, Kahle KT, Zhang J, Poloyac SM, Molyneaux BJ, Straub AC, Deng X, Gomez D, Sun D. NF-κB Signaling-Mediated Activation of WNK-SPAK-NKCC1 Cascade in Worsened Stroke Outcomes of Ang II-Hypertensive Mice. Stroke 2022; 53:1720-1734. [PMID: 35272484 PMCID: PMC9038703 DOI: 10.1161/strokeaha.121.038351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/31/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Worsened stroke outcomes with hypertension comorbidity are insensitive to blood pressure-lowering therapies. In an experimental stroke model with comorbid hypertension, we investigated causal roles of ang II (angiotensin II)-mediated stimulation of the brain WNK (with no lysine [K] kinases)-SPAK (STE20/SPS1-related proline/alanine-rich kinase)-NKCC1 (Na-K-Cl cotransporter) complex in worsened outcomes. METHODS Saline- or ang II-infused C57BL/6J male mice underwent stroke induced by permanent occlusion of the distal branches of the middle cerebral artery. Mice were randomly assigned to receive either vehicle dimethyl sulfoxide/PBS (2 mL/kg body weight/day, IP), a novel SPAK inhibitor, 5-chloro-N-(5-chloro-4-((4-chlorophenyl)(cyano)methyl)-2-methylphenyl)-2-hydroxybenzamide (ZT-1a' 5 mg/kg per day, IP) or a NF-κB (nuclear factor-κB) inhibitor TAT-NBD (transactivator of transcription-NEMO-binding domain' 20 mg/kg per day, IP). Activation of brain NF-κB and WNK-SPAK-NKCC1 cascade as well as ischemic stroke outcomes were examined. RESULTS Stroke triggered a 2- to 5-fold increase of WNK (isoforms 1, 2, 4), SPAK/OSR1 (oxidative stress-responsive kinase 1), and NKCC1 protein in the ang II-infused hypertensive mouse brains at 24 hours after stroke, which was associated with increased nuclear translocation of phospho-NF-κB protein in the cortical neurons (a Pearson correlation r of 0.77, P<0.005). The upregulation of WNK-SPAK-NKCC1 cascade proteins resulted from increased NF-κB recruitment on Wnk1, Wnk2, Wnk4, Spak, and Nkcc1 gene promoters and was attenuated by NF-κB inhibitor TAT-NBD. Poststroke administration of SPAK inhibitor ZT-1a significantly reduced WNK-SPAK-NKCC1 complex activation, brain lesion size, and neurological function deficits in the ang II-hypertensive mice without affecting blood pressure and cerebral blood flow. CONCLUSIONS The ang II-induced stimulation of NF-κB transcriptional activity upregulates brain WNK-SPAK-NKCC1 cascade and contributes to worsened ischemic stroke outcomes, illustrating the brain WNK-SPAK-NKCC1 complex as a therapeutic target for stroke with comorbid hypertension.
Collapse
Affiliation(s)
- Mohammad Iqbal H Bhuiyan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| | - Cullen B Young
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Israt Jahan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Md Nabiul Hasan
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Sydney Fischer
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | - Mingjun Liu
- Medicine (M.L., D.G.), University of Pittsburgh, PA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System (A.C.), University of Pittsburgh, PA
| | - Huachen Huang
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston (K.T.K.)
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom (N.F.M.A., J.Z.)
| | | | - Bradley J Molyneaux
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
| | - Adam C Straub
- Pharmacology and Chemical Biology (A.C.S), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China (X.D.)
| | - Delphine Gomez
- Medicine (M.L., D.G.), University of Pittsburgh, PA
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute (A.C.S., D.G.), University of Pittsburgh, PA
| | - Dandan Sun
- Departments of Neurology (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., H.H., B.J.M., D.S.), University of Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Disorders (M.I.H.B., C.B.Y., I.J., M.N.H., S.F., B.J.M., D.S.), University of Pittsburgh, PA
- Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational, and Clinical Center, PA (M.I.H.B.' D.S.)
| |
Collapse
|
21
|
Wang J, Liu R, Hasan MN, Fischer S, Chen Y, Como M, Fiesler VM, Bhuiyan MIH, Dong S, Li E, Kahle KT, Zhang J, Deng X, Subramanya AR, Begum G, Yin Y, Sun D. Role of SPAK-NKCC1 signaling cascade in the choroid plexus blood-CSF barrier damage after stroke. J Neuroinflammation 2022; 19:91. [PMID: 35413993 PMCID: PMC9006540 DOI: 10.1186/s12974-022-02456-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The mechanisms underlying dysfunction of choroid plexus (ChP) blood-cerebrospinal fluid (CSF) barrier and lymphocyte invasion in neuroinflammatory responses to stroke are not well understood. In this study, we investigated whether stroke damaged the blood-CSF barrier integrity due to dysregulation of major ChP ion transport system, Na+-K+-Cl- cotransporter 1 (NKCC1), and regulatory Ste20-related proline-alanine-rich kinase (SPAK). METHODS Sham or ischemic stroke was induced in C57Bl/6J mice. Changes on the SPAK-NKCC1 complex and tight junction proteins (TJs) in the ChP were quantified by immunofluorescence staining and immunoblotting. Immune cell infiltration in the ChP was assessed by flow cytometry and immunostaining. Cultured ChP epithelium cells (CPECs) and cortical neurons were used to evaluate H2O2-mediated oxidative stress in stimulating the SPAK-NKCC1 complex and cellular damage. In vivo or in vitro pharmacological blockade of the ChP SPAK-NKCC1 cascade with SPAK inhibitor ZT-1a or NKCC1 inhibitor bumetanide were examined. RESULTS Ischemic stroke stimulated activation of the CPECs apical membrane SPAK-NKCC1 complex, NF-κB, and MMP9, which was associated with loss of the blood-CSF barrier integrity and increased immune cell infiltration into the ChP. Oxidative stress directly activated the SPAK-NKCC1 pathway and resulted in apoptosis, neurodegeneration, and NKCC1-mediated ion influx. Pharmacological blockade of the SPAK-NKCC1 pathway protected the ChP barrier integrity, attenuated ChP immune cell infiltration or neuronal death. CONCLUSION Stroke-induced pathological stimulation of the SPAK-NKCC1 cascade caused CPECs damage and disruption of TJs at the blood-CSF barrier. The ChP SPAK-NKCC1 complex emerged as a therapeutic target for attenuating ChP dysfunction and lymphocyte invasion after stroke.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Ruijia Liu
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Md Nabiul Hasan
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Sydney Fischer
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Yang Chen
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Matt Como
- Pennsylvania State University, State College, PA, USA
| | - Victoria M Fiesler
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Shuying Dong
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Eric Li
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, The Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratory, Exeter, EX4 4PS, UK
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 7016 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Commun Biol 2022; 5:35. [PMID: 35017668 PMCID: PMC8752825 DOI: 10.1038/s42003-021-02984-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
New research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/-;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.
Collapse
|
23
|
Curcumin Ameliorates White Matter Injury after Ischemic Stroke by Inhibiting Microglia/Macrophage Pyroptosis through NF- κB Suppression and NLRP3 Inflammasome Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1552127. [PMID: 34630845 PMCID: PMC8497115 DOI: 10.1155/2021/1552127] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
NLRP3 inflammasome-mediated pyroptosis is a proinflammatory programmed cell death pathway, which plays a vital role in functional outcomes after stroke. We previously described the beneficial effects of curcumin against stroke-induced neuronal damage through modulating microglial polarization. However, the impact of curcumin on microglial pyroptosis remains unknown. Here, stroke was modeled in mice by middle cerebral artery occlusion (MCAO) for 60 minutes and treated with curcumin (150 mg/kg) intraperitoneally immediately after reperfusion, followed by daily administrations for 7 days. Curcumin ameliorated white matter (WM) lesions and brain tissue loss 21 days poststroke and improved sensorimotor function 3, 10, and 21 days after stroke. Furthermore, curcumin significantly reduced the number of gasdermin D+ (GSDMD+) Iba1+ and caspase-1+Iba1+ microglia/macrophage 21 days after stroke. In vitro, lipopolysaccharide (LPS) with ATP treatment was used to induce pyroptosis in primary microglia. Western blot revealed a decrease in pyroptosis-related proteins, e.g., GSDMD-N, cleaved caspase-1, NLRP3, IL-1β, and IL-18, following in vitro or in vivo curcumin treatment. Mechanistically, both in vivo and in vitro studies confirmed that curcumin inhibited the activation of the NF-κB pathway. NLRP3 knocked down by siRNA transfection markedly increased the inhibitory effects of curcumin on microglial pyroptosis and proinflammatory responses, both in vitro and in vivo. Furthermore, stereotaxic microinjection of AAV-based NLRP3 shRNA significantly improved sensorimotor function and reduced WM lesion following curcumin treatment in MCAO mice. Our study suggested that curcumin reduced stroke-induced WM damage, improved functional outcomes, and attenuated microglial pyroptosis, at least partially, through suppression of the NF-κB/NLRP3 signaling pathway, further supporting curcumin as a potential therapeutic drug for stroke.
Collapse
|
24
|
Cheung J, Doerr M, Hu R, Sun PZ. Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging. Transl Stroke Res 2021; 12:742-753. [PMID: 33159656 PMCID: PMC8102648 DOI: 10.1007/s12975-020-00868-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Imaging has played a vital role in our mechanistic understanding of acute ischemia and the management of acute stroke patients. The most recent DAWN and DEFUSE-3 trials showed that endovascular therapy could be extended to a selected group of late-presenting stroke patients with the aid of imaging. Although perfusion and diffusion MRI have been commonly used in stroke imaging, the approximation of their mismatch as the penumbra is oversimplified, particularly in the era of endovascular therapy. Briefly, the hypoperfusion lesion includes the benign oligemia that does not proceed to infarction. Also, with prompt and effective reperfusion therapy, a portion of the diffusion lesion is potentially reversible. Therefore, advanced imaging that provides improved ischemic tissue characterization may enable new experimental stroke therapeutics and eventually further individualize stroke treatment upon translation to the clinical setting. Specifically, pH imaging captures tissue of altered metabolic state that demarcates the hypoperfused lesion into ischemic penumbra and benign oligemia, which remains promising to define the ischemic penumbra's outer boundary. On the other hand, diffusion kurtosis imaging (DKI) differentiates the most severely damaged and irreversibly injured diffusion lesion from the portion of diffusion lesion that is potentially reversible, refining the inner boundary of the penumbra. Altogether, the development of advanced imaging has the potential to not only transform the experimental stroke research but also aid clinical translation and patient management.
Collapse
Affiliation(s)
- Jesse Cheung
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30329, USA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Madeline Doerr
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Dartmouth College, Hanover, NH, 03755, USA
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton RD NE, Atlanta, GA, 30322, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1364 Clifton RD NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Chen S, Shao L, Ma L. Cerebral Edema Formation After Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Front Cell Neurosci 2021; 15:716825. [PMID: 34483842 PMCID: PMC8415457 DOI: 10.3389/fncel.2021.716825] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.
Collapse
Affiliation(s)
- Sichao Chen
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linqian Shao
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ma
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M, Gao R. Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 2021; 46:228. [PMID: 34476504 DOI: 10.3892/or.2021.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 11/06/2022] Open
Abstract
Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
Collapse
Affiliation(s)
- Lin Cao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Tianqiao Huang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiaohong Chen
- Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
| | - Weisha Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Xingjiu Yang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Wenlong Zhang
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Mengyuan Li
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| | - Ran Gao
- Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China
| |
Collapse
|
27
|
Liu Q, Bhuiyan MIH, Liu R, Song S, Begum G, Young CB, Foley LM, Chen F, Hitchens TK, Cao G, Chattopadhyay A, He L, Sun D. Attenuating vascular stenosis-induced astrogliosis preserves white matter integrity and cognitive function. J Neuroinflammation 2021; 18:187. [PMID: 34454529 PMCID: PMC8403348 DOI: 10.1186/s12974-021-02234-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) causes white matter damage and cognitive impairment, in which astrogliosis is the major pathology. However, underlying cellular mechanisms are not well defined. Activation of Na+/H+ exchanger-1 (NHE1) in reactive astrocytes causes astrocytic hypertrophy and swelling. In this study, we examined the role of NHE1 protein in astrogliosis, white matter demyelination, and cognitive function in a murine CCH model with bilateral carotid artery stenosis (BCAS). METHODS Sham, BCAS, or BCAS mice receiving vehicle or a selective NHE1 inhibitor HOE642 were monitored for changes of the regional cerebral blood flow and behavioral performance for 28 days. Ex vivo MRI-DTI was subsequently conducted to detect brain injury and demyelination. Astrogliosis and demyelination were further examined by immunofluorescence staining. Astrocytic transcriptional profiles were analyzed with bulk RNA-sequencing and RT-qPCR. RESULTS Chronic cerebral blood flow reduction and spatial working memory deficits were detected in the BCAS mice, along with significantly reduced mean fractional anisotropy (FA) values in the corpus callosum, external capsule, and hippocampus in MRI DTI analysis. Compared with the sham control mice, the BCAS mice displayed demyelination and axonal damage and increased GFAP+ astrocytes and Iba1+ microglia. Pharmacological inhibition of NHE1 protein with its inhibitor HOE642 prevented the BCAS-induced gliosis, damage of white matter tracts and hippocampus, and significantly improved cognitive performance. Transcriptome and immunostaining analysis further revealed that NHE1 inhibition specifically attenuated pro-inflammatory pathways and NADPH oxidase activation. CONCLUSION Our study demonstrates that NHE1 protein is involved in astrogliosis with pro-inflammatory transformation induced by CCH, and its blockade has potentials for reducing astrogliosis, demyelination, and cognitive impairment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Mohammad Iqbal H Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Ruijia Liu
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Cullen B Young
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA
| | - Ansuman Chattopadhyay
- Molecular Biology-Information Service, Health Sciences Library System, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.
- VA Pittsburgh Healthcare System, Geriatric Research Education and Clinical Center, Pittsburgh, Pennsylvania, 15240, USA.
| |
Collapse
|
28
|
Blawn KT, Kellohen KL, Galloway EA, Wahl J, Vivek A, Verkhovsky VG, Barker NK, Cottier KE, Vallecillo TG, Langlais PR, Liktor-Busa E, Vanderah TW, Largent-Milnes TM. Sex hormones regulate NHE1 functional expression and brain endothelial proteome to control paracellular integrity of the blood endothelial barrier. Brain Res 2021; 1763:147448. [PMID: 33771519 PMCID: PMC10494867 DOI: 10.1016/j.brainres.2021.147448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sex hormones have been implicated in pH regulation of numerous physiological systems. One consistent factor of these studies is the sodium-hydrogen exchanger 1 (NHE1). NHE1 has been associated with pH homeostasis at epithelial barriers. Hormone fluctuations have been implicated in protection and risk for breaches in blood brain barrier (BBB)/blood endothelial barrier (BEB) integrity. Few studies, however, have investigated BBB/BEB integrity in neurological disorders in the context of sex-hormone regulation of pH homeostasis. METHODS//RESULTS Physiologically relevant concentrations of 17-β-estradiol (E2, 294 pM), progesterone (P, 100 nM), and testosterone (T,3.12 nM) were independently applied to cultured immortalized bEnd.3 brain endothelial cells to study the BEB. Individual gonadal hormones showed preferential effects on extracellular pH (E2), 14C-sucrose uptake (T), stimulated paracellular breaches (P) with dependence on functional NHE1 expression without impacting transendothelial resistance (TEER) or total protein expression. While total NHE1 expression was not changed as determined via whole cell lysate and subcellular fractionation experiment, biotinylation of NHE1 for surface membrane expression showed E2 reduced functional expression. Quantitative proteomic analysis revealed divergent effects of 17-β-estradiol and testosterone on changes in protein abundance in bEnd.3 endothelial cells as compared to untreated controls. CONCLUSIONS These data suggest that circulating levels of sex hormones may independently control BEB integrity by 1) regulating pH homeostasis through NHE1 functional expression and 2) modifying the endothelial proteome.
Collapse
Affiliation(s)
- Kiera T Blawn
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Emily A Galloway
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Jared Wahl
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | - Anjali Vivek
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | | - Natalie K Barker
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | | | - Paul R Langlais
- University of Arizona, Department of Medicine, Division of Endocrinology, College of Medicine, Tucson, AZ, USA
| | | | - Todd W Vanderah
- University of Arizona, Department of Pharmacology, Tucson, AZ, USA
| | | |
Collapse
|
29
|
Akhoundzadeh K, Shafia S. Association between GFAP-positive astrocytes with clinically important parameters including neurological deficits and/or infarct volume in stroke-induced animals. Brain Res 2021; 1769:147566. [PMID: 34237322 DOI: 10.1016/j.brainres.2021.147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The effect of GFAP-positive astrocytes, as positive or negative factors on stroke complications such as infarct volume and neurological deficits is currently under debate. This review was aimed to evaluate and compare the frequency of studies that showed a positive or negative relationship between astrocyte activation with the improvement of neurological deficits and/or the decrease of infarct volume. In addition, we reviewed two possible causes of differences in results including timepoint of stroke and stroke severity. Time of GFAP assessment was considered as time point and type of stroke induction and duration of stroke as stroke severity. According to our review in the most relevant English-language studies in the PubMed, Web of Science, and Google Scholar databases from 2005 to 2020, the majority of studies (77 vs. 28) showed a negative coincidence or correlation between GFAP-positive cells with neurological improvement as well as between GFAP-positive cells with infarct volume reduction. In most reviewed studies, GFAP expression was reported as a marker related to or coinciding with worse neurological function, or greater infarct volume. However, there were also studies that showed helpful effects of GFAP-positive cells on neurological function or stroke lesion. Although there are some elucidations that the difference in these findings is due to the time point of stroke and stroke severity, our review did not confirm these interpretations.
Collapse
Affiliation(s)
| | - Sakineh Shafia
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
30
|
Dubaniewicz M, Eles JR, Lam S, Song S, Cambi F, Sun D, Wellman SM, Kozai TDY. Inhibition of Na +/H +exchanger modulates microglial activation and scar formation following microelectrode implantation. J Neural Eng 2021; 18. [PMID: 33621208 DOI: 10.1088/1741-2552/abe8f1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrodes are an important tool for neuroscience research and have great potential for clinical use. However, the use of microelectrode arrays to treat neurological disorders and control prosthetics is limited by biological challenges such as glial scarring, which can impair chronic recording performance. Microglia activation is an early and prominent contributor to glial scarring. After insertion of an intracortical microelectrode, nearby microglia transition into a state of activation, migrate, and encapsulate the device. Na+/H+exchanger isoform-1 (NHE-1) is involved in various microglial functions, including their polarity and motility, and has been implicated in pro-inflammatory responses to tissue injury. HOE-642 (cariporide) is an inhibitor of NHE-1 and has been shown to depress microglial activation and inflammatory response in brain injury models.Approach.In this study, the effects of HOE-642 treatment on microglial interactions to intracortical microelectrodes was evaluated using two-photon microscopyin vivo.Main results.The rate at which microglia processes and soma migrate in response to electrode implantation was unaffected by HOE-642 administration. However, HOE-642 administration effectively reduced the radius of microglia activation at 72 h post-implantation from 222.2µm to 177.9µm. Furthermore, treatment with HOE-642 significantly reduced microglial encapsulation of implanted devices at 5 h post-insertion from 50.7 ± 6.0% to 8.9 ± 6.1%, which suggests an NHE-1-specific mechanism mediating microglia reactivity and gliosis during implantation injury.Significance.This study implicates NHE-1 as a potential target of interest in microglial reactivity and HOE-642 as a potential treatment to attenuate the glial response and scar formation around implanted intracortical microelectrodes.
Collapse
Affiliation(s)
- Mitchell Dubaniewicz
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Dandan Sun
- Veterans Administration Pittsburgh, Pittsburgh, PA, United States of America.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America.,Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
31
|
Lyu J, Xie D, Bhatia TN, Leak RK, Hu X, Jiang X. Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci Ther 2021; 27:515-527. [PMID: 33650313 PMCID: PMC8025652 DOI: 10.1111/cns.13620] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of disability and mortality, with limited treatment options. After stroke injury, microglia and CNS‐resident macrophages are rapidly activated and regulate neuropathological processes to steer the course of functional recovery. To accelerate this recovery, microglia can engulf dying cells and clear irreparably‐damaged tissues, thereby creating a microenvironment that is more suitable for the formation of new neural circuitry. In addition, monocyte‐derived macrophages cross the compromised blood‐brain barrier to infiltrate the injured brain. The specific functions of myeloid lineage cells in brain injury and repair are diverse and dependent on phenotypic polarization statuses. However, it remains to be determined to what degree the CNS‐invading macrophages occupy different functional niches from CNS‐resident microglia. In this review, we describe the physiological characteristics and functions of microglia in the developing and adult brain. We also review (a) the activation and phenotypic polarization of microglia and macrophages after stroke, (b) molecular mechanisms that control polarization status, and (c) the contribution of microglia to brain pathology versus repair. Finally, we summarize current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke. The present review summarizes recent advances in microglial research in relation to stroke with emphases on microglial/macrophage phenotypic polarization and function in brain injury and repair. It also reviews the physiological characteristics and functions of microglia in the developing and adult brain, and describes current breakthroughs in therapeutic strategies that calibrate microglia/macrophage responses after stroke.
![]()
Collapse
Affiliation(s)
- Junxuan Lyu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Di Xie
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Xiaoyan Jiang
- Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh, Pittsburgh, PA, USA.,Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Liu C, Dai SK, Shi RX, He XC, Wang YY, He BD, Sun XW, Du HZ, Liu CM, Teng ZQ. Transcriptional profiling of microglia in the injured brain reveals distinct molecular features underlying neurodegeneration. Glia 2021; 69:1292-1306. [PMID: 33492723 DOI: 10.1002/glia.23966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
Neurotrauma has been recognized as a risk factor for neurodegenerative diseases, and sex difference of the incidence and outcome of neurodegenerative diseases has long been recognized. Past studies suggest that microglia could play a versatile role in both health and disease. So far, the microglial mechanisms underlying neurodegeneration and potentially lead to sex-specific therapies are still very open. Here we applied whole transcriptome analysis of microglia acutely isolated at different timepoints after a cortical stab wound injury to gain insight into genes that might be dysregulated and transcriptionally different between males and females after cortical injury. We found that microglia displayed distinct temporal and sexual molecular signatures of transcriptome after cortical injury. Hypotheses and gene candidates that we presented in the present study could be worthy to be examined to explore the roles of microglia in neurotrauma and in sex-biased neurodegenerative diseases.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-Xi Shi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan-Cheng He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ying-Ying Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bao-Dong He
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Wen Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, Han J, Sun H, Ouyang Q, Hua S, Lv B, Hua T, Liu Z, Cai Y, Zou Y, Tang Y, Jiang X. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY) 2021; 13:3060-3079. [PMID: 33479185 PMCID: PMC7880318 DOI: 10.18632/aging.202466] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
To investigate the therapeutic mechanism of action of transplanted stem cells and develop exosome-based nanotherapeutics for ischemic stroke, we assessed the effect of exosomes (Exos) produced by human umbilical cord mesenchymal stem cells (hUMSCs) on microglia-mediated neuroinflammation after ischemic stroke. Our results found that injected hUMSC-Exos were able to access the site of ischemic damage and could be internalized by cells both in vivo and in vitro. In vitro, treatment with hUMSC-Exos attenuated microglia-mediated inflammation after oxygen-glucose deprivation (OGD). In vivo results demonstrated that treatment with hUMSC-Exos significantly reduced infarct volume, attenuated behavioral deficits, and ameliorated microglia activation, as measured three days post-transient brain ischemia. Furthermore, miR-146a-5p knockdown (miR-146a-5p k/d Exos) partially reversed the neuroprotective effect of hUMSC-Exos. Our mechanistic study demonstrated that miR-146a-5p in hUMSC-Exos reduces microglial-mediated neuroinflammatory response through IRAK1/TRAF6 pathway. We conclude that miR-146a-5p derived from hUMSC-Exos can attenuate microglia-mediated neuroinflammation and consequent neural deficits following ischemic stroke. These results elucidate a potential therapeutic mechanism of action of mesenchymal stem cells and provide evidence that hUMSC-Exos represent a potential cell-free therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaoxiong Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Run Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yu Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Haitao Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Qian Ouyang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Shiting Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhizheng Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yanping Tang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Hasan MN, Luo L, Ding D, Song S, Bhuiyan MIH, Liu R, Foley LM, Guan X, Kohanbash G, Hitchens TK, Castro MG, Zhang Z, Sun D. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells. Theranostics 2021; 11:1295-1309. [PMID: 33391535 PMCID: PMC7738877 DOI: 10.7150/thno.50150] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Immunosuppressive tumor microenvironment (TME) in glioblastoma (GBM) is one of the contributing factors for failed immunotherapies. Therefore, there is an urgent need to better understand TME and to identify novel modulators of TME for more effective GBM therapies. We hypothesized that H+ extrusion protein Na/H exchanger 1 (NHE1) plays a role in dysregulation of glucose metabolism and immunosuppression of GBM. We investigated the efficacy of blockade of NHE1 activity in combination with temozolomide (TMZ) therapy in increasing anti-tumor immunity. Methods: Mouse syngeneic intracranial glioma model was used to test four treatment regimens: DMSO (Vehicle-control), TMZ, NHE1 specific inhibitor HOE642, or TMZ+HOE642 (T+H) combination. Ex vivo 1H/19Fluorine magnetic resonance imaging (MRI) with cell tracking agent Vsense was performed to monitor the infiltration of glioma-associated microglia/myeloid cells (GAMs). Glucose metabolism and transcriptome profiles were analyzed by Seahorse analyzer and bulk RNA-sequencing. The impact of selective Nhe1 deletion in GAMs on sensitivity to anti-PD-1 therapy was evaluated in transgenic NHE1 knockout (KO) mice. Results: Among the tested treatment regimens, the T+H combination therapy significantly stimulated the infiltration of GAMs and T-cells; up-regulated Th1 activation, and mitochondrial oxidative phosphorylation (OXPHOS) pathway genes, increased glucose uptake and mitochondrial mass, and decreased aerobic glycolysis in GAMs. Selective deletion of Nhe1 in Cx3cr1+ Nhe1 KO mice increased anti-tumor immunity and sensitivity to TMZ plus anti-PD-1 combinatorial therapy. Conclusions: NHE1 plays a role in developing glioma immunosuppressive TME in part by dysregulating glucose metabolism of GAMs and emerges as a therapeutic target for improving glioma immunity.
Collapse
|
35
|
Luo L, Song S, Ezenwukwa CC, Jalali S, Sun B, Sun D. Ion channels and transporters in microglial function in physiology and brain diseases. Neurochem Int 2020; 142:104925. [PMID: 33248207 DOI: 10.1016/j.neuint.2020.104925] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Microglial cells interact with all components of the central nervous system (CNS) and are increasingly recognized to play essential roles during brain development, homeostasis and disease pathologies. Functions of microglia include maintaining tissue integrity, clearing cellular debris and dead neurons through the process of phagocytosis, and providing tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. Changes of microglial ionic homeostasis (Na+, Ca2+, K+, H+, Cl-) are important for microglial activation, including proliferation, migration, cytokine release and reactive oxygen species production, etc. These are mediated by ion channels and ion transporters in microglial cells. Here, we review the current knowledge about the role of major microglial ion channels and transporters, including several types of Ca2+ channels (store-operated Ca2+ entry (SOCE) channels, transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCCs)) and Na+ channels (voltage-gated Na+ channels (Nav) and acid-sensing ion channels (ASICs)), K+ channels (inward rectifier K+ channels (Kir), voltage-gated K+ channels (KV) and calcium-activated K+ channels (KCa)), proton channels (voltage-gated proton channel (Hv1)), and Cl- channels (volume (or swelling)-regulated Cl- channels (VRCCs) and chloride intracellular channels (CLICs)). In addition, ion transporter proteins such as Na+/Ca2+ exchanger (NCX), Na+-K+-Cl- cotransporter (NKCC1), and Na+/H+ exchanger (NHE1) are also involved in microglial function in physiology and brain diseases. We discussed microglial activation and neuroinflammation in relation to the ion channel/transporter stimulation under brain disease conditions and therapeutic aspects of targeting microglial ion channels/transporters for neurodegenerative disease, ischemic stroke, traumatic brain injury and neuropathic pain.
Collapse
Affiliation(s)
- Lanxin Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Shayan Jalali
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Baoshan Sun
- Pólo DoisPortos, Instituto National de InvestigaçãoAgrária e Veterinária, I.P., Quinta da Almoinha, DoisPortos, 2565-191, Portugal.
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
36
|
Chen K, Wellman SM, Yaxiaer Y, Eles JR, Kozai TD. In vivo spatiotemporal patterns of oligodendrocyte and myelin damage at the neural electrode interface. Biomaterials 2020; 268:120526. [PMID: 33302121 DOI: 10.1016/j.biomaterials.2020.120526] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Intracortical microelectrodes with the ability to detect intrinsic electrical signals and/or deliver electrical stimulation into local brain regions have been a powerful tool to understand brain circuitry and for therapeutic applications to neurological disorders. However, the chronic stability and sensitivity of these intracortical microelectrodes are challenged by overwhelming biological responses, including severe neuronal loss and thick glial encapsulation. Unlike microglia and astrocytes whose activity have been extensively examined, oligodendrocytes and their myelin processes remain poorly studied within the neural interface field. Oligodendrocytes have been widely recognized to modulate electrical signal conductance along axons through insulating myelin segments. Emerging evidence offers an alternative perspective on neuron-oligodendrocyte coupling where oligodendrocytes provide metabolic and neurotrophic support to neurons through cytoplasmic myelin channels and monocarboxylate transporters. This study uses in vivo multi-photon microscopy to gain insights into the dynamics of oligodendrocyte soma and myelin processes in response to chronic device implantation injury over 4 weeks. We observe that implantation induces acute oligodendrocyte injury including initial deformation and substantial myelinosome formation, an early sign of myelin injury. Over chronic implantation periods, myelin and oligodendrocyte soma suffer severe degeneration proximal to the interface. Interestingly, wound healing attempts such as oligodendrogenesis are initiated over time, however they are hampered by continued degeneration near the implant. Nevertheless, this detailed characterization of oligodendrocyte spatiotemporal dynamics during microelectrode-induced inflammation may provide insights for novel intervention targets to facilitate oligodendrogenesis, enhance the integration of neural-electrode interfaces, and improve long-term functional performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Yalikun Yaxiaer
- Eberly College of Science, Pennsylvania State University, University Park, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA
| | - Takashi Dy Kozai
- Department of Bioengineering, University of Pittsburgh, USA; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, USA; Center for Neuroscience, University of Pittsburgh, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, USA; NeuroTech Center, University of Pittsburgh Brain Institute, USA.
| |
Collapse
|
37
|
|
38
|
Gao J, Chen N, Li N, Xu F, Wang W, Lei Y, Shi J, Gong Q. Neuroprotective Effects of Trilobatin, a Novel Naturally Occurring Sirt3 Agonist from Lithocarpus polystachyus Rehd., Mitigate Cerebral Ischemia/Reperfusion Injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 Signaling. Antioxid Redox Signal 2020; 33:117-143. [PMID: 32212827 DOI: 10.1089/ars.2019.7825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Neuroinflammation and oxidative stress are deemed the prime causes of brain injury after cerebral ischemia/reperfusion (I/R). Since the silent mating-type information regulation 2 homologue 3 (Sirt3) pathway plays an imperative role in protecting against neuroinflammation and oxidative stress, it has been verified as a target to treat ischemia stroke. Therefore, we attempted to seek novel Sirt3 agonist and explore its underlying mechanism for stroke treatment both in vivo and in vitro. Results: Trilobatin (TLB) not only dramatically suppressed neuroinflammation and oxidative stress injury after middle cerebral artery occlusion in rats, but also effectively mitigated oxygen and glucose deprivation/reoxygenation injury in primary cultured astrocytes. These beneficial effects, along with the reduced proinflammatory cytokines via suppressing Toll-like receptor 4 (TLR4) signaling pathway, lessened oxidative injury via activating nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, in keeping with the findings in vivo. Intriguingly, the TLB-mediated neuroprotection on cerebral I/R injury was modulated by reciprocity between TLR4-mediated neuroinflammatory responses and Nrf2 antioxidant responses as evidenced by molecular docking and silencing TLR4 and Nrf2, respectively. Most importantly, TLB not only directly bonded to Sirt3 but also increased Sirt3 expression and activity, indicating that Sirt3 might be a promising therapeutic target of TLB. Innovation: TLB is a naturally occurring Sirt3 agonist with potent neuroprotective effects via regulation of TLR4/nuclear factor-kappa B and Nrf2/Kelch-like ECH-associated protein 1 (Keap-1) signaling pathways both in vivo and in vitro. Conclusion: Our findings indicate that TLB protects against cerebral I/R-induced neuroinflammation and oxidative injury through the regulation of neuroinflammatory and oxidative responses via TLR4, Nrf2, and Sirt3, suggesting that TLB might be a promising Sirt3 agonist against ischemic stroke.
Collapse
Affiliation(s)
- Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Nana Chen
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Na Li
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Wei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yaying Lei
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
39
|
Liktor-Busa E, Blawn KT, Kellohen KL, Wiese BM, Verkhovsky V, Wahl J, Vivek A, Palomino SM, Davis TP, Vanderah TW, Largent-Milnes TM. Functional NHE1 expression is critical to blood brain barrier integrity and sumatriptan blood to brain uptake. PLoS One 2020; 15:e0227463. [PMID: 32469979 PMCID: PMC7259629 DOI: 10.1371/journal.pone.0227463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Disruption of blood-brain barrier integrity and dramatic failure of brain ion homeostasis including fluctuations of pH occurs during cortical spreading depression (CSD) events associated with several neurological disorders, including migraine with aura, traumatic brain injury and stroke. NHE1 is the primary regulator of pH in the central nervous system. The goal of the current study was to investigate the role of sodium-hydrogen exchanger type 1 (NHE1) in blood brain barrier (BBB) integrity during CSD events and the contributions of this antiporter on xenobiotic uptake. Using immortalized cell lines, pharmacologic inhibition and genetic knockdown of NHE1 mitigated the paracellular uptake of radiolabeled sucrose implicating functional NHE1 in BBB maintenance. In contrast, loss of functional NHE1 in endothelial cells facilitated uptake of the anti-migraine therapeutic, sumatriptan. In female rats, cortical KCl but not aCSF selectively reduced total expression of NHE1 in cortex and PAG but increased expression in trigeminal ganglia; no changes were seen in trigeminal nucleus caudalis. Thus, in vitro observations may have a significance in vivo to increase brain sumatriptan levels. Pharmacological inhibition of NHE1 prior to cortical manipulations enhanced the efficacy of sumatriptan at early time-points but induced facial sensitivity alone. Overall, our results suggest that dysregulation of NHE1 contributes to breaches in BBB integrity, drug penetrance, and the behavioral sensitivity to the antimigraine agent, sumatriptan.
Collapse
Affiliation(s)
- Erika Liktor-Busa
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kiera T. Blawn
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Kathryn L. Kellohen
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Vani Verkhovsky
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Jared Wahl
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Anjali Vivek
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Seph M. Palomino
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
40
|
Jackson L, Dumanli S, Johnson MH, Fagan SC, Ergul A. Microglia knockdown reduces inflammation and preserves cognition in diabetic animals after experimental stroke. J Neuroinflammation 2020; 17:137. [PMID: 32345303 PMCID: PMC7189436 DOI: 10.1186/s12974-020-01815-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Unfortunately, over 40% of stroke victims have pre-existing diabetes which not only increases their risk of stroke up to 2-6 fold, but also worsens both functional recovery and the severity of cognitive impairment. Our lab has recently linked the chronic inflammation in diabetes to poor functional outcomes and exacerbated cognitive impairment, also known as post-stroke cognitive impairment (PSCI). Although we have shown that the development of PSCI in diabetes is associated with the upregulation and the activation of pro-inflammatory microglia, we have not established direct causation between the two. To this end, we evaluated the role of microglia in the development of PSCI. METHODS At 13 weeks of age, diabetic animals received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles targeting the colony stimulating factor 1 receptor (CSF1R). After 14 days, animals were subjected to 60 min middle cerebral artery occlusion (MCAO) or sham surgery. Adhesive removal task (ART), novel object recognition (NOR), and 2-trial Y-maze were utilized to evaluate sensorimotor and cognitive function. Tissue from freshly harvested brains was analyzed by flow cytometry and immunohistochemistry. RESULTS CSF1R silencing resulted in a 94% knockdown of residential microglia to relieve inflammation and improve myelination of white matter in the brain. This prevented cognitive decline in diabetic animals. CONCLUSION Microglial activation after stroke in diabetes may be causally related to the development of delayed neurodegeneration and PSCI.
Collapse
Affiliation(s)
- Ladonya Jackson
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Selin Dumanli
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Maribeth H Johnson
- Department Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC, Charleston, SC, USA.
- Department of Pathology and Laboratory Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
41
|
Liu Y, Wu C, Hou Z, Fu X, Yuan L, Sun S, Zhang H, Yang D, Yao X, Yang J. Pseudoginsenoside-F11 Accelerates Microglial Phagocytosis of Myelin Debris and Attenuates Cerebral Ischemic Injury Through Complement Receptor 3. Neuroscience 2020; 426:33-49. [DOI: 10.1016/j.neuroscience.2019.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
|
42
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol 2019; 17:e3000330. [PMID: 31226122 PMCID: PMC6608986 DOI: 10.1371/journal.pbio.3000330] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/03/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022] Open
Abstract
The repair of white matter damage is of paramount importance for functional recovery after brain injuries. Here, we report that interleukin-4 (IL-4) promotes oligodendrocyte regeneration and remyelination. IL-4 receptor expression was detected in a variety of glial cells after ischemic brain injury, including oligodendrocyte lineage cells. IL-4 deficiency in knockout mice resulted in greater deterioration of white matter over 14 d after stroke. Consistent with these findings, intranasal delivery of IL-4 nanoparticles after stroke improved white matter integrity and attenuated long-term sensorimotor and cognitive deficits in wild-type mice, as revealed by histological immunostaining, electron microscopy, diffusion tensor imaging, and electrophysiology. The selective effect of IL-4 on remyelination was verified in an ex vivo organotypic model of demyelination. By leveraging primary oligodendrocyte progenitor cells (OPCs), microglia-depleted mice, and conditional OPC-specific peroxisome proliferator-activated receptor gamma (PPARγ) knockout mice, we discovered a direct salutary effect of IL-4 on oligodendrocyte differentiation that was mediated by the PPARγ axis. Our findings reveal a new regenerative role of IL-4 in the central nervous system (CNS), which lies beyond its known immunoregulatory functions on microglia/macrophages or peripheral lymphocytes. Therefore, intranasal IL-4 delivery may represent a novel therapeutic strategy to improve white matter integrity in stroke and other brain injuries. The repair and remyelination of white matter are of paramount importance for functional recovery after brain injuries. This study shows that interleukin-4 plays an essential role in oligodendrocyte differentiation and long-term white matter recovery, beyond its well-known immunoregulatory functions, and is mediated by the PPARγ axis.
Collapse
|
44
|
Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35:921-933. [PMID: 31062335 DOI: 10.1007/s12264-019-00388-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Resident microglia are the principal immune cells of the brain, and the first to respond to the pathophysiological changes induced by ischemic stroke. Traditionally, it has been thought that microglial activation is deleterious in ischemic stroke, and therapies to suppress it have been intensively explored. However, increasing evidence suggests that microglial activation is also critical for neurogenesis, angiogenesis, and synaptic remodeling, thereby promoting functional recovery after cerebral ischemia. Here, we comprehensively review the dual role of microglia during the different phases of ischemic stroke, and the possible mechanisms controlling the post-ischemic activity of microglia. In addition, we discuss the dynamic interactions between microglia and other cells, such as neurons, astrocytes, oligodendrocytes, and endothelial cells within the brain parenchyma and the neurovascular unit.
Collapse
|
45
|
Ouyang Q, Li F, Xie Y, Han J, Zhang Z, Feng Z, Su D, Zou X, Cai Y, Zou Y, Tang Y, Jiang X. Meta-Analysis of the Safety and Efficacy of Stem Cell Therapies for Ischemic Stroke in Preclinical and Clinical Studies. Stem Cells Dev 2019; 28:497-514. [PMID: 30739594 DOI: 10.1089/scd.2018.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Qian Ouyang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yu Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Xiaoxiong Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Yanping Tang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Haizhu District, Guangzhou, China
| |
Collapse
|