1
|
Allgood JE, Whitney L, Goodwin J, Chong BSH, Brooks A, Pullan J. The Role of Pain Medications in Modulating Peripheral Nerve Injury Recovery. J Clin Pharmacol 2024. [PMID: 39492597 DOI: 10.1002/jcph.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Peripheral nerve injuries (PNIs) are common, costly, and cause significant pain. Effective management of PNIs involves tailoring medications to the injury type as well as understanding the pharmacokinetics/pharmacodynamics to support nerve regeneration and reduce pain. Opioids act on opioid receptors to significantly reduce pain for many patients, but there are significant addiction risks and side effects. In addition, opioids may exacerbate pain sensitivity and affect nerve regeneration. Non-steroidal anti-inflammatory drugs or acetaminophen act on cyclooxygenase enzymes and are commonly used for nerve pain, with 34.7% of people using them for neuropathic pain. While effective for mild pain, they are often combined with opioids, gamma-aminobutyric acid (GABA) analogs, lidocaine, or corticosteroids for more severe pain. Corticosteroids, mimicking adrenal hormones like cortisol, treat PNI-related inflammation and pain. Their pharmacokinetics are complex, often requiring local injections in order to minimize systemic risks while effectively treating PNIs. Lidocaine, a common local anesthetic, blocks ion channels in the central nervous system (CNS) and peripheral nerves, providing strong analgesic and anti-inflammatory effects. If used improperly, lidocaine can cause neuronal toxicity instead of anesthetic effect. GABA acts as an inhibitory neurotransmitter in the CNS and its drug analogs like pregabalin and gabapentin can alleviate neuropathic pain by binding to voltage-gated Ca2+ channels, inhibiting neurotransmitter release. These pain medications are commonly prescribed for PNIs despite a limited guidance on their effects on nerve regeneration. This review will discuss these drug's mechanisms of action, pharmacokinetics/pharmacodynamics, and their clinical application to highlight their effect on the PNI recovery.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY, USA
- Co-first authorship, Ivins, UT, USA
| | - Logan Whitney
- Department of Chemistry and Physics, Southern Utah University, Cedar City, UT, USA
- Co-first authorship, Ivins, UT, USA
| | - Jeffrey Goodwin
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Brian S H Chong
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Amanda Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Jessica Pullan
- Department of Chemistry and Physics, Southern Utah University, Cedar City, UT, USA
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Tian Y, Liu Y, Liu C, Huang S. NPD1 Relieves Neuropathic Pain and Accelerates the Recovery of Motor Function After Peripheral Nerve Injury. Pain Res Manag 2024; 2024:1109287. [PMID: 39512892 PMCID: PMC11540876 DOI: 10.1155/2024/1109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
The incidence of peripheral nerve injury (PNI) in China is continuously increasing. With an inability to function due to sensory and motor abnormalities, patients with PNI suffer from neuropathic pain and subsequent lesions. Presently, effective treatments for PNI are limited. To determine the role of neuroprotectin D1 (NPD1) in PNI, a sciatic nerve crush injury model was developed to investigate the impact of NPD1 on sensory and motor function recovery following nerve injury. The results demonstrated that NPD1 administered at different time points might reduce mechanical allodynia and thermal hyperalgesia caused by PNI, and its analgesic effect was not tolerated. Immunohistochemistry analyses revealed that administering NPD1 to PNI mice decreased the spinal microglia and astrocyte activation and decreased the inflammatory factor expression in the spinal dorsal horn. Furthermore, NPD1 can inhibit the invasion of IBA-1+ macrophages in dorsal root ganglions generated by nerve injury. Meanwhile, it can help rehabilitate motor and neuromuscular functions following PNI. The results indicate that NPD1 may be involved in the sensory and motor function recovery following PNI.
Collapse
Affiliation(s)
- Yu Tian
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - YanFang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - SaiSai Huang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
4
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2024:10.1007/s12035-024-04511-y. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Liu G, Liang J, Li W, Jiang S, Song M, Xu S, Du Q, Wang L, Wang X, Liu X, Tang L, Yang Z, Zhou M, Meng H, Zhang L, Yang Y, Zhang B. The protective effect of erythropoietin and its novel derived peptides in peripheral nerve injury. Int Immunopharmacol 2024; 138:112452. [PMID: 38943972 DOI: 10.1016/j.intimp.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
7
|
Su W, He X, Lin Z, Xu J, Shangguan J, Wei Z, Zhao Y, Xing L, Gu Y, Chen G. Activation of P2X7R Inhibits Proliferation and Promotes the Migration and Differentiation of Schwann Cells. Mol Neurobiol 2024:10.1007/s12035-024-04460-6. [PMID: 39225968 DOI: 10.1007/s12035-024-04460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In the vertebrate nervous system, myelination of nerve fibers is crucial for the rapid propagation of action potentials through saltatory conduction. Schwann cells-the main glial cells and myelinating cells of the peripheral nervous system-play a crucial role in myelination. Following injury during the repair of peripheral nerve injuries, a significant amount of ATP is secreted. This ATP release acts to trigger the dedifferentiation of myelinating Schwann cells into repair cells, an essential step for axon regeneration. Subsequently, to restore nerve function, these repair cells undergo redifferentiate into myelinating Schwann cells. Except for P2X4R, purine receptors such as P2X7R also play a significant role in this process. In the current study, decreased expression of P2X7R was observed after sciatic nerve injury, followed by a gradual increase to the normal level of P2X7R expression. In vivo experiments showed that the activation of P2X7R using an agonist injection promoted remyelination, while the antagonists hindered remyelination. Further, in vitro experiments supported these findings and demonstrated that P2X7R activation inhibited the proliferation of Schwann cells, but it promoted the migration and differentiation of the Schwann cells. Remyelination is a prominent feature of the nerve regeneration. In the current study, it was proposed that the manipulation of P2X7R expression in Schwann cells after nerve injury could be effective in facilitating nerve remyelination.
Collapse
Affiliation(s)
- Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Xiaowen He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Zhihao Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Jinghui Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Jianghong Shangguan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China.
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Medical School of Nantong University, Nantong, 226001, China.
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, China.
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Ashrafpour S, Nasr-Taherabadi MJ, Sabouri-Rad A, Hosseinzadeh S, Pourabdolhossein F. Arbutin intervention ameliorates memory impairment in a rat model of lysolecethin induced demyelination: Neuroprotective and anti-inflammatory effects. Behav Brain Res 2024; 469:115041. [PMID: 38723674 DOI: 10.1016/j.bbr.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1β, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Alie Sabouri-Rad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Hosseinzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Hui SE, Westlund KN. Role of HDAC5 Epigenetics in Chronic Craniofacial Neuropathic Pain. Int J Mol Sci 2024; 25:6889. [PMID: 38999998 PMCID: PMC11241576 DOI: 10.3390/ijms25136889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024] Open
Abstract
The information provided from the papers reviewed here about the role of epigenetics in chronic craniofacial neuropathic pain is critically important because epigenetic dysregulation during the development and maintenance of chronic neuropathic pain is not yet well characterized, particularly for craniofacial pain. We have noted that gene expression changes reported vary depending on the nerve injury model and the reported sample collection time point. At a truly chronic timepoint of 10 weeks in our model of chronic neuropathic pain, functional groupings of genes examined include those potentially contributing to anti-inflammation, nerve repair/regeneration, and nociception. Genes altered after treatment with the epigenetic modulator LMK235 are discussed. All of these differentials are key in working toward the development of diagnosis-targeted therapeutics and likely for the timing of when the treatment is provided. The emphasis on the relevance of time post-injury is reiterated here.
Collapse
Affiliation(s)
| | - Karin N. Westlund
- Department of Anesthesiology & Critical Care Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
11
|
Chen S, Liu S, Huang Y, Huang S, Zhang W, Xie H, Lu L. 5Z-7-Oxozaenol attenuates cuprizone-induced demyelination in mice through microglia polarization regulation. Brain Behav 2024; 14:e3487. [PMID: 38648385 PMCID: PMC11034864 DOI: 10.1002/brb3.3487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 μg/30 μg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Siyao Liu
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yalun Huang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Shiwen Huang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Wanzhou Zhang
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Huifang Xie
- Department of NeurologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Lingli Lu
- Department of General PracticeZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
12
|
Delibaş B, Vianney JM, Kaplan S. The assessment of neuronal plasticity following sciatic nerve injuries in rats using electron microscopy and stereological methods. J Chem Neuroanat 2024; 136:102396. [PMID: 38331230 DOI: 10.1016/j.jchemneu.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
The transmission of signals to the cell body from injured axons induces significant alterations in primary sensory neurons located in the ganglion tissue, the site of the perikaryon of the affected nerve fibers. Disruption of the continuity between the proximal and distal ends leads to substantial adaptability in ganglion cells and induces macrophage-like activity in the satellite cells. Research findings have demonstrated the plasticity of satellite cells following injury. Satellite cells work together with sensory neurons to extend the interconnected surface area in order to permit effective communication. The dynamic cellular environment within the ganglion undergoes several alterations that ultimately lead to differentiation, transformation, or cell death. In addition to necrotic and apoptotic cell morphology, phenomena such as histomorphometric alterations, including the development of autophagic vacuoles, chromatolysis, cytosolic degeneration, and other changes, are frequently observed in cells following injury. The use of electron microscopic and stereological techniques for assessing ganglia and nerve fibers is considered a gold standard in terms of investigating neuropathic pain models, regenerative therapies, some treatment methods, and quantifying the outcomes of pharmacological and bioengineering interventions. Stereological techniques provide observer-independent and reliable results, which are particularly useful in the quantitative assessment of three-dimensional structures from two-dimensional images. Employing the fractionator and disector techniques within stereological methodologies yields unbiased data when assessing parameters such as number. The fundamental concept underlying these methodologies involves ensuring that each part of the structure under evaluation has an equal opportunity of being sampled. This review describes the stereological and histomorphometric evaluation of dorsal root ganglion neurons and satellite cells following nerve injury models.
Collapse
Affiliation(s)
- Burcu Delibaş
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkiye
| | - John-Mary Vianney
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania
| | - Süleyman Kaplan
- School of Life Science and Bioengineering, Nelson Mandela-African Institution of Science and Technology, Arusha, Tanzania; Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkiye.
| |
Collapse
|
13
|
Qi C, Yan Y, Cao Q, Zou L, Li S, Yang Q, Deng Q, Wu B, Song B. Elucidating the mechanisms underlying astrocyte-microglia crosstalk in hippocampal neuroinflammation induced by acute diquat exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15746-15758. [PMID: 38305974 DOI: 10.1007/s11356-024-31905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
The transition from paraquat (PQ) to diquat (DQ), both organic dication herbicides, in China has led to significant increases in the number of acute DQ poisoning cases. Case studies have shown that acute DQ poisoning resulted in injury to the central nervous system (CNS), but the mechanism underlying the injury remains to be explored. The present study aimed to investigate how DQ influenced purinergic signaling between astrocytes and microglia and whether extracellular ATP (eATP) was involved in promoting neuroinflammation induced by acute DQ toxicity through the activation of the P2X4/NLRP3 signaling pathway. We constructed a rat model of acute DQ toxicity to observe the pathological changes in hippocampal tissues after DQ exposure and measure the expression levels of IL-1β and TNF-α in the hippocampal tissue. We also established an in vitro co-culture model of C6 astrocytes and BV-2 microglia using transwell chambers, measured the amount of eATP secreted into C6 astrocytes after DQ treatment, and assessed the inflammatory response and changes in the P2X4/NLRP3 signaling pathway in BV-2 microglia. The results showed that the neurons in the hippocampal tissue of rats exhibited loose arrangement, nuclear consolidation, and necrosis after DQ exposure, and IL-1β and TNF-α levels were signification higher in the hippocampal tissue after DQ exposure. DQ exposure to the co-cultured cells induced an increase in ATP secretion from C6 astrocytes as well as a significant increase of P2X4, NLRP3, IL-1β, and IL-18 expression in BV-2 microglia. In contrast, pretreatment of C6 astrocytes with apyrase (an ATP hydrolase) resulted in a significant decrease of P2X4, NLRP3, IL-1β, and IL-18 expression in BV-2 microglia. Furthermore, inhibition of P2X4 expression in BV-2 microglia by transfection with si-P2X4 effectively reversed the increase of NLRP3, IL-1β, and IL-18 in BV-2 microglia induced by DQ when co-cultured with C6 astrocytes. These results indicate that astrocytes can activate the P2X4/NLRP3 signaling pathway in microglia through the DQ-induced extracellular release of ATP to promote neuroinflammation in rat hippocampal tissue.
Collapse
Affiliation(s)
- Changcun Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Yuandong Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Qi Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Lingyun Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Shanshan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Qiuyu Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Qing Deng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China
| | - Bailin Wu
- Department of Radiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Bo Song
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
14
|
Cai Y, He C, Dai Y, Zhang D, Lv G, Lu H, Chen G. Spinal interleukin-24 contributes to neuropathic pain after peripheral nerve injury through interleukin-20 receptor2 in mice. Exp Neurol 2024; 372:114643. [PMID: 38056582 DOI: 10.1016/j.expneurol.2023.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Neuroinflammation is critically involved in nerve injury-induced neuropathic pain, characterized by local and systemic increased levels of proinflammatory cytokines. Interleukin-24 (IL-24), a key member of the IL-10 family, has been extensively studied for its therapeutic potential in various diseases, including cancer, autoimmune disorders, and bacterial infections, but whether it is involved in the regulation of neuropathic pain caused by peripheral nerve injury (PNI) has not been well established. In this study, we reported that spared nerve injury (SNI) induced a significant upregulation of IL-24 in fibroblasts, neurons, and oligodendrocyte precursor cells (OPCs, also called NG2-glia) in the affected spinal dorsal horns (SDHs), as well as dorsal root ganglions (DRGs). We also found that tumor necrosis factor α (TNF-α) induced the transcriptional expression of IL-24 in cultured fibroblasts, neurons, and NG2-glia; in addition, astrocytes, microglia, and NG2-glia treated with TNF-α exhibited a prominent increase in interleukin-20 receptor 2 (IL-20R2) expression. Furthermore, we evaluated the ability of IL-24 and IL-20R2 to attenuate pain in preclinical models of neuropathic pain. Intrathecal (i.t.) injection of IL-24 neutralizing antibody or IL-20R2 neutralizing antibody could effectively alleviate mechanical allodynia and thermal hyperalgesia after PNI. Similarly, intrathecal injection of IL-24 siRNA or IL-20R2 siRNA also alleviated mechanical allodynia after SNI. The inhibition of IL-24 reduced SNI-induced proinflammatory cytokine (IL-1β and TNF-α) production and increased anti-inflammatory cytokine (IL-10) production. Meanwhile, the inhibition of IL-20R2 also decreased IL-1β mRNA expression after SNI. Collectively, our findings revealed that IL-24/IL-20R might contribute to neuropathic pain through inflammatory response. Therefore, targeting IL-24 could be a promising strategy for treating neuropathic pain induced by PNI.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China
| | - Cheng He
- Department of Human Anatomy, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuan Dai
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Dongmei Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Guangming Lv
- Department of Human Anatomy, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongjian Lu
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong 226001, Jiangsu Province, China; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu Province, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong 226001, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
15
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
16
|
Zhang P, Yao S, Tang Y, Wan S, Chen X, Ma L. A Side-Effect-Free Interventional Therapy for Precisely Eliminating Unresectable Cancer Pain. ACS NANO 2023; 17:23535-23544. [PMID: 38084419 DOI: 10.1021/acsnano.3c06511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Of patients bearing unresectable tumors at advanced stages, most undergo serious pain. For unresectable tumors adjacent to vital organs or nerves, eliminating local cancer pain without adverse effects remains a formidable challenge. Interventional ablative therapies (IATs), such as radio frequency ablation (RFA), microwave ablation, and irreversible electroporation, have been clinically adopted to treat various carcinomas. In this study, we established another palliative interventional therapy to eliminate local cancer pain, instead of relieving nociception temporarily. Here, we developed another interventional ablative therapy (termed nanoparticle-mediated microknife ablation) to locoregionally eliminate cancer pain and tumors. The IAT system was composed of self-assembled nanodrugs, infusion catheters, puncture needles, injection pump, and an empirical tumor ablation formula. Notably, the ablation formula established in the IAT system enables us to predict the essential nanoparticle (NP) numbers used for completely destroying tumors. In a mouse model of cancer pain, tumor-targeted nanodrugs made of Paclitaxel and Hematoporphyrin, which have an extremely high drug-loading efficiency (more than 60%), were infused into tumors through injection pumps under imaging guidance. In conclusion, when compared to classic chemotherapeutic agents, IAT showed significantly higher effectiveness in cancer pain removal. It also presented no damage to the nervous, sensory, and motor capabilities of the treated mice. All of these merits resulted from NPs' long-lasting retention, targeted ablation, and confined diffusion in tumor stroma. Therefore, this safe treatment modality has great potential to eradicate local cancer pain in the clinic.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510000, China
| | - Sheng Yao
- Guangdong Provincial Key Laboratory of Medical Image Processing, Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, School of Biomedical Engineering, Southern Medical University, Guangzhou 510000, China
| | - Yu Tang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510000, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510000, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Clinical Imaging Research Centre, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 699010, Singapore
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
17
|
Stratton S, Wang S, Hashemi S, Pressman Y, Nanchanatt J, Oudega M, Arinzeh TL. A scaffold containing zinc oxide for Schwann cell-mediated axon growth. J Neural Eng 2023; 20:066009. [PMID: 37931311 DOI: 10.1088/1741-2552/ad0a00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Objective.Schwann cells (SCs) transplanted in damaged nervous tissue promote axon growth, which may support the recovery of function lost after injury. However, SC transplant-mediated axon growth is often limited and lacks direction.Approach.We have developed a zinc oxide (ZnO) containing fibrous scaffold consisting of aligned fibers of polycaprolactone (PCL) with embedded ZnO nanoparticles as a biodegradable, bifunctional scaffold for promoting and guiding axon growth. This scaffold has bifunctional properties wherein zinc is released providing bioactivity and ZnO has well-known piezoelectric properties where piezoelectric materials generate electrical activity in response to minute deformations. In this study, SC growth, SC-mediated axon extension, and the presence of myelin basic protein (MBP), as an indicator of myelination, were evaluated on the scaffolds containing varying concentrations of ZnOin vitro. SCs and dorsal root ganglion (DRG) neurons were cultured, either alone or in co-culture, on the scaffolds.Main results.Findings demonstrated that scaffolds with 1 wt.% ZnO promoted the greatest SC growth and SC-mediated axon extension. The presence of brain-derived neurotrophic factor (BDNF) was also determined. BDNF increased in co-cultures for all scaffolds as compared to SCs or DRGs cultured alone on all scaffolds. For co-cultures, cells on scaffolds with low levels of ZnO (0.5 wt.% ZnO) had the highest amount of BDNF as compared to cells on higher ZnO-containing scaffolds (1 and 2 wt.%). MBP immunostaining was only detected in co-cultures on PCL control scaffolds (without ZnO).Significance.The results of this study demonstrate the potential of the ZnO-containing scaffolds for SC-mediated axon growth and its potential for use in nervous tissue repair.
Collapse
Affiliation(s)
- Scott Stratton
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Shuo Wang
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Sharareh Hashemi
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Yelena Pressman
- The Miami Project, University of Miami, Miami, FL, United States of America
| | - James Nanchanatt
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Martin Oudega
- Physical Therapy & Human Movement Sciences and Physiology, Northwestern University, Chicago, IL, United States of America
- Hines VA Hospital, Hines, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| | - Treena Livingston Arinzeh
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States of America
- Biomedical Engineering, Columbia University, New York, NY, United States of America
| |
Collapse
|
18
|
Zhang J, Mei Z, Yao W, Zhao C, Wu S, Ouyang J. SIX1 induced HULC modulates neuropathic pain and Schwann cell oxidative stress after sciatic nerve injury. Gene 2023; 882:147655. [PMID: 37479098 DOI: 10.1016/j.gene.2023.147655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Neuropathic pain is a severe and debilitating condition caused by damage to the peripheral nerve or central nervous system. Although several mechanisms have been identified, the underlying pathophysiology of neuropathic pain is still not fully understood. Unfortunately, few effective therapies are available for this condition. Therefore, there is an urgent need to investigate the underlying mechanisms of neuropathic pain to develop more effective treatments. Long non-coding RNAs (lncRNAs) have recently gained attention due to their potential to modulate protein expression through various mechanisms. LncRNAs have been implicated in many diseases, including neuropathic pain. This study aimed to identify a novel lncRNA involved in neuropathic pain progression. The lncRNA microarray analysis showed that lncRNA Upregulated in Liver Cancer (HULC) was significantly upregulated in spinal cord tissue of sciatic nerve injury (SNI) rats. Further experiments confirmed that HULC promoted neuropathic pain progression and aggravated H2O2-induced Schwann cell injury. Mechanistically, Sine Oculis Homeobox 1 (SIX1) regulated the transcriptional expression of HULC, and both SIX1 and HULC were involved in neuropathic pain and Schwann cell injury. The results of our research indicate the existence of a previously unknown SIX1/HULC axis that plays a significant role in the development and progression of neuropathic pain, shedding light on the complex mechanisms that underlie this debilitating condition. These findings offer novel insights into the molecular pathways involved in neuropathic pain. This study underscores the potential of targeting lncRNAs as a viable approach to alleviate the suffering of patients with neuropathic pain.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Department of Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangzhou, China; The Second Department of Orthopedics Surgery (Department of Spinal Surgery), Zhongshan People's Hospital, Zhongshan, China.
| | - Zhi Mei
- The Second Department of Orthopedics Surgery (Department of Spinal Surgery), Zhongshan People's Hospital, Zhongshan, China
| | - Wanxiang Yao
- The Second Department of Orthopedics Surgery (Department of Spinal Surgery), Zhongshan People's Hospital, Zhongshan, China
| | - Chenyi Zhao
- The Second Department of Orthopedics Surgery (Department of Spinal Surgery), Zhongshan People's Hospital, Zhongshan, China
| | - Shutong Wu
- Department of Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangzhou, China
| | - Jun Ouyang
- Department of Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangzhou, China.
| |
Collapse
|
19
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
20
|
Wu Y, Huang X, Yang L, Liu Y. Purinergic neurotransmission receptor P2X4 silencing alleviates intracerebral hemorrhage-induced neuroinflammation by blocking the NLRP1/Caspase-1 pathway. Sci Rep 2023; 13:14288. [PMID: 37652931 PMCID: PMC10471699 DOI: 10.1038/s41598-023-40748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1β. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.
Collapse
Affiliation(s)
- Yuanshui Wu
- Department of Neurosurgery, ShangRao People's Hospital, No. 87, Shuyuan Road, Shangrao City, 334000, Jiangxi Province, China.
| | - Xiaoli Huang
- JiangXi Medical College, No. 399, Zhimin Road, Xinzhou District, Shangrao City, 334099, Jiangxi Province, China
| | - Le Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou City, 510515, Guangdong Province, China
| | - Yuanjie Liu
- JiangXi Medical College, No. 399, Zhimin Road, Xinzhou District, Shangrao City, 334099, Jiangxi Province, China
| |
Collapse
|
21
|
Manjili MH. The adaptation model of immunity: A new insight into aetiology and treatment of multiple sclerosis. Scand J Immunol 2023; 97:e13255. [PMID: 36680379 DOI: 10.1111/sji.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Current research and drug development for multiple sclerosis (MS) is fully influenced by the self-nonself (SNS) model of immunity, suggesting that breakage of immunological tolerance towards self-antigens expressed in the central nervous system (CNS) is responsible for pathogenesis of MS; thus, immune suppressive drugs are recommended for the management of the disease. However, this model provides incomplete understanding of the causes and pathways involved in the onset and progression of MS and limits our ability to effectively treat this neurological disease. Some pre-clinical and clinical reports have been misunderstood; some others have been underappreciated because of the lack of a theoretical model that can explain them. Also, current immunotherapies are guided according to the models that are not designed to explain the functional outcomes of an immune response. The adaptation model of immunity is proposed to offer a new understanding of the existing data and galvanize a new direction for the treatment of MS. According to this model, the immune system continuously communicates with the CNS through the adaptation receptors (AdRs) and adaptation ligands (AdLs) or co-receptors, signal IV, to support cell growth and neuroplasticity. Alterations in the expression of the neuronal AdRs results in MS by shifting the cerebral inflammatory immune responses from remyelination to demyelination. Therefore, novel therapeutics for MS should be focused on the discovery and targeting of the AdR/AdL axis in the CNS rather than carrying on with immune suppressive interventions.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
22
|
Lysosomal dysfunction in Schwann cells is involved in bortezomib-induced peripheral neurotoxicity. Arch Toxicol 2023; 97:1385-1396. [PMID: 36826473 DOI: 10.1007/s00204-023-03468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.
Collapse
|
23
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
24
|
Zhang K, Li P, Jia Y, Liu M, Jiang J. Concise review: Current understanding of extracellular vesicles to treat neuropathic pain. Front Aging Neurosci 2023; 15:1131536. [PMID: 36936505 PMCID: PMC10020214 DOI: 10.3389/fnagi.2023.1131536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Extracellular vesicles (EVs) including exosomes are vesicular vesicles with phospholipid bilayer implicated in many cellular interactions and have the ability to transfer multiple types of cargo to cells. It has been found that EVs can package various molecules including proteins and nucleic acids (DNA, mRNA, and noncoding RNA). The discovery of EVs as carriers of proteins and various forms of RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised great interest in the field of drug delivery. Despite the underlying mechanisms of neuropathic pain being unclear, it has been shown that uncontrolled glial cell activation and the neuroinflammation response to noxious stimulation are important in the emergence and maintenance of neuropathic pain. Many studies have demonstrated a role for noncoding RNAs in the pathogenesis of neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs for potential in neuropathic pain treatment. In this article, the origins and clinical application of EVs and the mechanism of neuropathic pain development are briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in neuropathic pain and that this involve vesicular regulation of glial cell activation and neuroinflammation.
Collapse
|
25
|
Emerging Roles of Cholinergic Receptors in Schwann Cell Development and Plasticity. Biomedicines 2022; 11:biomedicines11010041. [PMID: 36672549 PMCID: PMC9855772 DOI: 10.3390/biomedicines11010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The cross talk between neurons and glial cells during development, adulthood, and disease, has been extensively documented. Among the molecules mediating these interactions, neurotransmitters play a relevant role both in myelinating and non-myelinating glial cells, thus resulting as additional candidates regulating the development and physiology of the glial cells. In this review, we summarise the contribution of the main neurotransmitter receptors in the regulation of the morphogenetic events of glial cells, with particular attention paid to the role of acetylcholine receptors in Schwann cell physiology. In particular, the M2 muscarinic receptor influences Schwann cell phenotype and the α7 nicotinic receptor is emerging as influential in the modulation of peripheral nerve regeneration and inflammation. This new evidence significantly improves our knowledge of Schwann cell development and function and may contribute to identifying interesting new targets to support the activity of these cells in pathological conditions.
Collapse
|
26
|
Wang Q, Li HY, Ling ZM, Chen G, Wei ZY. Inhibition of Schwann cell pannexin 1 attenuates neuropathic pain through the suppression of inflammatory responses. J Neuroinflammation 2022; 19:244. [PMID: 36195881 PMCID: PMC9531429 DOI: 10.1186/s12974-022-02603-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Han-Yang Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China. .,Medical School of Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
27
|
Zhang WJ, Hu DX, Lin SJ, Fang XQ, Ye ZF. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 2022; 190:42-49. [PMID: 36113681 DOI: 10.1016/j.brainresbull.2022.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiao-Qun Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhen-Feng Ye
- Department of Urology, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
28
|
Corrigendum: Purinergic signaling systems across comparative models of spinal cord injury. Neural Regen Res 2022; 18:689-696. [PMID: 36018196 PMCID: PMC9727416 DOI: 10.4103/1673-5374.350234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
[This corrects the article DOI: 10.4103/1673-5374.338993].
Collapse
|
29
|
UNC5B Overexpression Alleviates Peripheral Neuropathic Pain by Stimulating Netrin-1-Dependent Autophagic Flux in Schwann Cells. Mol Neurobiol 2022; 59:5041-5055. [PMID: 35668343 DOI: 10.1007/s12035-022-02861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Lesions or diseases of the somatosensory system can cause neuropathic pain (NP). Schwann cell (SC) autophagy plays an important role in NP. Uncoordinated gene 5 homolog B (UNC5B), the canonical dependent receptor of netrin-1, is known to be exclusively expressed in SCs and involved in NP; however, the underlying mechanisms were unclear. A rat model of sciatic nerve chronic constriction injury (CCI) was used to induce peripheral neuropathic pain. Adeno-associated virus (AAV) overexpressing UNC5B was applied to the injured nerve, and an autophagy inhibitor, 3-mechyladenine (3-MA), was intraperitoneally injected in some animals. Behavioral tests were performed to evaluate NP, the morphology of the injured nerves was analyzed, and autophagy-related proteins were detected. A rat SC line (RSC96) undergoing oxygen and glucose deprivation (OGD) was used to mimic an ischemic setting to examine the role of UNC5B in autophagy. Local UNC5B overexpression alleviated CCI-induced NP and rescued myelin degeneration. Meanwhile, UNC5B overexpression improved CCI-induced impairment of autophagic flux, while the autophagy inhibitor 3-MA reversed the analgesic effect of UNC5B. In cultured SCs, UNC5B helped recruit netrin-1 to the cell membrane. UNC5B overexpression promoted autophagic flux while inhibiting apoptosis, which was further augmented with exogenous netrin-1 and reversed by netrin-1 knockdown. The enhanced phosphorylation of AMP-activated protein kinase (AMPK) and Unc51-like autophagy activating kinase 1 (ULK1) by UNC5B overexpression was also correlated with netrin-1. Our results suggest that UNC5B facilitates autophagic flux in SCs via phosphorylation of AMPK and ULK1, dependent on its ligand netrin-1, protecting myelin and partly preventing injury-induced NP.
Collapse
|
30
|
Molnár K, Nógrádi B, Kristóf R, Mészáros Á, Pajer K, Siklós L, Nógrádi A, Wilhelm I, Krizbai IA. Motoneuronal inflammasome activation triggers excessive neuroinflammation and impedes regeneration after sciatic nerve injury. J Neuroinflammation 2022; 19:68. [PMID: 35305649 PMCID: PMC8934511 DOI: 10.1186/s12974-022-02427-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Peripheral nerve injuries are accompanied by inflammatory reactions, over-activation of which may hinder recovery. Among pro-inflammatory pathways, inflammasomes are one of the most potent, leading to release of active IL-1β. Our aim was to understand how inflammasomes participate in central inflammatory reactions accompanying peripheral nerve injury. Methods After axotomy of the sciatic nerve, priming and activation of the NLRP3 inflammasome was examined in cells of the spinal cord. Regeneration of the nerve was evaluated after coaptation using sciatic functional index measurements and retrograde tracing. Results In the first 3 days after the injury, elements of the NLRP3 inflammasome were markedly upregulated in the L4–L5 segments of the spinal cord, followed by assembly of the inflammasome and secretion of active IL-1β. Although glial cells are traditionally viewed as initiators of neuroinflammation, in this acute phase of inflammation, inflammasome activation was found exclusively in affected motoneurons of the ventral horn in our model. This process was significantly inhibited by 5-BDBD, a P2X4 receptor inhibitor and MCC950, a potent NLRP3 inhibitor. Although at later time points the NLRP3 protein was upregulated in microglia too, no signs of inflammasome activation were detected in these cells. Inhibition of inflammasome activation in motoneurons in the first days after nerve injury hindered development of microgliosis in the spinal cord. Moreover, P2X4 or inflammasome inhibition in the acute phase significantly enhanced nerve regeneration on both the morphological and the functional levels. Conclusions Our results indicate that the central reaction initiated by sciatic nerve injury starts with inflammasome activation in motoneurons of the ventral horn, which triggers a complex inflammatory reaction and activation of microglia. Inhibition of neuronal inflammasome activation not only leads to a significant reduction of microgliosis, but has a beneficial effect on the recovery as well. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02427-9.
Collapse
Affiliation(s)
- Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary
| | - Bernát Nógrádi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.,Department of Neurology, University of Szeged, Szeged, Hungary
| | - Rebeka Kristóf
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Ádám Mészáros
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary. .,Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania.
| |
Collapse
|
31
|
Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer's Disease. Front Physiol 2022; 13:814999. [PMID: 35283778 PMCID: PMC8904919 DOI: 10.3389/fphys.2022.814999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023] Open
Abstract
There are over 80 million people currently living who have had a stroke. The ischemic injury in the brain starts a cascade of events that lead to neuronal death, inducing neurodegeneration which could lead to Alzheimer's disease (AD). Cerebrovascular diseases have been suggested to contribute to AD neuropathological changes, including brain atrophy and accumulation of abnormal proteins such as amyloid beta (Aβ). In patients older than 60 years, the incidence of dementia a year after stroke was significantly increased. Nevertheless, the molecular links between stroke and dementia are not clearly understood but could be related to neuroinflammation. Considering that activated microglia has a central role, there are brain-resident innate immune cells and are about 10-15% of glial cells in the adult brain. Their phagocytic activity is essential for synaptic homeostasis in different areas, such as the hippocampus. These cells polarize into phenotypes or subtypes: the pro-inflammatory M1 phenotype, or the immunosuppressive M2 phenotype. Phenotype M1 is induced by classical activation, where microglia secrete a high level of pro- inflammatory factors which can cause damage to the surrounding neuronal cells. Otherwise, M2 phenotype is the major effector cell with the potential to counteract pro-inflammatory reactions and promote repair genes expression. Moreover, after the classical activation, an anti-inflammatory and a repair phase are initiated to achieve tissue homeostasis. Recently it has been described the concepts of homeostatic and reactive microglia and they had been related to major AD risk, linking to a multifunctional microglial response to Aβ plaques and pathophysiology markers related, such as intracellular increased calcium. The upregulation and increased activity of purinergic receptors activated by ADP/ATP, specially P2X4R, which has a high permeability to calcium and is mainly expressed in microglial cells, is observed in diseases related to neuroinflammation, such as neuropathic pain and stroke. Thus, P2X4R is associated with microglial activation. P2X4R activation drives microglia motility via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Also, these receptors are involved in inflammatory-mediated prostaglandin E2 (PGE2) production and induce a secretion and increase the expression of BDNF and TNF-α which could be a link between pathologies related to aging and neuroinflammation.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Pamela Andrea Godoy
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
32
|
Rg1 exerts protective effect in CPZ-induced demyelination mouse model via inhibiting CXCL10-mediated glial response. Acta Pharmacol Sin 2022; 43:563-576. [PMID: 34103690 PMCID: PMC8888649 DOI: 10.1038/s41401-021-00696-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Myelin damage and abnormal remyelination processes lead to central nervous system dysfunction. Glial activation-induced microenvironment changes are characteristic features of the diseases with myelin abnormalities. We previously showed that ginsenoside Rg1, a main component of ginseng, ameliorated MPTP-mediated myelin damage in mice, but the underlying mechanisms are unclear. In this study we investigated the effects of Rg1 and mechanisms in cuprizone (CPZ)-induced demyelination mouse model. Mice were treated with CPZ solution (300 mg· kg-1· d-1, ig) for 5 weeks; from week 2, the mice received Rg1 (5, 10, and 20 mg· kg-1· d-1, ig) for 4 weeks. We showed that Rg1 administration dose-dependently alleviated bradykinesia and improved CPZ-disrupted motor coordination ability in CPZ-treated mice. Furthermore, Rg1 administration significantly decreased demyelination and axonal injury in pathological assays. We further revealed that the neuroprotective effects of Rg1 were associated with inhibiting CXCL10-mediated modulation of glial response, which was mediated by NF-κB nuclear translocation and CXCL10 promoter activation. In microglial cell line BV-2, we demonstrated that the effects of Rg1 on pro-inflammatory and migratory phenotypes of microglia were related to CXCL10, while Rg1-induced phagocytosis of microglia was not directly related to CXCL10. In CPZ-induced demyelination mouse model, injection of AAV-CXCL10 shRNA into mouse lateral ventricles 3 weeks prior CPZ treatment occluded the beneficial effects of Rg1 administration in behavioral and pathological assays. In conclusion, CXCL10 mediates the protective role of Rg1 in CPZ-induced demyelination mouse model. This study provides new insight into potential disease-modifying therapies for myelin abnormalities.
Collapse
|
33
|
Wei J, Su W, Zhao Y, Wei Z, Hua Y, Xue P, Zhu X, Chen Y, Chen G. Maresin 1 promotes nerve regeneration and alleviates neuropathic pain after nerve injury. J Neuroinflammation 2022; 19:32. [PMID: 35109876 PMCID: PMC8809034 DOI: 10.1186/s12974-022-02405-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a public health concern that results in sensory and motor disorders as well as neuropathic pain and secondary lesions. Currently, effective treatments for PNI are still limited. For example, while nerve growth factor (NGF) is widely used in the treatment of PNI to promote nerve regeneration, it also induces pain. Maresin 1 (MaR1) is an anti-inflammatory and proresolving mediator that has the potential to regenerate tissue. We determined whether MaR1 is able to promote nerve regeneration as well as alleviating neuropathic pain, and to be considered as a putative therapeutic agent for treating PNI. Methods PNI models were constructed with 8-week-old adult male ICR mice and treated with NGF, MaR1 or saline by local application, intrathecal injection or intraplantar injection. Behavioral analysis and muscle atrophy test were assessed after treatment. Immunofluorescence assay was performed to examine the expression of ATF-3, GFAP, IBA1, and NF200. The expression transcript levels of inflammatory factors IL1β, IL-6, and TNF-α were detected by quantitative real-time RT-PCR. AKT, ERK, mTOR, PI3K, phosphorylated AKT, phosphorylated ERK, phosphorylated mTOR, and phosphorylated PI3K levels were examined by western blot analysis. Whole-cell patch-clamp recordings were executed to detect transient receptor potential vanilloid 1 (TRPV1) currents. Results MaR1 demonstrated a more robust ability to promote sensory and motor function recovery in mice after sciatic nerve crush injury than NGF. Immunohistochemistry analyses showed that the administration of MaR1 to mice with nerve crush injury reduced the number of damaged DRG neurons, promoted injured nerve regeneration and inhibited gastrocnemius muscle atrophy. Western blot analysis of ND7/23 cells cultured with MaR1 or DRG neurons collected from MaR1 treated mice revealed that MaR1 regulated neurite outgrowth through the PI3K–AKT–mTOR signaling pathway. Moreover, MaR1 dose-dependently attenuated the mechanical allodynia and thermal hyperalgesia induced by nerve injury. Consistent with the analgesic effect, MaR1 inhibited capsaicin-elicited TRPV1 currents, repressed the nerve injury-induced activation of spinal microglia and astrocytes and reduced the production of proinflammatory cytokines in the spinal cord dorsal horn in PNI mice. Conclusions Application of MaR1 to PNI mice significantly promoted nerve regeneration and alleviated neuropathic pain, suggesting that MaR1 is a promising therapeutic agent for PNI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02405-1.
Collapse
Affiliation(s)
- Jinhuan Wei
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yayu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhongya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yuchen Hua
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Peng Xue
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Ying Chen
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, 226001, Jiangsu, China. .,Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China. .,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
34
|
He QR, Cong M, Yu FH, Ji YH, Yu S, Shi HY, Ding F. Peripheral nerve fibroblasts secrete neurotrophic factors to promote axon growth of motoneurons. Neural Regen Res 2022; 17:1833-1840. [PMID: 35017446 PMCID: PMC8820717 DOI: 10.4103/1673-5374.332159] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Peripheral nerve fibroblasts play a critical role in nerve development and regeneration. Our previous study found that peripheral nerve fibroblasts have different sensory and motor phenotypes. Fibroblasts of different phenotypes can guide the migration of Schwann cells to the same sensory or motor phenotype. In this study, we analyzed the different effects of peripheral nerve-derived fibroblasts and cardiac fibroblasts on motoneurons. Compared with cardiac fibroblasts, peripheral nerve fibroblasts greatly promoted motoneuron neurite outgrowth. Transcriptome analysis results identified 491 genes that were differentially expressed in peripheral nerve fibroblasts and cardiac fibroblasts. Among these, 130 were significantly upregulated in peripheral nerve fibroblasts compared with cardiac fibroblasts. These genes may be involved in axon guidance and neuron projection. Three days after sciatic nerve transection in rats, peripheral nerve fibroblasts accumulated in the proximal and distal nerve stumps, and most expressed brain-derived neurotrophic factor. In vitro, brain-derived neurotrophic factor secreted from peripheral nerve fibroblasts increased the expression of β-actin and F-actin through the extracellular regulated protein kinase and serine/threonine kinase pathways, and enhanced motoneuron neurite outgrowth. These findings suggest that peripheral nerve fibroblasts and cardiac fibroblasts exhibit different patterns of gene expression. Peripheral nerve fibroblasts can promote motoneuron neurite outgrowth.
Collapse
Affiliation(s)
- Qian-Ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Fan-Hui Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Hua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Yan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
35
|
Huang S, Chen Y, Jia Y, Yang T, Su W, Zhu Z, Xue P, Feng F, Zhao Y, Chen G. Delayed inhibition of ERK and p38 attenuates neuropathic pain without affecting motor function recovery after peripheral nerve injury. Neuropharmacology 2022; 202:108835. [PMID: 34648772 DOI: 10.1016/j.neuropharm.2021.108835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
Peripheral nerve injuries (PNIs) often result in persistent neuropathic pain, seriously affecting quality of life. Existing therapeutic interventions for PNI-induced neuropathic pain are far from satisfactory. Extracellular signal-regulated kinases (ERKs) and p38 have been found to participate in triggering and maintaining PNI-induced neuropathic pain. However, ERK and p38 also contribute to axonal regeneration and motor function recovery after PNI, making it difficult to inhibit ERK and p38 for therapeutic purposes. In this study, we simultaneously characterized neuropathic pain and motor function recovery in a mouse sciatic nerve crush injury model to identify the time window for therapeutic interventions. We further demonstrated that delayed delivery of a combination of ERK and p38 inhibitors at three weeks after PNI could significantly alleviate PNI-induced neuropathic pain without affecting motor function recovery. Additionally, the combined use of these two inhibitors could suppress pain markedly better than either inhibitor alone, possibly reducing the required dose of each inhibitor and alleviating the side effects and risks of the inhibitors when used individually.
Collapse
Affiliation(s)
- SaiSai Huang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - YingTing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yue Jia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| | - WenFeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - ZhenYu Zhu
- Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Peng Xue
- Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - FeiFan Feng
- Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - YaYu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
36
|
Zhou Y, Cheng Y, Li Y, Ma J, Wu Z, Chen Y, Mei J, Chen M. Soluble β-amyloid impaired the GABA inhibition by mediating KCC2 in early APP/PS1 mice. Biosci Trends 2021; 15:330-340. [PMID: 34526443 DOI: 10.5582/bst.2021.01245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, which has become the leading cause of dementia cases globally. Synaptic failure is an early pathological feature of AD. However, the cause of synaptic failure in AD, especially the GABAergic synaptic activity remains unclear. Extensive evidence indicates that the presence of soluble amyloid-β is an early pathological feature in AD, which triggers synaptic dysfunction and cognitive decline. Our recent study explored the relation of GABAergic transmission and soluble Aβ in early APP/PS1 mice. Firstly, we found soluble Aβ42 levels were significantly increased in serum, hippocampus and prefrontal cortex in 3-4 months APP/PS1 mice, which was much earlier than Aβ plagues formation. In addition, we found TNF-α and BDNF expression levels were increased, while KCC2 and GABAAR expression were decreased in 3-4 months APP/PS1 hippocampus. When we treated 3-4 months APP/PS1 mice with a potent γ-secretase inhibitor, LY411575, which can reduce the soluble Aβ42 levels, the TNF-α and BDNF protein levels were decreased, while KCC2 and GABAAR levels were increased. In conclusion, our study suggested soluble Aβ may impaired the GABA inhibition by mediating KCC2 levels in early APP/PS1 mice. KCC2 may be served as a potential biomarker for AD.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yujie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jiyao Ma
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Zhihan Wu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Yuenan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinyu Mei
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
37
|
Shan F, Ji Q, Song Y, Chen Y, Hao T, Li R, Zhang N, Wang Y. A fast and efficient method for isolating Schwann cells from sciatic nerves of neonatal mice. J Neurosci Methods 2021; 366:109404. [PMID: 34752812 DOI: 10.1016/j.jneumeth.2021.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Schwann cells (SCs) isolation is one of the basic techniques for study of peripheral nervous system and peripheral neuropathy. A combined and effective method of isolating SCs from sciatic nerves of newborn mice with high yield and purity is still lacking. NEW METHODS Sciatic nerves from neonatal mice aged 3-5 days serve as the source of SCs. Removal of adjacent connective tissue and epineurium, treatment with arabinoside hydrochloride and differential cell detachment technique were applied to eliminate fibroblast contamination and increase the purity of SCs. Combined use of collagenase/dispase and trypsin was chosen to increase the yield of SCs. Culture dishes precoated with poly-l-lysine and laminin, culture medium supplemented with heregulin β-1 and forskolin, and reasonable cell seeding density were implemented to increase the growth and proliferation of cultured SCs. Immunostaining of S100β and p75 neurotrophin receptor was used to identify the purity of SCs. RESULTS Our method is able to obtain high-yield SCs with a purity of 90% within five days and a purity more than 99% within seven days from sciatic nerves of neonatal mice. COMPARISON WITH EXISTING METHODS Previous SCs isolation mostly focused on rats or adult mice and have a few limitations due to fibroblasts contamination, low yield and time-consuming. Our method permits SCs isolation from neonatal mice with a high yield and purity of primary SCs within 7 days. CONCLUSION We described a fast, efficient and step-by-step method of isolating SCs from sciatic nerves of neonatal mice with high yield and purity.
Collapse
Affiliation(s)
- Fangzhen Shan
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Qingjie Ji
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yan Song
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yunfeng Chen
- Department of Rehabilitation, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Tielin Hao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China; Clinical Medical College, Jining Medical University, Jining, Shandong Province, China
| | - Ran Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China; Clinical Medical College, Jining Medical University, Jining, Shandong Province, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| | - Yuzhong Wang
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China; Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
38
|
MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats. Neuroscience 2021; 481:60-72. [PMID: 34688806 DOI: 10.1016/j.neuroscience.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain syndrome that usually occurs after cerebrovascular accidents. Currently, the pathogenesis of CPSP is not fully understood. Purinergic P2X4 receptor (P2X4R) is implicated in neuropathic pain including CPSP. Herein, we demonstrated that the levels of microRNA-133b-3p (miR-133b-3p), which targets P2X4R transcripts, were significantly downregulated in the ventral posterolateral nucleus of the thalamus (VPL), cerebrospinal fluid (CSF), and plasma of CPSP rats. The expression levels of miR-133b-3p negatively correlated with the severity of allodynia. Genetic knockdown of P2X4R in the VPL protected CPSP rats against allodynia. Similarly, genetic overexpression of miR-133b-3p in the VPL reversed the allodynia established in CPSP rats via downregulation of P2X4R expression. Treatment using gabapentin in CPSP rats significantly restored the decreased miR-133b-3p expression in the VPL, CSF, and plasma and blocked allodynia in CPSP rats. The administration of an miR-133b-3p inhibitor into the VPL abolished the antiallodynic activity of gabapentin. This mechanism was associated with P2X4R expression and involved the endogenous opioid system. Human patients with CPSP showed decreased plasma levels of miR-133b-3p compared with those of control participants. Logistic regression analysis of our patient cohort showed that determining plasma levels of miR-133b-3p may be useful for CPSP diagnosis and treatment.
Collapse
|
39
|
Fu X, Zhou G, Wu X, Xu C, Zhou H, Zhuang J, Peng Y, Cao Y, Zeng H, Li Y, Li J, Gao L, Chen G, Wang L, Yan F. Inhibition of P2X4R attenuates white matter injury in mice after intracerebral hemorrhage by regulating microglial phenotypes. J Neuroinflammation 2021; 18:184. [PMID: 34425835 PMCID: PMC8383380 DOI: 10.1186/s12974-021-02239-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background White matter injury (WMI) is a major neuropathological event associated with intracerebral hemorrhage (ICH). P2X purinoreceptor 4 (P2X4R) is a member of the P2X purine receptor family, which plays a crucial role in regulating WMI and neuroinflammation in central nervous system (CNS) diseases. Our study investigated the role of P2X4R in the WMI and the inflammatory response in mice, as well as the possible mechanism of action after ICH. Methods ICH was induced in mice via collagenase injection. Mice were treated with 5-BDBD and ANA-12 to inhibit P2X4R and tropomyosin-related kinase receptor B (TrkB), respectively. Immunostaining and quantitative polymerase chain reaction (qPCR) were performed to detect microglial phenotypes after the inhibition of P2X4R. Western blots (WB) and immunostaining were used to examine WMI and the underlying molecular mechanisms. Cylinder, corner turn, wire hanging, and forelimb placement tests were conducted to evaluate neurobehavioral function. Results After ICH, the protein levels of P2X4R were upregulated, especially on day 7 after ICH, and were mainly located in the microglia. The inhibition of P2X4R via 5-BDBD promoted neurofunctional recovery after ICH as well as the transformation of the pro-inflammatory microglia induced by ICH into an anti-inflammatory phenotype, and attenuated ICH-induced WMI. Furthermore, we found that TrkB blockage can reverse the protective effects of WMI as well as neuroprotection after 5-BDBD treatment. This result indicates that P2X4R plays a crucial role in regulating WMI and neuroinflammation and that P2X4R inhibition may benefit patients with ICH. Conclusions Our results demonstrated that P2X4R contributes to WMI by polarizing microglia into a pro-inflammatory phenotype after ICH. Furthermore, the inhibition of P2X4R promoted pro-inflammatory microglia polarization into an anti-inflammatory phenotype, enhanced brain-derived neurotrophic factor (BDNF) production, and through the BDNF/TrkB pathway, attenuated WMI and improved neurological function. Therefore, the regulation of P2X4R activation may be beneficial for the reducing of ICH-induced brain injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02239-3.
Collapse
Affiliation(s)
- Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yang Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Hanhai Zeng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Yin Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| |
Collapse
|
40
|
Abstract
Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Stomatology College of Nanchang University, Nanchang, China
| | - Tian-Hua Zhou
- Basic Medical School, Nanchang University, Nanchang, China
| | - Bao-Kang Chen
- First Clinical Medical College of Nanchang University, Nanchang, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
42
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
43
|
Microglia: The Missing Link to Decipher and Therapeutically Control MS Progression? Int J Mol Sci 2021; 22:ijms22073461. [PMID: 33801644 PMCID: PMC8038003 DOI: 10.3390/ijms22073461] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Therapeutically controlling chronic progression in multiple sclerosis (MS) remains a major challenge. MS progression is defined as a steady loss of parenchymal and functional integrity of the central nervous system (CNS), occurring independent of relapses or focal, magnetic resonance imaging (MRI)-detectable inflammatory lesions. While it clinically surfaces in primary or secondary progressive MS, it is assumed to be an integral component of MS from the very beginning. The exact mechanisms causing progression are still unknown, although evolving evidence suggests that they may substantially differ from those driving relapse biology. To date, progression is assumed to be caused by an interplay of CNS-resident cells and CNS-trapped hematopoietic cells. On the CNS-resident cell side, microglia that are phenotypically and functionally related to cells of the monocyte/macrophage lineage may play a key role. Microglia function is highly transformable. Depending on their molecular signature, microglia can trigger neurotoxic pathways leading to neurodegeneration, or alternatively exert important roles in promoting neuroprotection, downregulation of inflammation, and stimulation of repair. Accordingly, to understand and to possibly alter the role of microglial activation during MS disease progression may provide a unique opportunity for the development of suitable, more effective therapeutics. This review focuses on the current understanding of the role of microglia during disease progression of MS and discusses possible targets for therapeutic intervention.
Collapse
|
44
|
Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, Teng J. LncRNA BC083743 Promotes the Proliferation of Schwann Cells and Axon Regeneration Through miR-103-3p/BDNF After Sciatic Nerve Crush. J Neuropathol Exp Neurol 2021; 79:1100-1114. [PMID: 32888019 DOI: 10.1093/jnen/nlaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
To investigate the underlying mechanism of lncRNA BC083743 in regulating the proliferation of Schwann cells (SCs) and axon regeneration after sciatic nerve crush (SNC), we used a rat model. Sciatic function index and the atrophy ratio of gastrocnemius muscle were evaluated. The relationship among BC083743, miR-103-3p, and brain-derived neurotrophic factor (BDNF) and their regulation mechanism in the repair of SNC were investigated using in vivo and in vitro experiments. The expression changes of BC083743 were positively associated with that of BDNF following SNC, but the expression changes of miR-103-3p were inversely associated with that of BDNF. The SC proliferation and BDNF expression could be promoted by overexpression of BC083743, while they were inhibited by a miR-103-3p mimic. In addition, BC083743 interacted with and regulated miR-103-3p, thereby promoting BDNF expression and SC proliferation. BC083743 overexpression also promoted axon regeneration through miR-103-3p. In vivo experiments also indicated that BC083743 overexpression promoted the repair of SNC. In conclusion, LncRNA BC083743 promotes SC proliferation and the axon regeneration through miR-103-3p/BDNF after SNC.
Collapse
Affiliation(s)
- Lin Gao
- Department of Neurological Intensive Care Unit
| | - Aiqin Feng
- Department of Clinical Medicine Laboratory, The Affiliated Huaihe Hospital of Henan University, Kaifeng, China
| | - Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Liu
- Department of Neurological Intensive Care Unit
| | - Qiaoyu Zhou
- Department of Neurological Intensive Care Unit
| | | | | |
Collapse
|
45
|
Lopes BC, Medeiros LF, Stein DJ, Cioato SG, de Souza VS, Medeiros HR, Sanches PRS, Fregni F, Caumo W, Torres ILS. tDCS and exercise improve anxiety-like behavior and locomotion in chronic pain rats via modulation of neurotrophins and inflammatory mediators. Behav Brain Res 2021; 404:113173. [PMID: 33577881 DOI: 10.1016/j.bbr.2021.113173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Anxiety disorders cause distress and are commonly found to be comorbid with chronic pain. Both are difficult-to-treat conditions for which alternative treatment options are being pursued. This study aimed to evaluate the effects of transcranial direct current stimulation (tDCS), treadmill exercise, or both, on anxiety-like behavior and associated growth factors and inflammatory markers in the hippocampus and sciatic nerve of rats with neuropathic pain. Male Wistar rats (n = 216) were subjected to sham-surgery or sciatic nerve constriction for pain induction. Fourteen days following neuropathic pain establishment, either bimodal tDCS, treadmill exercise, or a combination of both was used for 20 min a day for 8 consecutive days. The elevated plus-maze test was used to assess anxiety-like behavior and locomotor activity during the early (24 h) or late (7 days) phase after the end of treatment. BDNF, TNF-ɑ, and IL-10 levels in the hippocampus, and BDNF, NGF, and IL-10 levels in the sciatic nerve were assessed 48 h or 7 days after the end of treatment. Rats from the pain groups developed an anxiety-like state. Both tDCS and treadmill exercise provided ethological and neurochemical alterations induced by pain in the early and/or late phase, and a modest synergic effect between tDCS and exercise was observed. These results indicate that non-invasive neuromodulatory approaches can attenuate both anxiety-like status and locomotor activity and alter the biochemical profile in the hippocampus and sciatic nerve of rats with neuropathic pain and that combined interventions may be considered as a treatment option.
Collapse
Affiliation(s)
- Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil
| | - Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, 92010-000 Canoas, Brazil.
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil
| | - Vanessa Silva de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Paulo Roberto Stefani Sanches
- Laboratório de Engenharia Biomédica, Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, 90035-003 Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital. Harvard Medical School and Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, USA
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil.
| |
Collapse
|
46
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
47
|
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, Ye L, Chen X, Li P, Yuan Y, Zhang H, Xie L, Li X, Xiao J, Wang J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12:107. [PMID: 33479232 PMCID: PMC7819983 DOI: 10.1038/s41419-021-03407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.
Collapse
Affiliation(s)
- Rui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China ,grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China ,grid.12981.330000 0001 2360 039XSchool of Chemistry, Sun Yat-sen University, 510275 Guangzhou, Guangdong China
| | - Beini Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Chengbiao Wu
- grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China
| | - Duohui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yanqing Wu
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Libing Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Luxia Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiongjian Chen
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Peifeng Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yuan Yuan
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Hongyu Zhang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Ling Xie
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiaokun Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Xiao
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
48
|
Wei ZY, Qu HL, Dai YJ, Wang Q, Ling ZM, Su WF, Zhao YY, Shen WX, Chen G. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells. Neural Regen Res 2021; 16:899-904. [PMID: 33229726 PMCID: PMC8178772 DOI: 10.4103/1673-5374.290911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pannexin 1 (Panx 1), as a large-pore membrane channel, is highly permeable to ATP and other signaling molecules. Previous studies have demonstrated the expression of Panx 1 in the nervous system, including astrocytes, microglia, and neurons. However, the distribution and function of Panx 1 in the peripheral nervous system are not clear. Blocking the function of Panx 1 pharmacologically (carbenoxolone and probenecid) or with small interfering RNA targeting pannexins can greatly reduce hypotonicity-induced ATP release. Treatment of Schwann cells with a Ras homolog family member (Rho) GTPase inhibitor and small interfering RNA targeting Rho or cytoskeleton disrupting agents, such as nocodazole or cytochalasin D, revealed that hypotonicity-induced ATP release depended on intracellular RhoA and the cytoskeleton. These findings suggest that Panx 1 participates in ATP release in Schwann cells by regulating RhoA and the cytoskeleton arrangement. This study was approved by the Animal Ethics Committee of Nantong University, China (No. S20180806-002) on August 5, 2018.
Collapse
Affiliation(s)
- Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui-Lin Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Juan Dai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Wei-Xing Shen
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University; Medical School of Nantong University; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
49
|
Li WY, Jia H, Wang ZD, Zhai FG, Sun GD, Ma D, Liu GB, Li CM, Wang Y. Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. J Tissue Eng 2020; 11:2041731420980136. [PMID: 34956585 PMCID: PMC8693221 DOI: 10.1177/2041731420980136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Previous animal studies have demonstrated that the flavonoid small-molecule TrkB agonist, 7, 8-dihydroxyflavone (DHF), promotes axon regeneration in transected peripheral nerves. In the present study, we investigated the combined effects of 7, 8-DHF treatment and bone marrow-derived stem/stromal cells (BMSCs) engraftment into acellular nerve allografts (ANAs) and explore relevant mechanisms that may be involved. Our results show that TrkB and downstream ERK1/2 phosphorylation are increased upon 7, 8-DHF treatment compared to the negative control group. Also, 7, 8-DHF promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. While selective ERK1/2 inhibitor U0126 suppressed the effect of upregulation of ERK1/2 phosphorylation and decreased cell proliferation, survival, and Schwann-like cell differentiation partially induced by 7, 8-DHF. In vivo, 7, 8-DHF promotes survival of transplanted BMSCs and upregulates axonal growth and myelination in regenerating ANAs. 7, 8-DHF+BMSCs also improved motor endplate density of target musculature. These benefits were associated with increased motor functional recovery. 7, 8-DHF+BMSCs significantly upregulated TrkB and ERK1/2 phosphorylation expression in regenerating ANA, and increased TrkB expression in the lumbar spinal cord. The mechanism of 7, 8-DHF action may be related to its ability to upregulate TrkB signaling, and downstream activation of survival signaling molecules ERK1/2 in the regenerating ANAs and spinal cord and improved survival of transplanted BMSCs. This study provides novel foundational data connecting the benefits of 7, 8-DHF treatment in neural injury and repair to BMSCs biology and function and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.
Collapse
Affiliation(s)
- Wen-yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Hua Jia
- Department of Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhen-Dong Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Mudanjiang College of Medicine, Mudanjiang, China
| | - Feng-guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang, China
| | - Guang-da Sun
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Duo Ma
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Gui-Bo Liu
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Chun-Mei Li
- Department of Basic Psychological, Mudanjiang College of Medicine, Mudanjiang, China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| |
Collapse
|
50
|
Sophocleous RA, Miles NA, Ooi L, Sluyter R. P2Y 2 and P2X4 Receptors Mediate Ca 2+ Mobilization in DH82 Canine Macrophage Cells. Int J Mol Sci 2020; 21:ijms21228572. [PMID: 33202978 PMCID: PMC7696671 DOI: 10.3390/ijms21228572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5'-triphosphate (ATP) or uridine 5'-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicole Ashleigh Miles
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|