1
|
He Y, Xu Z, He Y, Liu J, Li J, Wang S, Xiao L. Preventing production of new oligodendrocytes impairs remyelination and sustains behavioural deficits after demyelination. Biochem Biophys Res Commun 2024; 733:150592. [PMID: 39213705 DOI: 10.1016/j.bbrc.2024.150592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zhengtao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Junhong Liu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Ma Z, Zhang W, Wang C, Su Y, Yi C, Niu J. A New Acquaintance of Oligodendrocyte Precursor Cells in the Central Nervous System. Neurosci Bull 2024; 40:1573-1589. [PMID: 39042298 PMCID: PMC11422404 DOI: 10.1007/s12264-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are a heterogeneous multipotent population in the central nervous system (CNS) that appear during embryogenesis and persist as resident cells in the adult brain parenchyma. OPCs could generate oligodendrocytes to participate in myelination. Recent advances have renewed our knowledge of OPC biology by discovering novel markers of oligodendroglial cells, the myelin-independent roles of OPCs, and the regulatory mechanism of OPC development. In this review, we will explore the updated knowledge on OPC identity, their multifaceted roles in the CNS in health and diseases, as well as the regulatory mechanisms that are involved in their developmental stages, which hopefully would contribute to a further understanding of OPCs and attract attention in the field of OPC biology.
Collapse
Affiliation(s)
- Zexuan Ma
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Wei Zhang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
| | - Chenmeng Wang
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
- Shenzhen Key Laboratory of Chinese Medicine Active substance screening and Translational Research, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, College of basic medicine, Third Military Medical University, Chongqing, 400038, China.
- Chongqing Key Laboratory of Neurobiology, Chongqing, 400038, China.
| |
Collapse
|
3
|
Zou S, Hu B. In vivo imaging reveals mature Oligodendrocyte division in adult Zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:16. [PMID: 34075520 PMCID: PMC8169745 DOI: 10.1186/s13619-021-00079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Whether mature oligodendrocytes (mOLs) participate in remyelination has been disputed for several decades. Recently, some studies have shown that mOLs participate in remyelination by producing new sheaths. However, whether mOLs can produce new oligodendrocytes by asymmetric division has not been proven. Zebrafish is a perfect model to research remyelination compared to other species. In this study, optic nerve crushing did not induce local mOLs death. After optic nerve transplantation from olig2:eGFP fish to AB/WT fish, olig2+ cells from the donor settled and rewrapped axons in the recipient. After identifying these rewrapping olig2+ cells as mOLs at 3 months posttransplantation, in vivo imaging showed that olig2+ cells proliferated. Additionally, in vivo imaging of new olig2+ cell division from mOLs was also captured within the retina. Finally, fine visual function was renewed after the remyelination program was completed. In conclusion, our in vivo imaging results showed that new olig2+ cells were born from mOLs by asymmetric division in adult zebrafish, which highlights the role of mOLs in the progression of remyelination in the mammalian CNS.
Collapse
Affiliation(s)
- Suqi Zou
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China.
| | - Bing Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
4
|
Abstract
Endogenous remyelination of the CNS can be robust and restore function, yet in multiple sclerosis it becomes less complete with time. Promoting remyelination is a major therapeutic goal, both to restore function and to protect axons from degeneration. Remyelination is thought to depend on oligodendrocyte progenitor cells, giving rise to nascent remyelinating oligodendrocytes. Surviving, mature oligodendrocytes are largely regarded as being uninvolved. We have examined this question using two large animal models. In the first model, there is extensive demyelination and remyelination of the CNS, yet oligodendrocytes survive, and in recovered animals there is a mix of remyelinated axons interspersed between mature, thick myelin sheaths. Using 2D and 3D light and electron microscopy, we show that many oligodendrocytes are connected to mature and remyelinated myelin sheaths, which we conclude are cells that have reextended processes to contact demyelinated axons while maintaining mature myelin internodes. In the second model in vitamin B12-deficient nonhuman primates, we demonstrate that surviving mature oligodendrocytes extend processes and ensheath demyelinated axons. These data indicate that mature oligodendrocytes can participate in remyelination.
Collapse
|
5
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Yang J, Menges S, Gu P, Tongbai R, Samuel M, Prather RS, Klassen H. Porcine Neural Progenitor Cells Derived from Tissue at Different Gestational Ages Can Be Distinguished by Global Transcriptome. Cell Transplant 2017; 26:1582-1595. [PMID: 29113465 PMCID: PMC5524599 DOI: 10.1177/0963689717723015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The impact of gestational age on mammalian neural progenitor cells is potentially important for both an understanding of neural development and the selection of donor cells for novel cell-based treatment strategies. In terms of the latter, it can be problematic to rely entirely on rodent models in which the gestational period is significantly shorter and the brain much smaller than is the case in humans. Here, we analyzed pig brain progenitor cells (pBPCs) harvested at 2 different gestational ages (E45 and E60) using gene expression profiles, obtained by microarray analysis and quantitative polymerase chain reaction (qPCR), across time in culture. Comparison of the global transcriptome of pBPCs from age-matched transgenic green flourescent protein (GFP)-expressing fetuses versus non-GFP-expressing fetuses did not reveal significant differences between the 2 cell types, whereas comparison between E45 and E60 pBPCs did show separation between the data sets by principle component analysis. Further examination by qPCR showed evidence of relative downregulation of proliferation markers and upregulation of glial markers in the gestationally older (E60) cells. Additional comparisons were made. This study provides evidence of age-related changes in the gene expression of cultured fetal porcine neural progenitors that are potentially relevant to the role of these cells during development and as donor cells for transplantation studies.
Collapse
Affiliation(s)
- Jing Yang
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Steven Menges
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Ping Gu
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA.,3 Present Address: Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronald Tongbai
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,4 Present Address: Huntington Beach Eye Consultants, Huntington Beach, CA, USA
| | - Melissa Samuel
- 5 National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Randall S Prather
- 5 National Swine Resource and Research Center, University of Missouri, Columbia, MO, USA
| | - Henry Klassen
- 1 Stem Cell Research Center, University of California, Irvine, CA, USA.,2 Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Abstract
CNS remyelination is a regenerative process that contrasts with the more widely recognized absence of regeneration characteristic of neuronal injury. This important process both restores saltatory conduction to demyelinated axons and enables the recovery of functions mediated by impulse conduction in those axons. Unfortunately, remyelination can be a fragile process that is prone to fail, contributing to the persistence of clinical deficits in patients with demyelinating disease. Despite being first described more than 30 years ago, it is only relatively recently that a clearer (though still incomplete) picture of the cellular and molecular mechanisms of remyelination has begun to emerge. These developments, in particular the role of the oli godendrocyte progenitor, have provided insights into why remyelination sometimes fails and will provide the basis for enhancing this process by means of therapeutic intervention. NEUROSCIENTIST 5:184-191, 1999
Collapse
Affiliation(s)
- Robin J.M. Franklin
- Department of Clinical Veterinary Medicine University of Cambridge Cambridge, UK
| |
Collapse
|
8
|
Abstract
The diverse, structurally unrelated chemicals that cause toxic myelinopathies have been investigated and can be categorized into two types of primary demyelinators. Some demyelinating chemicals seem to leave intact the myeli-nating cells (oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system), while others damage the myelinating cells as well as the myelin. The significance between the two is that with the myelinating cells still in tact, repair of the myelin sheath can occur. However, if the myelinating cells are destroyed, repair and reversal of the neuropathy may not occur. Histologically, these chemicals produce an edema of the white matter of the brain, and in some cases the peripheral nervous system, that appears spongy by light microscopy. By electron microscopy, vacuoles can be seen in the myelin surrounding axons. These vacuoles are characterized as fluid-filled separations (splitting) of myelin lamellae at the intraperiod line. In some cases these vacuoles can degenerate further to full demyelination, affecting conduction through those axons. Regeneration of the myelin layers can occur, and in some cases occurs at the same time other axons are undergoing toxic demyelination. Several of these chemicals, however, have been shown to increase cerebrospinal fluid pressure in the brain, optic nerve, and spinal cord, and/or intraneuronal pressure in the perineurium surrounding the axons in the peripheral nervous system. This increased pressure has been correlated with decreased conduction capacity through the axon, ischemia to the neuronal tissue from decreased blood flow because of pressure against the blood vessels, and, if unrelieved, permanent axonal damage. Several of these chemicals havebeen shown to inhibit oxidative phosphorylation, while others uncouple oxidative phosphorylation. One chemical appears to inhibit an enzyme critical to cholesterol synthesis, thus destabilizing myelin. Another hypothesis for a mechanism of action may be in the ability of these compounds to alter membrane permeability.
Collapse
|
9
|
Huang S, Tang C, Sun S, Cao W, Qi W, Xu J, Huang J, Lu W, Liu Q, Gong B, Zhang Y, Jiang J. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. Mol Neurobiol 2014; 52:1870-1881. [PMID: 25465241 DOI: 10.1007/s12035-014-9022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
Abstract
Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.
Collapse
Affiliation(s)
- Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| | - Wenfu Cao
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Wei Qi
- Chongqing Three Gorgers Central Hospital, No.165 Xin Cheng Road, Wanzhou District, Chongqing, 400000, China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Biao Gong
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Zhang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Jin Jiang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
10
|
Adamo AM. Nutritional factors and aging in demyelinating diseases. GENES AND NUTRITION 2013; 9:360. [PMID: 24311441 DOI: 10.1007/s12263-013-0360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022]
Abstract
Demyelination is a pathological process characterized by the loss of myelin around axons. In the central nervous system, oligodendroglial damage and demyelination are common pathological features characterizing white matter and neurodegenerative disorders. Remyelination is a regenerative process by which myelin sheaths are restored to demyelinated axons, resolving functional deficits. This process is often deficient in demyelinating diseases such as multiple sclerosis (MS), and the reasons for the failure of repair mechanisms remain unclear. The characterization of these mechanisms and the factors involved in the proliferation, recruitment, and differentiation of oligodendroglial progenitor cells is key in designing strategies to improve remyelination in demyelinating disorders. First, a very dynamic combination of different molecules such as growth factors, cytokines, chemokines, and different signaling pathways is tightly regulated during the remyelination process. Second, factors unrelated to this pathology, i.e., age and genetic background, may impact disease progression either positively or negatively, and in particular, age-related remyelination failure has been proven to involve oligodendroglial cells aging and their intrinsic capacities among other factors. Third, nutrients may either help or hinder disease progression. Experimental evidence supports the anti-inflammatory role of omega-6 and omega-3 polyunsaturated fatty acids through the competitive inhibition of arachidonic acid, whose metabolites participate in inflammation, and the reduction in T cell proliferation. In turn, vitamin D intake and synthesis have been associated with lower MS incidence levels, while vitamin D-gene interactions might be involved in the pathogenesis of MS. Finally, dietary polyphenols have been reported to mitigate demyelination by modulating the immune response.
Collapse
Affiliation(s)
- Ana M Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina,
| |
Collapse
|
11
|
Matsusue Y, Horii-Hayashi N, Kirita T, Nishi M. Distribution of corticosteroid receptors in mature oligodendrocytes and oligodendrocyte progenitors of the adult mouse brain. J Histochem Cytochem 2013; 62:211-26. [PMID: 24309510 DOI: 10.1369/0022155413517700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of glucocorticoid receptors (GRs) was investigated immunohistochemically in two different lineages of oligodendrocytes, using carbonic anhydrase (CA) II and neuron glial antigen (NG) 2 as markers of mature oligodendrocytes and oligodendrocyte progenitors, respectively. We focused on the gray matter regions, including CA1, CA3 and the dentate gyrus of the hippocampus, the primary somatosensory cortex barrel field and the basolateral amygdala, and the white matter regions, including the corpus callosum, external capsule and fimbria of the hippocampus. More than 80% of CAII-immunoreactive (IR) cells and more than 95% of NG2-IR cells expressed GRs in various regions of the brain. In contrast, neither CAII-IR cells nor NG2-IR cells expressed mineralocorticoid receptors (MRs) in the same regions. The intensity of GR expression was drastically reduced in CA II-IR cells and NG2-IR cells in the same regions in adrenalectomized mice. Finally, steroid receptor co-activator (SRC)-1 and p300, both of which are cofactors for GR, were expressed in the gray and white matter regions in NG2-IR cells, but not in CAII-IR cells. These results suggest that the expression of GRs in oligodendrocytes and their progenitor cells mediates several functions in vivo, including differentiation and myelination, as a major target of glucocorticoids and their cofactors.
Collapse
Affiliation(s)
- Yumiko Matsusue
- Department of Oral and Maxillofacial Surgery, Nara Medical University (YM, TK)
| | | | | | | |
Collapse
|
12
|
Ferguson AR, Stück ED, Nielson JL. Syndromics: a bioinformatics approach for neurotrauma research. Transl Stroke Res 2011; 2:438-54. [PMID: 22207883 PMCID: PMC3236294 DOI: 10.1007/s12975-011-0121-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/14/2011] [Accepted: 10/18/2011] [Indexed: 12/25/2022]
Abstract
Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.
Collapse
Affiliation(s)
- Adam R. Ferguson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Ellen D. Stück
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| | - Jessica L. Nielson
- Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA
| |
Collapse
|
13
|
Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 2010; 1366:172-88. [PMID: 20883670 DOI: 10.1016/j.brainres.2010.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes (OLs), the predominant cell type found in cerebral white matter, are essential for structural integrity and proper neural signaling. Very little is known concerning stroke-induced OL dysfunction. Our laboratory has shown that infusion of human umbilical cord blood (HUCB) cells protects striatal white matter tracts in vivo and directly protects mature primary OL cultures from oxygen glucose deprivation (OGD). Microarray studies of RNA prepared from OL cultures subjected to OGD and treated with HUCB cells showed an increase in the expression of 33 genes associated with OL proliferation, survival, and repair functions, such as myelination. The microarray results were verified using quantitative RT-PCR for the following eight genes: U2AF homology motif kinase 1 (Uhmk1), insulin-induced gene 1 (Insig1), metallothionein 3 (Mt3), tetraspanin 2 (Tspan2), peroxiredoxin 4 (Prdx4), stathmin-like 2 (Stmn2), myelin oligodendrocyte glycoprotein (MOG), and versican (Vcan). Immunohistochemistry showed that MOG, Prdx4, Uhmk1, Insig1, and Mt3 protein expression were upregulated in the ipsilateral white matter tracts of rats infused with HUCB cells 48h after middle cerebral artery occlusion (MCAO). Furthermore, promoter region analysis of these genes revealed common transcription factor binding sites, providing insight into the shared signal transduction pathways activated by HUCB cells to enhance transcription of these genes. These results show expression of genes induced by HUCB cell therapy that could confer oligoprotection from ischemia.
Collapse
Affiliation(s)
- D D Rowe
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Li Q, Brus-Ramer M, Martin JH, McDonald JW. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 2010; 479:128-33. [PMID: 20493923 DOI: 10.1016/j.neulet.2010.05.043] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/07/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022]
Abstract
Endogenous tri-potential neural stem cells (eNSCs) exist in the adult spinal cord and differentiate primarily into oligodendrocytes (OLs) and astrocytes. Previous in vivo and in vitro studies have shown that during development proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) depend on activity in neighboring axons. However, this activity-dependent development of OPCs has not been examined in the adult CNS. In the present study, we stimulated unilateral corticospinal (CS) axons of the adult rat and investigated proliferation and differentiation of OPCs in dorsal corticospinal tract (dCST). eNSCs were labeled with the mitotic indicator 5-bromo-2'-deoxyuridine (BrdU). Phenotypes of proliferating cells were identified by double-immunolabeling of BrdU with a panel of antibodies to cell markers: NG2, Nkx2.2, APC, GFAP, and Glut-1. Electrical stimulation of CS axons increased BrdU labeled eNSCs and promoted the proliferation and differentiation of OPCs, but not astrocytes and endothelial cells. Our findings demonstrate the importance of neural activity in regulating OPC proliferation/differentiation in the mature CNS. Selective pathway electrical stimulation could be used to promote remyelination and recovery of function in CNS injury and disease.
Collapse
Affiliation(s)
- Qun Li
- International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, United States
| | | | | | | |
Collapse
|
15
|
Abstract
Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport.
Collapse
|
16
|
Liu X, Mashour GA, Kurtz A. Section Review Central & Peripheral Nervous Systems: Recent developments in the treatment of encephalomyelitis. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.5.457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Ndubaku U, de Bellard ME. Glial cells: old cells with new twists. Acta Histochem 2007; 110:182-95. [PMID: 18068219 PMCID: PMC2365468 DOI: 10.1016/j.acthis.2007.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 09/14/2007] [Accepted: 10/01/2007] [Indexed: 12/11/2022]
Abstract
Based on their characteristics and function--migration, neural protection, proliferation, axonal guidance and trophic effects--glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed--as true stem cells in the nervous system--and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells.
Collapse
Affiliation(s)
- Ugo Ndubaku
- Biology Department, California State University Northridge, MC 8303, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | | |
Collapse
|
18
|
Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Gujrati M, Rao JS, Dinh DH. Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 2007; 24:391-410. [PMID: 17376002 PMCID: PMC1859845 DOI: 10.1089/neu.2006.0142] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human umbilical cord blood stem cells (hUCB) hold great promise for therapeutic repair after spinal cord injury (SCI). Here, we present our preliminary investigations on axonal remyelination of injured spinal cord by transplanted hUCB. Adult male rats were subjected to moderate SCI using NYU Impactor, and hUCB were grafted into the site of injury one week after SCI. Immunohistochemical data provides evidence of differentiation of hUCB into several neural phenotypes including neurons, oligodendrocytes and astrocytes. Ultrastructural analysis of axons reveals that hUCB form morphologically normal appearing myelin sheaths around axons in the injured areas of spinal cord. Colocalization studies prove that oligodendrocytes derived from hUCB secrete neurotrophic hormones neurotrophin-3 (NT3) and brain-derived neurotrophic factor (BDNF). Cord blood stem cells aid in the synthesis of myelin basic protein (MBP) and proteolipid protein (PLP) of myelin in the injured areas, thereby facilitating the process of remyelination. Elevated levels of mRNA expression were observed for NT3, BDNF, MBP and PLP in hUCB-treated rats as revealed by fluorescent in situ hybridization (FISH) analysis. Recovery of hind limb locomotor function was also significantly enhanced in the hUCB-treated rats based on Basso-Beattie-Bresnahan (BBB) scores assessed 14 days after transplantation. These findings demonstrate that hUCB, when transplanted into the spinal cord 7 days after weight-drop injury, survive for at least 2 weeks, differentiate into oligodendrocytes and neurons, and enable improved locomotor function. Therefore, hUCB facilitate functional recovery after moderate SCI and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
Collapse
Affiliation(s)
- Venkata Ramesh Dasari
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Daniel G. Spomar
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Christopher S. Gondi
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Christopher A. Sloffer
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Jasti S Rao
- Program of Cancer Biology, Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
19
|
Paez PM, García CI, Campagnoni AT, Soto EF, Pasquini JM. Overexpression of human transferrin in two oligodendroglial cell lines enhances their differentiation. Glia 2006; 52:1-15. [PMID: 15892129 DOI: 10.1002/glia.20214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously demonstrated that the addition of apotransferrin (aTf) to oligodendroglial cell (OLGc) primary cultures accelerates their maturation. Cells treated with aTf developed a multipolar morphology and displayed increased expression of mature OLGc markers. In this work, we studied the effect of Tf overexpression in two OLGc lines, N19 and N20.1. The former cells exhibit characteristics of OLGc precursors (O2A), while N20.1 cells express markers of more mature OLGcs. Using the complete cDNA of the human Tf gene, we obtained clones overexpressing Tf in both cell lines. These clones were evaluated for the expression of OLGc differentiation markers. In agreement with our previous results, we found that in the cells overexpressing Tf, there was an increased O(4), GC, and MBP immunoreactivity. To study the myelinogenic potential of these cells, we co-cultured N19 and N20.1 Tf-transfected cells together with cortical neurons. There was a dramatic increase in the morphological differentiation of the OLGcs accompanied by enhanced GC and MBP expression. The OLGcs appeared to establish contact with neurites and extend their processes along them. Only two MBP isoforms were detected in Tf-overexpressing clones, while all the isoforms were present in the co-cultures, suggesting that there was a modulation of MBP expression by neurons. Concomitantly, we found an increase in several proteins involved in axon-glia interaction, such as MAG, N-CAM, and F3/Contactin. This co-culture system represents a potentially powerful tool to study neuron-glia interactions that occur during myelinogenesis and the role of Tf in this process.
Collapse
Affiliation(s)
- Pablo M Paez
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Li G, Crang AJ, Rundle JL, Blakemore WF. Oligodendrocyte progenitor cells in the adult rat CNS express myelin oligodendrocyte glycoprotein (MOG). Brain Pathol 2006; 12:463-71. [PMID: 12408232 PMCID: PMC8095836 DOI: 10.1111/j.1750-3639.2002.tb00463.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While the effects of high dose X-irradiation on mitotically active progenitor cells and remyelination are well-documented, its effects on myelinating oligodendrocytes are less clear, due in part to divergent views on their mitotic capacity. To examine the effect of X-irradiation on oligodendrocytes, the spinal cord of rats was exposed to 40 Gy of X-irradiation and the number of oligodendrocytes and oligodendrocyte progenitors in the dorsal funiculi at T12 and L1 was determined by in situ hybridization using cRNA-probes for platelet derived growth factor alpha receptor (PDGFRalpha) (to identify oligodendrocyte progenitors), exon 3b of proteolipid protein (PLP) (to identify mature oligodendrocytes) and myelin oligodendrocyte glycoprotein (MOG). X-irradiation resulted in no change in the number of PLP positive cells and no loss of myelin internodes, but caused an almost complete loss of PDGFRalpha-expressing cells, and a reduction in the number of MOG positive cells to a number similar to that found using the PLP exon 3b probe. Importantly, the number of radiation-sensitive MOG-expressing cells was similar to the number of PDGFRalpha positive cells. To determine if the radiation-sensitive MOG positive cells were the same population as the radiation sensitive PDGFRalpha-expressing cells, MOG and PDGFRalpha-expressing cells were isolated from the adult CNS using antibody coated magnetic beads. Twelve to thirteen percent of MOG positive cells were PDGFRalpha positive and nearly all the PDGFRa isolated cells were MOG and galactocerebroside positive. Double immunofluorescence revealed colocalization of NG2 and MOG on cells in the normal adult rat spinal cord. These results show that in situ in the adult rat spinal cord white matter oligodendrocyte progenitors are MOG positive and indicates that expression of MOG cannot be regarded a marker that only identifies mature myelin-supporting oligodendrocytes in tissue.
Collapse
Affiliation(s)
- Guilin Li
- Department of Veterinary Clinical Medicine, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
21
|
Bansal R, Marin-Husstege M, Bryant M, Casaccia-Bonnefil P. S-phase entry of oligodendrocyte lineage cells is associated with increased levels of p21Cip1. J Neurosci Res 2005; 80:360-8. [PMID: 15789403 DOI: 10.1002/jnr.20454] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms regulating the number of myelinating cells in the central nervous system are crucial for both normal development and repair in pathological conditions. Among relevant growth factors involved in this process, fibroblast growth factor-2 (FGF2) induces oligodendrocyte progenitors (OLPs) to proliferate and stimulates mature oligodendrocytes (OLs) to reenter the S-phase of the cell cycle. S-phase entry is modulated by the formation of complexes between cyclins and cyclin-dependent kinases (CDKs), on one hand, and by their interactions with cell cycle inhibitors (e.g., p18INK, p27Kip1, p21Cip1), on the other. Although the roles of cyclin E/CDK2 complexes and the inhibitor p27Kip1 have been extensively investigated relative to proliferation and differentiation in the OL lineage, less is known about the regulation of the formation of cyclin D1/CDK4 complexes and the role of p21Cip1 in these events. In this study, we show that the FGF2-mediated increase in bromodeoxyuridine (BrdU) incorporation into OL progenitors and mature OLs occurs concomitantly with increase in the levels of p21Cip1 and the formation of p21Cip1/cyclin D1/CDK4 ternary complexes. These complexes are functionally active is indicated by the ensuing FGF2-dependent hyperphosphorylation of the downstream target Rb. In untreated mature OLs that do not incorporate BrdU, the levels of p21Cip1 are low, and the level of the inhibitor p18INK is high. Furthermore, p18INK sequesters CDK2 into binary complexes, precluding the formation of p21Cip1/cyclin D1/CDK4 ternary complexes in these cells. Therefore, we propose that p21Cip1 is acting as a positive regulator, rather than an inhibitor, of cell cycle entry by favoring the assembly of active cyclin D1/CDK4 complexes.
Collapse
Affiliation(s)
- Rashmi Bansal
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030, USA.
| | | | | | | |
Collapse
|
22
|
Ruffini F, Arbour N, Blain M, Olivier A, Antel JP. Distinctive properties of human adult brain-derived myelin progenitor cells. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:2167-75. [PMID: 15579458 PMCID: PMC1618716 DOI: 10.1016/s0002-9440(10)63266-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We used expression of the ganglioside A2B5 to isolate putative myelin progenitor cells from adult human central nervous system parenchyma and compared their phenotypic (expression of myelin lineage molecules) and functional (survival, proliferation) properties with mature oligodendrocytes (OLGs) derived from the same adult material and with A2B5(+) cells isolated from human fetal brain. A2B5(+) cells represented 3 to 5% of the total cell suspension derived from adult specimens. Results of protein (immunostaining) and RNA (polymerase chain reaction) analyses indicated that the adult A2B5(+) cells were more committed to the OLG lineage than their fetal counterparts while continuing to retain properties of progenitor cells compared to the postmitotic mature OLGs. Although the adult A2B5(+) cells retained the capacity to divide, albeit at a reduced rate compared to fetal A2B5(+) cells, they showed reduced survival and process outgrowth compared not only to fetal cells but also to mature OLGs. Our results confirm the presence of progenitor cells committed to the OLG lineage in the adult human central nervous system but raise the issues regarding the intrinsic capacity of these cells to contribute to the process of remyelination that may be necessary during demyelinating diseases.
Collapse
Affiliation(s)
- Francesca Ruffini
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
23
|
Crang AJ, Gilson JM, Li WW, Blakemore WF. The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci 2004; 20:1445-60. [PMID: 15355312 DOI: 10.1111/j.1460-9568.2004.03606.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is a long-standing controversy as to whether oligodendrocytes may be capable of cell division and thus contribute to remyelination. We recently published evidence that a subpopulation of myelin oligodendrocyte glycoprotein (MOG)-expressing cells in the adult rat spinal cord co-expressed molecules previously considered to be restricted to oligodendrocyte progenitors [G. Li et al. (2002) Brain Pathol., 12, 463-471]. To further investigate the properties of MOG-expressing cells, anti-MOG-immunosorted cells were grown in culture and transplanted into acute demyelinating lesions. The immunosorting protocol yielded a cell preparation in which over 98% of the viable cells showed anti-MOG- and O1-immunoreactivity; 12-15% of the anti-MOG-immunosorted cells co-expressed platelet-derived growth factor alpha receptor (PDGFRalpha) or the A2B5-epitope. When cultured in serum-free medium containing EGF and FGF-2, 15-18% of the anti-MOG-immunosorted cells lost anti-MOG- and O1-immunoreactivity and underwent cell division. On removal of these growth factors, cells differentiated into oligodendrocytes, or astrocytes and Schwann cells when the differentiation medium contained BMPs. Transplantation of anti-MOG-immunosorted cells into areas of acute demyelination immediately after isolation resulted in the generation of remyelinating oligodendrocytes and Schwann cells. Our studies indicate that the adult rat CNS contains a significant number of oligodendrocyte precursors that express MOG and galactocerebroside, molecules previously considered restricted to mature oligodendrocytes. This may explain why myelin-bearing oligodendrocytes were considered capable of generating remyelinating cells. Our study also provides evidence that the adult oligodendrocyte progenitor can be considered as a source of the Schwann cells that remyelinate demyelinated CNS axons following concurrent destruction of oligodendrocytes and astrocytes.
Collapse
Affiliation(s)
- A J Crang
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | | | | | | |
Collapse
|
24
|
Leuchtmann EA, Ratner AE, Vijitruth R, Qu Y, McDonald JW. AMPA receptors are the major mediators of excitotoxic death in mature oligodendrocytes. Neurobiol Dis 2004; 14:336-48. [PMID: 14678751 DOI: 10.1016/j.nbd.2003.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Myelination of axons is important for central nervous system function, but oligodendrocytes, which constitute CNS myelin, are vulnerable to excitotoxic injury and death. Although mature oligodendrocytes express functional alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) and kainate-type glutamate receptors, the relative roles of these subtypes in excitotoxicity are not well understood. Using recently developed selective antagonists for subtypes of ionotropic non-NMDA receptors, we addressed this issue. By examining the pharmacological, biochemical, and morphologic features of kainite-induced excitotoxic death, we also determined whether it occurs by apoptosis, necrosis, or both. We conclude that when mature oligodendrocytes die after exposure to kainate: (1) AMPA receptors are the most important mediators, (2) kainate receptors play a smaller role, and (3) death occurs predominantly by necrosis, not apoptosis.
Collapse
Affiliation(s)
- Elizabeth A Leuchtmann
- Center for the Study of Nervous System Injury, Washington University School of Medicine, Box 8518, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
25
|
Jean I, Lavialle C, Barthelaix-Pouplard A, Fressinaud C. Neurotrophin-3 specifically increases mature oligodendrocyte population and enhances remyelination after chemical demyelination of adult rat CNS. Brain Res 2003; 972:110-8. [PMID: 12711083 DOI: 10.1016/s0006-8993(03)02510-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In human central nervous system (CNS) demyelinating diseases, spontaneous remyelination is often incomplete. Therefore, we have tested whether neutrotrophin-3 (NT-3) accelerates CNS myelin repair after a chemically-induced demyelination. One group of adult rats was injected in the corpus callosum (CC) with 1 microl of 1% lysophosphatidylcholine (LPC) and 1 microl of NT-3 (1 microg/microl), and 15 days after injury (D15) remyelination was compared to control rats (receiving 1 microl of LPC+1 microl of vehicle buffer of NT-3). The demyelinated volume decreased by 56% in NT-3-treated rats at D15, and immunohistochemistry showed an increase in mature MBP(+) oligodendrocytes (OL) (+66%) in treated animals (whereas less mature (CNP(+)) OL were unchanged). Since less than 3% axons degenerate in this model, and as astrocytic gliosis was not modified, these data suggest that NT-3 acts directly on cells of the OL lineage to enhance remyelination in vivo.
Collapse
Affiliation(s)
- Isabelle Jean
- Cell Biology Laboratory, UPRES EA 3143, University Hospital, 4 rue Larrey, F 49033 Angers cedex 01, France.
| | | | | | | |
Collapse
|
26
|
Miguel-Hidalgo JJ, Wei J, Andrew M, Overholser JC, Jurjus G, Stockmeier CA, Rajkowska G. Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Biol Psychiatry 2002; 52:1121-33. [PMID: 12488057 PMCID: PMC3115671 DOI: 10.1016/s0006-3223(02)01439-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Reductions in glial density and enlargement of glial nuclei have been reported in the dorsolateral prefrontal cortex (dlPFC) in mood disorders. In alcohol dependence, often comorbid with depression, it is unclear whether there are changes in the density and size of glial cells in the dlPFC. METHODS The packing density and size of Nissl-stained glial cell nuclei were analyzed postmortem in the cortical layers of the dlPFC from 21 control and 17 alcohol-dependent (Alc) subjects without Wernicke or Korsakoff syndromes. Eight Alc subjects had depressive symptoms. The density of glial cells was measured with a three-dimensional cell counting method, and the areal fraction of glial fibrillary acidic protein immunoreactivity (GFAP) was also determined. RESULTS Glial density was reduced by 11-14% in layers V and VI and in all layers combined in the Alc group. The size of glial nuclei was decreased by 3.2% in Alc subjects. The Alc subjects with depressive symptoms showed the lowest values of density and size. There was no difference in GFAP immunoreactivity, although the lowest values were in the Alc group. CONCLUSIONS Alcohol dependence is characterized by decreases in both density and size of glia in the dlPFC. Glial pathology may be more severe in Alc subjects with depressive symptoms.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Wu Y, Lee JC, Xue H, Pevny LH, Kaprielian Z, Rao MS. Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 2002; 40:25-43. [PMID: 12237841 DOI: 10.1002/glia.10111] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lineally related multipotent neuroepithelial cells (NEP), neuronal restricted precursors (NRP), and glial restricted precursors (GRP) have been identified in the spinal cord. To determine the sequence of differentiation and identify lineage and stage-specific markers, we have examined the spatiotemporal expression of established glial markers during rodent embryonic development and within fetal cell culture. In this report, we show that proliferating stem cells in the developing neural tube do not express any glial markers at E10.5. By E11, however, glial precursors have begun to differentiate and at least two regions of the ventral neural tube containing glial precursor cells can be distinguished, an Nkx2.2/Neurogenin 3 (Ngn3) domain and a platelet-derived growth factor receptor alpha (PDGFRalpha)/Olig2/Sox10 domain. Radial glia, as identified by RC1 immunoreactivity, develop in concert with other glial precursors and can be distinguished by their morphology, spatial distribution, and antigen expression. Astrocytes as assessed by glial fibrillary acidic protein (GFAP) immunoreactivity are first detected at E16. A novel dorsal domain of CD44 immunoreactivity that can be distinguished from the more ventral glial precursor domains can be detected as early as E13.5.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Multiple sclerosis is a common cause of neurological disability in young adults. The disease is complex -- its aetiology is multifactorial and largely unknown; its pathology is heterogeneous; and, clinically, it is difficult to diagnose, manage and treat. However, perhaps its most frustrating aspect is the inadequacy of the healing response of remyelination. This regenerative process generally occurs with great efficiency in experimental models, and sometimes proceeds to completion in multiple sclerosis. But as the disease progresses, the numbers of lesions in which demyelination persists increases, significantly contributing to clinical deterioration. Understanding why remyelination fails is crucial for devising effective methods by which to enhance it.
Collapse
Affiliation(s)
- Robin J M Franklin
- Department of Clinical Veterinary Medicine and Cambridge Centre for Brain Repair, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| |
Collapse
|
29
|
Studzinski DM, Benjamins JA. Cyclic AMP differentiation of the oligodendroglial cell line N20.1 switches staurosporine-induced cell death from necrosis to apoptosis. J Neurosci Res 2001; 66:691-7. [PMID: 11746389 DOI: 10.1002/jnr.10003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the regulation of cell death pathways is critical for protecting myelin-producing cells and their associated axons during injury resulting from multiple sclerosis and other degenerative diseases. The immortalized N20.1 oligodendroglial cell line provides a useful model for identifying mechanisms that can be exploited to attenuate cell death in myelin-producing cells and their precursors. In our hands, the N20.1 cell line exhibits different characteristics and morphology depending on temperature (permissive or non-permissive) and the presence of cAMP-elevating agents (Studzinski et al. [1998] Neurochem. Res. 23:435-441; Boullerne et al. [1999] J. Neurochem. 72:1050-1060; Studzinski et al. [1999] J. Neurosci. Res. 57:633-642). Our laboratory previously observed that NO donors cause primarily necrotic death in N20.1 cells grown at permissive temperature, but the NO donor SNP switched a portion of cell death to the apoptic pathway. We have continued our study of apoptotic death in these cells by comparing the effects of staurosporine, a known apoptotic agent, on cells grown at the permissive temperature ("undifferentiated") vs. the non-permissive temperature in the presence of forskolin ("differentiated"). Undifferentiated N20.1 cells exhibit maximal cell death after 24 hr of exposure to 50 nM staurosporine, whereas differentiated cells show delayed cell death, with maximal death seen after 48 hr. Pyknotic nuclei were observed in both growth conditions; however, differentiated cells were protected by caspase inhibitors, whereas undifferentiated cells were not. Increased ssDNA staining and DNA laddering were found following 24-hr staurosporine treatment in the differentiated cells only. These results support the conclusion that N20.1 cells can switch from necrotic to apoptotic cell death when cell division is slowed and cyclic AMP is elevated.
Collapse
Affiliation(s)
- D M Studzinski
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
30
|
Reynolds R, Cenci di Bello I, Dawson M, Levine J. The response of adult oligodendrocyte progenitors to demyelination in EAE. PROGRESS IN BRAIN RESEARCH 2001; 132:165-74. [PMID: 11544985 DOI: 10.1016/s0079-6123(01)32073-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cells with the phenotypic characteristics of oligodendrocyte progenitors (NG2+/PDGF alpha R+/O4+) are found throughout the adult mammalian CNS in numbers similar to microglia. They are a reactive glial cell population and respond to demyelination by increasing in number, thereby repopulating the lesion site with cells capable of differentiating into remyelinating oligodendrocytes. Direct evidence that they differentiate into remyelinating cells is missing, although this is the most likely scenario. Cells with the same phenotype are found in normal human CNS tissue and also in chronic MS lesions. Further studies on this intriguing cell type are necessary in order to understand the molecular signals involved in their reaction to injury, particularly in multiple sclerosis.
Collapse
Affiliation(s)
- R Reynolds
- Department of Neuroinflammation, Division of Neuroscience, Imperial College School of Medicine, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK.
| | | | | | | |
Collapse
|
31
|
Pouly S, Matthieu JM, Honegger P. Remyelination in vitro following protein kinase C activator-induced demyelination. Neurochem Res 2001; 26:619-27. [PMID: 11519722 DOI: 10.1023/a:1010931102287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.
Collapse
Affiliation(s)
- S Pouly
- Institute of Physiology, UNIL, Lausanne, Switzerland
| | | | | |
Collapse
|
32
|
McTigue DM, Popovich PG, Jakeman LB, Stokes BT. Strategies for spinal cord injury repair. PROGRESS IN BRAIN RESEARCH 2001; 128:3-8. [PMID: 11105664 DOI: 10.1016/s0079-6123(00)28002-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D M McTigue
- Department of Physiology and Cell Biology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
33
|
Ingraham CA, Rising LJ. NBN defined medium supports the development of O4+/O1- immunopanned pro-oligodendroglia. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:1-8. [PMID: 11154755 DOI: 10.1016/s0165-3806(00)00122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Maintenance of immunopanned cells in culture medium in the absence of serum or pre-conditioning by other neural cell types such as astrocytes can be problematic. Here we report the novel use of a chemically defined medium, which we refer to as NBN since it contains N-2 supplement, B-27 supplement, and N-acetyl-L-cysteine, for maintaining O4+/O1- immunopanned pro-oligodendroglia. Since we had previously characterized O4+/O1- immunopanned pro-oligodendroglia in astrocyte-conditioned basal defined medium (BDM; [24]), we compared their proliferation and differentiation in NBN medium or in NBN medium containing 40% NBN medium pre-conditioned by astrocytes. At 4 DIC in NBN, 23% of O4+ cells were BrdU+ while in conditioned NBN medium, 91% of O4+ cells were BrdU+. At 7 DIC in either medium, less than 25% of O4+ cells were BrdU+. O4+/O1- immunopanned pro-oligodendroglia cultured in NBN medium developed extensive processes and membranous expansions characteristic of mature oligodendroglia. At 4 DIC in NBN medium, approximately 100% of cells were O4+, 80% were O1+, and 54% were MBP+. By contrast, at 4 DIC in conditioned NBN, 87% of cells were O4+, 12% were O1+, and 2% were MBP+. At 7 DIC, there were no differences in the percentages of cells that expressed O4, O1, or MBP in either NBN or conditioned NBN. These results indicate that NBN defined medium supports the development of O4+/O1- immunopanned pro-oligodendroglia, and promotes more rapid maturation than conditioned NBN. The ability to maintain cells of the oligodendroglial lineage immunopanned at specific developmental stages in NBN defined medium should facilitate studies designed to identify effects of growth factors or toxins on oligodendroglia.
Collapse
Affiliation(s)
- C A Ingraham
- Center for Neuropharmacology and Neuroscience, Albany Medical College, 47 New Scotland Avenue, Albany, New York, NY 12208, USA.
| | | |
Collapse
|
34
|
Yan H, Wood PM. NT-3 weakly stimulates proliferation of adult rat O1(-)O4(+) oligodendrocyte-lineage cells and increases oligodendrocyte myelination in vitro. J Neurosci Res 2000; 62:329-35. [PMID: 11054801 DOI: 10.1002/1097-4547(20001101)62:3<329::aid-jnr2>3.0.co;2-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transplantation of fibroblasts, genetically modified to secrete neurotrophin-3 (NT-3) and/or brain-derived neurotrophic factor (BDNF), into spinal cord-injured rats increases the production of new oligodendrocytes and myelination (McTigue et al. [1998] J. Neurosci. 18:5354-5365). This experiment did not fully resolve whether the effect was exerted on oligodendrocyte precursors or on oligodendrocytes, or whether there was stimulation of both proliferation and differentiation of the oligodendrocyte lineage cells. To clarify the effects of NT-3 and BDNF, adult rat spinal cord was dissociated to produce cultures in which both oligodendrocyte precursors (O1(-)O4(+)) and oligodendrocytes (O1(+)) were present. Thymidine labeling of cells was determined in the presence and absence of added NT-3 and/or BDNF. In addition, the effect of these neurotrophins on myelination was determined by treating purified adult O1(+) oligodendrocyte/embryonic dorsal root ganglion (DRG) neuron cocultures with neurotrophins, only during the myelination period. O1(+) oligodendrocyte proliferation was not stimulated by NT-3 or BDNF; however, the proliferation of O1(-)O4(+) cells was increased in NT-3-treated cultures to a labeling index (LI: 24 hr) of 15-20%. This effect was observed at 5 but not at 10 days in vitro. In comparison, basic fibroblast growth factor (bFGF) induced the proliferation of both O1(+) oligodendrocytes (LI approximately 60%) and O1(-)O4(+) cells (LI approximately 75%). The amount of myelin formed in purified O1(+) oligodendrocyte/DRG neuron cocultures was significantly increased in NT-3-treated cultures compared to untreated cultures. These results indicate that NT-3 is weakly but transiently mitogenic for adult-derived oligodendrocyte precursors and support the suggestion that NT-3 promotes the maturation of O1(+) oligodendrocytes into myelin-forming cells.
Collapse
Affiliation(s)
- H Yan
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
35
|
Vanderluit JL, Bourque JA, Peterson AC, Tetzlaff W. Model for focal demyelination of the spinal dorsal columns of transgenic MBP-LacZ mice by phototargeted ablation of oligodendrocytes. J Neurosci Res 2000; 62:28-39. [PMID: 11002285 DOI: 10.1002/1097-4547(20001001)62:1<28::aid-jnr4>3.0.co;2-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Focal demyelination models provide powerful tools to study demyelination and remyelination in the central nervous system. In this report, we present a novel technique, which selectively targets oligodendrocytes within the spinal cord of transgenic mice to produce focal demyelination. Transgenic mice expressing the E. coli LacZ (beta-galactosidase) gene from the myelin basic protein promotor allowed for oligodendrocyte-specific cleavage of topically applied fluorescein-di-beta-galactopyranoside liberating photoactivatable fluorescein. Subsequent fluorescence illumination generated oxygen radicals that oxidized a second exogenous substrate, 3-amino-9-ethyl carbazole, to form a toxic precipitate within oligodendrocytes. Histochemical staining of the spinal cord dorsal columns 8 days following phototargeting revealed that the treated region no longer contained beta-galactosidase-positive cells. Focal demyelination of the dorsal columns was observed to a depth of 150 microm in transverse semithin plastic sections. Numerous bundles of naked axons interspersed with myelin, debris-laden macrophages, and reactive astrocytes were evident by electron microscopy. Remyelination of axons by both oligodendrocytes and invading Schwann cells was observed within the treated region 14 days after phototargeting. Newly generated oligodendrocytes were identified within the demyelinated region by their incorporation of bromodeoxyuridine. Thus, this novel focal demyelination protocol provides: (1) a method for selective targeted ablation of oligodendrocytes in vivo, (2) control over the extent of the demyelinated region, with (3) an environment that maintains its remyelination capacity. Phototargeted ablation of oligodendrocytes may therefore be a useful model for studying axon-glia interactions, axon regeneration within a demyelinated zone, and remyelination of axons.
Collapse
Affiliation(s)
- J L Vanderluit
- CORD (Collaboration on Repair Discoveries), Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
36
|
Abstract
Multipotential neuroepithelial stem cells are thought to give rise to all the differentiated cells of the central nervous system (CNS). The developmental potential of these multipotent stem cells becomes more restricted as they differentiate into progressively more committed cells and ultimately into mature neurons and glia. In studying gliogenesis, the optic nerve and spinal cord have become invaluable models and the progressive stages of differentiation are being clarified. Multiple classes of glial precursors termed glial restricted precursors (GRP), oligospheres, oligodendrocyte-type2 astrocyte (O-2A) and astrocyte precursor cells (APC) have been identified. Similar classes of precursor cells can be isolated from human neural stem cell cultures and from embryonic stem (ES) cell cultures providing a non-fetal source of such cells. In this review, we discuss gliogenesis, glial stem cells, putative relationships of these cells to each other, factors implicated in gliogenesis, and therapeutic applications of glial precursors.
Collapse
Affiliation(s)
- J C Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
37
|
Tang DG, Tokumoto YM, Raff MC. Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months. J Cell Biol 2000; 148:971-84. [PMID: 10704447 PMCID: PMC2174541 DOI: 10.1083/jcb.148.5.971] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 01/20/2000] [Indexed: 11/22/2022] Open
Abstract
Oligodendrocytes myelinate axons in the vertebrate central nervous system (CNS). They develop from precursor cells (OPCs), some of which persist in the adult CNS. Adult OPCs differ in many of their properties from OPCs in the developing CNS. In this study we have purified OPCs from postnatal rat optic nerve and cultured them in serum-free medium containing platelet-derived growth factor (PDGF), the main mitogen for OPCs, but in the absence of thyroid hormone in order to inhibit their differentiation into oligodendrocytes. We find that many of the cells continue to proliferate for more than a year and progressively acquire a number of the characteristics of OPCs isolated from adult optic nerve. These findings suggest that OPCs have an intrinsic maturation program that progressively changes the cell's phenotype over many months. When we culture the postnatal OPCs in the same conditions but with the addition of basic fibroblast growth factor (bFGF), the cells acquire these mature characteristics much more slowly, suggesting that the combination of bFGF and PDGF, previously shown to inhibit OPC differentiation, also inhibits OPC maturation. The challenge now is to determine the molecular basis of such a protracted maturation program and how the program is restrained by bFGF.
Collapse
Affiliation(s)
- D G Tang
- MRC Laboratory for Molecular Cell Biology and the Biology Department, University College London, London, WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
38
|
Fuss B, Mallon B, Phan T, Ohlemeyer C, Kirchhoff F, Nishiyama A, Macklin WB. Purification and analysis of in vivo-differentiated oligodendrocytes expressing the green fluorescent protein. Dev Biol 2000; 218:259-74. [PMID: 10656768 DOI: 10.1006/dbio.1999.9574] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complete understanding of the molecular mechanisms involved in the formation and repair of the central nervous system myelin sheath requires an unambiguous identification and isolation of in vivo-differentiated myelin-forming cells. In order to develop a novel tool for the analysis of in vivo-differentiated oligodendrocytes, we generated transgenic mice expressing a red-shifted variant of the green fluorescent protein under the control of the proteolipid protein promoter. We demonstrate here that green fluorescent protein-derived fluorescence in the central nervous system of 9-day- to 7-week-old mice is restricted to mature oligodendrocytes, as determined by its spatiotemporal appearance and by both immunocytochemical and electrophysiological criteria. Green fluorescent protein-positive oligodendrocytes could easily be visualized in live and fixed tissue. Furthermore, we show that this convenient and reliable identification now allows detailed physiological analyses of differentiated oligodendrocytes in situ. In addition, we developed a novel tissue culture system for in vivo-differentiated oligodendrocytes. Initial data using this system indicate that, for oligodendrocytes isolated after differentiation in vivo, as yet unidentified factors secreted by astrocytes are necessary for survival and/or reappearance of a mature phenotype in culture.
Collapse
Affiliation(s)
- B Fuss
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 2000; 123 ( Pt 1):105-15. [PMID: 10611125 DOI: 10.1093/brain/123.1.105] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the hallmarks of the human demyelinating disease multiple sclerosis is the inability to compensate adequately for the loss of myelin and of oligodendrocytes, the myelin-forming cells of the CNS. Oligodendrocyte precursor cells, a potential source of oligodendrocytes, have been identified in lesions of chronic multiple sclerosis, but it is not known whether they develop into new, fully differentiated oligodendrocytes, capable of remyelination. Sections of post-mortem multiple sclerosis tissue were therefore immunolabelled with antibodies to galactocerebroside (GalC), the first oligodendrocyte-specific molecule to be expressed by differentiating oligodendrocyte precursor cells, and myelin oligodendrocyte glycoprotein (MOG), a marker for mature oligodendrocytes. In total, 23 lesions from 15 subjects with chronic progressive multiple sclerosis were analysed. The immunolabelling revealed that chronic multiple sclerosis lesions contain only small numbers of immature, process-bearing, GalC-positive oligodendrocytes (0-2 cells/mm(2) in 10 micrometer thick sections); they had a relatively large, pale nucleus (maximum diameter: 9.9 +/- 0.9 micrometer). Although they appeared to make contact with surrounding demyelinated axons, most immature oligodendrocytes appeared not to be engaged in myelination. These findings suggest that oligodendrocyte differentiation of precursor cells is a rare event in chronic multiple sclerosis, which is consistent with the general failure of myelin repair during the later stages of this disease. The lesions in the collection, in particular those with recent demyelinating activity, contained another distinct population of oligodendrocytes. It consisted of small, round cells with a small, dense nucleus (maximum diameter: 6.8 +/- 0.8 micrometer) that expressed both GalC and MOG but lacked processes, suggesting that these cells were mature oligodendrocytes that had survived the loss of their myelin sheaths, i.e. they were demyelinated oligodendrocytes. In the most recent lesions in the collection, the demyelinated oligodendrocytes were found in large numbers throughout the centre of the lesion (up to 700 cells/mm(2)), while in the older lesions they were found only at the edges. Moreover, when the borders of these older lesions still contained numerous macrophages, they tended to contain more demyelinated oligodendrocytes than those lacking macrophages. These findings suggest that mature, demyelinated oligodendrocytes gradually disappear from lesion areas with increasing age of the lesion. The present study thus suggests that the failure of myelin repair in at least some cases of chronic multiple sclerosis is due to (i) the loss of demyelinated oligodendrocytes from lesion areas and (ii) the failure of the oligodendrocyte precursor population to expand and generate new oligodendrocytes. Gaining further insight into these processes may prove crucial for the development of remyelination promoting strategies.
Collapse
Affiliation(s)
- G Wolswijk
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Ankerhold R, Stuermer CAO. Fate of oligodendrocytes during retinal axon degeneration and regeneration in the goldfish visual pathway. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199912)41:4<572::aid-neu12>3.0.co;2-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Miller RH, Hayes JE, Dyer KL, Sussman CR. Mechanisms of oligodendrocyte commitment in the vertebrate CNS. Int J Dev Neurosci 1999; 17:753-63. [PMID: 10593611 DOI: 10.1016/s0736-5748(99)00068-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- R H Miller
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
42
|
Levine JM, Reynolds R. Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol 1999; 160:333-47. [PMID: 10619551 DOI: 10.1006/exnr.1999.7224] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adult brain contains a large population of glial cells with the properties of oligodendrocyte precursor cells (OPCs). The functions of this newly recognized class of glial cells in normal animals are unknown. Here, we analyzed the reactions of OPCs to a transient demyelination of the rat brainstem induced by the injection of ethidium bromide (EB) into the fourth ventricle. Within 22 h after EB injection, there is a 21% decrease in the number of OPCs within affected fiber tracts such as the spinal tract of the trigeminal nerve, most likely reflecting the toxic actions of EB. The surviving OPCs had enlarged cell bodies with fewer long processes and many membrane blebs. By 2 days after EB injection, these reactive OPCs had incorporated BrdU and increased in number. The increase in OPC cell number reached a maximum between 6-10 days after EB injection, at which time demyelination was complete. Myelin-specific marker antigens reappeared beginning at 12 days postinjection and the remyelination continued for up to 40 days. During remyelination, OPCs displayed a normal stellate morphology with an increased number of thin processes, many of which were closely associated with neurofilament-positive axonal profiles. The transient increase in the number of reactive OPCs within the demyelinated tissue and subsequent decrease in OPC number during remyelination demonstrates that the endogenous oligodendrocyte precursor population responds rapidly to the pathophysiological state of the brain. Demyelination generates a sufficient number of OPCs to participate in the repair of the demyelinated lesions.
Collapse
Affiliation(s)
- J M Levine
- Department of Neurobiology and Behavior, SUNY at Stony Brook, New York, USA
| | | |
Collapse
|
43
|
Jiang F, Levison SW, Wood TL. Ciliary neurotrophic factor induces expression of the IGF type I receptor and FGF receptor 1 mRNAs in adult rat brain oligodendrocytes. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990815)57:4<447::aid-jnr4>3.0.co;2-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Nieder C, Ataman F, Price RE, Ang KK. Radiation myelopathy: new perspective on an old problem. RADIATION ONCOLOGY INVESTIGATIONS 1999; 7:193-203. [PMID: 10492160 DOI: 10.1002/(sici)1520-6823(1999)7:4<193::aid-roi1>3.0.co;2-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article discusses recent advances in basic research that alter the view of the pathogenesis of radiation myelopathy and summarizes the available data from developmental neurobiology and preclinical studies on demyelinating diseases. These studies have produced interesting insights into oligodendrocyte development, intercellular signaling pathways, and myelination processes. Current findings suggest that administration of cytokines as platelet-derived growth factor and basic fibroblast growth factor could increase proliferation of oligodendrocyte progenitors, enhance their differentiation, up-regulate synthesis of myelin constituents, and promote myelin regeneration in the adult central nervous system (CNS). Other compounds might also be able to modulate the progression of pathogenic processes that lead to myelopathy. In addition, several possible biological prevention or treatment strategies, for example stimulation of endogenous cellular regeneration and glial cell transplantation, are discussed. Rationally designed animal experiments pursuing such strategies could further elucidate the pathogenesis of radiation-induced CNS damage.
Collapse
Affiliation(s)
- C Nieder
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Remyelination in the adult central nervous system (CNS) is preceded by the generation of new oligodendrocytes (ODCs) but the source of the new ODCs has not been resolved. Adult galactocerebroside positive (O1+)ODCs proliferate when cultured with purified sensory neurons (Wood and Bunge, Nature 320:756-758, 1999), implying that differentiated ODCs could be an important source of new myelinating ODCs. To test this possibility purified O1+ODCs (>96% purity) were plated at low density (20-50 cells/culture) into cultures of purified dorsal root ganglion neurons. Three days after plating, single O1+ODCs were located (209 ODCs/43 cultures) and sequentially observed for 4 weeks. The ODCs began to proliferate by the fifth day after plating and formed large colonies by the third week. Most cells in these colonies were 01- but positive for another ODC antigen, O4. A few O1+, myelin basic protein (MBP)+ODCs, and glial fibrillary acidic protein (GFAP)+cells with astrocytic morphology were observed in some colonies. In similar cultures plated with cell-sorted O1+ODCs (>99.5% purity), ciliary neurotrophic factor (CNTF, 1ng/ml) increased the number and size of colonies, the number of O1+MBP+ODCs (including ODCs producing myelin-like profiles in association with axons) and the number of GFAP+ astrocytes, relative to untreated controls. The results are evidence that CNTF exerts a trophic effect on adult O1+ODCs, and/or their progeny, and that cells generated by division of O1+ODCs can become either new myelin-producing ODC, or astrocytes. This plasticity in regenerative potential of adult O1+ODCs has not been previously demonstrated.
Collapse
Affiliation(s)
- C Rosano
- Miami Project to Cure Paralysis, and Department of Neurological Surgery, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
46
|
Wolswijk G. Oligodendrocyte regeneration in the adult rodent CNS and the failure of this process in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 1999; 117:233-47. [PMID: 9932412 DOI: 10.1016/s0079-6123(08)64019-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- G Wolswijk
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, AZ Amsterdam ZO, The Netherlands.
| |
Collapse
|
47
|
Canoll PD, Kraemer R, Teng KK, Marchionni MA, Salzer JL. GGF/neuregulin induces a phenotypic reversion of oligodendrocytes. Mol Cell Neurosci 1999; 13:79-94. [PMID: 10192767 DOI: 10.1006/mcne.1998.0733] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have previously shown that glial growth factor (GGF), a member of the neuregulin (NRG) family of growth factors, is a mitogen and survival factor for oligodendrocyte progenitors in cell culture and blocks their differentiation at the pro-oligodendrocyte stage (P. D. Canoll et al., 1996, Neuron 17, 229-243). We now show that GGF is able to induce differentiated oligodendrocytes to undergo a phenotypic reversion characterized by loss of MBP expression, reexpression of the intermediate filament protein nestin, reorganization of the actin cytoskeleton, and a dramatic reduction in the number of processes per cell. TUNEL analysis demonstrates that GGF is not cytotoxic for mature oligodendrocytes, but rather enhances their survival. GGF also induces the rapid activation of the PI 3-kinase and MAP kinase signaling pathways. These results further support a role for the NRGs in promoting the proliferation and survival of and inhibiting the differentiation of cells in the oligodendrocyte lineage and demonstrate that oligodendrocytes that differentiate in culture retain a substantial degree of phenotypic plasticity.
Collapse
Affiliation(s)
- P D Canoll
- Department of Pharmacology, New York University Medical School, 550 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
48
|
Ingraham CA, Rising LJ, Morihisa JM. Development of O4+/O1- immunopanned pro-oligodendroglia in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 112:79-87. [PMID: 9974161 DOI: 10.1016/s0165-3806(98)00163-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, O4+/O1- pro-oligodendroglia isolated by immunopanning from cerebral hemispheres of P3-P5 rats were evaluated during their maturation in culture. Immunopanning yielded 3-4 x 10(5) cells/cerebrum, with 98% O4+ and 6% O1+. There was heterogeneity in the morphologies of immunopanned cells ranging from simple bipolar cells to more complex multipolar cells. As a first step in determining potential differentiative responses of mature oligodendroglia, we examined glial fibrillary acidic protein (GFAP) expression in response to fetal bovine serum (FBS) by cultures established from O4+/O1- immunopanned cells grown for 1, 14, or 21 days, exposed to 20% FBS for 6-7 days and fixed and immunostained on days 7, 21 or 28 in culture (DIC). When immunopanned cells were exposed to FBS following 1 day in serum-free medium, 88% expressed GFAP and when immunopanned cells were cultured for 14 days prior to FBS exposure, 78% expressed GFAP. By contrast, when cells were cultured for 21 days prior to FBS exposure (when a majority of the cells expressed O1 and myelin basic protein (MBP)), only 19% of the cells expressed GFAP (p < 0.001). Cells that were O4+/GFAP- even in the presence of FBS often exhibited a mature oligodendroglial morphology. Among immunopanned cells that responded to FBS by expression of GFAP, both process-bearing (similar to type 2 astroglia) and flattened, polygonal (similar to type 1 astroglia) GFAP+ cells were observed. These results confirm the utility of immunopanning for the isolation of pro-oligodendroglia and demonstrate that oligodendroglia that develop in vitro from O4+/O1- immunopanned cells become resistant to GFAP induction by FBS.
Collapse
Affiliation(s)
- C A Ingraham
- Department of Psychiatry, Albany Medical College, NY 12208, USA.
| | | | | |
Collapse
|
49
|
Abstract
We previously identified the remyelinating activity of a natural IgMkappa oligodendrocyte-reactive autoantibody (SCH94.03), using a virus-induced murine model of multiple sclerosis. We now describe a second mouse IgMkappa monoclonal antibody (mAb) (SCH79.08) raised against normal mouse spinal cord homogenate, which reacts with myelin basic protein and also promotes remyelination. Because these two mAbs recognize different oligodendrocyte antigens, several previously identified oligodendrocyte-reactive IgMkappa mAbs (O1, O4, A2B5, and HNK-1), each with distinct antigen specificities, were evaluated and found to promote remyelination. In contrast, IgMkappa mAbs that did not bind to oligodendrocytes showed no remyelination. One of these, CH12 IgMkappa mAb, which shares variable region cDNA sequences with SCH94.03 except for amino acid differences in the complementarity-determining region 3 in both heavy and light chains, did not bind to oligodendrocytes and did not promote remyelination. The fact that multiple oligodendrocyte-reactive antibodies with distinct antigen reactivities induce remyelination argues against direct activation by a unique cell surface receptor. These findings are most consistent with the hypothesis that the binding of mAbs to oligodendrocytes in the lesions induces myelin repair via indirect immune effector mechanisms initiated by the mu-chain. Importantly, these studies indicate that oligodendrocyte-reactive natural autoantibodies may provide a powerful and novel therapeutic means to induce remyelination in multiple sclerosis patients.
Collapse
|
50
|
Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998. [PMID: 9651218 DOI: 10.1523/jneurosci.18-14-05354.1998] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional loss after spinal cord injury (SCI) is caused, in part, by demyelination of axons surviving the trauma. Neurotrophins have been shown to induce oligodendrogliagenesis in vitro, but stimulation of oligodendrocyte proliferation and myelination by these factors in vivo has not been examined. We sought to determine whether neurotrophins can induce the formation of new oligodendrocytes and myelination of regenerating axons after SCI in adult rats. In this study, fibroblasts producing neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor, nerve growth factor, basic fibroblast growth factor, or beta-galactosidase (control grafts) were transplanted subacutely into the contused adult rat spinal cord. At 10 weeks after injury, all transplants contained axons. NT-3 and BDNF grafts, however, contained significantly more axons than control or other growth factor-producing grafts. In addition, significantly more myelin basic protein-positive profiles were detected in NT-3 and BDNF transplants, suggesting enhanced myelination of ingrowing axons within these neurotrophin-producing grafts. To determine whether augmented myelinogenesis was associated with increased proliferation of oligodendrocyte lineage cells, bromodeoxyuridine (BrdU) was used to label dividing cells. NT-3 and BDNF grafts contained significantly more BrdU-positive oligodendrocytes than controls. The association of these new oligodendrocytes with ingrowing myelinated axons suggests that NT-3- and BDNF-induced myelinogenesis resulted, at least in part, from expansion of oligodendrocyte lineage cells, most likely the endogenous oligodendrocyte progenitors. These findings may have significant implications for chronic demyelinating diseases or CNS injuries.
Collapse
|