1
|
Oginga FO, Mpofana T. Understanding the role of early life stress and schizophrenia on anxiety and depressive like outcomes: An experimental study. Behav Brain Res 2024; 470:115053. [PMID: 38768688 DOI: 10.1016/j.bbr.2024.115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Adverse experiences due to early life stress (ELS) or parental psychopathology such as schizophrenia (SZ) have a significant implication on individual susceptibility to psychiatric disorders in the future. However, it is not fully understood how ELS affects social-associated behaviors as well as the developing prefrontal cortex (PFC). OBJECTIVE The aim of this study was to investigate the impact of ELS and ketamine induced schizophrenia like symptoms (KSZ) on anhedonia, social behavior and anxiety-like behavior. METHODS Male and female Sprague-Dawley rat pups were allocated randomly into eight experimental groups, namely control, gestational stress (GS), GS+KSZ, maternal separation (MS), MS+KSZ pups, KSZ parents, KSZ parents and Pups and KSZ pups only. ELS was induced by subjecting the pups to GS and MS, while schizophrenia like symptoms was induced through subcutaneous administration of ketamine. Behavioral assessment included sucrose preference test (SPT) and elevated plus maze (EPM), followed by dopamine testing and analysis of astrocyte density. Statistical analysis involved ANOVA and post hoc Tukey tests, revealing significant group differences and yielding insights into behavioral and neurodevelopmental impacts. RESULTS GS, MS, and KSZ (dams) significantly reduced hedonic response and increased anxiety-like responses (p < 0.05). Notably, the presence of normal parental mental health demonstrated a reversal of the observed decline in Glial Fibrillary Acidic Protein-positive astrocytes (GFAP+ astrocytes) (p < 0.05) and a reduction in anxiety levels, implying its potential protective influence on depressive-like symptoms and PFC astrocyte functionality. CONCLUSION The present study provides empirical evidence supporting the hypothesis that exposure to ELS and KSZ on dams have a significant impact on the on development of anxiety and depressive like symptoms in Sprague Dawley rats, while positive parenting has a reversal effect.
Collapse
Affiliation(s)
- Fredrick Otieno Oginga
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, University of Kwa-Zulu Natal, Durban 4001, South Africa; Department of Clinical Medicine, School of Medicine and Health Science, Kabarak University, Nakuru 20157, Kenya.
| | - Thabisile Mpofana
- Department of Human Physiology, Faculty of Health Sciences North West University, Potchefstroom campus, 11 Hoffman St., Potchefstroom 2531, South Africa
| |
Collapse
|
2
|
Liu Y, Hong W, Gong P, Qi G, Wang X, Kang S, Tang H, Qin S. Specific knockout of Sox2 in astrocytes reduces reactive astrocyte formation and promotes recovery after early postnatal traumatic brain injury in mouse cortex. Glia 2023; 71:602-615. [PMID: 36353976 DOI: 10.1002/glia.24298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
In response to central nervous system (CNS) injury, astrocytes go through a series of alterations, referred to as reactive astrogliosis, ranging from changes in gene expression and cell hypertrophy to permanent astrocyte borders around stromal cell scars in CNS lesions. The mechanisms underlying injury-induced reactive astrocytes in the adult CNS have been extensively studied. However, little is known about injury-induced reactive astrocytes during early postnatal development. Astrocytes in the mouse cortex are mainly produced through local proliferation during the first 2 weeks after birth. Here we show that Sox2, a transcription factor critical for stem cells and brain development, is expressed in the early postnatal astrocytes and its expression level was increased in reactive astrocytes after traumatic brain injury (TBI) at postnatal day (P) 7 in the cortex. Using a tamoxifen-induced hGFAP-CreERT2; Sox2flox/flox ; Rosa-tdT mouse model, we found that specific knockout of Sox2 in astrocytes greatly inhibited the proliferation of reactive astrocytes, the formation of glia limitans borders and subsequently promoted the tissue recovery after postnatal TBI at P7 in the cortex. In addition, we found that injury-induced glia limitans borders were still formed at P2 in the wild-type mouse cortex, and knockout of Sox2 in astrocytes inhibited the reactivity of both astrocytes and microglia. Together, these findings provide evidence that Sox2 is essential for the reactivity of astrocytes in response to the cortical TBI during the early postnatal period and suggest that Sox2-dependent astrocyte reactivity is a potential target for therapeutic treatment after TBI.
Collapse
Affiliation(s)
- Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
4
|
Gilbert A, Elorza-Vidal X, Rancillac A, Chagnot A, Yetim M, Hingot V, Deffieux T, Boulay AC, Alvear-Perez R, Cisternino S, Martin S, Taïb S, Gelot A, Mignon V, Favier M, Brunet I, Declèves X, Tanter M, Estevez R, Vivien D, Saubaméa B, Cohen-Salmon M. Megalencephalic leukoencephalopathy with subcortical cysts is a developmental disorder of the gliovascular unit. eLife 2021; 10:71379. [PMID: 34723793 PMCID: PMC8598235 DOI: 10.7554/elife.71379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Absence of the astrocyte-specific membrane protein MLC1 is responsible for megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare type of leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation that lead to ataxia, spasticity, and cognitive decline. During postnatal development (from P5 to P15 in the mouse), MLC1 forms a membrane complex with GlialCAM (another astrocytic transmembrane protein) at the junctions between perivascular astrocytic processes. Perivascular astrocytic processes along with blood vessels form the gliovascular unit. It was not previously known how MLC1 influences the physiology of the gliovascular unit. Here, using the Mlc1 knock-out mouse model of MLC, we demonstrated that MLC1 controls the postnatal development and organization of perivascular astrocytic processes, vascular smooth muscle cell contractility, neurovascular coupling, and intraparenchymal interstitial fluid clearance. Our data suggest that MLC is a developmental disorder of the gliovascular unit, and perivascular astrocytic processes and vascular smooth muscle cell maturation defects are primary events in the pathogenesis of MLC and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Alice Gilbert
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France.,École doctorale Cerveau Cognition Comportement "ED3C" N°158, Pierre and Marie Curie University, Paris, France
| | - Xabier Elorza-Vidal
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiopathology Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Mervé Yetim
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Vincent Hingot
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Anne-Cécile Boulay
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | - Rodrigo Alvear-Perez
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| | | | - Sabrina Martin
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Sonia Taïb
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Aontoinette Gelot
- Service d'anatomie et cytologie pathologie de l'hôpital Armand Trousseau, Paris, France
| | - Virginie Mignon
- Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | | | - Isabelle Brunet
- Molecular Control of the Neurovascular Development Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, Labex Memolife, Université PSL, Paris, France
| | - Xavier Declèves
- Université de Paris, Faculté de Santé, Paris, France.,Biologie du médicament et toxicologie, Assistance Publique - hôpitaux de Paris, APHP, Hôpital Cochin, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, ESPCI Paris, PSL University, Paris, France
| | - Raul Estevez
- Unitat de Fisiología, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain, Physiopathology and Imaging of Neurological Disorders, Caen, France
| | - Bruno Saubaméa
- Université de Paris, Faculté de Santé, Paris, France.,Cellular and Molecular Imaging Facility, US25 INSERM, UMS3612 CNRS, Faculty of Pharmacy, University of Paris, Paris, France
| | - Martine Cohen-Salmon
- Physiology and Physiopathology of the Gliovascular Unit Research Group, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS Research in Biology (CIRB), College de France, CNRS, Paris, France
| |
Collapse
|
5
|
Muñoz Y, Cuevas-Pacheco F, Quesseveur G, Murai KK. Light microscopic and heterogeneity analysis of astrocytes in the common marmoset brain. J Neurosci Res 2021; 99:3121-3147. [PMID: 34716617 PMCID: PMC9541330 DOI: 10.1002/jnr.24967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes are abundant cells of the central nervous system (CNS) and are involved in processes including synapse formation/function, ion homeostasis, neurotransmitter uptake, and neurovascular coupling. Recent evidence indicates that astrocytes show diverse molecular, structural, and physiological properties within the CNS. This heterogeneity is reflected in differences in astrocyte structure, gene expression, functional properties, and responsiveness to injury/pathological conditions. Deeper investigation of astrocytic heterogeneity is needed to understand how astrocytes are configured to enable diverse roles in the CNS. While much has been learned about astrocytic heterogeneity in rodents, much less is known about astrocytic heterogeneity in the primate brain where astrocytes have greater size and complexity. The common marmoset (Callithrix jacchus) is a promising non‐human primate model because of similarities between marmosets and humans with respect to genetics, brain anatomy, and cognition/behavior. Here, we investigated the molecular and structural heterogeneity of marmoset astrocytes using an array of astrocytic markers, multi‐label confocal microscopy, and quantitative analysis. We used male and female marmosets and found that marmoset astrocytes show differences in expression of astrocytic markers in cortex, hippocampus, and cerebellum. These differences were accompanied by intra‐regional variation in expression of markers for glutamate/GABA transporters, and potassium and water channels. Differences in astrocyte structure were also found, along with complex interactions with blood vessels, microglia, and neurons. This study contributes to our knowledge of the cellular and molecular features of marmoset astrocytes and is useful for understanding the complex properties of astrocytes in the primate CNS.
Collapse
Affiliation(s)
- Yorka Muñoz
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Francisco Cuevas-Pacheco
- Department of Mathematics, Universidad Técnica Federico Santa Maria, Valparaiso, Chile.,Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
| | - Gaël Quesseveur
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology & Neurosurgery, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int J Mol Sci 2021; 22:ijms221910254. [PMID: 34638595 PMCID: PMC8508580 DOI: 10.3390/ijms221910254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.
Collapse
|
7
|
Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell BA, Antonov GK, Lau JYN, Nutbrown R, Schmidt-Hieber C, Häusser M. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell 2020; 183:1586-1599.e10. [PMID: 33159859 PMCID: PMC7754708 DOI: 10.1016/j.cell.2020.09.061] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.
Collapse
Affiliation(s)
- Nick T M Robinson
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Lucie A L Descamps
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Moritz O Buchholz
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Brendan A Bicknell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Georgy K Antonov
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
8
|
Bond AM, Berg DA, Lee S, Garcia-Epelboim AS, Adusumilli VS, Ming GL, Song H. Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions. Brain Sci 2020; 10:brainsci10120909. [PMID: 33255945 PMCID: PMC7760658 DOI: 10.3390/brainsci10120909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/30/2022] Open
Abstract
Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development. In contrast, we find that neurogenesis in the dentate gyrus begins embryonically but is a protracted process which peaks neonatally and continues at low levels postnatally. As a result, astrogenesis, which occurs during early postnatal development, overlaps with the process of neurogenesis in the dentate gyrus. During all stages, neurogenesis overwhelms astrogenesis in the dentate gyrus. In addition, we find that the timing of peak astrogenesis varies by hippocampal subregion. Together, our results show differential timing and coordination of neurogenesis and astrogenesis in developing mouse hippocampal subregions and suggest that neurogenesis and gliogenesis occur simultaneously during dentate gyrus development, challenging the conventional principle that neurogenesis and gliogenesis are temporally separated processes.
Collapse
Affiliation(s)
- Allison M. Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Daniel A. Berg
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Stephanie Lee
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Alan S. Garcia-Epelboim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Vijay S. Adusumilli
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.M.B.); (D.A.B.); (S.L.); (A.S.G.-E.); (V.S.A.); (G.-l.M.)
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
9
|
Felix L, Stephan J, Rose CR. Astrocytes of the early postnatal brain. Eur J Neurosci 2020; 54:5649-5672. [PMID: 32406559 DOI: 10.1111/ejn.14780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
In the rodent forebrain, the majority of astrocytes are generated during the early postnatal phase. Following differentiation, astrocytes undergo maturation which accompanies the development of the neuronal network. Neonate astrocytes exhibit a distinct morphology and domain size which differs to their mature counterparts. Moreover, many of the plasma membrane proteins prototypical for fully developed astrocytes are only expressed at low levels at neonatal stages. These include connexins and Kir4.1, which define the low membrane resistance and highly negative membrane potential of mature astrocytes. Newborn astrocytes moreover express only low amounts of GLT-1, a glutamate transporter critical later in development. Furthermore, they show specific differences in the properties and spatio-temporal pattern of intracellular calcium signals, resulting from differences in their repertoire of receptors and signalling pathways. Therefore, roles fulfilled by mature astrocytes, including ion and transmitter homeostasis, are underdeveloped in the young brain. Similarly, astrocytic ion signalling in response to neuronal activity, a process central to neuron-glia interaction, differs between the neonate and mature brain. This review describes the unique functional properties of astrocytes in the first weeks after birth and compares them to later stages of development. We conclude that with an immature neuronal network and wider extracellular space, astrocytic support might not be as demanding and critical compared to the mature brain. The delayed differentiation and maturation of astrocytes in the first postnatal weeks might thus reflect a reduced need for active, energy-consuming regulation of the extracellular space and a less tight control of glial feedback onto synaptic transmission.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
10
|
Dallérac G, Zapata J, Rouach N. Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 2019; 19:729-743. [PMID: 30401802 DOI: 10.1038/s41583-018-0080-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Close structural and functional interactions of astrocytes with synapses play an important role in brain function. The repertoire of ways in which astrocytes can regulate synaptic transmission is complex so that they can both promote and dampen synaptic efficacy. Such contrasting effects raise questions regarding the determinants of these divergent astroglial functions. Recent findings provide insights into where, when and how astroglial regulation of synapses takes place by revealing major molecular and functional intrinsic heterogeneity as well as switches in astrocytes occurring during development or specific patterns of neuronal activity. Astrocytes may therefore be seen as boosters or gatekeepers of synaptic circuits depending on their intrinsic and transformative properties throughout life.
Collapse
Affiliation(s)
- Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
11
|
Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Ragab S, Hristova M, Tann CJ, Peebles D, Hagberg H, Wolfs TGAM, Klein N, Tachtsidis I, Golay X, Kramer BW, Fleiss B, Gressens P, Robertson NJ. Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy. Sci Rep 2019; 9:10184. [PMID: 31308390 PMCID: PMC6629658 DOI: 10.1038/s41598-019-46488-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Co-existing infection/inflammation and birth asphyxia potentiate the risk of developing neonatal encephalopathy (NE) and adverse outcome. In a newborn piglet model we assessed the effect of E. coli lipopolysaccharide (LPS) infusion started 4 h prior to and continued for 48 h after hypoxia on brain cell death and systemic haematological changes compared to LPS and hypoxia alone. LPS sensitized hypoxia resulted in an increase in mortality and in brain cell death (TUNEL positive cells) throughout the whole brain, and in the internal capsule, periventricular white matter and sensorimotor cortex. LPS alone did not increase brain cell death at 48 h, despite evidence of neuroinflammation, including the greatest increases in microglial proliferation, reactive astrocytosis and cleavage of caspase-3. LPS exposure caused splenic hypertrophy and platelet count suppression. The combination of LPS and hypoxia resulted in the highest and most sustained systemic white cell count increase. These findings highlight the significant contribution of acute inflammation sensitization prior to an asphyxial insult on NE illness severity.
Collapse
Affiliation(s)
- Kathryn A Martinello
- Institute for Women's Health, University College London, London, United Kingdom
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Christopher Meehan
- Institute for Women's Health, University College London, London, United Kingdom
| | | | - Ingran Lingam
- Institute for Women's Health, University College London, London, United Kingdom
| | - Sara Ragab
- Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, United Kingdom
| | - Cally J Tann
- Institute for Women's Health, University College London, London, United Kingdom
- Maternal, Adolescent, Reproductive and Child Health Centre, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donald Peebles
- Institute for Women's Health, University College London, London, United Kingdom
| | - Henrik Hagberg
- Centre of Perinatal Medicine & Health, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Tim G A M Wolfs
- Department of Paediatrics, University of Maastricht, Maastricht, Netherlands
| | - Nigel Klein
- Infection, Inflammation and Rheumatology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Xavier Golay
- Institute of Neurology, University College London, London, United Kingdom
| | - Boris W Kramer
- Department of Paediatrics, University of Maastricht, Maastricht, Netherlands
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, United Kingdom.
- Division of Neonatology, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
12
|
Abbink MR, van Deijk ALF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 2019; 67:1637-1653. [PMID: 31038797 PMCID: PMC6767561 DOI: 10.1002/glia.23625] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Early‐life adversity (ELA) in the form of stress, inflammation, or malnutrition, can increase the risk of developing psychopathology or cognitive problems in adulthood. The neurobiological substrates underlying this process remain unclear. While neuronal dysfunction and microglial contribution have been studied in this context, only recently the role of astrocytes in early‐life programming of the brain has been appreciated. Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate recycling), and are unique in their capacity of sensing and integrating environmental signals, as they are the first cells to encounter signals from the blood, including hormonal changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration of these signals is especially important during early development, and therefore we propose that astrocytes contribute to ELA induced changes in the brain by sensing and integrating environmental signals and by modulating neuronal development and function. Studies in rodents have already shown that ELA can impact astrocytes on the short and long term, however, a critical review of these results is currently lacking. Here, we will discuss the developmental trajectory of astrocytes, their ability to integrate stress, immune, and nutritional signals from the early environment, and we will review how different types of early adversity impact astrocytes.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark H Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Li J, Khankan RR, Caneda C, Godoy MI, Haney MS, Krawczyk MC, Bassik MC, Sloan SA, Zhang Y. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 2019; 67:1571-1597. [PMID: 31033049 PMCID: PMC6557696 DOI: 10.1002/glia.23630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
Astrocytes are critical for the development and function of the central nervous system. In developing brains, immature astrocytes undergo morphological, molecular, cellular, and functional changes as they mature. Although the mechanisms that regulate the maturation of other major cell types in the central nervous system such as neurons and oligodendrocytes have been extensively studied, little is known about the cellular and molecular mechanisms that control astrocyte maturation. Here, we identified molecular markers of astrocyte maturation and established an in vitro assay for studying the mechanisms of astrocyte maturation. Maturing astrocytes in vitro exhibit similar molecular changes and represent multiple molecular subtypes of astrocytes found in vivo. Using this system, we found that astrocyte‐to‐astrocyte contact strongly promotes astrocyte maturation. In addition, secreted signals from microglia, oligodendrocyte precursor cells, or endothelial cells affect a small subset of astrocyte genes but do not consistently change astrocyte maturation. To identify molecular mechanisms underlying astrocyte maturation, we treated maturing astrocytes with molecules that affect the function of tumor‐associated genes. We found that a positive feedback loop of heparin‐binding epidermal growth factor‐like growth factor (HBEGF) and epidermal growth factor receptor (EGFR) signaling regulates astrocytes maturation. Furthermore, HBEGF, EGFR, and tumor protein 53 (TP53) affect the expression of genes important for cilium development, the circadian clock, and synapse function. These results revealed cellular and molecular mechanisms underlying astrocytes maturation with implications for the understanding of glioblastoma.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California.,Brain Research Institute at UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California.,Molecular Biology Institute at UCLA, Los Angeles, California
| |
Collapse
|
14
|
Larsen BR, Stoica A, MacAulay N. Developmental maturation of activity-induced K + and pH transients and the associated extracellular space dynamics in the rat hippocampus. J Physiol 2019; 597:583-597. [PMID: 30357826 PMCID: PMC6332761 DOI: 10.1113/jp276768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal activity induces fluctuation in extracellular space volume, [K+ ]o and pHo , the management of which influences neuronal function The neighbour astrocytes buffer the K+ and pH and swell during the process, causing shrinkage of the extracellular space In the present study, we report the developmental rise of the homeostatic control of the extracellular space dynamics, for which regulation becomes tighter with maturation and thus is proposed to ensure efficient synaptic transmission in the mature animals The extracellular space dynamics of volume, [K+ ]o and pHo evolve independently with developmental maturation and, although all of them are inextricably tied to neuronal activity, they do not couple directly. ABSTRACT Neuronal activity in the mammalian central nervous system associates with transient extracellular space (ECS) dynamics involving elevated K+ and pH and shrinkage of the ECS. These ECS properties affect membrane potentials, neurotransmitter concentrations and protein function and are thus anticipated to be under tight regulatory control. It remains unresolved to what extent these ECS dynamics are developmentally regulated as synaptic precision arises and whether they are directly or indirectly coupled. To resolve the development of homeostatic control of [K+ ]o , pH, and ECS and their interaction, we utilized ion-sensitive microelectrodes in electrically stimulated rat hippocampal slices from rats of different developmental stages (postnatal days 3-28). With the employed stimulation paradigm, the stimulus-evoked peak [K+ ]o and pHo transients were stable across age groups, until normalized to neuronal activity (field potential amplitude), in which case the K+ and pH shifted significantly more in the younger animals. By contrast, ECS dynamics increased with age until normalized to the field potential, and thus correlated with neuronal activity. With age, the animals not only managed the peak [K+ ]o better, but also displayed swifter post-stimulus removal of [K+ ]o , in correlation with the increased expression of the α1-3 isoforms of the Na+ /K+ -ATPase, and a swifter return of ECS volume. The different ECS dynamics approached a near-identical temporal pattern in the more mature animals. In conclusion, although these phenomena are inextricably tied to neuronal activity, our data suggest that they do not couple directly.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anca Stoica
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nanna MacAulay
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
15
|
Ghézali G, Calvo CF, Pillet LE, Llense F, Ezan P, Pannasch U, Bemelmans AP, Etienne Manneville S, Rouach N. Connexin 30 controls astroglial polarization during postnatal brain development. Development 2018; 145:145/4/dev155275. [PMID: 29475972 PMCID: PMC5869003 DOI: 10.1242/dev.155275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022]
Abstract
Astrocytes undergo intense morphological maturation during development, changing from individual sparsely branched cells to polarized and tremendously ramified cells. Connexin 30, an astroglial gap-junction channel-forming protein expressed postnatally, regulates in situ the extension and ramification of astroglial processes. However, the involvement of connexin 30 in astroglial polarization, which is known to control cell morphology, remains unexplored. We found that connexin 30, independently of gap-junction-mediated intercellular biochemical coupling, alters the orientation of astrocyte protrusion, centrosome and Golgi apparatus during polarized migration in an in vitro wound-healing assay. Connexin 30 sets the orientation of astroglial motile protrusions via modulation of the laminin/β1 integrin/Cdc42 polarity pathway. Connexin 30 indeed reduces laminin levels, inhibits the redistribution of the β1-integrin extracellular matrix receptors, and inhibits the recruitment and activation of the small Rho GTPase Cdc42 at the leading edge of migrating astrocytes. In vivo, connexin 30, the expression of which is developmentally regulated, also contributes to the establishment of hippocampal astrocyte polarity during postnatal maturation. This study thus reveals that connexin 30 controls astroglial polarity during development. Summary: Connexin 30 sets the orientation of astroglial motile protrusions during polarized migration in vitro and contributes in vivo to the establishment of hippocampal astrocyte polarity during postnatal maturation.
Collapse
Affiliation(s)
- Grégory Ghézali
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France.,Doctoral School N°158, Pierre and Marie Curie University, Paris 75005, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Laure-Elise Pillet
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France.,Doctoral School N°562, Paris Descartes University, Paris 75006, France
| | - Flora Llense
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Ulrike Pannasch
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Sud, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Sandrine Etienne Manneville
- Institut Pasteur, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris 75005, France
| |
Collapse
|
16
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
17
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1012] [Impact Index Per Article: 144.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
18
|
Heterogeneity and function of hippocampal macroglia. Cell Tissue Res 2017; 373:653-670. [PMID: 29204745 DOI: 10.1007/s00441-017-2746-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.
Collapse
|
19
|
Abstract
Thyroid hormones (THs) have important contributions to the development of the mammalian brain, targeting its actions on both neurons and glial cells. Astrocytes, which constitute about half of the glial cells, characteristically undergo dramatic changes in their morphology during development and such changes become necessary for the proper development of the brain. Interestingly, a large number of studies have suggested that THs play a profound role in such morphological maturation of the astrocytes. This review discusses the present knowledge on the mechanisms by which THs elicit progressive differentiation and maturation of the astrocytes. As a prelude, information on astrocyte morphology during development and its regulations, the role of THs in the various functions of astrocyte shall be dealt with for a thorough understanding of the subject of this review.
Collapse
|
20
|
Mishra A. Binaural blood flow control by astrocytes: listening to synapses and the vasculature. J Physiol 2016; 595:1885-1902. [PMID: 27619153 DOI: 10.1113/jp270979] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are the most common glial cells in the brain with fine processes and endfeet that intimately contact both neuronal synapses and the cerebral vasculature. They play an important role in mediating neurovascular coupling (NVC) via several astrocytic Ca2+ -dependent signalling pathways such as K+ release through BK channels, and the production and release of arachidonic acid metabolites. They are also involved in maintaining the resting tone of the cerebral vessels by releasing ATP and COX-1 derivatives. Evidence also supports a role for astrocytes in maintaining blood pressure-dependent change in cerebrovascular tone, and perhaps also in blood vessel-to-neuron signalling as posited by the 'hemo-neural hypothesis'. Thus, astrocytes are emerging as new stars in preserving the intricate balance between the high energy demand of active neurons and the supply of oxygen and nutrients from the blood by maintaining both resting blood flow and activity-evoked changes therein. Following neuropathology, astrocytes become reactive and many of their key signalling mechanisms are altered, including those involved in NVC. Furthermore, as they can respond to changes in vascular pressure, cardiovascular diseases might exert previously unknown effects on the central nervous system by altering astrocyte function. This review discusses the role of astrocytes in neurovascular signalling in both physiology and pathology, and the impact of these findings on understanding BOLD-fMRI signals.
Collapse
Affiliation(s)
- Anusha Mishra
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
21
|
Moshrefi-Ravasdjani B, Dublin P, Seifert G, Jennissen K, Steinhäuser C, Kafitz KW, Rose CR. Changes in the proliferative capacity of NG2 cell subpopulations during postnatal development of the mouse hippocampus. Brain Struct Funct 2016; 222:831-847. [PMID: 27306788 DOI: 10.1007/s00429-016-1249-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/05/2016] [Indexed: 12/29/2022]
Abstract
Besides astrocytes and oligodendrocytes, NG2 proteoglycan-expressing cells (NG2 glia) represent a third subtype of macroglia in the brain. Originally described as oligodendrocyte precursor cells, they feature several characteristics not expected from mere progenitor cells, including synaptic connections with neurons. There is accumulating evidence that the properties of NG2 glia differ between different brain regions and developmental stages. To further analyze this proposed heterogeneity, we studied electrophysiological properties, transcript and protein expression, distribution and proliferative capacity of NG2 glia during postnatal development, focusing on the hippocampus and corpus callosum. All NG2 glia displayed a 'complex' current pattern consisting of voltage- and time-dependent in- and outward currents. In juvenile mice, Kir current densities and rectification index were highly variable and on average significantly lower than in adult animals. Single cell RT-PCR analyses of electrophysiologically characterized cells demonstrated that different glial genes were expressed at variable extent, independent of developmental stage and genetic background. In the hippocampus proper and the corpus callosum, the density of NG2 glia was highest at postnatal days (P)10-12, decreased by ~50 % at P25-35 and then remained stable in adults (P80-90). Interestingly, co-expression of NG2 and S100β, a marker for mature astrocytes, increased from 7 % at P10-12 to 27 % at P25-35 in the hippocampus proper, and then dropped again in the stratum radiatum at P80-90. In the dentate gyrus and corpus callosum, co-expression of NG2 and S100β was very low (3 %) and constant throughout development. Age-related differences were also observed with Ki-67, a proliferation marker. In NG2 glia of the CA1 region, its expression decreased from 16 % at P10-12 to 9 % (P25-35) and then 3 % (P80-90). Triple-stainings revealed that Ki-67 was also expressed in 2-3 % of NG2/S100β-positive cells in the juvenile and mature stratum radiatum, indicating that the latter, in contrast to S100β-positive astrocytes, still host proliferative potential. Taken together, we found significant differences in transcript and protein expression, electrophysiological properties and proliferative capacity of NG2 glia in the mouse forebrain, suggesting the co-existence of several subpopulations of NG2 glia. Our data thus support the idea of a substantial regional and developmental heterogeneity in this subtype of macroglia.
Collapse
Affiliation(s)
| | - Pavel Dublin
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Katja Jennissen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53105, Bonn, Germany
| | - Karl W Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
22
|
Heller JP, Rusakov DA. Morphological plasticity of astroglia: Understanding synaptic microenvironment. Glia 2015; 63:2133-51. [PMID: 25782611 PMCID: PMC4737250 DOI: 10.1002/glia.22821] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area.
Collapse
Affiliation(s)
- Janosch P Heller
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London, United Kingdom
| |
Collapse
|
23
|
Saur L, Baptista PPA, Bagatini PB, Neves LT, de Oliveira RM, Vaz SP, Ferreira K, Machado SA, Mestriner RG, Xavier LL. Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats. Neurochem Res 2015; 41:892-904. [DOI: 10.1007/s11064-015-1770-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022]
|
24
|
Anders S, Minge D, Griemsmann S, Herde MK, Steinhäuser C, Henneberger C. Spatial properties of astrocyte gap junction coupling in the rat hippocampus. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130600. [PMID: 25225094 PMCID: PMC4173286 DOI: 10.1098/rstb.2013.0600] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gap junction coupling enables astrocytes to form large networks. Its strength determines how easily a signalling molecule diffuses through the network and how far a locally initiated signal can spread. Changes of coupling strength are well-documented during development and in response to various stimuli. Precise quantification of coupling is needed for studying such modifications and their functional consequences. We therefore explored spatial properties of astrocyte coupling in a model simulating dye loading of single astrocytes. Dye spread into the astrocyte network could be characterized by a coupling length constant and coupling anisotropy. In experiments, the fluorescent marker Alexa Fluor 594 was used to measure these parameters in CA1 and dentate gyrus of the rat hippocampus. Coupling did not differ between regions but showed a temperature-dependence, partially owing to changes of intracellular diffusivity, detected by measuring coupling length constants but not the more variable cell counts of dye-coupled astrocytes. We further found that coupling is anisotropic depending on distance to the pyramidal cell layer, which correlated with regional differences of astrocyte morphology. This demonstrates that applying these new analytical approaches provides useful quantitative information on gap junction coupling and its heterogeneity.
Collapse
Affiliation(s)
- Stefanie Anders
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| | - Daniel Minge
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| | - Stephanie Griemsmann
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany UCL Institute of Neurology, UCL, London, UK
| |
Collapse
|
25
|
Benjamin Kacerovsky J, Murai KK. Stargazing: Monitoring subcellular dynamics of brain astrocytes. Neuroscience 2015; 323:84-95. [PMID: 26162237 DOI: 10.1016/j.neuroscience.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Abstract
Astrocytes are major non-neuronal cell types in the central nervous system that regulate a variety of processes in the brain including synaptic transmission, neurometabolism, and cerebrovasculature tone. Recent discoveries have revealed that astrocytes perform very specialized and heterogeneous roles in brain homeostasis and function. Exactly how astrocytes fulfill such diverse roles in the brain remains to be fully understood and is an active area of research. In this review, we focus on the complex subcellular anatomical features of protoplasmic gray matter astrocytes in the mature, healthy brain that likely empower these cells with the ability to detect and respond to changes in neuronal and synaptic activity. In particular, we discuss how intricate processes on astrocytes allow these cells to communicate with neurons and their synapses and strategically deliver specific cellular organelles such as mitochondria and ribosomes to active compartments within the neuropil. Understanding the properties of these structural elements will lead to a better understanding of how astrocytes function in the healthy and diseased brain.
Collapse
Affiliation(s)
- J Benjamin Kacerovsky
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada
| | - K K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada.
| |
Collapse
|
26
|
Perisynaptic astroglial processes: dynamic processors of neuronal information. Brain Struct Funct 2015; 221:2427-42. [PMID: 26026482 DOI: 10.1007/s00429-015-1070-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Neuroglial interactions are now recognized as essential to brain functions. Extensive research has sought to understand the modalities of such dialog by focusing on astrocytes, the most abundant glial cell type of the central nervous system. Neuron-astrocyte exchanges occur at multiple levels, at different cellular locations. With regard to information processing, regulations occurring around synapses are of particular interest as synaptic networks are thought to underlie higher brain functions. Astrocytes morphology is tremendously complex in that their processes exceedingly branch out to eventually form multitudinous fine leaflets. The latter extremities have been shown to surround many synapses, forming perisynaptic astrocytic processes, which although recognized as essential to synaptic functioning, are poorly defined elements due to their tiny size. The current review sums up the current knowledge on their molecular and structural properties as well as the functional characteristics making them good candidates for information processing units.
Collapse
|
27
|
Schreiner AE, Durry S, Aida T, Stock MC, Rüther U, Tanaka K, Rose CR, Kafitz KW. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol 2014; 522:204-24. [PMID: 23939750 DOI: 10.1002/cne.23450] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/23/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022]
Abstract
Astrocytes express two sodium-coupled transporters, glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1), which are essential for the maintenance of low extracellular glutamate levels. We performed a comparative analysis of the laminar and subcellular expression profile of GLAST and GLT-1 in the developing postnatal mouse hippocampus by using immunohistochemistry and western blotting and employing high-resolution fluorescence microscopy. Astrocytes were identified by costaining with glial fibrillary acidic protein (GFAP) or S100β. In CA1, the density of GFAP-positive cells and GFAP expression rose during the first 2 weeks after birth, paralleled by a steady increase in GLAST immunoreactivity and protein content. Upregulation of GLT-1 was completed only at postnatal days (P) P20-25 and was thus delayed by about 10 days. GLAST staining was highest along the stratum pyramidale and was especially prominent in astrocytes at P3-5. GLAST immunoreactivity indicated no preferential localization to a specific cellular compartment. GLT-1 exhibited a laminar expression pattern from P10-15 on, with the highest immunoreactivity in the stratum lacunosum-moleculare. At the cellular level, GLT-1 immunoreactivity did not entirely cover astrocyte somata and exhibited clusters at processes. In neonatal and juvenile animals, discrete clusters of GLT-1 were also detected at perivascular endfeet. From these results, we conclude there is a remarkable subcellular heterogeneity of GLAST and GLT-1 expression in the developing hippocampus. The clustering of GLT-1 at astrocyte endfeet indicates that it might serve a specialized functional role at the blood-brain barrier during formation of the hippocampal network.
Collapse
Affiliation(s)
- Alexandra E Schreiner
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Krzisch M, Temprana SG, Mongiat LA, Armida J, Schmutz V, Virtanen MA, Kocher-Braissant J, Kraftsik R, Vutskits L, Conzelmann KK, Bergami M, Gage FH, Schinder AF, Toni N. Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus. Brain Struct Funct 2014; 220:2027-42. [PMID: 24748560 PMCID: PMC4481333 DOI: 10.1007/s00429-014-0768-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/31/2014] [Indexed: 11/26/2022]
Abstract
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
Collapse
Affiliation(s)
- Marine Krzisch
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| | - Silvio G. Temprana
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Lucas A. Mongiat
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Jan Armida
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| | - Valentin Schmutz
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| | - Mari A. Virtanen
- Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Jacqueline Kocher-Braissant
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| | - Rudolf Kraftsik
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| | - Laszlo Vutskits
- Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Anesthesiology, Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer Institute and Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and University Hospital of Cologne, Cologne, Germany
| | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Alejandro F. Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Nicolas Toni
- Department of Fundamental Neurosciences, University of Lausanne, 9 rue du Bugnon, 1005 Lausanne, Switzerland
| |
Collapse
|
29
|
Mishra A, O'Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D. Imaging pericytes and capillary diameter in brain slices and isolated retinae. Nat Protoc 2014; 9:323-36. [PMID: 24434801 DOI: 10.1038/nprot.2014.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cerebral circulation is highly specialized, both structurally and functionally, and it provides a fine-tuned supply of oxygen and nutrients to active regions of the brain. Our understanding of blood flow regulation by cerebral arterioles has evolved rapidly. Recent work has opened new avenues in microvascular research; for example, it has been demonstrated that contractile pericytes found on capillary walls induce capillary diameter changes in response to neurotransmitters, suggesting that pericytes could have a role in neurovascular coupling. This concept is at odds with traditional models of brain blood flow regulation, which assume that only arterioles control cerebral blood flow. The investigation of mechanisms underlying neurovascular coupling at the capillary level requires a range of approaches, which involve unique technical challenges. Here we provide detailed protocols for the successful physiological and immunohistochemical study of pericytes and capillaries in brain slices and isolated retinae, allowing investigators to probe the role of capillaries in neurovascular coupling. This protocol can be completed within 6-8 h; however, immunohistochemical experiments may take 3-6 d.
Collapse
Affiliation(s)
- Anusha Mishra
- 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK. [2]
| | - Fergus M O'Farrell
- 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK. [2]
| | - Clare Reynell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Catherine N Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
30
|
Abstract
The function and efficacy of synaptic transmission are determined not only by the composition and activity of pre- and postsynaptic components but also by the environment in which a synapse is embedded. Glial cells constitute an important part of this environment and participate in several aspects of synaptic functions. Among the glial cell family, the roles played by astrocytes at the synaptic level are particularly important, ranging from the trophic support to the fine-tuning of transmission. Astrocytic structures are frequently observed in close association with glutamatergic synapses, providing a morphological entity for bidirectional interactions with synapses. Experimental evidence indicates that astrocytes sense neuronal activity by elevating their intracellular calcium in response to neurotransmitters and may communicate with neurons. The precise role of astrocytes in regulating synaptic properties, function, and plasticity remains however a subject of intense debate and many aspects of their interactions with neurons remain to be investigated. A particularly intriguing aspect is their ability to rapidly restructure their processes and modify their coverage of the synaptic elements. The present review summarizes some of these findings with a particular focus on the mechanisms driving this form of structural plasticity and its possible impact on synaptic structure and function.
Collapse
|
31
|
Xu G, Wang W, Zhou M. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region. Hippocampus 2013; 24:383-95. [PMID: 24339242 DOI: 10.1002/hipo.22232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/31/2013] [Accepted: 11/26/2013] [Indexed: 12/12/2022]
Abstract
Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes.
Collapse
Affiliation(s)
- Guangjin Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | | | | |
Collapse
|
32
|
Dallérac G, Chever O, Rouach N. How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 2013; 7:159. [PMID: 24101894 PMCID: PMC3787198 DOI: 10.3389/fncel.2013.00159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France Paris, France
| | | | | |
Collapse
|
33
|
Abstract
Alexander Disease (AxD) is a primary disorder of astrocytes, caused by heterozygous mutations in GFAP, which encodes the major astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP). Astrocytes in AxD display hypertrophy, massive increases in GFAP, and the accumulation of Rosenthal fibers, cytoplasmic protein inclusions containing GFAP, and small heat shock proteins. To study the effects of GFAP mutations on astrocyte morphology and physiology, we have examined hippocampal astrocytes in three mouse models of AxD, a transgenic line (GFAP(Tg)) in which the normal human GFAP is expressed in several copies, a knock-in line (Gfap(+/R236H)) in which one of the Gfap genes bears an R236H mutation, and a mouse derived from the mating of these two lines (GFAP(Tg); Gfap(+/R236H)). We report changes in astrocyte phenotype in all lines, with the most severe in the GFAP(Tg);Gfap(+/R236H), resulting in the conversion of protoplasmic astrocytes to cells that have lost their bushy-like morphology because of a reduction of distal fine processes, and become multinucleated and hypertrophic. Astrocytes activate the mTOR cascade, acquire CD44, and lose GLT-1. The altered astrocytes display a microheterogeneity in phenotypes, even neighboring cells. Astrocytes also show diminished glutamate transporter current, are significantly depolarized, and not coupled to adjacent astrocytes. Thus, the accumulation of GFAP in the AxD mouse astrocytes initiates a conversion of normal, protoplasmic astrocytes to astrocytes that display severely "reactive" characteristics, many of which may be detrimental to neighboring neurons and oligodendrocytes.
Collapse
|
34
|
Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct 2013; 219:293-302. [PMID: 23288255 DOI: 10.1007/s00429-012-0500-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022]
Abstract
Physical exercise has an important influence on brain plasticity, which affects the neuron-glia interaction. Astrocytes are susceptible to plasticity, and induce and stabilize synapses, regulate the concentration of various molecules, and support neuronal energy metabolism. The aim of our study was to investigate whether physical exercise is capable of altering the morphology, density and expression of glial fibrillary acidic protein (GFAP) in astrocytes from the CA1 region of rat hippocampus. Thirteen male rats were divided in two groups: sedentary (n = 6) and exercise (n = 7). The animals in the exercise group were submitted to a protocol of daily physical exercise on a treadmill for four consecutive weeks. GFAP immunoreactivity was evaluated using optical densitometry and the morphological analyses were an adaptation of Sholl's concentric circles method. Our results show that physical exercise is capable of increasing the density of GFAP-positive astrocytes as well as the regional and cellular GFAP expression. In addition, physical exercise altered astrocytic morphology as shown by the increase observed in the degree of ramification in the lateral quadrants and in the length of the longest astrocytic processes in the central quadrants. Our data demonstrate important changes in astrocytes promoted by physical exercise, supporting the idea that these cells are involved in regulating neural activity and plasticity.
Collapse
|
35
|
Lapilover EG, Lippman K, Salar S, Maslarova A, Dreier JP, Heinemann U, Friedman A. Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis 2012; 48:495-506. [PMID: 22782081 PMCID: PMC3588590 DOI: 10.1016/j.nbd.2012.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies showed that spreading depolarizations (SDs) occurs abundantly in patients following ischemic stroke and experimental evidence suggests that SDs recruit tissue at risk into necrosis. We hypothesized that BBB opening with consequent alterations of the extracellular electrolyte composition and extravasation of albumin facilitates generation of SDs since albumin mediates an astrocyte transcriptional response with consequent disturbance of potassium and glutamate homeostasis. Here we show extravasation of Evans blue-albumin complex into the hippocampus following cortical photothrombotic stroke in the neighboring neocortex. Using extracellular field potential recordings and exposure to serum electrolytes we observed spontaneous SDs in 80% of hippocampal slices obtained from rats 24 h after cortical photothrombosis. Hippocampal exposure to albumin for 24 h through intraventricular application together with serum electrolytes lowered the threshold for the induction of SDs in most slices irrespective of the pathway of stimulation. Exposing acute slices from naive animals to albumin led also to a reduced SD threshold. In albumin-exposed slices the onset of SDs was usually associated with larger stimulus-induced accumulation of extracellular potassium, and preceded by epileptiform activity, which was also observed during the recovery phase of SDs. Application of ifenprodil (3 μM), an NMDA-receptor type 2 B antagonist, blocked stimulus dependent epileptiform discharges and generation of SDs in slices from animals treated with albumin in-vivo. We suggest that BBB opening facilitates the induction of peri-infarct SDs through impaired homeostasis of K+.
Collapse
Affiliation(s)
- EG Lapilover
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - K. Lippman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - S. Salar
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Maslarova
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - JP Dreier
- Center for Stroke Research Berlin, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Experimental Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - U. Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Neurocure Research Center, Charité Universitätsmedizin, 13347 Berlin, Germany
| | - A. Friedman
- Institute of Neurophysiology, Charité Universitätsmedizin, 13347 Berlin, Germany
- Department of Physiology and Neurobiology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
36
|
Chareyron LJ, Lavenex PB, Lavenex P. Postnatal development of the amygdala: A stereological study in rats. J Comp Neurol 2012; 520:3745-63. [DOI: 10.1002/cne.23132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487:88-98. [PMID: 22789907 DOI: 10.1016/j.brainres.2012.06.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022]
Abstract
This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
38
|
Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A. Glucocorticoids Decrease Astrocyte Numbers by Reducing Glucocorticoid Receptor Expression In Vitro and In Vivo. J Pharmacol Sci 2012; 119:30-9. [DOI: 10.1254/jphs.12047fp] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
39
|
Feig SL, Haberly LB. Surface-associated astrocytes, not endfeet, form the glia limitans in posterior piriform cortex and have a spatially distributed, not a domain, organization. J Comp Neurol 2011; 519:1952-69. [PMID: 21452238 DOI: 10.1002/cne.22615] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
"Surface-associated astrocytes" (SAAs) in posterior piriform cortex (PPC) are unique by virtue of a direct apposition to the cortical surface and large-caliber processes that descend into layer I. In this study additional unique and functionally relevant features of SAAs in PPC of the rat were identified by light and electron microscopy. Examination of sections cut parallel to the surface of PPC and stained for glial fibrillar acidic protein revealed that, in addition to descending processes, SAAs give rise to an extensive matrix of "superficial processes." Electron microscopy revealed that these superficial processes, together with cell bodies, form a continuous sheet at the surface of PPC with features in common with the glia limitans that is formed by endfeet in other cortical areas. These include a glia limiting membrane with basal lamina and similar associated organelles, including a striking array of mitochondria. Of particular interest, SAAs lack the domain organization observed in neocortex and hippocampus. Rather, superficial processes overlap extensively with gap junctions between their proximal regions as well as between cell bodies. Study of the descending processes revealed thin extensions, many of which appose synaptic profiles. We conclude that SAAs provide a potential substrate for bidirectional signaling and transport between brain and the pial arteries and cerebrospinal fluid in the subarachnoid space. We postulate that the spatially distributed character of SAAs in PPC reflects and supports the spatially distributed circuitry and sensory representation that are also unique features of this area.
Collapse
Affiliation(s)
- S L Feig
- Department of Anatomy and Neuroscience Training Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
40
|
Astrocytes display complex and localized calcium responses to single-neuron stimulation in the hippocampus. J Neurosci 2011; 31:8905-19. [PMID: 21677174 DOI: 10.1523/jneurosci.6341-10.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Astrocytes show a complex structural and physiological interplay with neurons and respond to neuronal activation in vitro and in vivo with intracellular calcium elevations. These calcium changes enable astrocytes to modulate synaptic transmission and plasticity through various mechanisms. However, the response pattern of astrocytes to single neuronal depolarization events still remains unresolved. This information is critical for fully understanding the coordinated network of neuron-glial signaling in the brain. To address this, we developed a system to map astrocyte calcium responses along apical dendrites of CA1 pyramidal neurons in hippocampal slices using single-neuron stimulation with channelrhodopsin-2. This technique allowed selective neuronal depolarization without invasive manipulations known to alter calcium levels in astrocytes. Light-evoked neuronal depolarization was elicited and calcium events in surrounding astrocytes were monitored using the calcium-sensitive dye Calcium Orange. Stimulation of single neurons caused calcium responses in populations of astrocytes along the apical axis of CA1 cell dendrites. Calcium responses included single events that were synchronized with neuronal stimulation and poststimulus changes in calcium event frequency, both of which were modulated by glutamatergic and purinergic signaling. Individual astrocytes near CA1 cells showed low ability to respond to repeated neuronal depolarization events. However, the response of the surrounding astrocyte population was remarkably accurate. Interestingly, the reliability of responses was graded with respect to astrocyte location along the CA1 cell dendrite, with astrocytes residing in the primary dendrite subregion being most responsive. This study provides a new perspective on the dynamic response property of astrocyte ensembles to neuronal activity.
Collapse
|
41
|
Papageorgiou IE, Gabriel S, Fetani AF, Kann O, Heinemann U. Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats. Glia 2011; 59:1706-18. [DOI: 10.1002/glia.21217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/16/2011] [Indexed: 01/01/2023]
|
42
|
Lavenex P, Sugden SG, Davis RR, Gregg JP, Lavenex PB. Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability. Hippocampus 2011; 21:142-9. [PMID: 20014383 DOI: 10.1002/hipo.20730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hippocampus plays a central role in the brain network that is essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here, we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings suggest that a developmental decrease in astrocytic processes could underlie the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adultlike memory function.
Collapse
Affiliation(s)
- Pierre Lavenex
- Department of Psychiatry and Behavioral Sciences, UC Davis, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
43
|
The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 2011; 1:199-216. [PMID: 22436508 DOI: 10.1016/j.dcn.2011.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
BOLD fMRI (blood oxygenation level dependent functional magnetic resonance imaging) is increasingly used to detect developmental changes of human brain function that are hypothesized to underlie the maturation of cognitive processes. BOLD signals depend on neuronal activity increasing cerebral blood flow, and are reduced by neural oxygen consumption. Thus, developmental changes of BOLD signals may not reflect altered information processing if there are concomitant changes in neurovascular coupling (the mechanism by which neuronal activity increases blood flow) or neural energy use (and hence oxygen consumption). We review how BOLD signals are generated, and explain the signalling pathways which convert neuronal activity into increased blood flow. We then summarize in broad terms the developmental changes that the brain's neural circuitry undergoes during growth from childhood through adolescence to adulthood, and present the changes in neurovascular coupling mechanisms and energy use which occur over the same period. This information provides a framework for assessing whether the BOLD changes observed during human development reflect altered cognitive processing or changes in neurovascular coupling and energy use.
Collapse
|
44
|
|
45
|
Wahab A, Albus K, Heinemann U. Age- and region-specific effects of anticonvulsants and bumetanide on 4-aminopyridine-induced seizure-like events in immature rat hippocampal-entorhinal cortex slices. Epilepsia 2010; 52:94-103. [PMID: 21083847 DOI: 10.1111/j.1528-1167.2010.02722.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Seizure-like events (SLEs) induced by 4-aminopyridine in rat organotypic slices cultures, which are prepared early after birth, are resistant to standard antiepileptic drugs. In this study we tested the hypothesis that pharmacoresistance may be an intrinsic property of the immature brain. METHODS Frequently recurring SLEs presumably representing status epilepticus were induced by 4-aminopyridine in acute rat hippocampal-entorhinal cortex slices obtained from postnatal day 3-19 (P3-P19), and the effects of carbamazepine, phenytoin, valproic acid, and phenobarbital were examined. In addition, bumetanide was tested, which blocks the Na(+) -K(+) -2Cl(-) (NKCC1) cotransporter, and also acetazolamide, which blocks the carbonic anhydrase and thereby the accumulation of bicarbonate inside neurons. RESULTS The efficacy of all antiepileptic drugs in blocking SLEs was dependent on postnatal age, with low efficacy in P3-P5 slices. Antiepileptic drugs suppressed SLEs more readily in the medial entorhinal cortex (ECm) than in the CA3. In P3-P5 slices, valproic acid and phenobarbital increased both tonic and clonic seizure-like activities in the CA3, whereas phenytoin and carbamazepine blocked tonic-like but prolonged clonic-like activity. In P3-P5 slices, bumetanide often blocked SLEs in the CA3, but was not as effective in the ECm. Like with other antiepileptic drugs, the seizure-suppressing effects of acetazolamide increased with postnatal age. CONCLUSION We conclude that pharmacoresistance may be inherent to very immature tissue and suggest that expression of the NKCC1 cotransporter might contribute to pharmacoresistance.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
46
|
Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. ACTA ACUST UNITED AC 2010; 63:2-10. [DOI: 10.1016/j.brainresrev.2009.12.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
47
|
Viola GG, Rodrigues L, Américo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonçalves CA, Xavier LL, Achaval M, Souza DO, Amaral OB. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 2009; 1274:47-54. [PMID: 19374889 DOI: 10.1016/j.brainres.2009.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 12/20/2022]
Abstract
Environmental enrichment is known to induce plastic changes in the brain, including morphological changes in hippocampal neurons, with increases in synaptic and spine densities. In recent years, the evidence for a role of astrocytes in regulating synaptic transmission and plasticity has increased, and it is likely that morphological and functional changes in astrocytes play an important role in brain plasticity. Our study was designed to evaluate changes in astrocytes induced by environmental enrichment in the CA1 region of the hippocampus, focusing on astrocytic density and on morphological changes in astrocytic processes. After 8 weeks of environmental enrichment starting at weaning, male CF-1 mice presented no significant changes in astrocyte number or in the density of glial fibrillary acidic protein (GFAP) immunoreactivity in the stratum radiatum. However, they did present changes in astrocytic morphology in the same region, as expressed by a significant increase in the ramification of astrocytic processes measured by the Sholl concentric circles method, as well as by an increase in the number and length of primary processes extending in a parallel orientation to CA1 nerve fibers. This led astrocytes to acquire a more stellate morphology, a fact which could be related to the increase in hippocampal synaptic density observed in previous studies. These findings corroborate the idea that structural changes in astrocytic networks are an integral part of plasticity processes occurring in the brain.
Collapse
Affiliation(s)
- Giordano G Viola
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Küppers E, Gleiser C, Brito V, Wachter B, Pauly T, Hirt B, Grissmer S. AQP4 expression in striatal primary cultures is regulated by dopamine - implications for proliferation of astrocytes. Eur J Neurosci 2008; 28:2173-82. [DOI: 10.1111/j.1460-9568.2008.06531.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
49
|
López-Aranda MF, López-Téllez JF, Blanco E, Masmudi-Martín M, Navarro-Lobato I, Khan ZU. A dynamic expression pattern of sGalpha(i2) protein during early period of postnatal rat brain development. Int J Dev Neurosci 2008; 26:611-24. [PMID: 18472243 DOI: 10.1016/j.ijdevneu.2008.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022] Open
Abstract
The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained from rats of postnatal day 0 (P0) to P90 by dot-blots and immunocytochemistry techniques. In dot-blots, both nuclear and membrane fractions showed a gradual decrease from P0 to P60. Highest protein level was observed at the age of P0. There was also a trend of decline in the sGalphai2 protein from P0 to P90 in brain sections stained by immunocytochemistry method. At P0, the protein labeling was highest in cerebral cortex, hippocampus, cerebellum and mitral cell layer. In cerebral cortex, a drop in the immunolabeling of sGalphai2 protein was observed at P3, which was significantly increased at the age of P5. However, in striatum and olfactory tubercle, it was maintained through P0-P10 and P0-P5, respectively. Thalamus was one of the areas where labeling was not as strong as cortex, hippocampus or striatum. In contrary to other areas, immunostaining of sGalphai2 in corpus-callosum and lacunosum-molecular was not seen at P0 and appeared in advanced postnatal ages. A detectable level of sGalphai2 protein was observed at P5 in carpus-callosum and at P20 in lacunosum-molecular. A high level of sGalphai2 protein in the period when cellular layer organization and synaptic innervations, synaptic connections and maturation take place, suggests for a potential role of this protein in the early postnatal brain development.
Collapse
Affiliation(s)
- Manuel F López-Aranda
- Laboratory of Neurobiology, CIMES, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga 29071, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Bjornsson CS, Lin G, Al-Kofahi Y, Narayanaswamy A, Smith KL, Shain W, Roysam B. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue. J Neurosci Methods 2008; 170:165-78. [PMID: 18294697 DOI: 10.1016/j.jneumeth.2007.12.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 12/06/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic 'divide and conquer' methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick ( approximately 100 microm) slices of rat brain tissue were labeled using three to five fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81 to 92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system.
Collapse
Affiliation(s)
- Christopher S Bjornsson
- Center for Neural Communication Technology, New York State Department of Health, Wadsworth Center, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | |
Collapse
|