1
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Pu KL, Kang H, Li L. Therapeutic targets for age-related macular degeneration: proteome-wide Mendelian randomization and colocalization analyses. Front Neurol 2024; 15:1400557. [PMID: 38903171 PMCID: PMC11187347 DOI: 10.3389/fneur.2024.1400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Background Currently, effective therapeutic drugs for age-related macular degeneration (AMD) are urgently needed, and it is crucial to explore new treatment targets. The proteome is indispensable for exploring disease targets, so we conducted a Mendelian randomization (MR) of the proteome to identify new targets for AMD and its related subtypes. Methods The plasma protein level data used in this study were obtained from two large-scale studies of protein quantitative trait loci (pQTL), comprising 35,559 and 54,219 samples, respectively. The expression quantitative trait loci (eQTL) data were sourced from eQTLGen and GTEx Version 8. The discovery set for AMD data and subtypes was derived from the FinnGen study, consisting of 9,721 AMD cases and 381,339 controls, 5,239 wet AMD cases and 273,920 controls, and 6,651 dry AMD cases and 272,504 controls. The replication set for AMD data was obtained from the study by Winkler TW et al., comprising 14,034 cases and 91,234 controls. Summary Mendelian randomization (SMR) analysis was employed to assess the association between QTL data and AMD and its subtypes, while colocalization analysis was performed to determine whether they share causal variants. Additionally, chemical exploration and molecular docking were utilized to validate potential drugs targeting the identified proteins. Results SMR and colocalization analysis jointly identified risk-associated proteins for AMD and its subtypes, including 5 proteins (WARS1, BRD2, IL20RB, TGFB1, TNFRSF10A) associated with AMD, 2 proteins (WARS1, IL20RB) associated with Dry-AMD, and 9 proteins (COL10A1, WARS1, VTN, SDF2, LBP, CD226, TGFB1, TNFRSF10A, CSF2) associated with Wet-AMD. The results revealed potential therapeutic chemicals, and molecular docking indicated a good binding between the chemicals and protein structures. Conclusion Proteome-wide MR have identified risk-associated proteins for AMD and its subtypes, suggesting that these proteins may serve as potential therapeutic targets worthy of further clinical investigation.
Collapse
Affiliation(s)
- Kun-Lin Pu
- Pengzhou Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Hong Kang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Li Li
- Pengzhou Hospital of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Mizrachi M, Diamond B. Impact of microglia isolation and culture methodology on transcriptional profile and function. J Neuroinflammation 2024; 21:87. [PMID: 38589917 PMCID: PMC11000335 DOI: 10.1186/s12974-024-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Microglial isolation and culturing methods continue to be explored to maximize cellular yield, purity, responsiveness to stimulation and similarity to in vivo microglia. This study aims to evaluate five different microglia isolation methods-three variants of microglia isolation from neonatal mice and two variants of microglia isolation from adult mice-on transcriptional profile and response to HMGB1. METHODS Microglia from neonatal mice, age 0-3 days (P0-P3) were isolated from mixed glial cultures (MGC). We included three variations of this protocol that differed by use of GM-CSF in culture (No GM-CSF or 500 pg/mL GM-CSF), and days of culture in MGC before microglial separation (10 or 21). Protocols for studying microglia from adult mice age 6-8 weeks included isolation by adherence properties followed by 7 days of culture with 100 ng/mL GM-CSF and 100 ng/mL M-CSF (Vijaya et al. in Front Cell Neurosci 17:1082180, 2023), or acute isolation using CD11b beads (Bordt et al. in STAR Protoc 1:100035, 2020. https://doi.org/10.1016/j.xpro.2020.100035 ). Purity, yield, and RNA quality of the isolated microglia were assessed by flow cytometry, hemocytometer counting, and Bioanalyzer, respectively. Microglial responsiveness to an inflammatory stimulus, HMGB1, was evaluated by measuring TNFα, IL1β, and IFNβ concentration in supernatant by ELISA and assessing gene expression patterns using bulk mRNA sequencing. RESULTS All five methods demonstrated greater than 90% purity. Microglia from all cultures increased transcription and secretion of TNFα, IL1β, and IFNβ in response to HMGB1. RNA sequencing showed a larger number of differentially expressed genes in response to HMGB1 treatment in microglia cultured from neonates than from adult mice, with sparse changes among the three MGC culturing conditions. Additionally, cultured microglia derived from adult and microglia derived from MGCs from neonates display transcriptional signatures corresponding to an earlier developmental stage. CONCLUSION These findings suggest that while all methods provided high purity, the choice of protocol may significantly influence yield, RNA quality, baseline transcriptional profile and response to stimulation. This comparative study provides valuable insights to inform the choice of microglial isolation and culture method.
Collapse
Affiliation(s)
- Mark Mizrachi
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Betty Diamond
- Feinstein Institutes of Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
4
|
Dorion MF, Casas D, Shlaifer I, Yaqubi M, Fleming P, Karpilovsky N, Chen CXQ, Nicouleau M, Piscopo VEC, MacDougall EJ, Alluli A, Goldsmith TM, Schneider A, Dorion S, Aprahamian N, MacDonald A, Thomas RA, Dudley RWR, Hall JA, Fon EA, Antel JP, Stratton JA, Durcan TM, La Piana R, Healy LM. An adapted protocol to derive microglia from stem cells and its application in the study of CSF1R-related disorders. Mol Neurodegener 2024; 19:31. [PMID: 38576039 PMCID: PMC10996091 DOI: 10.1186/s13024-024-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/17/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Induced pluripotent stem cell-derived microglia (iMGL) represent an excellent tool in studying microglial function in health and disease. Yet, since differentiation and survival of iMGL are highly reliant on colony-stimulating factor 1 receptor (CSF1R) signaling, it is difficult to use iMGL to study microglial dysfunction associated with pathogenic defects in CSF1R. METHODS Serial modifications to an existing iMGL protocol were made, including but not limited to changes in growth factor combination to drive microglial differentiation, until successful derivation of microglia-like cells from an adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) patient carrying a c.2350G > A (p.V784M) CSF1R variant. Using healthy control lines, the quality of the new iMGL protocol was validated through cell yield assessment, measurement of microglia marker expression, transcriptomic comparison to primary microglia, and evaluation of inflammatory and phagocytic activities. Similarly, molecular and functional characterization of the ALSP patient-derived iMGL was carried out in comparison to healthy control iMGL. RESULTS The newly devised protocol allowed the generation of iMGL with enhanced transcriptomic similarity to cultured primary human microglia and with higher scavenging and inflammatory competence at ~ threefold greater yield compared to the original protocol. Using this protocol, decreased CSF1R autophosphorylation and cell surface expression was observed in iMGL derived from the ALSP patient compared to those derived from healthy controls. Additionally, ALSP patient-derived iMGL presented a migratory defect accompanying a temporal reduction in purinergic receptor P2Y12 (P2RY12) expression, a heightened capacity to internalize myelin, as well as heightened inflammatory response to Pam3CSK4. Poor P2RY12 expression was confirmed to be a consequence of CSF1R haploinsufficiency, as this feature was also observed following CSF1R knockdown or inhibition in mature control iMGL, and in CSF1RWT/KO and CSF1RWT/E633K iMGL compared to their respective isogenic controls. CONCLUSIONS We optimized a pre-existing iMGL protocol, generating a powerful tool to study microglial involvement in human neurological diseases. Using the optimized protocol, we have generated for the first time iMGL from an ALSP patient carrying a pathogenic CSF1R variant, with preliminary characterization pointing toward functional alterations in migratory, phagocytic and inflammatory activities.
Collapse
Affiliation(s)
- Marie-France Dorion
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Diana Casas
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Peter Fleming
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Nathan Karpilovsky
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Carol X-Q Chen
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Michael Nicouleau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Valerio E C Piscopo
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Emma J MacDougall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Aeshah Alluli
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Taylor M Goldsmith
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Alexandria Schneider
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Samuel Dorion
- Faculty of Arts and Sciences, Université de Montréal, Montreal, H3T 1NB, Canada
| | - Nathalia Aprahamian
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Adam MacDonald
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Rhalena A Thomas
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Roy W R Dudley
- Department of Pediatric Surgery, Division of Neurosurgery, Montreal Children's Hospital, McGill University Health Centers, Montreal, H4A 3J1, Canada
| | - Jeffrey A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada.
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, H3A 2B4, Canada.
| |
Collapse
|
5
|
Stanley ER, Biundo F, Gökhan Ş, Chitu V. Differential regulation of microglial states by colony stimulating factors. Front Cell Neurosci 2023; 17:1275935. [PMID: 37964794 PMCID: PMC10642290 DOI: 10.3389/fncel.2023.1275935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Recent studies have emphasized the role of microglia in the progression of many neurodegenerative diseases. The colony stimulating factors, CSF-1 (M-CSF), granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) regulate microglia through different cognate receptors. While the receptors for GM-CSF (GM-CSFR) and G-CSF (G-CSFR) are specific for their ligands, CSF-1 shares its receptor, the CSF-1 receptor-tyrosine kinase (CSF-1R), with interleukin-34 (IL-34). All four cytokines are expressed locally in the CNS. Activation of the CSF-1R in macrophages is anti-inflammatory. In contrast, the actions of GM-CSF and G-CSF elicit different activated states. We here review the roles of each of these cytokines in the CNS and how they contribute to the development of disease in a mouse model of CSF-1R-related leukodystrophy. Understanding their roles in this model may illuminate their contribution to the development or exacerbation of other neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Şölen Gökhan
- Department of Neurology, Albert Einstein College of Medicine, Institute for Brain Disorders and Neural Regeneration, Bronx, NY, United States
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
7
|
Dermitzakis I, Manthou ME, Meditskou S, Tremblay MÈ, Petratos S, Zoupi L, Boziki M, Kesidou E, Simeonidou C, Theotokis P. Origin and Emergence of Microglia in the CNS-An Interesting (Hi)story of an Eccentric Cell. Curr Issues Mol Biol 2023; 45:2609-2628. [PMID: 36975541 PMCID: PMC10047736 DOI: 10.3390/cimb45030171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia belong to tissue-resident macrophages of the central nervous system (CNS), representing the primary innate immune cells. This cell type constitutes ~7% of non-neuronal cells in the mammalian brain and has a variety of biological roles integral to homeostasis and pathophysiology from the late embryonic to adult brain. Its unique identity that distinguishes its "glial" features from tissue-resident macrophages resides in the fact that once entering the CNS, it is perennially exposed to a unique environment following the formation of the blood-brain barrier. Additionally, tissue-resident macrophage progenies derive from various peripheral sites that exhibit hematopoietic potential, and this has resulted in interpretation issues surrounding their origin. Intensive research endeavors have intended to track microglial progenitors during development and disease. The current review provides a corpus of recent evidence in an attempt to disentangle the birthplace of microglia from the progenitor state and underlies the molecular elements that drive microgliogenesis. Furthermore, it caters towards tracking the lineage spatiotemporally during embryonic development and outlining microglial repopulation in the mature CNS. This collection of data can potentially shed light on the therapeutic potential of microglia for CNS perturbations across various levels of severity.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Lida Zoupi
- Centre for Discovery Brain Sciences & Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
8
|
Roles of CSF2 as a modulator of inflammation during retinal degeneration. Cytokine 2022; 158:155996. [PMID: 35988458 DOI: 10.1016/j.cyto.2022.155996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Colony-stimulating factor 2 (CSF2) is a potent cytokine that stimulates myeloid cells, such as dendritic cells and macrophages. We have been analyzing the roles of microglia in retinal degeneration through the modulation of inflammation in the eye, and examined the roles of CSF2 in this process. Both subunits of the CSF2 receptor are expressed in microglia, but no evidence suggesting the involvement of CSF2 in inflammation in the degenerating eye has been reported. We found that Csf2 transcripts were induced in the early phase of in vitro mouse adult retina culture, used as degeneration models, suggesting that CSF2 induction is one of the earliest events occurring in the pathology of retinal degeneration. The administration of CSF2 into the retina after systemic NaIO3 treatment increased the number of microglia. To examine the roles of CSF2 in retinal inflammation, we overexpressed CSF2 in retinal explants. Induction of CSF2 activated microglia and Müller glia, and the layer structure of the retina was severely perturbed. CC motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 10 (Cxcl10), both of which are expressed in activated microglia, were strongly induced by the expression of CSF2 in the retina. The addition of CSF2 to primary retinal microglia and the microglial cell lines MG5 and BV2 showed statistically significant increase in Ccl2 and Il1b transcripts. Furthermore, CSF2 induced proliferation, migration, and phagocytosis in MG5 and/or BV2. The effects of CSF2 on microglia were mild, suggesting that CSF2 induced strong inflammation in the context of the retinal environment.
Collapse
|
9
|
Ortiz-Rivera J, Albors A, Kucheryavykh Y, Harrison JK, Kucheryavykh L. The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sci 2022; 12:brainsci12070893. [PMID: 35884700 PMCID: PMC9313002 DOI: 10.3390/brainsci12070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
- Correspondence:
| | - Alejandro Albors
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| |
Collapse
|
10
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
11
|
Kobashi S, Terashima T, Katagi M, Urushitani M, Kojima H. Bone marrow-derived inducible microglia-like cells ameliorate motor function and survival in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 2022; 24:789-801. [PMID: 35393241 DOI: 10.1016/j.jcyt.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. Neuroinflammation in the spinal cord plays a pivotal role in the pathogenesis of ALS, and microglia are involved in neuroinflammation. Microglia mainly have two opposite phenotypes involving cytotoxic and neuroprotective properties, and neuroprotective microglia are expected to be a novel application for the treatment of ALS. Therefore, to establish a clinically applicable therapeutic method using neuroprotective microglia, the authors investigated the effect of inducing neuroprotective microglia-like cells from bone marrow for transplantation into ALS model mice. METHODS Bone marrow-derived mononuclear cells were isolated from green fluorescent protein mice and cultured using different protocols of cytokine treatment with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. Cells with a high potency of proliferation and differentiation into microglia were evaluated by gene analysis, flow cytometry and direct neuroprotective effects in vitro. These cells were named bone marrow-derived inducible microglia-like (BM-iMG) cells and transplanted into the spinal cords of ALS model mice, and behavioral tests, immunohistochemistry and gene expression profiling were performed. RESULTS Three-day GM-CSF and 4-day GM-CSF + IL-4 stimulations were most effective in inducing BM-iMG cells from the bone marrow. Transplantation of BM-iMG cells improved motor function, prolonged survival and suppressed neuronal cell death, astrogliosis and microgliosis in the spinal cords of ALS mice. Moreover, neuroprotective genes such as Arg1 and Mrc1 were upregulated, whereas pro-inflammatory genes such as Nos2 and Il6 were downregulated. CONCLUSIONS Intraspinal transplantation of BM-iMG cells demonstrated therapeutic effects in a mouse model of ALS. Further studies and clinical applications in patients with ALS are expected in the future.
Collapse
Affiliation(s)
- Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan; Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
12
|
Gas6/TAM Signalling Negatively Regulates Inflammatory Induction of GM-CSF in Mouse Brain Microglia. Cells 2021; 10:cells10123281. [PMID: 34943789 PMCID: PMC8699038 DOI: 10.3390/cells10123281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia and astrocytes are the main CNS glial cells responsible for the neuroinflammatory response, where they release a plethora of cytokines into the CNS inflammatory milieu. The TAM (Tyro3, Axl, Mer) receptors and their main ligand Gas6 are regulators of this response, however, the underlying mechanisms remain to be determined. We investigated the ability of Gas6 to modulate the CNS glial inflammatory response to lipopolysaccharide (LPS), a strong pro-inflammatory agent, through a qPCR array that explored Toll-like receptor signalling pathway-associated genes in primary cultured mouse microglia. We identified the Csf2 gene, encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), as a major Gas6 target gene whose induction by LPS was markedly blunted by Gas6. Both the Csf2 gene induction and the suppressive effect of Gas6 on this were emulated through measurement of GM-CSF protein release by cells. We found distinct profiles of GM-CSF induction in different glial cell types, with microglia being most responsive during inflammation. Also, Gas6 markedly inhibited the LPS-stimulated nuclear translocation of NF-κB p65 protein in microglia. These results illustrate microglia as a major resident CNS cellular source of GM-CSF as part of the neuroinflammatory response, and that Gas6/TAM signalling inhibits this response through suppression of NF-κB signalling.
Collapse
|
13
|
Najafi M, Amini R, Maghsood AH, Fallah M, Foroughi-Parvar F. Co Expression of GMFβ, IL33, CCL2 and SDF1 Genes in the Acute Stage of Toxoplasmosis in Mice Model and Relation for Neuronal Impairment. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:426-434. [PMID: 34630588 PMCID: PMC8476739 DOI: 10.18502/ijpa.v16i3.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that migrates through macrophages or dendritic cells to neurons and nerve cells. Glia Maturation Factor (GMF) is a pre-inflammatory protein that is expressed in the central nervous system (CNS). GMFβ expression is related to IL33 and CCL2 and SDF1 in some neurodegenerative diseases. According to the importance of GMFβ in neurodegenerative diseases and its association with IL33, CCL2 and SDF1 genes, this study was designed to determine the level of expression of these genes in the brains of mice with acute toxoplasmosis. Methods Tachyzoites of T. gondii RH strains were injected to 5 Swiss Albino mice. At the same time, healthy mice were inoculated with the Phosphate-buffered saline (PBS). Their brains were removed and kept at -70 °C in order to RNA extraction, cDNA syntheses and Real Time PCR performance. The level of gene expression was investigated with SYBR Green Quantitative Real-Time PCR. Results GMFβ gene expression increased significantly (P=0.003) 3.26 fold in Toxoplasma infected mice in comparison to the control. GMFβ gene expression was associated with increased expression level of IL33, CCL2, and SDF1 genes. Conclusion Considering the prominent role of GMFβ in CNS as well as the immune system, the elevation of GMFβ, IL33, CCL2 and SDF1 genes expression in the early stage of toxoplasmosis is associated with the occurrence of neuropathological alterations. Detection of these genes as an indication of brain damage in the early stages of Toxoplasma infection can prevent neurodegenerative disorders following acquired toxoplasmosis.
Collapse
Affiliation(s)
- Mehri Najafi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Microglia Isolation from Neural Stem Cell-Enriched Regions. Methods Mol Biol 2021. [PMID: 34558002 DOI: 10.1007/978-1-0716-1783-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microglia are the resident immune cell of the central nervous system and are instrumental in detecting and eliminating invading pathogens and debris. They also play key roles in neural development, neurodegeneration, and maintaining microenvironment homeostasis. The relatively low number of microglia that can be isolated from primary dissociates precludes many in vitro assays from being efficiently conducted. Here we describe a method to isolate large numbers of functional microglia in a repeatable fashion using serially expanded cultures derived from neurogenic regions of the brain.
Collapse
|
15
|
Milinkeviciute G, Chokr SM, Castro EM, Cramer KS. CX3CR1 mutation alters synaptic and astrocytic protein expression, topographic gradients, and response latencies in the auditory brainstem. J Comp Neurol 2021; 529:3076-3097. [PMID: 33797066 DOI: 10.1002/cne.25150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 01/14/2023]
Abstract
The precise and specialized circuitry in the auditory brainstem develops through adaptations of cellular and molecular signaling. We previously showed that elimination of microglia during development impairs synaptic pruning that leads to maturation of the calyx of Held, a large encapsulating synapse that terminates on neurons of the medial nucleus of the trapezoid body (MNTB). Microglia depletion also led to a decrease in glial fibrillary acidic protein (GFAP), a marker for mature astrocytes. Here, we investigated the role of signaling through the fractalkine receptor (CX3CR1), which is expressed by microglia and mediates communication with neurons. CX3CR1-/- and wild-type mice were studied before and after hearing onset and at 9 weeks of age. Levels of GFAP were significantly increased in the MNTB in mutants at 9 weeks. Pruning was unaffected at the calyx of Held, but we found an increase in expression of glycinergic synaptic marker in mutant mice at P14, suggesting an effect on maturation of inhibitory inputs. We observed disrupted tonotopic gradients of neuron and calyx size in MNTB in mutant mice. Auditory brainstem recording (ABR) revealed that CX3CR1-/- mice had normal thresholds and amplitudes but decreased latencies and interpeak latencies, particularly for the highest frequencies. These results demonstrate that disruption of fractalkine signaling has a significant effect on auditory brainstem development. Our findings highlight the importance of neuron-microglia-astrocyte communication in pruning of inhibitory synapses and establishment of tonotopic gradients early in postnatal development.
Collapse
Affiliation(s)
- Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Emily M Castro
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| |
Collapse
|
16
|
Parajuli B, Saito H, Shinozaki Y, Shigetomi E, Miwa H, Yoneda S, Tanimura M, Omachi S, Asaki T, Takahashi K, Fujita M, Nakashima K, Koizumi S. Transnasal transplantation of human induced pluripotent stem cell-derived microglia to the brain of immunocompetent mice. Glia 2021; 69:2332-2348. [PMID: 34309082 DOI: 10.1002/glia.23985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/26/2023]
Abstract
Microglia are the resident immune cells of the brain, and play essential roles in neuronal development, homeostatic function, and neurodegenerative disease. Human microglia are relatively different from mouse microglia. However, most research on human microglia is performed in vitro, which does not accurately represent microglia characteristics under in vivo conditions. To elucidate the in vivo characteristics of human microglia, methods have been developed to generate and transplant induced pluripotent or embryonic stem cell-derived human microglia into neonatal or adult mouse brains. However, its widespread use remains limited by the technical difficulties of generating human microglia, as well as the need to use immune-deficient mice and conduct invasive surgeries. To address these issues, we developed a simplified method to generate induced pluripotent stem cell-derived human microglia and transplant them into the brain via a transnasal route in immunocompetent mice, in combination with a colony stimulating factor 1 receptor antagonist. We found that human microglia were able to migrate through the cribriform plate to different regions of the brain, proliferate, and become the dominant microglia in a region-specific manner by occupying the vacant niche when exogenous human cytokine is administered, for at least 60 days.
Collapse
Affiliation(s)
- Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroki Saito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Hiroto Miwa
- Laboratory for Innovative Therapy Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Sosuke Yoneda
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Miki Tanimura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Shigeki Omachi
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Toshiyuki Asaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Koji Takahashi
- Laboratory for Innovative Therapy Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Masahide Fujita
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co. Ltd., Osaka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
17
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Prinz M, Masuda T, Wheeler MA, Quintana FJ. Microglia and Central Nervous System-Associated Macrophages-From Origin to Disease Modulation. Annu Rev Immunol 2021; 39:251-277. [PMID: 33556248 DOI: 10.1146/annurev-immunol-093019-110159] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.
Collapse
Affiliation(s)
- Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany; .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, D-79104 Freiburg, Germany
| | - Takahiro Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Generation of CSF1-Independent Ramified Microglia-Like Cells from Leptomeninges In Vitro. Cells 2020; 10:cells10010024. [PMID: 33375610 PMCID: PMC7824226 DOI: 10.3390/cells10010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Although del Río-Hortega originally reported that leptomeningeal cells are the source of ramified microglia in the developing brain, recent views do not seem to pay much attention to this notion. In this study, in vitro experiments were conducted to determine whether leptomeninges generate ramified microglia. The leptomeninges of neonatal rats containing Iba1+ macrophages were peeled off the brain surface. Leptomeningeal macrophages strongly expressed CD68 and CD163, but microglia in the brain parenchyma did not. Leptomeningeal macrophages expressed epidermal growth factor receptor (EGFR) as revealed by RT-PCR and immunohistochemical staining. Cells obtained from the peeled-off leptomeninges were cultured in a serum-free medium containing EGF, resulting in the formation of large cell aggregates in which many proliferating macrophages were present. In contrast, colony-stimulating factor 1 (CSF1) did not enhance the generation of Iba1+ cells from the leptomeningeal culture. The cell aggregates generated ramified Iba1+ cells in the presence of serum, which express CD68 and CD163 at much lower levels than primary microglia isolated from a mixed glial culture. Therefore, the leptomeningeal-derived cells resembled parenchymal microglia better than primary microglia. This study suggests that microglial progenitors expressing EGFR reside in the leptomeninges and that there is a population of microglia-like cells that grow independently of CSF1.
Collapse
|
20
|
Biundo F, Chitu V, Shlager GGL, Park ES, Gulinello ME, Saha K, Ketchum HC, Fernandes C, Gökhan Ş, Mehler MF, Stanley ER. Microglial reduction of colony stimulating factor-1 receptor expression is sufficient to confer adult onset leukodystrophy. Glia 2020; 69:779-791. [PMID: 33079443 DOI: 10.1002/glia.23929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a dementia resulting from dominantly inherited CSF1R inactivating mutations. The Csf1r+/- mouse mimics ALSP symptoms and pathology. Csf1r is mainly expressed in microglia, but also in cortical layer V neurons that are gradually lost in Csf1r+/- mice with age. We therefore examined whether microglial or neuronal Csf1r loss caused neurodegeneration in Csf1r+/- mice. The behavioral deficits, pathologies and elevation of Csf2 expression contributing to disease, previously described in the Csf1r+/- ALSP mouse, were reproduced by microglial deletion (MCsf1rhet mice), but not by neural deletion. Furthermore, increased Csf2 expression by callosal astrocytes, oligodendrocytes, and microglia was observed in Csf1r+/- mice and, in MCsf1rhet mice, the densities of these three cell types were increased in supraventricular patches displaying activated microglia, an early site of disease pathology. These data confirm that ALSP is a primary microgliopathy and inform future therapeutic and experimental approaches.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher Fernandes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Şölen Gökhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology Neuroscience and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
21
|
Dikmen HO, Hemmerich M, Lewen A, Hollnagel JO, Chausse B, Kann O. GM-CSF induces noninflammatory proliferation of microglia and disturbs electrical neuronal network rhythms in situ. J Neuroinflammation 2020; 17:235. [PMID: 32782006 PMCID: PMC7418331 DOI: 10.1186/s12974-020-01903-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Background The granulocyte-macrophage colony-stimulating factor (GM-CSF) (or CSF-2) is involved in myeloid cell growth and differentiation, and, possibly, a major mediator of inflammation in body tissues. The role of GM-CSF in the activation of microglia (CNS resident macrophages) and the consequent impacts on neuronal survival, excitability, and synaptic transmission are widely unknown, however. Here, we focused on electrical neuronal network rhythms in the gamma frequency band (30–70 Hz). Gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and they are exquisitely sensitive to metabolic and oxidative stress. Methods We explored the effects of chronic GM-CSF exposure (72 h) on microglia in male rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortex tissue lacking leukocyte invasion (adaptive immunity). We applied extracellular electrophysiological recordings of local field potential, immunohistochemistry, design-based stereology, biochemical analysis, and pharmacological ablation of microglia. Results GM-CSF triggered substantial proliferation of microglia (microgliosis). By contrast, the release of proinflammatory cytokines (IL-6, TNF-α) and nitric oxide, the hippocampal cytoarchitecture as well as the morphology of parvalbumin-positive inhibitory interneurons were unaffected. Notably, GM-CSF induced concentration-dependent, long-lasting disturbances of gamma oscillations, such as slowing (beta frequency band) and neural burst firing (hyperexcitability), which were not mimicked by the T lymphocyte cytokine IL-17. These disturbances were attenuated by depletion of the microglial cell population with liposome-encapsulated clodronate. In contrast to priming with the cytokine IFN-γ (type II interferon), GM-CSF did not cause inflammatory neurodegeneration when paired with the TLR4 ligand LPS. Conclusions GM-CSF has a unique role in the activation of microglia, including the potential to induce neuronal network dysfunction. These immunomodulatory properties might contribute to cognitive impairment and/or epileptic seizure development in disease featuring elevated GM-CSF levels, blood-brain barrier leakage, and/or T cell infiltration.
Collapse
Affiliation(s)
- Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Marc Hemmerich
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.,Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
22
|
Kempthorne L, Yoon H, Madore C, Smith S, Wszolek ZK, Rademakers R, Kim J, Butovsky O, Dickson DW. Loss of homeostatic microglial phenotype in CSF1R-related Leukoencephalopathy. Acta Neuropathol Commun 2020; 8:72. [PMID: 32430064 PMCID: PMC7236286 DOI: 10.1186/s40478-020-00947-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia are resident macrophages of the central nervous system, and their unique molecular signature is dependent upon CSF-1 signaling. Previous studies have demonstrated the importance of CSF-1R in survival and development of microglia in animal models, but the findings are of uncertain relevance to understanding the influence of CSF-1R on microglia in humans. Hereditary diffuse leukoencephalopathy with spheroids (HDLS) [also known as adult onset leukoencephalopathy with spheroids and pigmented glia (ALSP)] is a neurodegenerative disorder primarily affecting cerebral white matter, most often caused by mutations of CSF1R. Therefore, we hypothesized that the molecular profile of microglia may be affected in HDLS. Semi-quantitative immunohistochemistry and quantitative transcriptomic profiling revealed reduced expression of IBA-1 and P2RY12 in both white and gray matter microglia of HDLS. In contrast, there was increased expression of CD68 and CD163 in microglia in affected white matter. In addition, expression of selective and specific microglial markers, including P2RY12, CX3CR1 and CSF-1R, were reduced in affected white matter. These results suggest that microglia in white matter in HDLS lose their homeostatic phenotype. Supported by gene ontology analysis, it is likely that an inflammatory phenotype is a key pathogenic feature of microglia in vulnerable brain regions of HDLS. Our findings suggest a potential mechanism of disease pathogenesis by linking aberrant CSF-1 signaling to altered microglial phenotype. They also support the idea that HDLS may be a primary microgliopathy. We observed increased expression of CSF-2 in gray matter compared to affected white matter, which may contribute to selective vulnerability of white matter in HDLS. Our findings suggest that methods that restore the homeostatic phenotype of microglia might be considered treatment approaches in HDLS.
Collapse
Affiliation(s)
- Liam Kempthorne
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Institute of Neurology, University College London, London, UK
| | - Hyejin Yoon
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Charlotte Madore
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott Smith
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Oleg Butovsky
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA.
| |
Collapse
|
23
|
LeBlang CJ, Medalla M, Nicoletti NW, Hays EC, Zhao J, Shattuck J, Cruz AL, Wolozin B, Luebke JI. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci 2020; 14:285. [PMID: 32327969 PMCID: PMC7161592 DOI: 10.3389/fnins.2020.00285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.
Collapse
Affiliation(s)
- Chelsey Jenna LeBlang
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Maria Medalla
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Nicholas William Nicoletti
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Emma Catherine Hays
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - James Zhao
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jenifer Shattuck
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Anna Lourdes Cruz
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Boston University, Boston, MA, United States
| | - Jennifer Irene Luebke
- Laboratory of Cellular Neuroscience, Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Chitu V, Biundo F, Shlager GGL, Park ES, Wang P, Gulinello ME, Gokhan Ş, Ketchum HC, Saha K, DeTure MA, Dickson DW, Wszolek ZK, Zheng D, Croxford AL, Becher B, Sun D, Mehler MF, Stanley ER. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Rep 2020; 30:3004-3019.e5. [PMID: 32130903 PMCID: PMC7370656 DOI: 10.1016/j.celrep.2020.02.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Previous studies in the Csf1r+/- mouse model of ALSP hypothesized a central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 rescues most behavioral deficits and histopathological changes in Csf1r+/- mice by preventing microgliosis and eliminating most microglial transcriptomic alterations, including those indicative of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms identified in the mouse model are functional in humans. Our data provide insights into the mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r expression have also been reported in Alzheimer's disease and multiple sclerosis, we suggest that the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the pathogenesis of other neurodegenerative conditions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael A DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
25
|
Xu M, Zhang L, Liu G, Jiang N, Zhou W, Zhang Y. Pathological Changes in Alzheimer's Disease Analyzed Using Induced Pluripotent Stem Cell-Derived Human Microglia-Like Cells. J Alzheimers Dis 2020; 67:357-368. [PMID: 30562902 DOI: 10.3233/jad-180722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microglia constitute the majority of innate immune cells in the brain, and their dysfunction is associated with various central nervous system diseases. Human microglia are extremely difficult to obtain experimentally, thereby limiting studies on their role in complex diseases. Microglia derived from human stem cells provide new tools to assess the pathogenesis of complex diseases and to develop effective treatment methods. This study aimed to develop a reliable method to derive human microglial-like cells (iMGLs) from induced pluripotent stem cells (iPSCs) expressing microglia-specific markers IBA1 and TMEM119 and respond to lipopolysaccharide (LPS) stimulation. Thereafter, we compared iMGL functions from Alzheimer's disease (AD) patients and cognitive normal controls (CNCs). AD-iMGLs displayed stronger phagocytic ability with or without stimulation. High LPS concentrations (>2μg/ml) caused death in CNC-iMGLs, while AD-iMGLs did not display significant cell death. Cytokine analysis revealed that TNF-α, IL-6, and IL-10 secreted by AD-iMGLs were significantly increased upon LPS stimulation compared to those in CNC-iMGLs. The present results indicate that AD-iMGLs exhibit significant inflammatory characteristics and can reflect some pathological changes in microglia in AD, thereby providing new valuable tools to screen candidate drugs for AD and to elucidate the mechanisms underlying AD pathogenesis.
Collapse
Affiliation(s)
- Mei Xu
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| | - Lin Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| | - Gang Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing, P.R. China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, P.R. China
| |
Collapse
|
26
|
When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat Rev Neurol 2019; 15:704-717. [PMID: 31527807 DOI: 10.1038/s41582-019-0253-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/07/2023]
Abstract
Immune cells mediate critical inflammatory and neurodegenerative processes in the CNS in individuals with multiple sclerosis (MS). In MS, activated microglia, border-associated macrophages and monocyte-derived macrophages in the CNS can encounter T cells that have infiltrated the brain parenchyma from the circulation. Although microglia and T cells both contribute to normal CNS development and homeostasis, evidence suggests that the meeting of activated microglia and macrophages with encephalitogenic T cells exacerbates their capacity to inflict injury. This crosstalk involves many cell-surface molecules, cytokines and neurotoxic factors. In this Review, we summarize the mechanisms and consequences of T cell-microglia interactions as identified with in vitro experiments and animal models, and discuss the challenges that arise when translating this preclinical knowledge to MS in humans. We also consider therapeutic approaches to MS of which the mechanisms involve prevention or modulation of T cell and microglia responses and their interactions.
Collapse
|
27
|
Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Urushitani M, Kojima H. Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Mol Ther 2019; 28:254-265. [PMID: 31604678 DOI: 10.1016/j.ymthe.2019.09.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the poor prognosis of spinal cord injury (SCI), effective treatments are lacking. Diverse factors regulate SCI prognosis. In this regard, microglia play crucial roles depending on their phenotype. The M1 phenotype exacerbates neuroinflammation, whereas the M2 phenotype promotes tissue repair and provides anti-inflammatory effects. Therefore, we compared the effects of M2 and M1 microglia transplantation on SCI. First, we established a method for effective induction of M1 or M2 microglia by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin (IL)-4, respectively, to be used for transplantation in a SCI mouse model. In the M2 microglia transplantation group, significant recovery of motor function was observed compared with the control and M1 groups. Elevated transcription of several neuroprotective molecules including mannose receptor C type 1 (Mrc1), arginase 1 (Arg1), and insulin-like growth factor 1 (Igf1) was observed. Moreover, intramuscular injection of FluoroRuby dye revealed recovery of retrograde axonal transport from the neuromuscular junction to upstream of the injured spinal cord only in the M2-transplanted group, although the number of migrated microglia were comparable in both M1 and M2 groups. In conclusion, our results indicated that M2 microglia obtained by IL-4 stimulation may be a promising candidate for cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan; Department of Neurology, Shiga University of Medical Science, Shiga, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
28
|
Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 2019; 147:104349. [PMID: 31315064 PMCID: PMC6954670 DOI: 10.1016/j.phrs.2019.104349] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Neuroinflammation underlies the etiology of multiple neurodegenerative diseases and stroke. Our understanding of neuroinflammation has evolved in the last few years and major players have been identified. Microglia, the brain resident macrophages, are considered sentinels at the forefront of the neuroinflammatory response to different brain insults. Interestingly, microglia perform other physiological functions in addition to their role in neuroinflammation. Therefore, an updated approach in which modulation, rather than complete elimination of microglia is necessary. In this review, the emerging roles of microglia and their interaction with different components of the neurovascular unit are discussed. In addition, recent data on sex differences in microglial physiology and in the context of stroke will be presented. Finally, the multiplicity of roles assumed by microglia in the pathophysiology of ischemic stroke, and in the presence of co-morbidities such as hypertension and diabetes are summarized.
Collapse
Affiliation(s)
- Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Adviye Ergul
- Ralph Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
29
|
Lue LF, Beach TG, Walker DG. Alzheimer's Disease Research Using Human Microglia. Cells 2019; 8:cells8080838. [PMID: 31387311 PMCID: PMC6721636 DOI: 10.3390/cells8080838] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Experimental studies of neuroinflammation in Alzheimer's disease (AD) have mostly investigated microglia, the brain-resident macrophages. This review focused on human microglia obtained at rapid autopsies. Studies employing methods to isolate and culture human brain microglia in high purity for experimental studies were discussed. These methods were employed to isolate human microglia for investigation of a number of features of neuroinflammation, including activation phenotypes, neurotoxicity, responses to abnormal aggregated proteins such as amyloid beta, phagocytosis, and the effects of aging and disease on microglia cellular properties. In recent years, interest in human microglia and neuroinflammation has been renewed due to the identification of inflammation-related AD genetic risk factors, in particular the triggering receptor expressed on myeloid cells (TREM)-2. Because of the difficulties in developing effective treatments for AD, there has been a general need for greater understanding of the functions of microglia in normal and AD brains. While most experimental studies on neuroinflammation have employed rodent microglia, this review considered the role of human microglia in experimental studies. This review focused on the development of in vitro methodology for the culture of postmortem human microglia and the key findings obtained from experimental studies with these cells.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA.
- Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ 84027, USA.
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Douglas G Walker
- Neurodegenerative Disease Research Center and School of Life Sciences, Arizona State University, Tempe, AZ 84027, USA
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520, Japan
| |
Collapse
|
30
|
Central inhibition of granulocyte-macrophage colony-stimulating factor is analgesic in experimental neuropathic pain. Pain 2019; 159:550-559. [PMID: 29351125 PMCID: PMC5828377 DOI: 10.1097/j.pain.0000000000001130] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supplemental Digital Content is Available in the Text. GM-CSF is a proinflammatory cytokine that plays a role in central pain pathways through the modulation of spinal glial cells. With less than 50% of patients responding to the current standard of care and poor efficacy and selectivity of current treatments, neuropathic pain continues to be an area of considerable unmet medical need. Biological therapeutics such as monoclonal antibodies (mAbs) provide better intrinsic selectivity; however, delivery to the central nervous system (CNS) remains a challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is well described in inflammation-induced pain, and early-phase clinical trials evaluating its antagonism have exemplified its importance as a peripheral pain target. Here, we investigate the role of this cytokine in a murine model of traumatic nerve injury and show that deletion of the GM-CSF receptor or treatment with an antagonizing mAb alleviates pain. We also demonstrate enhanced analgesic efficacy using an engineered construct that has greater capacity to penetrate the CNS. Despite observing GM-CSF receptor expression in microglia and astrocytes, the gliosis response in the dorsal horn was not altered in nerve injured knockout mice compared with wild-type littermate controls as evaluated by ionized calcium binding adapter molecule 1 (Iba1) and glial fibrillary acidic protein, respectively. Functional analysis of glial cells revealed that pretreatment with GM-CSF potentiated lipopolysaccharide-induced release of proinflammatory cytokines. In summary, our data indicate that GM-CSF is a proinflammatory cytokine that contributes to nociceptive signalling through driving spinal glial cell secretion of proinflammatory mediators. In addition, we report a successful approach to accessing CNS pain targets, providing promise for central compartment delivery of analgesics.
Collapse
|
31
|
Aram J, Francis A, Tanasescu R, Constantinescu CS. Granulocyte-Macrophage Colony-Stimulating Factor as a Therapeutic Target in Multiple Sclerosis. Neurol Ther 2018; 8:45-57. [PMID: 30506485 PMCID: PMC6534644 DOI: 10.1007/s40120-018-0120-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis is an inflammatory neurodegenerative disease of the central nervous system (CNS) and the most frequent cause of non-traumatic disability in adults in the Western world. Currently, several drugs have been approved for the treatment of multiple sclerosis. While the newer drugs are more effective, they have less favourable safety profiles. Thus, there is a need to identify new targets for effective and safe therapies, particularly in patients with progressive disease for whom no treatments are available. One such target is granulocyte-macrophage colony-stimulating factor (GM-CSF) or its receptor. In this article we review data on the potential role of GM-CSF and GM-CSF inhibition in MS. We discuss the expression and function of GM-CSF and its receptor in the CNS, as well as data from animal studies and clinical trials in MS.
Collapse
Affiliation(s)
- Jehan Aram
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK
| | - Anna Francis
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK.,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Radu Tanasescu
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK.,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK. .,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| |
Collapse
|
32
|
Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I. Granulocyte-macrophage colony-stimulating factor as a mediator of autoimmunity in multiple sclerosis. J Neuroimmunol 2018; 323:1-9. [DOI: 10.1016/j.jneuroim.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
|
33
|
Terashima T, Nakae Y, Katagi M, Okano J, Suzuki Y, Kojima H. Stem cell factor induces polarization of microglia to the neuroprotective phenotype in vitro. Heliyon 2018; 4:e00837. [PMID: 30294687 PMCID: PMC6171080 DOI: 10.1016/j.heliyon.2018.e00837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
Microglia are classified mainly into the M1 or M2 phenotypes, which evoke either proinflammatory or neuroprotective responses. Given the association of microglia with the pathogenesis of neuronal diseases, they are in focus as therapeutic targets for the treatment of such conditions. Stem cell factor (SCF) is a ligand for the c-kit receptor, one of the differentiation factors for bone marrow cells. In this study, characteristics of SCF-activated microglia and their effects on neurons were analyzed to investigate the therapeutic potential of SCF in neuronal diseases. SCF was found to induce proliferation, migration, and phagocytosis of microglia. In addition, SCF-derived microglia showed a neuroprotective phenotype expressing anti-inflammatory cytokines, growth factors, and M2 markers as compared to the phenotype shown by granulocyte macrophage-colony stimulating factor-derived microglia expressing inflammatory cytokines and M1 markers. Furthermore, supernatant medium from SCF-activated microglia enhanced cell proliferation and protection from cell death in NSC-34 neuronal cells. We conclude that SCF modulates microglial functions and induces activation of the neuroprotective effects of microglia, which could be used for treatment of neuronal diseases.
Collapse
Affiliation(s)
- Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Junko Okano
- Division of Anatomy and Cell Biology, Shiga University of Medical Science, Shiga, Japan.,Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
34
|
Jha MK, Jo M, Kim JH, Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist 2018; 25:227-240. [PMID: 29931997 DOI: 10.1177/1073858418783959] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microglia-astrocyte crosstalk has recently been at the forefront of glial research. Emerging evidence illustrates that microglia- and astrocyte-derived signals are the functional determinants for the fates of astrocytes and microglia, respectively. By releasing diverse signaling molecules, both microglia and astrocytes establish autocrine feedback and their bidirectional conversation for a tight reciprocal modulation during central nervous system (CNS) insult or injury. Microglia, the constant sensors of changes in the CNS microenvironment and restorers of tissue homeostasis, not only serve as the primary immune cells of the CNS but also regulate the innate immune functions of astrocytes. Similarly, microglia determine the functions of reactive astrocytes, ranging from neuroprotective to neurotoxic. Conversely, astrocytes through their secreted molecules regulate microglial phenotypes and functions ranging from motility to phagocytosis. Altogether, the microglia-astrocyte crosstalk is fundamental to neuronal functions and dysfunctions. This review discusses the current understanding of the intimate molecular conversation between microglia and astrocytes and outlines its potential implications in CNS health and disease.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Myungjin Jo
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,3 Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jae-Hong Kim
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- 1 Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Sankar SB, Donegan RK, Shah KJ, Reddi AR, Wood LB. Heme and hemoglobin suppress amyloid β-mediated inflammatory activation of mouse astrocytes. J Biol Chem 2018; 293:11358-11373. [PMID: 29871926 DOI: 10.1074/jbc.ra117.001050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/24/2018] [Indexed: 11/06/2022] Open
Abstract
Glial immune activity is a key feature of Alzheimer's disease (AD). Given that the blood factors heme and hemoglobin (Hb) are both elevated in AD tissues and have immunomodulatory roles, here we sought to interrogate their roles in modulating β-amyloid (Aβ)-mediated inflammatory activation of astrocytes. We discovered that heme and Hb suppress immune activity of primary mouse astrocytes by reducing expression of several proinflammatory cytokines (e.g. RANTES (regulated on activation normal T cell expressed and secreted)) and the scavenger receptor CD36 and reducing internalization of Aβ(1-42) by astrocytes. Moreover, we found that certain soluble (>75-kDa) Aβ(1-42) oligomers are primarily responsible for astrocyte activation and that heme or Hb association with these oligomers reverses inflammation. We further found that heme up-regulates phosphoprotein signaling in the phosphoinositide 3-kinase (PI3K)/Akt pathway, which regulates a number of immune functions, including cytokine expression and phagocytosis. The findings in this work suggest that dysregulation of Hb and heme levels in AD brains may contribute to impaired amyloid clearance and that targeting heme homeostasis may reduce amyloid pathogenesis. Altogether, we propose heme as a critical molecular link between amyloid pathology and AD risk factors, such as aging, brain injury, and stroke, which increase Hb and heme levels in the brain.
Collapse
Affiliation(s)
- Sitara B Sankar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kajol J Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
| |
Collapse
|
36
|
Guo L, Rezvanian A, Kukreja L, Hoveydai R, Bigio EH, Mesulam MM, El Khoury J, Geula C. Postmortem Adult Human Microglia Proliferate in Culture to High Passage and Maintain Their Response to Amyloid-β. J Alzheimers Dis 2018; 54:1157-1167. [PMID: 27567845 DOI: 10.3233/jad-160394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia are immune cells of the brain that display a range of functions. Most of our knowledge about microglia biology and function is based on cells from the rodent brain. Species variation in the complexity of the brain and differences in microglia response in the primate when compared with the rodent, require use of adult human microglia in studies of microglia biology. While methods exist for isolation of microglia from postmortem human brains, none allow culturing cells to high passage. Thus cells from the same case could not be used in parallel studies and multiple conditions. Here we report a method, which includes use of growth factors such as granulocyte macrophage colony stimulating factor, for successful culturing of adult human microglia from postmortem human brains up to 28 passages without significant loss of proliferation. Such cultures maintained their phenotype, including uptake of the scavenger receptor ligand acetylated low density lipoprotein and response to the amyloid-β peptide, and were used to extend in vivo studies in the primate brain demonstrating that inhibition of microglia activation protects neurons from amyloid-β toxicity. Significantly, microglia cultured from brains with pathologically confirmed Alzheimer's disease displayed the same characteristics as microglia cultured from normal aged brains. The method described here provides the scientific community with a new and reliable tool for mechanistic studies of human microglia function in health from childhood to old age, and in disease, enhancing the relevance of the findings to the human brain and neurodegenerative conditions.
Collapse
Affiliation(s)
- Ling Guo
- The Third People's Hospital of Yunnan Province, Kunming, China
| | - Aras Rezvanian
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lokesh Kukreja
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ramez Hoveydai
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph El Khoury
- Department of Medicine, Harvard Medical School and Division of Infectious Disease, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Changiz Geula
- Laboratory for Cognitive and Molecular Morphometry, Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Fan J, Fong T, Chen X, Chen C, Luo P, Xie H. Glia maturation factor-β: a potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr Dis Treat 2018; 14:495-504. [PMID: 29445286 PMCID: PMC5810533 DOI: 10.2147/ndt.s157099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glia maturation factor-β (GMFB) is considered to be a growth and differentiation factor for both glia and neurons. GMFB has been found to be upregulated in several neuroinflammation and neurodegeneration conditions. It may function by mediating apoptosis and by modulating the expression of superoxide dismutase, granulocyte-macrophage colony-stimulating factor, and neurotrophin. In this review, we mainly discussed the role of GMFB in several neuroinflammatory and neurodegenerative diseases. On review of the literature, we propose that GMFB may be a promising therapeutic target for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junsheng Fan
- Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tszhei Fong
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinjie Chen
- Second School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuyun Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Peng Luo
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haiting Xie
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Mehrzad J, Hosseinkhani S, Malvandi AM. Human Microglial Cells Undergo Proapoptotic Induction and Inflammatory Activation upon in vitro Exposure to a Naturally Occurring Level of Aflatoxin B1. Neuroimmunomodulation 2018; 25:176-183. [PMID: 30336475 DOI: 10.1159/000493528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Knowledge regarding interactions of AFB1 with the human nervous system and how a naturally occurring level of AFB1 could potentially induce neuroimmune dysregulation is very limited. To assess the cellular effects of AFB1 on the human brain, we used the human microglia cell line CHME5 as a model to pinpoint its potential in vivo translation. METHODS We used the CHME5 cell line culture system, multiplex qPCR, (chemi)bioluminescence, Luminex ELISA, and flow cytometry assays to evaluate the toxic effects of a naturally occurring level of AFB1 on human microglia. RESULTS A low concentration of AFB1 upregulates the mRNA expression of many proinflammatory molecules, such as TLRs, MyD88, NFκB, and CxCr4, induces intracellular ATP depletion, and increases caspase-3/7 activity at different time points following exposure to the toxin. Furthermore, AFB1-exposed microglia secreted significantly higher levels of IFN-γ and GM-CSF after treatment. We also observed a slight increase in the percentage of apoptotic microglia (annexin V+/PI-) at 48 h posttreatment. CONCLUSION Our work confirmed that the environmentally relevant level of AFB1 could cause an inflammatory reaction in human microglial cells that is potentially harmful or toxic to the homeostasis of the human central nervous system and might increase susceptibility to neurodegenerative diseases.
Collapse
Affiliation(s)
- Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran,
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Mohammad Malvandi
- International Center for T1D, Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Walker DG, Tang TM, Lue LF. Studies on Colony Stimulating Factor Receptor-1 and Ligands Colony Stimulating Factor-1 and Interleukin-34 in Alzheimer's Disease Brains and Human Microglia. Front Aging Neurosci 2017; 9:244. [PMID: 28848420 PMCID: PMC5552759 DOI: 10.3389/fnagi.2017.00244] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/12/2017] [Indexed: 01/08/2023] Open
Abstract
Microglia are dependent on signaling through the colony stimulating factor-1 receptor (CSF-1R/CD115) for growth and survival. Activation of CSF-1R can lead to cell division, while blocking CSF-1R can lead to rapid microglia cell death. CSF-1R has two ligands, the growth factors colony stimulating factor-1 (CSF-1) and the more recently identified interleukin-34 (IL-34). Studies of IL-34 activation of rodent microglia and human macrophages have suggested it has different properties to CSF-1, resulting in an anti-inflammatory reparative phenotype. The goal of this study was to identify if the responses of human postmortem brain microglia to IL-34 differed from their responses to CSF-1 with the aim of identifying different phenotypes of microglia as a result of their responses. To approach this question, we also sought to identify differences between IL-34, CSF-1, and CSF-1R expression in human brain samples to establish whether there was an imbalance in Alzheimer's disease (AD). Using human brain samples [inferior temporal gyrus (ITG) and middle temporal gyrus (MTG)] from distinct cohorts of AD, control and high pathology, or mild cognitive impairment cases, we showed that there was increased expression of CSF-1R and CSF-1 mRNAs in both series of AD cases, and reduced expression of IL-34 mRNA in AD ITG samples. There was no change in expression of these genes in RNA from cerebellum of AD, Parkinson's disease (PD), or control cases. The results suggested an imbalance in CSF-1R signaling in AD. Using RNA sequencing to compare gene expression responses of CSF-1 and IL-34 stimulated human microglia, a profile of responses to CSF-1 and IL-34 was identified. Contrary to earlier work with rodent microglia, IL-34 induced primarily a classical activation response similar to that of CSF-1. It was not possible to identify any genes expressed significantly different by IL-34-stimulated microglia compared to CSF-1-stimulated microglia, but both cytokines did induce certain alternative activation-associated genes. These profiles also showed that a number of genes associated with lysosomal function and Aβ removal were downregulated by IL-34 and CSF-1 stimulation. Compared to earlier results our data indicate that CSF-1R stimulation by IL-34 or CSF-1 produced similar types of responses by elderly postmortem brain-derived microglia.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, United States.,Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun CityArizona, AZ, United States
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, United States
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, United States.,Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun CityArizona, AZ, United States
| |
Collapse
|
40
|
Abstract
In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS.
Collapse
|
41
|
Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 2017; 125:781-795. [PMID: 28534174 DOI: 10.1007/s00702-017-1732-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology. Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy. Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions. This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
42
|
Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation 2017; 14:99. [PMID: 28476157 PMCID: PMC5418760 DOI: 10.1186/s12974-017-0871-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/22/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As the primary immune response cell in the central nervous system, microglia constantly monitor the microenvironment and respond rapidly to stress, infection, and injury, making them important modulators of neuroinflammatory responses. In diseases such as Parkinson's disease, Alzheimer's disease, multiple sclerosis, and human immunodeficiency virus-induced dementia, activation of microglia precedes astrogliosis and overt neuronal loss. Although microgliosis is implicated in manganese (Mn) neurotoxicity, the role of microglia and glial crosstalk in Mn-induced neurodegeneration is poorly understood. METHODS Experiments utilized immunopurified murine microglia and astrocytes using column-free magnetic separation. The effect of Mn on microglia was investigated using gene expression analysis, Mn uptake measurements, protein production, and changes in morphology. Additionally, gene expression analysis was used to determine the effect Mn-treated microglia had on inflammatory responses in Mn-exposed astrocytes. RESULTS Immunofluorescence and flow cytometric analysis of immunopurified microglia and astrocytes indicated cultures were 97 and 90% pure, respectively. Mn treatment in microglia resulted in a dose-dependent increase in pro-inflammatory gene expression, transition to a mixed M1/M2 phenotype, and a de-ramified morphology. Conditioned media from Mn-exposed microglia (MCM) dramatically enhanced expression of mRNA for Tnf, Il-1β, Il-6, Ccl2, and Ccl5 in astrocytes, as did exposure to Mn in the presence of co-cultured microglia. MCM had increased levels of cytokines and chemokines including IL-6, TNF, CCL2, and CCL5. Pharmacological inhibition of NF-κB in microglia using Bay 11-7082 completely blocked microglial-induced astrocyte activation, whereas siRNA knockdown of Tnf in primary microglia only partially inhibited neuroinflammatory responses in astrocytes. CONCLUSIONS These results provide evidence that NF-κB signaling in microglia plays an essential role in inflammatory responses in Mn toxicity by regulating cytokines and chemokines that amplify the activation of astrocytes.
Collapse
|
43
|
Yu AC, Neil SE, Quandt JA. High yield primary microglial cultures using granulocyte macrophage-colony stimulating factor from embryonic murine cerebral cortical tissue. J Neuroimmunol 2017; 307:53-62. [PMID: 28495139 DOI: 10.1016/j.jneuroim.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Microglia play vital roles in neurotrophic support and modulating immune or inflammatory responses to pathogens or damage/stressors during disease. This study describes the ability to establish large numbers of microglia from embryonic tissues with the addition of granulocyte-macrophage stimulating factor (GM-CSF) and characterizes their similarities to adult microglia examined ex vivo as well as their responses to inflammatory mediators. METHOD Microglia were seeded from a primary embryonic mixed cortical suspension with the addition of GM-CSF. Microglial expression of CD45, CD11b, CD11c, MHC class I and II, CD40, CD80, and CD86 was analyzed by flow cytometry and compared to those isolated using different culture methods and to the BV-2 cell line. GM-CSF microglia immunoreactivity and cytokine production was examined in response to lipopolysaccharide (LPS) and interferon-γ (IFN-γ). RESULTS Our results demonstrate GM-CSF addition during microglial culture yields higher cell numbers with greater purity than conventionally cultured primary microglia. We found that the expression of immune markers by GM-CSF microglia more closely resemble adult microglia than other methods or an immortalized BV-2 cell line. Primary differences amongst the different groups were reflected in their levels of CD39, CD86 and MHC class I expression. GM-CSF microglia produce CCL2, tumor necrosis factor-α, IL-6 and IL-10 following exposure to LPS and alter costimulatory marker expression in response to LPS or IFN-γ. Notably, GM-CSF microglia were often more responsive than the commonly used BV-2 cell line which produced negligible IL-10. CONCLUSION GM-CSF cultured microglia closely model the phenotype of adult microglia examined ex vivo. GM-CSF microglia are robust in their responses to inflammatory stimuli, altering immune markers including Iba-1 and expressing an array of cytokines characteristic of both pro-inflammatory and reparative processes. Consequently, the addition of GM-CSF for the culturing of primary microglia serves as a valuable method to increase the potential for studying microglial function ex vivo.
Collapse
Affiliation(s)
- Adam C Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Sarah E Neil
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline A Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
44
|
Koennecke M, Böscke R, Pfannerstill AC, Reers S, Elsner M, Fell B, Richter A, Bruchhage KL, Schumann S, Pries R, Klimek L, Wollenberg B. Neuronal Differentiation Capability of Nasal Polyps of Chronic Rhinosinusitis. Arch Immunol Ther Exp (Warsz) 2017; 65:431-443. [PMID: 28280847 DOI: 10.1007/s00005-017-0456-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Chronic rhinosinusitis with nasal polyps is considered a subgroup of chronic rhinosinusitis and a significant health problem, but the pathogenesis remains unclear to date. Therefore, we investigated the stemness to determine the role of stem cells in nasal polyps, with additional analysis of the neuronal differentiation potential of nasal polyp cells. We determined gene and protein expression profiles of stem cells in nasal polyp tissues, using whole genome microarray, quantitative real-time PCR (qPCR), immunohistochemistry, and flow cytometry. To evaluate the neuronal differentiation potential of nasal polyp cells, we used an efficient xenogeneic co-culture model with unsliced adult rat brain biopsies, followed by qPCR, immunohistochemistry, and growth factor antibody arrays. During gene expression analysis and immunohistochemistry, we were able to detect different stem cell markers, like Oct-4, Sox2, Klf4, c-Myc, ABCG2, Nanog, CD133, and Nestin, which confirmed the existence of stem cell like cells within nasal polyps. In addition, co-culture experiments give evidence for a guided differentiation into the neuronal lineage by overexpression of Nestin, Neurofilament, and GM-CSF. Our study demonstrated the expression of stem cell-related markers in nasal polyps. Furthermore, we characterized, for the first time, the stemness and neuronal differentiation potential of nasal polyp cells. These results gave new insights into the pathogenesis of nasal polyps and its therapeutic effectiveness could represent a promising strategy in the future.
Collapse
Affiliation(s)
- Michael Koennecke
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | - Robert Böscke
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Ann-Christin Pfannerstill
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Stefan Reers
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Martina Elsner
- Fraunhofer Research Institution for Marine Biotechnology, EMB, Lübeck, Germany
| | - Benjamin Fell
- Fraunhofer Research Institution for Marine Biotechnology, EMB, Lübeck, Germany
| | - Anja Richter
- Fraunhofer Research Institution for Marine Biotechnology, EMB, Lübeck, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Sandra Schumann
- Fraunhofer Research Institution for Marine Biotechnology, EMB, Lübeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, University Medical Center Schleswig-Holstein, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| |
Collapse
|
45
|
Zhong L, Chen XF, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li X, Wu L, Jia L, Zheng H, Painter M, Atagi Y, Liu CC, Zhang YW, Fryer JD, Xu H, Bu G. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 2017; 214:597-607. [PMID: 28209725 PMCID: PMC5339672 DOI: 10.1084/jem.20160844] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/25/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Zhong et al. describe two novel roles for soluble TREM2 (sTREM2) in regulation of proinflammatory responses and prevention of cellular apoptosis in microglia. Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune receptor expressed in microglia in the brain. A soluble form of TREM2 (sTREM2) derived from proteolytic cleavage of the cell surface receptor is increased in the preclinical stages of AD and positively correlates with the amounts of total and phosphorylated tau in the cerebrospinal fluid. However, the physiological and pathological functions of sTREM2 remain unknown. Here, we show that sTREM2 promotes microglial survival in a PI3K/Akt-dependent manner and stimulates the production of inflammatory cytokines depending on NF-κB. Variants of sTREM2 carrying AD risk-associated mutations were less potent in both suppressing apoptosis and triggering inflammatory responses. Importantly, sTREM2 delivered to the hippocampi of both wild-type and Trem2-knockout mice elevated the expression of inflammatory cytokines and induced morphological changes of microglia. Collectively, these data indicate that sTREM2 triggers microglial activation inducing inflammatory responses and promoting survival. This study has implications for the pathogenesis of AD and provides insights into targeting sTREM2 pathway for AD therapy.
Collapse
Affiliation(s)
- Li Zhong
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China .,Shenzhen Research Institute of Xiamen University, Shenzhen 518063, China
| | - Tingting Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Zhe Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Chunyan Liao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Zongqi Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Ruizhi Huang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Daxin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Xinxiu Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Linbei Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Lin Jia
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - Meghan Painter
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL 32224
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China.,Neuroscience and Aging Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen 361102, China .,Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224.,Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
46
|
Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, Haass C, Tahirovic S. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J 2016; 36:583-603. [PMID: 28007893 DOI: 10.15252/embj.201694591] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by deposition of amyloid plaques, neurofibrillary tangles, and neuroinflammation. In order to study microglial contribution to amyloid plaque phagocytosis, we developed a novel ex vivo model by co-culturing organotypic brain slices from up to 20-month-old, amyloid-bearing AD mouse model (APPPS1) and young, neonatal wild-type (WT) mice. Surprisingly, co-culturing resulted in proliferation, recruitment, and clustering of old microglial cells around amyloid plaques and clearance of the plaque halo. Depletion of either old or young microglial cells prevented amyloid plaque clearance, indicating a synergistic effect of both populations. Exposing old microglial cells to conditioned media of young microglia or addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) was sufficient to induce microglial proliferation and reduce amyloid plaque size. Our data suggest that microglial dysfunction in AD may be reversible and their phagocytic ability can be modulated to limit amyloid accumulation. This novel ex vivo model provides a valuable system for identification, screening, and testing of compounds aimed to therapeutically reinforce microglial phagocytosis.
Collapse
Affiliation(s)
- Anna Daria
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany
| | - Heike Hampel
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and dementia research (ISD), Ludwig-Maximilians Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Ludwig-Maximilians Universität München, Munich, Germany .,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| |
Collapse
|
47
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
48
|
Sepulveda-Diaz JE, Ouidja MO, Socias SB, Hamadat S, Guerreiro S, Raisman-Vozari R, Michel PP. A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responsesin vitro. Glia 2016; 64:1912-24. [DOI: 10.1002/glia.23032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Julia E. Sepulveda-Diaz
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Mohand O. Ouidja
- Laboratoire Croissance, Régénération, Réparation Et Régénération Tissulaires (CRRET)/EAC CNRS 7149, Université Paris Est Créteil, Université Paris Est; Créteil France
| | - Sergio B. Socias
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
- Facultad De Bioquímica, Química Y Farmacia (UNT), Instituto Superior De Investigaciones Biológicas, INSIBIO (CONICET-UNT) and Instituto De Química Biológica “Dr Bernabé Bloj,”; Tucumán Argentina
| | - Sabah Hamadat
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Serge Guerreiro
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Rita Raisman-Vozari
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Patrick P. Michel
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| |
Collapse
|
49
|
Chen W, Abud EA, Yeung ST, Lakatos A, Nassi T, Wang J, Blum D, Buée L, Poon WW, Blurton-Jones M. Increased tauopathy drives microglia-mediated clearance of beta-amyloid. Acta Neuropathol Commun 2016; 4:63. [PMID: 27339073 PMCID: PMC4918195 DOI: 10.1186/s40478-016-0336-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease is characterized by the accumulation of β-amyloid (Aβ) plaques and tau-laden neurofibrillary tangles. Emerging studies suggest that in neurodegenerative diseases, aggregation of one protein species can promote other proteinopathies and that inflammation plays an important role in this process. To study the interplay between Aβ deposition, tau pathology, and microgliosis, we established a new AD transgenic mouse model by crossing 5xfAD mice with Thy-Tau22 transgenic mice. The resulting 'T5x' mice exhibit a greater than three-fold increase in misfolded and hyperphosphorylated tau and further substantiates the hypothesis that Aβ accelerates tau pathology. Surprisingly, T5x mice exhibit a 40-50 % reduction in Aβ plaque load and insoluble Aβ species when compared with aged-matched 5xfAD littermates. T5x mice exhibit significant changes in cytokine production, an almost doubling of microglial number, and a dramatic shift in microglia activation state. Furthermore, T5x microglia exhibit increased phagocytic capacity that enhances the clearance of insoluble Aβ and decreasing plaque load. Therefore, our results suggest that strategies to increase the phagocytic ability of microglia can be employed to reduce Aβ and that tau-induced changes in microglial activation state can promote the clearance of Aβ.
Collapse
|
50
|
Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson WEB, Baba H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2016; 33:1902-14. [PMID: 25809552 DOI: 10.1002/stem.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Collapse
Affiliation(s)
- Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Matsuo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Daisuke Sugita
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Ai Yoshida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - William E B Johnson
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Hisatoshi Baba
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| |
Collapse
|