1
|
Li M, Dang X, Chen Y, Chen Z, Xu X, Zhao Z, Wu D. Cognitive processing speed and accuracy are intrinsically different in genetic architecture and brain phenotypes. Nat Commun 2024; 15:7786. [PMID: 39242605 PMCID: PMC11379965 DOI: 10.1038/s41467-024-52222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Since the birth of cognitive science, researchers have used reaction time and accuracy to measure cognitive ability. Although recognition of these two measures is often based on empirical observations, the underlying consensus is that most cognitive behaviors may be along two fundamental dimensions: cognitive processing speed (CPS) and cognitive processing accuracy (CPA). In this study, we used genomic-wide association studies (GWAS) data from 14 cognitive traits to show the presence of those two factors and revealed the specific neurobiological basis underlying them. We identified that CPS and CPA had distinct brain phenotypes (e.g. white matter microstructure), neurobiological bases (e.g. postsynaptic membrane), and developmental periods (i.e. late infancy). Moreover, those two factors showed differential associations with other health-related traits such as screen exposure and sleep status, and a significant causal relationship with psychiatric disorders such as major depressive disorder and schizophrenia. Utilizing an independent cohort from the Adolescent Brain Cognitive Development (ABCD) study, we also uncovered the distinct contributions of those two factors on the cognitive development of young adolescents. These findings reveal two fundamental factors underlying various cognitive abilities, elucidate the distinct brain structural fingerprint and genetic architecture of CPS and CPA, and hint at the complex interrelationship between cognitive ability, lifestyle, and mental health.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Xixi Dang
- Department of Psychology, Hangzhou Normal University, Hangzhou, China
| | - Yiwei Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Zhifan Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, 310027, China.
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
- Binjiang Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Song H, Bharadwaj PK, Raichlen DA, Habeck CG, Grilli MD, Huentelman MJ, Hishaw GA, Trouard TP, Alexander GE. Cortical lobar volume reductions associated with homocysteine-related subcortical brain atrophy and poorer cognition in healthy aging. Front Aging Neurosci 2024; 16:1406394. [PMID: 39170895 PMCID: PMC11335513 DOI: 10.3389/fnagi.2024.1406394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Homocysteine (Hcy) is a cardiovascular risk factor implicated in cognitive impairment and cerebrovascular disease but has also been associated with Alzheimer's disease. In 160 healthy older adults (mean age = 69.66 ± 9.95 years), we sought to investigate the association of cortical brain volume with white matter hyperintensity (WMH) burden and a previously identified Hcy-related multivariate network pattern showing reductions in subcortical gray matter (SGM) volumes of hippocampus and nucleus accumbens with relative preservation of basal ganglia. We additionally evaluated the potential role of these brain imaging markers as a series of mediators in a vascular brain pathway leading to age-related cognitive dysfunction in healthy aging. We found reductions in parietal lobar gray matter associated with the Hcy-SGM pattern, which was further associated with WMH burden. Mediation analyses revealed that slowed processing speed related to aging, but not executive functioning or memory, was mediated sequentially through increased WMH lesion volume, greater Hcy-SGM pattern expression, and then smaller parietal lobe volume. Together, these findings suggest that volume reductions in parietal gray matter associated with a pattern of Hcy-related SGM volume differences may be indicative of slowed processing speed in cognitive aging, potentially linking cardiovascular risk to an important aspect of cognitive dysfunction in healthy aging.
Collapse
Affiliation(s)
- Hyun Song
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Pradyumna K. Bharadwaj
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Christian G. Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute, Columbia University, New York, NY, United States
| | - Matthew D. Grilli
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Matthew J. Huentelman
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Georg A. Hishaw
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Theodore P. Trouard
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
- Arizona Alzheimer's Consortium, Phoenix, AZ, United States
- Department of Psychiatry, University of Arizona, Tucson, AZ, United States
- Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Goodman ZT, Nomi JS, Kornfeld S, Bolt T, Saumure RA, Romero C, Bainter SA, Uddin LQ. Brain signal variability and executive functions across the life span. Netw Neurosci 2024; 8:226-240. [PMID: 38562287 PMCID: PMC10918754 DOI: 10.1162/netn_a_00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
Neural variability is thought to facilitate survival through flexible adaptation to changing environmental demands. In humans, such capacity for flexible adaptation may manifest as fluid reasoning, inhibition of automatic responses, and mental set-switching-skills falling under the broad domain of executive functions that fluctuate over the life span. Neural variability can be quantified via the BOLD signal in resting-state fMRI. Variability of large-scale brain networks is posited to underpin complex cognitive activities requiring interactions between multiple brain regions. Few studies have examined the extent to which network-level brain signal variability across the life span maps onto high-level processes under the umbrella of executive functions. The present study leveraged a large publicly available neuroimaging dataset to investigate the relationship between signal variability and executive functions across the life span. Associations between brain signal variability and executive functions shifted as a function of age. Limbic-specific variability was consistently associated with greater performance across subcomponents of executive functions. Associations between executive function subcomponents and network-level variability of the default mode and central executive networks, as well as whole-brain variability, varied across the life span. Findings suggest that brain signal variability may help to explain to age-related differences in executive functions across the life span.
Collapse
Affiliation(s)
| | - Jason S. Nomi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL, USA
- REHAB Basel, Klinik für Neurorehabilitation und Paraplegiologie, Basel, Switzerland
| | - Taylor Bolt
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger A. Saumure
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Celia Romero
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Sierra A. Bainter
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Lucina Q. Uddin
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Hung TH, Chen VCH, Chuang YC, Hsu YH, Wu WC, Tsai YH, McIntyre RS, Weng JC. Investigating the effect of hypertension on vascular cognitive impairment by using the resting-state functional connectome. Sci Rep 2024; 14:4580. [PMID: 38403657 PMCID: PMC10894879 DOI: 10.1038/s41598-024-54996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
Hypertension (HTN) affects over 1.2 billion individuals worldwide and is defined as systolic blood pressure (BP) ≥ 140 mmHg and diastolic BP ≥ 90 mmHg. Hypertension is also considered a high risk factor for cerebrovascular diseases, which may lead to vascular cognitive impairment (VCI). VCI is associated with executive dysfunction and is also a transitional stage between hypertension and vascular dementia. Hence, it is essential to establish a reliable approach to diagnosing the severity of VCI. In 28 HTN (51-83 yrs; 18 males, 10 females) and 28 healthy controls (HC) (51-75 yrs; 7 males, 21 females), we investigated which regions demonstrate alterations in the resting-state functional connectome due to vascular cognitive impairment in HTN by using the amplitude of the low-frequency fluctuations (ALFF), regional homogeneity (ReHo), graph theoretical analysis (GTA), and network-based statistic (NBS) methods. In the group comparison between ALFF/ReHo, HTN showed reduced spontaneous activity in the regions corresponding to vascular or metabolic dysfunction and enhanced brain activity, mainly in the primary somatosensory cortex and prefrontal areas. We also observed cognitive dysfunction in HTN, such as executive function, processing speed, and memory. Both the GTA and NBS analyses indicated that the HTN demonstrated complex local segregation, worse global integration, and weak functional connectivity. Our findings show that resting-state functional connectivity was altered, particularly in the frontal and parietal regions, by hypertensive individuals with potential vascular cognitive impairment.
Collapse
Affiliation(s)
- Tai-Hsin Hung
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Chen Chuang
- Institute of Medical Device and Imaging, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Wen-Chau Wu
- Institute of Medical Device and Imaging, Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Roger S McIntyre
- Mood Disorder Psychopharmacology Unit, Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33302, Taiwan.
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
6
|
Hsu YH, Lee M, Pan KL, Chen CY, Hung TH, Chen VCH. Neuropsychiatric and cognitive symptoms in people with hypertension: An examination with the NINDS-CSN consensus protocol. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:39-47. [PMID: 34658278 DOI: 10.1080/23279095.2021.1986826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hypertension has been associated with risk of cognitive impairments. The American Heart Association recommended the use of the harmonized neuropsychological protocol suggested by the National Institute of Neurologic Disorders and Stroke and the Canadian Stroke Network (NINDS-CSN) for studying related cognitive impairments. Initially designed for vascular cognitive impairment, empirical data of results from NINDS-CSN protocol has not been well-established in hypertension. The present study recruited 58 adults diagnosed with hypertension and 44 normotensive controls. Tests from the NINDS-CSN protocol were given in three lengths, including neuropsychological tests and neuropsychiatric inventories. The results showed higher proportions of hypertensive adults with impairments on tests of memory and executive functions and that they performed worse as a group on several tests from the 30-minute protocol, but not on the other additional tests in the full-length version, nor on cognitive screening test in the 5-minute protocol such as the Mini-Mental State Examination or the Montreal Cognitive Assessment. There was no significant group difference on neuropsychiatric symptoms. These findings suggested that the 30-minute version of the NINDS-CSN protocol with the two supplemental tests was able to reveal selective cognitive deficits in hypertensive adults and provide a practical solution for related studies, balancing between the requirement of sensitivity, domain variety, and brevity.
Collapse
Affiliation(s)
- Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| | - Meng Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Heart Failure Center, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chen-Yu Chen
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Tai-Hsin Hung
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
7
|
Acosta JN, Haider SP, Rivier C, Leasure AC, Sheth KN, Falcone GJ, Payabvash S. Blood pressure-related white matter microstructural disintegrity and associated cognitive function impairment in asymptomatic adults. Stroke Vasc Neurol 2023; 8:358-367. [PMID: 36878613 PMCID: PMC10647862 DOI: 10.1136/svn-2022-001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We aimed to investigate the white matter (WM) microstructural/cytostructural disintegrity patterns related to higher systolic blood pressure (SBP), and whether they mediate SBP effects on cognitive performance in middle-aged adults. METHODS Using the UK Biobank study of community-dwelling volunteers aged 40-69 years, we included participants without a history of stroke, dementia, demyelinating disease or traumatic brain injury. We investigated the association of SBP with MRI diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (a measure of neurite density), isotropic (free) water volume fraction (ISOVF) and orientation dispersion across WM tracts. Then, we determined whether WM diffusion metrics mediated the effects of SBP on cognitive function. RESULTS We analysed 31 363 participants-mean age of 63.8 years (SD: 7.7), and 16 523 (53%) females. Higher SBP was associated with lower FA and neurite density, but higher MD and ISOVF. Among different WM tracts, diffusion metrics of the internal capsule anterior limb, external capsule, superior and posterior corona radiata were most affected by higher SBP. Among seven cognitive metrics, SBP levels were only associated with 'fluid intelligence' (adjusted p<0.001). In mediation analysis, the averaged FA of external capsule, internal capsule anterior limb and superior cerebellar peduncle mediated 13%, 9% and 13% of SBP effects on fluid intelligence, while the averaged MD of external capsule, internal capsule anterior and posterior limbs, and superior corona radiata mediated 5%, 7%, 7% and 6% of SBP effects on fluid intelligence, respectively. DISCUSSION Among asymptomatic adults, higher SBP is associated with pervasive WM microstructure disintegrity, partially due to reduced neuronal count, which appears to mediate SBP adverse effects on fluid intelligence. Diffusion metrics of select WM tracts, which are most reflective of SBP-related parenchymal damage and cognitive impairment, may serve as imaging biomarkers to assess treatment response in antihypertensive trials.
Collapse
Affiliation(s)
- Julián N Acosta
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefan P Haider
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Otorhinolaryngology, Ludwig Maximilians University Munich, Munchen, Germany
| | - Cyprien Rivier
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Audrey C Leasure
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Guido J Falcone
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Shaked D, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. White matter integrity as a mediator between socioeconomic status and executive function. Front Hum Neurosci 2022; 16:1021857. [PMID: 36466616 PMCID: PMC9716285 DOI: 10.3389/fnhum.2022.1021857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/03/2023] Open
Abstract
Introduction Lower socioeconomic status (SES) is associated with poorer executive function, but the neural mechanisms of this association remain unclear. As healthy brain communication is essential to our cognitive abilities, white matter integrity may be key to understanding socioeconomic disparities. Methods Participants were 201 African American and White adults (ages 33-72) from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) SCAN study. Diffusion tensor imaging was used to estimate regional fractional anisotropy as a measure of white matter integrity. Adjusting for age, analyses examined if integrity of the anterior limb of the internal capsule (ALIC), external capsule (EC), superior longitudinal fasciculus (SLF), and cingulum mediated SES-executive function relations. Results Lower SES was related to poorer cognitive performance and white matter integrity. Lower Trails B performance was related to poorer integrity of the ALIC, EC, and SLF, and lower Stroop performance was associated with poorer integrity of the ALIC and EC. ALIC mediated the SES-Trails B relation, and EC mediated the SES-Trails B and SES-Stroop relations. Sensitivity analyses revealed that (1) adjustment for race rendered the EC mediations non-significant, (2) when using poverty status and continuous education as predictors, results were largely the same, (3) at least some of the study's findings may generalize to processing speed, (4) mediations are not age-dependent in our sample, and (5) more research is needed to understand the role of cardiovascular risk factors in these models. Discussion Findings demonstrate that poorer white matter integrity helps explain SES disparities in executive function and highlight the need for further clarification of the biopsychosocial mechanisms of the SES-cognition association.
Collapse
Affiliation(s)
- Danielle Shaked
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
- Department of Psychology, VA Boston Health Care System, Boston, MA, United States
| | - Leslie I. Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen L. Seliger
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Shari R. Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| |
Collapse
|
9
|
Seitz-Holland J, Wojcik JD, Cetin-Karayumak S, Lyall AE, Pasternak O, Rathi Y, Vangel M, Pearlson G, Tamminga C, Sweeney JA, Clementz BA, Schretlen DA, Viher PV, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Kelly S, Shenton ME, Keshavan MS, Mesholam-Gately RI, Kubicki M. Cognitive deficits, clinical variables, and white matter microstructure in schizophrenia: a multisite harmonization study. Mol Psychiatry 2022; 27:3719-3730. [PMID: 35982257 PMCID: PMC10538303 DOI: 10.1038/s41380-022-01731-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023]
Abstract
Cognitive deficits are among the best predictors of real-world functioning in schizophrenia. However, our understanding of how cognitive deficits relate to neuropathology and clinical presentation over the disease lifespan is limited. Here, we combine multi-site, harmonized cognitive, imaging, demographic, and clinical data from over 900 individuals to characterize a) cognitive deficits across the schizophrenia lifespan and b) the association between cognitive deficits, clinical presentation, and white matter (WM) microstructure. Multimodal harmonization was accomplished using T-scores for cognitive data, previously reported standardization methods for demographic and clinical data, and an established harmonization method for imaging data. We applied t-tests and correlation analysis to describe cognitive deficits in individuals with schizophrenia. We then calculated whole-brain WM fractional anisotropy (FA) and utilized regression-mediation analyses to model the association between diagnosis, FA, and cognitive deficits. We observed pronounced cognitive deficits in individuals with schizophrenia (p < 0.006), associated with more positive symptoms and medication dosage. Regression-mediation analyses showed that WM microstructure mediated the association between schizophrenia and language/processing speed/working memory/non-verbal memory. In addition, processing speed mediated the influence of diagnosis and WM microstructure on the other cognitive domains. Our study highlights the critical role of cognitive deficits in schizophrenia. We further show that WM is crucial when trying to understand the role of cognitive deficits, given that it explains the association between schizophrenia and cognitive deficits (directly and via processing speed).
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joanne D Wojcik
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Vangel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Carol Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David A Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petra Verena Viher
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Aristotle Voineskos
- Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, New York, NY, USA
| | - Anil K Malhotra
- The Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Andersson P, Li X, Persson J. The association between control of interference and white-matter integrity: A cross-sectional and longitudinal investigation. Neurobiol Aging 2022; 114:49-60. [DOI: 10.1016/j.neurobiolaging.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
|
11
|
Riphagen JM, Suresh MB, Salat DH. The canonical pattern of Alzheimer's disease atrophy is linked to white matter hyperintensities in normal controls, differently in normal controls compared to in AD. Neurobiol Aging 2022; 114:105-112. [PMID: 35414420 PMCID: PMC9387174 DOI: 10.1016/j.neurobiolaging.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
White matter signal abnormalities (WMSA), either hypo- or hyperintensities in MRI imaging, are considered a proxy of cerebrovascular pathology and contribute to, and modulate, the clinical presentation of Alzheimer's disease (AD), with cognitive dysfunction being apparent at lower levels of amyloid and/or tau pathology when lesions are present. To what extent the topography of cortical thinning associated with AD may be explained by WMSA remains unclear. Cortical thickness group difference maps and subgroup analyses show that the effect of WMSA on cortical thickness in cognitively normal participants has a higher overlap with the canonical pattern of AD, compared to AD participants. (Age and sex-matched group of 119 NC (AV45 PET negative, CDR = 0) versus 119 participants with AD (AV45 PET-positive, CDR > 0.5). The canonical patterns of cortical atrophy thought to be specific to Alzheimer's disease are strongly linked to cerebrovascular pathology supporting a reinterpretation of the classical models of AD suggesting that a part of the typical AD pattern is due to co-localized cortical loss before the onset of AD.
Collapse
|
12
|
Hoagey DA, Lazarus LTT, Rodrigue KM, Kennedy KM. The effect of vascular health factors on white matter microstructure mediates age-related differences in executive function performance. Cortex 2021; 141:403-420. [PMID: 34130048 PMCID: PMC8319097 DOI: 10.1016/j.cortex.2021.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
Even within healthy aging, vascular risk factors can detrimentally influence cognition, with executive functions (EF) particularly vulnerable. Fronto-parietal white matter (WM) connectivity in part, supports EF and may be particularly sensitive to vascular risk. Here, we utilized structural equation modeling in 184 healthy adults (aged 20-94 years of age) to test the hypotheses that: 1) fronto-parietal WM microstructure mediates age effects on EF; 2) higher blood pressure (BP) and white matter hyperintensity (WMH) burden influences this association. All participants underwent comprehensive cognitive and neuropsychological testing including tests of processing speed, executive function (with a focus on tasks that require switching and inhibition) and completed an MRI scanning session that included FLAIR imaging for semi-automated quantification of white matter hyperintensity burden and diffusion-weighted imaging for tractography. Structural equation models were specified with age (as a continuous variable) and blood pressure predicting within-tract WMH burden and fractional anisotropy predicting executive function and processing speed. Results indicated that fronto-parietal white matter of the genu of the corpus collosum, superior longitudinal fasciculus, and the inferior frontal occipital fasciculus (but not cortico-spinal tract) mediated the association between age and EF. Additionally, increased systolic blood pressure and white matter hyperintensity burden within these white matter tracts contribute to worsening white matter health and are important factors underlying age-brain-behavior associations. These findings suggest that aging brings about increases in both BP and WMH burden, which may be involved in the degradation of white matter connectivity and in turn, negatively impact executive functions as we age.
Collapse
Affiliation(s)
- David A Hoagey
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Linh T T Lazarus
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Karen M Rodrigue
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA
| | - Kristen M Kennedy
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, Center for Vital Longevity, Dallas, TX, USA.
| |
Collapse
|
13
|
Rost NS, Meschia JF, Gottesman R, Wruck L, Helmer K, Greenberg SM. Cognitive Impairment and Dementia After Stroke: Design and Rationale for the DISCOVERY Study. Stroke 2021; 52:e499-e516. [PMID: 34039035 PMCID: PMC8316324 DOI: 10.1161/strokeaha.120.031611] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke is a leading cause of the adult disability epidemic in the United States, with a major contribution from poststroke cognitive impairment and dementia (PSCID), the rates of which are disproportionally high among the health disparity populations. Despite the PSCID's overwhelming impact on public health, a knowledge gap exists with regard to the complex interaction between the acute stroke event and highly prevalent preexisting brain pathology related to cerebrovascular and Alzheimer disease or related dementia. Understanding the factors that modulate PSCID risk in relation to index stroke event is critically important for developing personalized prognostication of PSCID, targeted interventions to prevent it, and for informing future clinical trial design. The DISCOVERY study (Determinants of Incident Stroke Cognitive Outcomes and Vascular Effects on Recovery), a collaborative network of thirty clinical performance clinical sites with access to acute stroke populations and the expertise and capacity for systematic assessment of PSCID will address this critical challenge. DISCOVERY is a prospective, multicenter, observational, nested-cohort study of 8000 nondemented ischemic and hemorrhagic stroke patients enrolled at the time of index stroke and followed for a minimum of 2 years, with serial cognitive evaluations and assessments of functional outcome, with subsets undergoing research magnetic resonance imaging and positron emission tomography and comprehensive genetic/genomic and fluid biomarker testing. The overall scientific objective of this study is to elucidate mechanisms of brain resilience and susceptibility to PSCID in diverse US populations based on complex interplay between life-course exposure to multiple vascular risk factors, preexisting burden of microvascular and neurodegenerative pathology, the effect of strategic acute stroke lesions, and the mediating effect of genomic and epigenomic variation.
Collapse
Affiliation(s)
- Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Karl Helmer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
15
|
Ferretjans R, de Souza RP, Panizzutti B, Ferrari P, Mantovani L, de Campos-Carli SM, Santos RR, Guimarães FC, Teixeira AL, Gama CS, Salgado JV. Cannabinoid receptor gene polymorphisms and cognitive performance in patients with schizophrenia and controls. ACTA ACUST UNITED AC 2021; 44:26-34. [PMID: 34190825 PMCID: PMC8827365 DOI: 10.1590/1516-4446-2020-1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
Objective: To test the hypothesis that genetic variations of cannabinoid receptors contribute to the pathophysiology of cognitive deficits in schizophrenia. Methods: In this genetic association case-control study, cannabinoid receptor polymorphisms CNR1 rs12720071 and CNR2 rs2229579 were tested for association with neurocognitive performance in 69 patients with schizophrenia and 45 healthy controls. Neurocognition was assessed by the Brief Assessment of Cognition in Schizophrenia (BACS). Results: We found a consistent association between CNR1 rs12720071 polymorphism and the cognitive performance of patients in several cognitive domains. Patients with C/C polymorphism presented significantly worse performance in motor speed, verbal fluency, attention/processing speed and reasoning/problem solving. Conclusion: Although limited, our data support the hypothesis that CNR1 variations may be associated with the pathogenesis of cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Rodrigo Ferretjans
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renan P de Souza
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Pâmela Ferrari
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Psiquiatria Molecular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lucas Mantovani
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Salvina M de Campos-Carli
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rafael R Santos
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fernanda C Guimarães
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Antonio L Teixeira
- Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, MG, Brazil.,Neuropsychiatry Program, UTHealth Houston, TX, USA
| | - Clarissa S Gama
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento (PPGPSIQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João V Salgado
- Programa Interdisciplinar de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Beydoun MA, Shaked D, Hossain S, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Corrigendum: Vitamin D, Folate, and Cobalamin Serum Concentrations Are Related to Brain Volume and White Matter Integrity in Urban Adults. Front Aging Neurosci 2021; 13:660049. [PMID: 33953664 PMCID: PMC8092045 DOI: 10.3389/fnagi.2021.660049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) the Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Danielle Shaked
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) the Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States.,Department of Psychology, University of Maryland, Baltimore County, MD, United States
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) the Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States
| | - Leslie I Katzel
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States.,Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christos Davatzikos
- Section for Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guray Erus
- Section for Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) the Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) the Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, MD, United States.,Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States.,Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Patterns of white matter hyperintensities associated with cognition in middle-aged cognitively healthy individuals. Brain Imaging Behav 2021; 14:2012-2023. [PMID: 31278650 PMCID: PMC7572336 DOI: 10.1007/s11682-019-00151-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
White matter hyperintensities (WMH) are commonly detected in the brain of elderly individuals and have been associated with a negative impact on multiple cognitive domains. We aim to investigate the impact of global and regional distribution of WMH on episodic memory and executive function in middle-aged cognitively unimpaired participants [N = 561 (45–75 years)] enriched for Alzheimer’s disease risk factors. WMH were automatically segmented from FLAIR, T1 and FSE MR images. WMH load was calculated both globally and regionally. At each cerebral lobe, regional WMH load was measured at four equidistant layers extending from the lateral ventricles to juxtacortical areas. Cognition was measured by The Memory Binding Test (MBT) and WAIS-IV subtests. Global composite z-scores were calculated for the two cognitive domains. Association between global and regional WMH measurements were sought against cognitive measures, both in global composite scores and in individual subtests. We adjusted cognition and WMH burden for the main sociodemographic (age, sex and education) and genetic factors (APOE-ε4). Memory and executive function were significantly associated with global WMH load. Regionally, lower executive performance was mainly associated with higher deep WMH load in frontal areas and, to a lower degree, in occipital, parietal and temporal regions. Lower episodic memory performance was correlated with higher WMH burden in deep frontal and occipital areas. Our novel methodological approach of regional analysis allowed us to reveal the association between cognition and WMH in strategic brain locations. Our results suggest that, even a small WMH load can impact cognition in cognitively unimpaired middle-aged subjects.
Collapse
|
18
|
Ribeiro VT, Cordeiro TME, Filha RDS, Perez LG, Caramelli P, Teixeira AL, de Souza LC, Simões E Silva AC. Circulating Angiotensin-(1-7) Is Reduced in Alzheimer's Disease Patients and Correlates With White Matter Abnormalities: Results From a Pilot Study. Front Neurosci 2021; 15:636754. [PMID: 33897352 PMCID: PMC8063113 DOI: 10.3389/fnins.2021.636754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Despite the extensive research, its pathophysiology remains largely unelucidated. Currently, more attention is being given to the disease’s vascular and inflammatory aspects. In this context, the renin-angiotensin system (RAS) emerges as a credible player in AD pathogenesis. The RAS has multiple physiological functions, conducted by its two opposing axes: the classical, led by Angiotensin II (Ang II), and the alternative, driven by Angiotensin-(1–7) [Ang-(1–7)]. These peptides were shown to interact with AD pathology in animal studies, but evidence from humans is scarce. Only 20 studies dosed RAS molecules in AD patients’ bloodstream, none of which assessed both axes simultaneously. Therefore, we conducted a cross-sectional, case-control exploratory study to compare plasma levels of Ang II and Ang-(1–7) in AD patients vs. age-matched controls. Within each group, we searched for correlations between RAS biomarkers and measures from magnetic resonance imaging (MRI). Methods We evaluated patients with AD (n = 14) and aged-matched controls (n = 14). Plasma Ang II and Ang-(1–7) were dosed using ELISA. Brain MRI was performed in a 3 Tesla scan, and a three-dimensional T1-weighted volumetric sequence was obtained. Images were then processed by FreeSurfer to calculate: (1) white matter hypointensities (WMH) volume; (2) volumes of hippocampus, medial temporal cortex, and precuneus. Statistical analyses used non-parametrical tests (Mann-Whitney and Spearman). Results Ang-(1–7) levels in plasma were significantly lower in the AD patients than in controls [median (25th–75th percentiles)]: AD [101.5 (62.43–126.4)] vs. controls [209.3 (72–419.1)], p = 0.014. There was no significant difference in circulating Ang II. In the AD patients, but not in controls, there was a positive and significant correlation between Ang-(1–7) values and WMH volumes (Spearman’s rho = 0.56, p = 0.038). Ang-(1–7) did not correlate with cortical volumes in AD or in controls. Ang II did not correlate with any MRI variable in none of the groups. Conclusion If confirmed, our results strengthen the hypothesis that RAS alternative axis is downregulated in AD, and points to a possible interaction between Ang-(1–7) and cerebrovascular lesions in AD.
Collapse
Affiliation(s)
- Victor Teatini Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roberta da Silva Filha
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Giandoni Perez
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program and Immuno-Psychiatry Lab, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Leonardo Cruz de Souza
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Chai Y, Ji C, Coloigner J, Choi S, Balderrama M, Vu C, Tamrazi B, Coates T, Wood JC, O'Neil SH, Lepore N. Tract-specific analysis and neurocognitive functioning in sickle cell patients without history of overt stroke. Brain Behav 2021; 11:e01978. [PMID: 33434353 PMCID: PMC7994688 DOI: 10.1002/brb3.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. SCD patients are at increased risks for strokes and neurocognitive deficit, even though neurovascular screening and treatments have lowered the rate of overt strokes. Tract-specific analysis (TSA) is a statistical method to evaluate microstructural WM damage in neurodegenerative disorders, using diffusion tensor imaging (DTI). METHODS We utilized TSA and compared 11 major brain WM tracts between SCD patients with no history of overt stroke, anemic controls, and healthy controls. We additionally examined the relationship between the most commonly used DTI metric of WM tracts and neurocognitive performance in the SCD patients and healthy controls. RESULTS Disruption of WM microstructure orientation-dependent metrics for the SCD patients was found in the genu of the corpus callosum (CC), cortico-spinal tract, inferior fronto-occipital fasciculus, right inferior longitudinal fasciculus, superior longitudinal fasciculus, and left uncinate fasciculus. Neurocognitive performance indicated slower processing speed and lower response inhibition skills in SCD patients compared to controls. TSA abnormalities in the CC were significantly associated with measures of processing speed, working memory, and executive functions. CONCLUSION Decreased DTI-derived metrics were observed on six tracts in chronically anemic patients, regardless of anemia subtype, while two tracks with decreased measures were unique to SCD patients. Patients with WMHs had more significant FA abnormalities. Decreased FA values in the CC significantly correlated with all nine neurocognitive tests, suggesting a critical importance for CC in core neurocognitive processes.
Collapse
Affiliation(s)
- Yaqiong Chai
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Chaoran Ji
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Julie Coloigner
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Soyoung Choi
- Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Melissa Balderrama
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Chau Vu
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Benita Tamrazi
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Thomas Coates
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Hematology, Oncology, and Blood and Marrow TransplantationChildren's Hospital Los AngelesLos AngelesCAUSA
| | - John C. Wood
- Division of CardiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Sharon H. O'Neil
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of NeurologyChildren's Hospital Los AngelesLos AngelesCAUSA
- The Saban Research InstituteChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Natasha Lepore
- CIBORG LaboratoryDepartment of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of RadiologyChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of PediatricsKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
20
|
Alzheimer's disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry 2021; 26:897-906. [PMID: 31138892 DOI: 10.1038/s41380-019-0437-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
The locus coeruleus (LC) supplies norepinephrine to the brain, is one of the first sites of tau deposition in Alzheimer's disease (AD) and modulates a variety of behaviors and cognitive functions. Transgenic mouse models showed that norepinephrine dysregulation after LC lesions exacerbates inflammatory responses, blood-brain barrier leakage (BBB), and cognitive deficits. Here, we investigated relationships between central norepinephrine metabolism, tau and beta-amyloid (Aβ), inflammation, BBB-dysfunction, neuropsychiatric problems, and memory in-vivo in a memory clinic population (total n = 111, 60 subjective cognitive decline, 36 mild cognitively impaired, and 19 AD dementia). Cerebrospinal fluid (CSF) and blood samples were collected and analyzed for 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), CSF/plasma albumin ratio (Q-alb), Aβ, phosphorylated tau, and interleukins. The verbal word learning task and the neuropsychiatric inventory assessed memory functioning and neuropsychiatric symptoms. Structural equation models tested the relationships between all fluid markers, cognition and behavior, corrected for age, education, sex, and clinical dementia rating score. Our results showed that neuropsychiatric symptoms show strong links to both MHPG and p-tau, whereas memory deficits are linked to MHPG via a combination of p-tau and inflammation-driven amyloidosis (30-35% indirect effect contribution). These results suggest that the LC-norepinephrine may be pivotal to understand links between AD pathology and behavioral and cognitive deficits in AD.
Collapse
|
21
|
Richards E, Thornton IM, Bayer A, Tales A. Inhibitory control deficits in vascular cognitive impairment revealed using the MILO task. Neuropsychologia 2021; 155:107794. [PMID: 33610617 DOI: 10.1016/j.neuropsychologia.2021.107794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
We used the MILO (Multi-Item Localization) task to characterise the performance of a group of older adults diagnosed with mild to moderate vascular cognitive impairment (VCI). The MILO task is designed to explore the temporal context of visual search and in addition to measuring overall completion time, provides a profile of serial reaction time (SRT) patterns across all items in a sequence. Of particular interest here is the Vanish/Remain MILO manipulation that can identify problems with inhibitory control during search. Typically, SRT functions closely overlap, regardless of whether items Vanish or Remain visible when selected, indicating an ability to ignore previously selected targets. Based on the distributed nature of VCI-related pathology and previous visual search studies from our group, we speculated that MILO performance would be compromised in this group of participants when items remained visible after being selected relative to when they vanished. Compared to cognitively healthy, age-matched control participants, the performance of VCI participants was characterised by overall slowing, increased error rates, and crucially, a compromised ability to ignore past locations. As predicted, the Vanish versus Remain SRT functions of VCI participants significantly diverged towards the end of the sequence, which was not the case for control groups. Overall, our findings suggest that the MILO task could be a useful tool for identifying non-age-related changes in behaviour with patient populations, and more generally hints at a possible inhibitory deficit in VCI.
Collapse
Affiliation(s)
- Emma Richards
- Centre for Innovative Ageing, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Ian M Thornton
- Department of Cognitive Science, University of Malta, Msida, MSD 2080, Malta
| | - Antony Bayer
- School of Medicine, Cardiff University, Cardiff, CF64 2XX, Wales, UK
| | - Andrea Tales
- Centre for Innovative Ageing, Swansea University, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
22
|
Westwood SJ, Radua J, Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Psychiatry Neurosci 2021; 46:E14-E33. [PMID: 33009906 PMCID: PMC7955851 DOI: 10.1503/jpn.190179] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) could provide treatment alternatives to stimulant medication for attention-deficit/hyperactivity disorder (ADHD), given some evidence for improvements in cognition and clinical symptoms. However, despite a lack of solid evidence for their use, rTMS and tDCS are already offered clinically and commercially in ADHD. This systematic review and meta-analysis aimed to critically appraise rTMS and tDCS studies in ADHD to inform good research and clinical practice. METHODS A systematic search (up to February 2019) identified 18 studies (rTMS 4, tDCS 14; 311 children and adults with ADHD) stimulating mainly the dorsolateral prefrontal cortex (dlPFC). We included 12 anodal tDCS studies (232 children and adults with ADHD) in 3 random-effects meta-analyses of cognitive measures of attention, inhibition and processing speed. RESULTS The review of rTMS and tDCS showed positive effects in some functions but not others, and little evidence for clinical improvement. The meta-analyses of 1 to 5 sessions of anodal tDCS over mainly the left or bilateral dlPFC showed trend-level improvements in inhibition and processing speed, but not in attention. LIMITATIONS Heterogeneity in stimulation parameters, patient age and outcome measures limited the interpretation of findings. CONCLUSION The review and meta-analysis showed limited evidence that 1 to 5 sessions of rTMS and tDCS, mostly of the dlPFC, improved clinical or cognitive measures of ADHD. These findings did not support using rTMS or tDCS of the dlPFC as an alternative neurotherapy for ADHD as yet. Larger, multi-session stimulation studies identifying more optimal sites and stimulation parameters in combination with cognitive training could achieve larger effects.
Collapse
Affiliation(s)
- Samuel J Westwood
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| | - Joaquim Radua
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| | - Katya Rubia
- From the Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom (Westwood, Rubia); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Radua); the Mental Health Research Networking Centre (CIBERSAM), Madrid, Spain (Radua); the Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Tomtebodavägen 18A, Stockholm, Sweden (Radua); and the Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom (Radua)
| |
Collapse
|
23
|
Richards E, Bayer A, Hanley C, Norris JE, Tree JJ, Tales A. Reaction Time and Visible White Matter Lesions in Subcortical Ischemic Vascular Cognitive Impairment. J Alzheimers Dis 2020; 72:859-865. [PMID: 31658059 PMCID: PMC6918906 DOI: 10.3233/jad-190823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Slowed behavioral reaction time is associated with pathological brain changes, including white matter lesions, the common clinical characteristic of subcortical ischemic vascular cognitive impairment (SIVCI). In the present study, reaction time (RT) employing Trails B of the Trail Making Test, with responses capped at 300 s, was investigated in SIVCI (n = 27) compared to cognitively healthy aging (CH) (n = 26). RT was significantly slowed in SIVCI compared to CH (Cohen’s d effect size = 1.26). Furthermore, failure to complete Trails B within 300 s was also a characteristic of SIVCI although some ostensibly cognitively healthy older adults also failed to complete within this time limit. Within the SIVCI group, RT did not differ significantly with respect to whether the patients were classified as having moderate/severe or mild, periventricular white matter changes visible on their diagnostic CT/MRI scans. This, together with the high degree of overlap in RT between the two SIVCI subgroups, raises the possibility that using visible ratings scales in isolation may lead to the underestimation of disease level.
Collapse
Affiliation(s)
- Emma Richards
- Centre for Innovative Ageing, Swansea University, Swansea, UK.,Department of Psychology, Swansea University, Swansea, UK
| | - Antony Bayer
- Department of Medicine, Cardiff University, Cardiff, UK
| | - Claire Hanley
- Department of Psychology, Swansea University, Swansea, UK
| | | | - Jeremy J Tree
- Department of Psychology, Swansea University, Swansea, UK
| | - Andrea Tales
- Centre for Innovative Ageing, Swansea University, Swansea, UK.,Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
24
|
Richards E, Bayer A, Tree JJ, Hanley C, Norris JE, Tales A. Subcortical Ischemic Vascular Cognitive Impairment: Insights from Reaction Time Measures. J Alzheimers Dis 2020; 72:845-857. [PMID: 31594238 PMCID: PMC6918912 DOI: 10.3233/jad-190889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, reaction time (RT), intraindividual variability (IIV), and errors, and the effects of practice and processing load upon such function, were compared in patients with subcortical ischemic vascular cognitive impairment (SIVCI) [n = 27] and cognitively healthy older adults (CH) [n = 26]. Compared to CH aging, SIVCI was characterized by a profile of significantly slowed RT, raised IIV, and higher error levels, particularly in the presence of distracting stimuli, indicating that the integrity and/or accessibility of the additional functions required to support high processing load, serial search strategies, are reduced in SIVCI. Furthermore, although practice speeded RT in SIVCI, unlike CH, practice did not lead to an improvement in IIV. This indicates that improvement in RT in SIVCI can in fact mask an abnormally high degree of IIV. Because IIV appears more related to disease, function, and health than RT, its status and potential for change may represent a particularly meaningful, and relevant, disease characteristic of SIVCI. Finally, a high level of within-group variation in the above measures was another characteristic of SIVCI, with such processing heterogeneity in patients with ostensibly the same diagnosis, possibly related to individual variation in pathological load. Detailed measurement of RT, IIV, errors, and practice effects therefore reveal a degree of functional impairment in brain processing not apparent by measuring RT in isolation.
Collapse
Affiliation(s)
- Emma Richards
- Centre for Innovative Ageing, Swansea University, Swansea, UK.,Department of Psychology, Swansea University, Swansea, UK
| | - Antony Bayer
- Department of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy J Tree
- Department of Psychology, Swansea University, Swansea, UK
| | - Claire Hanley
- Department of Psychology, Swansea University, Swansea, UK
| | | | - Andrea Tales
- Centre for Innovative Ageing, Swansea University, Swansea, UK
| |
Collapse
|
25
|
Pihlaja M, Failla L, Peräkylä J, Hartikainen KM. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation-More Efficient Cognitive Control? Front Hum Neurosci 2020; 14:561780. [PMID: 33132877 PMCID: PMC7573492 DOI: 10.3389/fnhum.2020.561780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
We have previously shown invasive vagus nerve stimulation to improve attention and working memory and alter emotion-attention interaction in patients with refractory epilepsy, suggesting that VNS might be useful in the treatment of cognitive impairment. The current research focuses on whether non-invasive, transcutaneous vagus nerve stimulation (tVNS) has similar effects to VNS. Furthermore, we aimed to assess whether tVNS has an impact on cognitive control in general or on underlying brain physiology in a task that mimics everyday life demands where multiple executive functions are engaged while encountering intervening emotional stimuli. Event-related potentials (ERP) evoked in such a task, specifically centro-parietal P3 and frontal N2 were used as biomarkers for attention allocation and cognitive control required to carry out the task. A single-blinded, sham-controlled, within-subject study on healthy subjects (n = 25) was conducted using Executive Reaction Time Test (RT-test), a Go/NoGo task engaging multiple executive functions along with intervening threat-related distractors while EEG was recorded. tVNS at the left tragus and sham stimulation at the left ear lobe was alternately delivered throughout the task. To assess the impact of tVNS on neural activity underlying attention and cognitive control, centro-parietal P3 and frontal N2 peak amplitudes were measured in Go and NoGo conditions. Task performance was assessed with RTs and different error types reflecting cognitive control in general and distinct executive functions, such as working memory and response inhibition.No significant effects due to tVNS on performance in the Executive RT-test were observed. For N2 there was a main effect of stimulator status and a significant interaction of trial type (Go, NoGo) and stimulator status. Post hoc analysis revealed that tVNS resulted in a significant reduction of frontal N2 only in the NoGo condition. No significant effects were observed for P3 nor were there any effects of emotion. Diminished NoGo-N2 potential along with unaltered task performance during tVNS suggests fewer cognitive control resources were required to successfully withhold a prepotent response. Though caution is warranted, we suggest that tVNS may lead to more efficient neural processing with fewer resources needed for successful cognitive control, providing promise for its potential use in cognitive enhancement.
Collapse
Affiliation(s)
- Mia Pihlaja
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Failla
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
26
|
Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: Future Directions and Implications. Neuropsychol Rev 2020; 30:546-557. [PMID: 33011894 DOI: 10.1007/s11065-020-09460-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer's dementia in higher income Western countries. At the same time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease (CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in Alzheimer's dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between CVD risk factors and Alzheimer's dementia. Two co-authors conducted independent literature reviews in PubMed using search terms for CVD risk factor burden (separate searches for 'cardiovascular disease risk factors', 'hypertension', and 'Type 2 diabetes') and 'aging' or 'Alzheimer's dementia' with either 'grey matter volumes' or 'white matter'. Of studies that reported regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD risk factors and Alzheimer's dementia. Within this context, we outline future directions for research as well as larger cerebrovascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
Collapse
|
27
|
Ford AL, Chin VW, Fellah S, Binkley MM, Bodin AM, Balasetti V, Taiwo Y, Kang P, Lin D, Jen JC, Grand MG, Bogacki M, Liszewski MK, Hourcade D, Chen Y, Hassenstab J, Lee JM, An H, Miner JJ, Atkinson JP. Lesion evolution and neurodegeneration in RVCL-S: A monogenic microvasculopathy. Neurology 2020; 95:e1918-e1931. [PMID: 32887784 PMCID: PMC7682842 DOI: 10.1212/wnl.0000000000010659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Objective To characterize lesion evolution and neurodegeneration in retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) using multimodal MRI. Methods We prospectively performed MRI and cognitive testing in RVCL-S and healthy control cohorts. Gray and white matter volume and disruption of white matter microstructure were quantified. Asymmetric spin echo acquisition permitted voxel-wise oxygen extraction fraction (OEF) calculation as an in vivo marker of microvascular ischemia. The RVCL-S cohort was included in a longitudinal analysis of lesion subtypes in which hyperintense lesions on fluid-attenuated inversion recovery (FLAIR), T1-postgadolinium, and diffusion-weighted imaging were delineated and quantified volumetrically. Results Twenty individuals with RVCL-S and 26 controls were enrolled. White matter volume and microstructure declined faster in those with RVCL–S compared to controls. White matter atrophy in RVCL-S was highly linear (ρ = −0.908, p < 0.0001). Normalized OEF was elevated in RVCL-S and increased with disease duration. Multiple cognitive domains, specifically those measuring working memory and processing speed, were impaired in RVCL-S. Lesion volumes, regardless of subtype, progressed/regressed with high variability as a function of age, while FLAIR lesion burden increased near time to death (p < 0.001). Conclusion RVCL-S is a monogenic microvasculopathy affecting predominantly the white matter with regard to atrophy and cognitive impairment. White matter volumes in RVCL-S declined linearly, providing a potential metric against which to test the efficacy of future therapies. Progressive elevation of white matter OEF suggests that microvascular ischemia may underlie neurodegeneration in RVCL-S.
Collapse
Affiliation(s)
- Andria L Ford
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Victoria W Chin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Slim Fellah
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael M Binkley
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Allie M Bodin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vamshi Balasetti
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yewande Taiwo
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter Kang
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Doris Lin
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joanna C Jen
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Gilbert Grand
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Madonna Bogacki
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Kathryn Liszewski
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dennis Hourcade
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yasheng Chen
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jason Hassenstab
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jin-Moo Lee
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hongyu An
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jonathan J Miner
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - John P Atkinson
- From the Department of Neurology (A.L.F., V.W.C., S.F., M.B.M., A.M.B., V.B., Y.T., P.K., Y.C., J.H., J.-M.L.), Mallinckrodt Institute of Radiology (A.L.F., J.-M.L., H.A.), Department of Ophthalmology (M.G.G.), and Department of Medicine (M.B., M.K.L., D.H., J.J.M., J.P.A.), Division of Rheumatology, Washington University School of Medicine, St. Louis, MO; Department of Radiology (D.L.), The Johns Hopkins University School of Medicine, Baltimore, MD; and Department of Neurology (J.C.J.), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
28
|
Ryan J, Woods RL, Britt CJ, Murray AM, Shah RC, Reid CM, Wolfe R, Nelson MR, Orchard SG, Lockery JE, Trevaks RE, Storey E. Normative Data for the Symbol Digit Modalities Test in Older White Australians and Americans, African-Americans, and Hispanic/Latinos. J Alzheimers Dis Rep 2020; 4:313-323. [PMID: 33024939 PMCID: PMC7504980 DOI: 10.3233/adr-200194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Processing speed, which can be assessed using the Symbol Digit Modalities Test (SDMT), is central to many brain functions. Processing speed declines with advanced age but substantial impairments are indicative of brain injury or disease. Objective The purpose of this study was to provide SDMT normative data for older community-dwelling individuals in the U.S. and Australia. Methods The ASPREE trial recruited 19,114 relatively healthy older men and women in Australia and the U.S. from the general community. All participants were without a diagnosis of dementia and with a Modified Mini-Mental State examination score of 78 or more at enrolment. The SDMT was administered at baseline as part of a neuropsychological test battery. Results The median age of participants was 74 years (range 65-99), and 56% were women. The median years of education was 12. Ethno-racial differences in SDMT performance were observed and normative data were thus presented separately for 16,289 white Australians, 1,082 white Americans, 891 African-Americans, and 316 Hispanic/Latinos. There were consistent positive associations found between SDMT and education level, and negative associations between SDMT and age. Mean scores for women were consistently higher than men with the exception of Hispanic/Latinos aged ≥70 years. Conclusion This study provides comprehensive SDMT normative data for whites (Australian and U.S.), Hispanic/Latinos, and African-Americans, according to gender, age, and education level. These norms can be used clinically as reference standards to screen for cognitive impairments in older individuals.
Collapse
Affiliation(s)
- Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Carlene J Britt
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anne M Murray
- Berman Center for Outcomes and Clinical Research, Hennepin Health Research Institute and Division of Geriatrics, Department of Medicine, Hennepin HealthCare and University of Minnesota, MN, USA
| | - Raj C Shah
- Department of Family Medicine and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Christopher M Reid
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Mark R Nelson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Suzanne G Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jessica E Lockery
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth E Trevaks
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Altendahl M, Cotter DL, Staffaroni AM, Wolf A, Mumford P, Cobigo Y, Casaletto K, Elahi F, Ruoff L, Javed S, Bettcher BM, Fox E, You M, Saloner R, Neylan TC, Kramer JH, Walsh CM. REM sleep is associated with white matter integrity in cognitively healthy, older adults. PLoS One 2020; 15:e0235395. [PMID: 32645032 PMCID: PMC7347149 DOI: 10.1371/journal.pone.0235395] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/16/2020] [Indexed: 11/19/2022] Open
Abstract
There is increasing awareness that self-reported sleep abnormalities are negatively associated with brain structure and function in older adults. Less is known, however, about how objectively measured sleep associates with brain structure. We objectively measured at-home sleep to investigate how sleep architecture and sleep quality related to white matter microstructure in older adults. 43 cognitively normal, older adults underwent diffusion tensor imaging (DTI) and a sleep assessment within a six-month period. Participants completed the PSQI, a subjective measure of sleep quality, and used an at-home sleep recorder (Zeo, Inc.) to measure total sleep time (TST), sleep efficiency (SE), and percent time in light sleep (LS), deep sleep (DS), and REM sleep (RS). Multiple regressions predicted fractional anisotropy (FA) and mean diffusivity (MD) of the corpus callosum as a function of total PSQI score, TST, SE, and percent of time spent in each sleep stage, controlling for age and sex. Greater percent time spent in RS was significantly associated with higher FA (β = 0.41, p = 0.007) and lower MD (β = -0.30, p = 0.03). Total PSQI score, TST, SE, and time spent in LS or DS were not significantly associated with FA or MD (p>0.13). Percent time spent in REM sleep, but not quantity of light and deep sleep or subjective/objective measures of sleep quality, positively predicted white matter microstructure integrity. Our results highlight an important link between REM sleep and brain health that has the potential to improve sleep interventions in the elderly.
Collapse
Affiliation(s)
- Marie Altendahl
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Devyn L. Cotter
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Adam M. Staffaroni
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Amy Wolf
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Paige Mumford
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Yann Cobigo
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Kaitlin Casaletto
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Fanny Elahi
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Leslie Ruoff
- San Francisco VA Medical Center, Stress & Health Research Program, Department of Mental Health, San Francisco, California, United States of America
| | - Samirah Javed
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
- Department of Psychiatry, University of California, San Francisco, California, United States of America
| | - Brianne M. Bettcher
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
- Rocky Mountain Alzheimer’s Disease Center, Departments of Neurosurgery and Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Emily Fox
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Michelle You
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Rowan Saloner
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| | - Thomas C. Neylan
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
- San Francisco VA Medical Center, Stress & Health Research Program, Department of Mental Health, San Francisco, California, United States of America
- Department of Psychiatry, University of California, San Francisco, California, United States of America
| | - Joel H. Kramer
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
- Department of Psychiatry, University of California, San Francisco, California, United States of America
| | - Christine M. Walsh
- Memory & Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States of America
| |
Collapse
|
30
|
Sampedro A, Peña J, Ibarretxe-Bilbao N, Cabrera-Zubizarreta A, Sánchez P, Gómez-Gastiasoro A, Iriarte-Yoller N, Pavón C, Ojeda N. Brain White Matter Correlates of Creativity in Schizophrenia: A Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:572. [PMID: 32655352 PMCID: PMC7324653 DOI: 10.3389/fnins.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
The relationship between creativity and psychopathology has been a controversial research topic for decades. Specifically, it has been shown that people with schizophrenia have an impairment in creative performance. However, little is known about the brain correlates underlying this impairment. Therefore, the aim of this study was to analyze whole brain white matter (WM) correlates of several creativity dimensions in people with schizophrenia. Fifty-five patients with schizophrenia underwent diffusion-weighted imaging on a 3T magnetic resonance imaging machine as well as a clinical and a creativity assessment, including verbal and figural creativity measures. Tract-based spatial statistic, implemented in FMRIB Software Library (FSL), was used to assess whole brain WM correlates with different creativity dimensions, controlling for sex, age, premorbid IQ, and medication. Mean fractional anisotropy (FA) in frontal, temporal, subcortical, brain stem, and interhemispheric regions correlated positively with figural originality. The most significant clusters included the right corticospinal tract (cerebral peduncle part) and the right body of the corpus callosum. Verbal creativity did not show any significant correlation. As a whole, these findings suggest that widespread WM integrity is involved in creative performance of patients with schizophrenia. Many of these areas have also been related to creativity in healthy people. In addition, some of these regions have shown to be particularly impaired in schizophrenia, suggesting that these WM alterations could be underlying the worse creative performance found in this pathology.
Collapse
Affiliation(s)
- Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Pedro Sánchez
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain.,Department of Neuroscience, Psychiatry Section, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Cristóbal Pavón
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
31
|
Lam SL, Criaud M, Alegria A, Barker GJ, Giampietro V, Rubia K. Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with Attention-Deficit/Hyperactivity Disorder. NEUROIMAGE-CLINICAL 2020; 27:102291. [PMID: 32526685 PMCID: PMC7287276 DOI: 10.1016/j.nicl.2020.102291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/29/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Functional Magnetic Resonance Imaging Neurofeedback (fMRI-NF) targeting brain areas/networks shown to be dysfunctional by previous fMRI research is a promising novel neurotherapy for ADHD. Our pioneering study in 31 adolescents with ADHD showed that fMRI-NF of the right inferior frontal cortex (rIFC) and of the left parahippocampal gyrus (lPHG) was associated with clinical improvements. Previous studies using electro-encephalography-NF have shown, however, that not all ADHD patients learn to self-regulate, and the predictors of fMRI-NF self-regulation learning are not presently known. The aim of the current study was therefore to elucidate the potential predictors of fMRI-NF learning by investigating the relationship between fMRI-NF learning and baseline inhibitory brain function during an fMRI stop task, along with clinical and cognitive measures. fMRI-NF learning capacity was calculated for each participant by correlating the number of completed fMRI-NF runs with brain activation in their respective target regions from each run (rIFC or lPHG); higher correlation values were taken as a marker of better (linear) fMRI-NF learning. Linear correlations were then conducted between baseline measures and the participants' capacity for fMRI-NF learning. Better fMRI-NF learning was related to increased activation in left inferior fronto-striatal regions during the fMRI stop task. Poorer self-regulation during fMRI-NF training was associated with enhanced activation in posterior temporo-occipital and cerebellar regions. Cognitive and clinical measures were not associated with general fMRI-NF learning across all participants. A categorical analysis showed that 48% of adolescents with ADHD successfully learned fMRI-NF and this was also not associated with any baseline clinical or cognitive measures except that faster processing speed during inhibition and attention tasks predicted learning. Taken together, the findings suggest that imaging data are more predictive of fMRI-NF self-regulation skills in ADHD than behavioural data. Stronger baseline activation in fronto-striatal cognitive control regions predicts better fMRI-NF learning in ADHD.
Collapse
Affiliation(s)
- Sheut-Ling Lam
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Marion Criaud
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Analucia Alegria
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
32
|
Beydoun MA, Shaked D, Hossain S, Beydoun HA, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. Vitamin D, Folate, and Cobalamin Serum Concentrations Are Related to Brain Volume and White Matter Integrity in Urban Adults. Front Aging Neurosci 2020; 12:140. [PMID: 32523528 PMCID: PMC7261885 DOI: 10.3389/fnagi.2020.00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background and objectives: Lower vitamin status has been linked to cognitive deficits, pending mechanistic elucidation. Serum 25-hydroxyvitamin D [25(OH)D], folate and cobalamin were explored against brain volumes and white matter integrity (WMI). Methods: Two prospective waves from Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study were primarily used [Baltimore, City, MD, 2004–2015, N = 183–240 urban adults (Agev1: 30–64 years)]. Serum vitamin 25-hydroxyvitamin D [25(OH)D], folate and cobalamin concentrations were measured at visits 1 (v1: 2004–2009), while structural and diffusion Magnetic Resonance Imaging (sMRI/dMRI) outcomes were measured at vscan: 2011–2015. Top 10 ranked adjusted associations were corrected for multiple testing using familywise Bonferroni (FWER < 0.05) and false discovery rates (FDR, q-value < 0.10). Results: We found statistically significant (FWER < 0.05; β±SE) direct associations of 25(OH)D(v1) with WM volumes [overall: +910 ± 336/males: +2,054 ± 599], occipital WM; [overall: +140 ± 40, males: +261 ± 67 and Agev1 > 50 years: +205 ± 54]; parietal WM; [overall: +251 ± 77, males: +486 ± 129 and Agev1 > 50 years: +393 ± 108] and left occipital pole volume [overall: +15.70 ± 3.83 and above poverty: 19.0 ± 4.3]. Only trends were detected for cobalamin exposures (q < 0.10), while serum folate (v1) was associated with lower mean diffusivity (MD) in the Anterior Limb of the Internal Capsule (ALIC), reflecting greater WMI, overall, while regional FA (e.g., cingulum gyrus) was associated with greater 25(OH)D concentration. Conclusions: Among urban adults, serum 25(OH)D status was consistently linked to larger occipital and parietal WM volumes and greater region-specific WMI. Pending longitudinal replication of our findings, randomized controlled trials of vitamin D supplementation should be conducted against brain marker outcomes.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) The Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Danielle Shaked
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) The Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States.,Department of Psychology, University of Maryland, Baltimore County, MD, United States
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) The Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States
| | - Leslie I Katzel
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States.,Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christos Davatzikos
- Section for Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rao P Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen L Seliger
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guray Erus
- Section for Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) The Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, The National Institute on Aging (NIA) The Intramural Research Program (IRP), The National Institutes of Health (NIH), Baltimore, MD, United States
| | - Shari R Waldstein
- Department of Psychology, University of Maryland, Baltimore County, MD, United States.,Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States.,Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Garcia-Egan PM, Preston-Campbell RN, Salminen LE, Heaps-Woodruff JM, Balla L, Cabeen RP, Laidlaw DH, Conturo TE, Paul RH. Behavioral inhibition corresponds to white matter fiber bundle integrity in older adults. Brain Imaging Behav 2020; 13:1602-1611. [PMID: 31209835 DOI: 10.1007/s11682-019-00144-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Little is known about the contribution of white matter integrity to inhibitory cognitive control, particularly in healthy aging. The present study examines the correspondence between white matter fiber bundle length and behavioral inhibition in 37 community-dwelling older adults (aged 51-78 years). Participants underwent neuroimaging with 3 Tesla MRI, and completed a behavioral test of inhibition (i.e., Go/NoGo task). Quantitative tractography derived from diffusion tensor imaging (qtDTI) was used to measure white matter fiber bundle lengths (FBLs) in tracts known to innervate frontal brain regions, including the anterior corpus callosum (AntCC), the cingulate gyrus segment of the cingulum bundle (CING), uncinate fasciculus (UNC), and the superior longitudinal fasciculus (SLF). Performance on the Go/NoGo task was measured by the number of commission errors standardized to reaction time. Hierarchical regression models revealed that shorter FBLs in the CING (p < 0.05) and the bilateral UNC (p < 0.01) were associated with lower inhibitory performance after adjusting for multiple comparisons, supporting a disconnection model of response inhibition in older adults. Prospective longitudinal studies are needed to examine the evolution of inhibitory errors in older adult populations and potential for therapeutic intervention.
Collapse
Affiliation(s)
- Paola M Garcia-Egan
- Department of Psychological Sciences, University of Missouri, St. Louis, MO, 63121, USA
| | | | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | | | - Lila Balla
- Missouri Institute of Mental Health, St. Louis, MO, 63134, USA
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, LosAngeles, CA, 90033, USA
| | - David H Laidlaw
- Department of Computer Science, Brown University, Providence, RI, 02906, USA
| | - Thomas E Conturo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert H Paul
- Department of Psychological Sciences, University of Missouri, St. Louis, MO, 63121, USA.
- Missouri Institute of Mental Health, St. Louis, MO, 63134, USA.
| |
Collapse
|
34
|
Trigiani LJ, Lacalle-Aurioles M, Bourourou M, Li L, Greenhalgh AD, Zarruk JG, David S, Fehlings MG, Hamel E. Benefits of physical exercise on cognition and glial white matter pathology in a mouse model of vascular cognitive impairment and dementia. Glia 2020; 68:1925-1940. [PMID: 32154952 DOI: 10.1002/glia.23815] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
White matter (WM) pathology is a clinically predictive feature of vascular cognitive impairment and dementia (VCID). Mice overexpressing transforming growth factor-β1 (TGF) with an underlying cerebrovascular pathology when fed a high cholesterol diet (HCD) develop cognitive deficits (VCID mice) that we recently found could be prevented by physical exercise (EX). Here, we further investigated cognitive and WM pathology in VCID mice and examined the cellular substrates of the protective effects of moderate aerobic EX focusing on WM alterations. Six groups were studied: Wild-type (WT) and TGF mice (n = 20-24/group) fed standard lab chow or a 2% HCD, with two HCD-fed groups given concurrent access to running wheels. HCD had a significant negative effect in TGF mice that was prevented by EX on working and object recognition memory, the latter also altered in WT HCD mice. Whisker-evoked increases in cerebral blood flow (CBF) were reduced in HCD-fed mice, deficits that were countered by EX, and baseline WM CBF was similarly affected. VCID mice displayed WM functional deficits characterized by lower compound action potential amplitude not found in EX groups. Moreover, there was an increased number of collapsing capillaries, galectin-3-expressing microglial cells, as well as a reduced number of oligodendrocytes in the WM of VCID mice; all of which were prevented by EX. Our findings indicate that a compromised cerebral circulation precedes reduced WM vascularization, enhanced WM inflammation and impaired oligodendrogenesis that all likely account for the increased susceptibility to memory impairments in VCID mice, which can be prevented by EX. MAIN POINTS: A compromised cerebral circulation increases susceptibility to anatomical and functional white matter changes that develop alongside cognitive deficits when challenged with a high cholesterol diet; preventable by a translational regimen of exercise.
Collapse
Affiliation(s)
- Lianne J Trigiani
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - María Lacalle-Aurioles
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Miled Bourourou
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Lijun Li
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrew D Greenhalgh
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Juan G Zarruk
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Samuel David
- Center for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
35
|
Chen H, Huang L, Yang D, Ye Q, Guo M, Qin R, Luo C, Li M, Ye L, Zhang B, Xu Y. Nodal Global Efficiency in Front-Parietal Lobe Mediated Periventricular White Matter Hyperintensity (PWMH)-Related Cognitive Impairment. Front Aging Neurosci 2019; 11:347. [PMID: 31920627 PMCID: PMC6914700 DOI: 10.3389/fnagi.2019.00347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
White matter hyperintensity (WMH) is widely observed in the elderly population and serves as a key indicator of cognitive impairment (CI). However, the underlying mechanism remains to be elucidated. Herein, we investigated the topological patterns of resting state functional networks in WMH subjects and the relationship between the topological measures and CI. A graph theory-based analysis was employed in the resting-state functional magnetic resonance scans of 112 subjects (38 WMH subjects with cognitive impairment without dementia (CIND), 36 WMH subjects with normal cognition and 38 healthy controls (HCs), and we found that WMH-CIND subjects displayed decreased global efficiency at the levels of the whole brain, specific subnetworks [fronto-parietal network (FPN) and cingulo-opercular network (CON)] and certain nodes located in the FPN and CON, as well as decreased local efficiency in subnetworks. Our results demonstrated that nodal global efficiency in frontal and parietal regions mediated the impairment of information processing speed related to periventricular WMH (PWMH). Additionally, we performed support vector machine (SVM) analysis and found that altered functional efficiency can identify WMH-CIND subjects with high accuracy, sensitivity and specificity. These findings suggest impaired functional networks in WMH-CIND individuals and that decreased functional efficiency may be a feature of CI in WMH subjects.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lili Huang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Dan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengdi Guo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Caimei Luo
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
36
|
Garcia-Alvarez L, Gomar JJ, Sousa A, Garcia-Portilla MP, Goldberg TE. Breadth and depth of working memory and executive function compromises in mild cognitive impairment and their relationships to frontal lobe morphometry and functional competence. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:170-179. [PMID: 30911598 PMCID: PMC6416209 DOI: 10.1016/j.dadm.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The extent of working memory (WM) and executive function (EF) impairment in mild cognitive impairment (MCI) is not well-characterized. METHODS We compared 48 patients with MCI, 124 noncognitively impaired elderly healthy controls, and 57 patients with Alzheimer's disease (AD) on multiple WM/EF measures, frontal lobe integrity indexes, and functioning. RESULTS Patients with MCI demonstrated worse performance on nearly all WM/EF tests. This profile of impairment was refined in a factor analysis that identified three primary WM/EF constructs: WM storage; speed and controlled visual search; and manipulation of information and problem solving. EF impairments were associated with reductions in prefrontal cortical thickness. WM/EF accounted for over 50% of the variance in functional competence. DISCUSSION In MCI, WM/EF impairments are far from rare, based on specific compromises to frontal cortex circuitry, and are associated with loss of everyday functioning. WM/EF impairments, even at this potentially prodromal stage of AD, have clinically deleterious consequences.
Collapse
Affiliation(s)
- Leticia Garcia-Alvarez
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
- Fundación para la Investigación e Innovación Biosanitaria del Principado de Asturias (Finba), Oviedo, Spain
| | - Jesus J. Gomar
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
- The Litwin-Zucker Alzheimer's Research Center, The Feinstein Institute for Medical Research, Manhasset, NY, USA
- FIDMAG Hermanas Hospitalarias Research Foundation, SantBoi de Llobregat, Spain
| | - Amber Sousa
- The Litwin-Zucker Alzheimer's Research Center, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Maria P. Garcia-Portilla
- Department of Psychiatry, University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
- Fundación para la Investigación e Innovación Biosanitaria del Principado de Asturias (Finba), Oviedo, Spain
| | - Terry E. Goldberg
- Division of Geriatric Psychiatry, Psychiatry, Columbia University Medical Center, NY, USA
| |
Collapse
|
37
|
Bovi JA, Pugh SL, Sabsevitz D, Robinson CG, Paulson E, Mehta MP, Gondi V, Kundapur V, Shahin MS, Chao ST, Machtay M, DeNittis AS, Laack NN, Greenspoon JN, Moore KN, Huang J, Dominello MM, Kachnic LA. Pretreatment Volume of MRI-Determined White Matter Injury Predicts Neurocognitive Decline After Hippocampal Avoidant Whole-Brain Radiation Therapy for Brain Metastases: Secondary Analysis of NRG Oncology Radiation Therapy Oncology Group 0933. Adv Radiat Oncol 2019; 4:579-586. [PMID: 31673651 PMCID: PMC6817553 DOI: 10.1016/j.adro.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose NRG Oncology's RTOG 0933 demonstrated benefits to memory preservation after hippocampal avoidant whole-brain radiation therapy (HA-WBRT), the avoidance of radiation dose to the hippocampus (using intensity modulated radiation planning and delivery techniques) during WBRT, supporting the hypothesis of hippocampal radiosensitivity and associated memory specificity. However, some patients demonstrated cognitive decline, suggesting mechanisms outside hippocampal radiosensitivity play a role. White matter injury (WMI) has been implicated in radiation therapy–induced neurocognitive decline. This secondary analysis explored the relationship between pretreatment WMI and memory after HA-WBRT. Methods and Materials Volumetric analysis of metastatic disease burden and disease-unrelated WMI was conducted on the pretreatment magnetic resonance image. Correlational analyses were performed examining the relationship between pretreatment WMI and Hopkins Verbal Learning Test-Revised (HVLT-R) outcomes at baseline and 4 months after HA-WBRT. Results In the study, 113 patients received HA-WBRT. Of 113 patients, 33 underwent pretreatment and 4-month posttreatment HVLT testing and pretreatment postcontrast volumetric T1 and axial T2/fluid-attenuated inversion recovery magnetic resonance imaging. Correlation was found between larger volumes of pretreatment WMI and decline in HVLT-R recognition (r = 0.54, P < .05), and a correlational trend was observed between larger volume of pretreatment WMI and decline in HVLT-R delayed recall (r = 0.31, P = .08). Patients with higher pretreatment disease burden experienced a greater magnitude of stability or positive shift in HVLT-R recall and delayed recall after HA-WBRT (r = –0.36 and r = –0.36, P < .05), compared to the magnitude of stability or positive shift in those with lesser disease burden. Conclusions In patients receiving HA-WBRT for brain metastases, extent of pretreatment WMI predicts posttreatment memory decline, suggesting a mechanism for radiation therapy–induced neurocognitive toxicity independent of hippocampal stem cell radiosensitivity. Stability or improvement in HVLT after HA-WBRT for patients with higher pretreatment intracranial metastatic burden supports the importance of WBRT-induced intracranial control on neurocognition.
Collapse
Affiliation(s)
- Joseph A Bovi
- Department of Radiation Oncology, Froedtert and the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - David Sabsevitz
- Department of Psychiatry and Psychology, Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Paulson
- Department of Radiation Oncology, Froedtert and the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Minesh P Mehta
- Department of Radiation Oncology, Baptist Hospital of Miami, Miami, Florida
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center Warrenville and Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vijayananda Kundapur
- Department of Radiation Oncology, Cross Cancer Institute, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark S Shahin
- Thomas Jefferson University Hospital, Abington Memorial Hospital, Gynecologic Oncology, Abington, Pennsylvania
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Mitch Machtay
- Department of Radiation Oncology, University Hospitals of Cleveland, Case Western Reserve, Cleveland, Ohio
| | - Albert S DeNittis
- Department of Radiation Oncology, Main Line CCOP Lankenau Medical Center, Philadelphia, Pennsylvania
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey N Greenspoon
- Division of Radiation Oncology, Department of Oncology, Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton Ontario, Canada
| | - Kathleen N Moore
- University of Oklahoma Health Sciences Center, Section of Gynecologic Oncology, Oklahoma City, Oklahoma
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael M Dominello
- Division of Radiation Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Lisa A Kachnic
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
38
|
Wade AT, Davis CR, Dyer KA, Hodgson JM, Woodman RJ, Keage HAD, Murphy KJ. A Mediterranean Diet with Fresh, Lean Pork Improves Processing Speed and Mood: Cognitive Findings from the MedPork Randomised Controlled Trial. Nutrients 2019; 11:E1521. [PMID: 31277446 PMCID: PMC6683093 DOI: 10.3390/nu11071521] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Mediterranean diet may be capable of improving cognitive function. However, the red meat restrictions of the diet could impact long-term adherence in Western populations. The current study therefore examined the cognitive effects of a Mediterranean diet with additional red meat. METHODS A 24-week parallel crossover design compared a Mediterranean diet with 2-3 weekly servings of fresh, lean pork (MedPork) and a low-fat (LF) control diet. Thirty-five participants aged between 45 and 80 years and at risk of cardiovascular disease followed each intervention for 8 weeks, separated by an 8-week washout period. Cognitive function was assessed using the Cambridge Neuropsychological Test Automated Battery. Psychological well-being was measured through the SF-36 Health Survey and mood was measured using the Profile of Mood States (POMS). RESULTS During the MedPork intervention, participants consumed an average of 3 weekly servings of fresh pork. Compared to LF, the MedPork intervention led to higher processing speed performance (p = 0.01) and emotional role functioning (p = 0.03). No other significant differences were observed between diets. CONCLUSION Our findings indicate that a Mediterranean diet inclusive of fresh, lean pork can be adhered to by an older non-Mediterranean population while leading to positive cognitive outcomes.
Collapse
Affiliation(s)
- Alexandra T Wade
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, GPO Box 2471, 5001 Adelaide, Australia.
| | - Courtney R Davis
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, GPO Box 2471, 5001 Adelaide, Australia
| | - Kathryn A Dyer
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, GPO Box 2471, 5001 Adelaide, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
- Medical School, University of Western Australia, 35 Stirling Highway, Perth, WA 6000, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, GPO Box 2100, 5042 Adelaide, Australia
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences, University of South Australia, GPO Box 2471, 5005 Adelaide, Australia
| | - Karen J Murphy
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, GPO Box 2471, 5001 Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, 5005 Adelaide, Australia
| |
Collapse
|
39
|
Abstract
OBJECTIVE White matter (WM) microstructural changes are increasingly recognized as a mechanism of age-related cognitive differences. This study examined the associations between patterns of WM microstructure and cognitive performance on the University of California, San Francisco (UCSF) Brain Health Assessment (BHA) subtests of memory (Favorites), executive functions and speed (Match), and visuospatial skills (Line Orientation) within a sample of older adults. METHOD Fractional anisotropy (FA) in WM tracts and BHA performance were examined in 84 older adults diagnosed as neurologically healthy (47), with mild cognitive impairment (19), or with dementia (18). The relationships between FA and subtest performances were evaluated using regression analyses. We then explored whether regional WM predicted performance after accounting for variance explained by global FA. RESULTS Memory performance was associated with FA of the fornix and the superior cerebellar peduncle; and executive functions and speed, with the body of the corpus callosum. The fornix-memory association and the corpus callosum-executive association remained significant after accounting for global FA. Neither tract-based nor global FA was associated with visuospatial performance. CONCLUSIONS Memory and executive functions are associated with different patterns of WM diffusivity. Findings add insight into WM alterations underlying age- and disease-related cognitive decline.
Collapse
|
40
|
Luo DH, Tseng WYI, Chang YL. White matter microstructure disruptions mediate the adverse relationships between hypertension and multiple cognitive functions in cognitively intact older adults. Neuroimage 2019; 197:109-119. [PMID: 31029871 DOI: 10.1016/j.neuroimage.2019.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
Although hypertension is a prominent vascular risk factor for late-life cognitive decline, the underlying pathophysiological mechanism remains unclear. Accordingly, the aim of this study was to examine the role of white matter microstructural integrity in hypertension-related cognitive detriments. We recruited 66 cognitively normal older adults, comprising 41 hypertensive patients and 25 normotensive controls. All participants underwent a comprehensive neuropsychological battery. White matter microstructural integrity was assessed using a tract-based automatic analysis approach derived from diffusion spectrum imaging. Mediating effects of white matter integrity were evaluated using structural equation modeling analyses. The results revealed that hypertensive older adults displayed poorer processing speed, executive function, and memory encoding. Lower white matter microstructural integrity was observed in the hypertensive elderly patients, primarily in long-range association fiber bundles. In particular, low microstructural integrity in specific tract bundles connecting frontal and posterior cerebral regions was found to underlie the adverse relationships between hypertension and multiple cognitive domains, including processing speed, executive function, memory encoding, and memory retention. Our findings suggest that hypertension may impair multiple cognitive functions by undermining white matter microstructures, even in cognitively intact older adults, thus further highlighting the necessity of monitoring vascular health to prevent cognitive decline.
Collapse
Affiliation(s)
- Di-Hua Luo
- Department of Psychology, College of Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Yih Isaac Tseng
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan; Graduate Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, 10617, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, 10617, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 10048, Taiwan.
| |
Collapse
|
41
|
Boots EA, Zhan L, Dion C, Karstens AJ, Peven JC, Ajilore O, Lamar M. Cardiovascular disease risk factors, tract-based structural connectomics, and cognition in older adults. Neuroimage 2019; 196:152-160. [PMID: 30980900 DOI: 10.1016/j.neuroimage.2019.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease risk factors (CVD-RFs) are associated with decreased gray and white matter integrity and cognitive impairment in older adults. Less is known regarding the interplay between CVD-RFs, brain structural connectome integrity, and cognition. We examined whether CVD-RFs were associated with measures of tract-based structural connectivity in 94 non-demented/non-depressed older adults and if alterations in connectivity mediated associations between CVD-RFs and cognition. Participants (age = 68.2 years; 52.1% female; 46.8% Black) underwent CVD-RF assessment, MRI, and cognitive evaluation. Framingham 10-year stroke risk (FSRP-10) quantified CVD-RFs. Graph theory analysis integrated T1-derived gray matter regions of interest (ROIs; 23 a-priori ROIs associated with CVD-RFs and dementia), and diffusion MRI-derived white matter tractography into connectivity matrices analyzed for local efficiency and nodal strength. A principal component analysis resulted in three rotated factor scores reflecting executive function (EF; FAS, Trail Making Test (TMT) B-A, Letter-Number Sequencing, Matrix Reasoning); attention/information processing (AIP; TMT-A, TMT-Motor, Digit Symbol); and memory (CVLT-II Trials 1-5 Total, Delayed Free Recall, Recognition Discriminability). Linear regressions between FSRP-10 and connectome ROIs adjusting for word reading, intracranial volume, and white matter hyperintensities revealed negative associations with nodal strength in eight ROIs (p-values<.05) and negative associations with efficiency in two ROIs, and a positive association in one ROI (p-values<.05). There was mediation of bilateral hippocampal strength on FSRP-10 and AIP, and left rostral middle frontal gyrus strength on FSRP-10 and AIP and EF. Stroke risk plays differential roles in connectivity and cognition, suggesting the importance of multi-modal neuroimaging biomarkers in understanding age-related CVD-RF burden and brain-behavior.
Collapse
Affiliation(s)
- Elizabeth A Boots
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60607, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Catherine Dion
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32603, USA
| | - Aimee J Karstens
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Jamie C Peven
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Melissa Lamar
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60607, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA; Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
42
|
Ryan JP, Aizenstein HJ, Orchard TJ, Nunley KA, Karim H, Rosano C. Basal ganglia cerebral blood flow associates with psychomotor speed in adults with type 1 diabetes. Brain Imaging Behav 2019; 12:1271-1278. [PMID: 29164504 DOI: 10.1007/s11682-017-9783-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes is associated with slower psychomotor speed, but the neural basis of this relationship is not yet understood. The basal ganglia are a set of structures that are vulnerable to small vessel disease, particularly in individuals with type 1 diabetes. Thus, we examined the relationship between psychomotor speed and resting state resting cerebral blood flow in a sample of adults with diabetes onset during childhood (≤ 17 years of age). The sample included 77 patients (39 M, 38 F) with a mean age of 47.43 ± 5.72 years, age of onset at 8.50 ± 4.26 years, and duration of disease of 38.92 ± 4.18 years. Resting cerebral blood flow was quantified using arterial spin labeling. After covarying for sex, years of education and normalized gray matter volume, slower psychomotor speed was associated with lower cerebral blood flow in bilateral caudate nucleus-thalamus and a region in the superior frontal gyrus. These results suggest that the basal ganglia and frontal cortex may underlie slower psychomotor speed in individuals with type 1 diabetes.
Collapse
Affiliation(s)
- John P Ryan
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA.
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara St., Pittsburgh, PA, 15213, USA
| | - Trevor J Orchard
- Department of Epidemiology, Diabetes and Lipid Research Building, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Karen A Nunley
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Helmet Karim
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Rabin JS, Perea RD, Buckley RF, Neal TE, Buckner RL, Johnson KA, Sperling RA, Hedden T. Global White Matter Diffusion Characteristics Predict Longitudinal Cognitive Change Independently of Amyloid Status in Clinically Normal Older Adults. Cereb Cortex 2019; 29:1251-1262. [PMID: 29425267 PMCID: PMC6499008 DOI: 10.1093/cercor/bhy031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
White matter degradation has been proposed as one possible explanation for age-related cognitive decline. In the present study, we examined 2 main questions: 1) Do diffusion characteristics predict longitudinal change in cognition independently or synergistically with amyloid status? 2) Are the effects of diffusion characteristics on longitudinal cognitive change tract-specific or global in nature? Cognitive domains of executive function, episodic memory, and processing speed were measured annually (mean follow-up = 3.93 ± 1.25 years). Diffusion tensor imaging and Pittsburgh Compound-B positron emission tomography were performed at baseline in 265 clinically normal older adults (aged 63-90). Tract-specific diffusion was measured as the mean fractional anisotropy (FA) for 9 major white matter tracts. Global diffusion was measured as the mean FA across the 9 white matter tracts. Linear mixed models demonstrated independent, rather than synergistic, effects of global FA and amyloid status on cognitive decline. After controlling for amyloid status, lower global FA was associated with worse longitudinal performance in episodic memory and processing speed, but not executive function. After accounting for global FA, none of the individual tracts predicted a significant change in cognitive performance. These findings suggest that global, rather than tract-specific, diffusion characteristics predict longitudinal cognitive decline independently of amyloid status.
Collapse
Affiliation(s)
- Jennifer S Rabin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rodrigo D Perea
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Florey Institutes of Neuroscience and Mental Health, Melbourne and Melbourne School of Psychological Science, University of Melbourne, Melbourne, Australia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor E Neal
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women’s Hospital, Boston, MA, USA
| | - Trey Hedden
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Erkkilä M, Peräkylä J, Hartikainen KM. Executive Functions and Emotion-Attention Interaction in Assessment of Brain Health: Reliability of Repeated Testing With Executive RT Test and Correlation With BRIEF-A Questionnaire. Front Psychol 2018; 9:2556. [PMID: 30618977 PMCID: PMC6297677 DOI: 10.3389/fpsyg.2018.02556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Executive functions (EF) rely on intact fronto-subcortical networks. An insult, disorder or treatment compromising brain health may impair the functioning of these widespread networks and consequently disrupt EF. Changes in brain health due to treatment or disorder can be assessed by repeating an EF test at different time points, but practice effect may confound the results. In this study we examined reliability of repeated testing using a computer-based test of EF, Executive Reaction Time (RT) Test, that allows assessment of different executive functions and emotion–attention interaction. In addition, we investigated whether performance measures correlate with scores derived from a clinically validated questionnaire of executive functions, Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). Healthy subjects performed the test twice, 3–4 weeks apart. When the entire tests were compared, subjects were faster and their odds to make an error reflecting disruption of working memory was lower in the second test. When two (error analysis) or four (RT analysis) blocks out of total eight test blocks were removed from the beginning of the test, the differences disappeared. In the first test emotional distractors prolonged RTs of younger, but not older, participants. In the second test emotional distractors had no effect on RTs of either age group. RTs correlated with Global Executive Composite score of BRIEF-A. Test–retest reliability analysis showed that the Executive RT Test is reliable in repeated testing with 0.83 intraclass correlation coefficient for RTs, 0.72 for total errors and 0.68 for working memory related errors. In summary, performance speed in the Executive RT Test correlate with subjective evaluations of executive functions and is reliable in repeated assessment when enough practice is ensured before the actual test. Thus, the Executive RT test holds promise as a potential indicator of brain health reflecting level of executive functions linked with daily life demands as well as typical emotion–attention interaction or possible aberrations in it.
Collapse
Affiliation(s)
- Mikko Erkkilä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jari Peräkylä
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kaisa M Hartikainen
- Behavioral Neurology Research Unit, Tampere University Hospital, Tampere, Finland.,Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
45
|
Beauchet O, Launay CP, Sekhon H, Montembeault M, Allali G. Association of hippocampal volume with gait variability in pre-dementia and dementia stages of Alzheimer disease: Results from a cross-sectional study. Exp Gerontol 2018; 115:55-61. [PMID: 30447261 DOI: 10.1016/j.exger.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Decreased hippocampal volume is a biomarker of Alzheimer disease (AD). The association of hippocampal volume with gait variability across the spectrum of AD, especially in early stages, has been few studied. The study aims to examine the association of hippocampal volume with the coefficient of variation (CoV) of stride time in individuals with mild and moderate to severe subjective cognitive impairment (SCI), non-amnestic mild cognitive impairment (na-MCI), amnestic mild cognitive impairment (a-MCI), and mild to moderate AD dementia. METHODS 271 individuals (79 mild SCI, 68 moderate to severe SCI, 47 na-MCI, 42 a-MCI and 35 mild to moderate AD dementia) were included in this cross-sectional study. Hippocampal volume was quantified from a three-dimensional T1-weighted MRI. CoV of stride time was recorded at self-selected pace with an electronic walkway. Age, sex, body mass index, number of drugs daily taken, history of falls, walking speed, type of MRI scanner, total intracranial volume, and white matter volume abnormality were used as covariates. RESULTS Participants with moderate to severe SCI had a higher CoV of stride time compared to those with mild SCI and na-MCI (P < 0.010), and a higher hippocampal volume compared to other groups (P ≤ 0.001). Participants with moderate to severe SCI had increased hippocampal volume associated with increased CoV of stride time (coefficient of regression β = 0.750 with P = 0.041), while the other groups did not show any significant association. CONCLUSIONS A positive association between greater hippocampal volume (i.e., better brain morphological structure) and an increased stride time variability (i.e., worse gait performance) in individuals with moderate to severe SCI is reported. This association confirms the key role of the hippocampus in gait control and suggests an inefficient compensatory mechanism in early stages of pathological aging like AD.
Collapse
Affiliation(s)
- Olivier Beauchet
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Centre of Excellence on Longevity of McGill Integrated University Health Network, Quebec, Canada; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Cyrille P Launay
- Division of Geriatric Medicine and Geriatric Rehabilitation, Department of Medicine, Lausanne University Hospital, Switzerland
| | - Harmehr Sekhon
- Department of Medicine, Division of Geriatric Medicine, Sir Mortimer B. Davis - Jewish General Hospital and Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Maxime Montembeault
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Département de psychologie, Université de Montréal, Montréal, QC, Canada
| | - Gilles Allali
- Department of Neurology, Geneva University Hospital, University of Geneva, Switzerland
| |
Collapse
|
46
|
Martin DM, McClintock SM, Aaronson ST, Alonzo A, Husain MM, Lisanby SH, McDonald WM, Mohan A, Nikolin S, O'Reardon J, Weickert CS, Loo CK. Pre-treatment attentional processing speed and antidepressant response to transcranial direct current stimulation: Results from an international randomized controlled trial. Brain Stimul 2018; 11:1282-1290. [DOI: 10.1016/j.brs.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 01/30/2023] Open
|
47
|
Examining the relationship between nutrition and cerebral structural integrity in older adults without dementia. Nutr Res Rev 2018; 32:79-98. [PMID: 30378509 DOI: 10.1017/s0954422418000185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The proportion of adults aged 60 years and over is expected to increase over the coming decades. This ageing of the population represents an important health issue, given that marked reductions to cerebral macro- and microstructural integrity are apparent with increasing age. Reduced cerebral structural integrity in older adults appears to predict poorer cognitive performance, even in the absence of clinical disorders such as dementia. As such, it is becoming increasingly important to identify those factors predicting cerebral structural integrity, especially factors that are modifiable. One such factor is nutritional intake. While the literature is limited, data from available cross-sectional studies indicate that increased intake of nutrients such as B vitamins (for example, B6, B12 and folate), choline, n-3 fatty acids and vitamin D, or increased adherence to prudent whole diets (for example, the Mediterranean diet) predicts greater cerebral structural integrity in older adults. There is even greater scarcity of randomised clinical trials investigating the effects of nutritional supplementation on cerebral structure, though it appears that supplementation with B vitamins (B6, B12 and folic acid) or n-3 fatty acids (DHA or EPA) may be beneficial. The current review presents an overview of available research examining the relationship between key nutrients or adherence to select diets and cerebral structural integrity in dementia-free older adults.
Collapse
|
48
|
Affect of APOE on information processing speed in non-demented elderly population: a preliminary structural MRI study. Brain Imaging Behav 2018; 11:977-985. [PMID: 27444731 DOI: 10.1007/s11682-016-9571-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
APOE is one of the strongest genetic factors associated with information processing speed (IPS). Herein, we explored the neural substrates underlying APOE-related IPS alteration by measuring lobar distribution of white matter hyperintensities (WMH), cortical grey matter volume (GMV) and thickness. Using the ADNI database, we evaluated 178 cognitively normal elderly individuals including 34 APOE ε2 carriers, 54 APOE ε4 carriers and 90 ε3 homozygotes. IPS was determined using Trail Making Tests (TMT). We quantified lobar distribution of WMH, cortical GM lobar volume, cortical thickness among three groups. Finally, we used Pearson's correlation and general linear models to examine structural MRI markers in relation to IPS. There were significant differences of IPS among groups, with ε4 carriers displaying the worst performance. Across groups, significant differences in frontal and parietal WMH load were observed (the highest in ε4 carriers); however, no significant differences in cortical GMV and thickness were found. Pearson's correlation analysis showed parietal WMH volume was significantly related with IPS, especially in ε4 carriers. Subsequently a general linear model demonstrated that parietal WMH volume, age and the interaction between parietal WMH volume and age, was significantly associated with IPS, even after adjusting total intracranial volume (TIV), gender and vascular risk factors. Disruption of WM structure, rather than atrophy of GM, plays a more critical role in APOE ε4 allele-specific IPS. Moreover, specific WMH loci are closely associated with IPS; increased parietal WMH volume, especially in ε4 carriers, was independently contributed to slower IPS.
Collapse
|
49
|
Torrens-Burton A, Basoudan N, Bayer AJ, Tales A. Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults. J Alzheimers Dis 2018; 60:1601-1609. [PMID: 28984584 PMCID: PMC5676981 DOI: 10.3233/jad-170599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders.
Collapse
Affiliation(s)
- Anna Torrens-Burton
- Department of Psychology, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Nasreen Basoudan
- Department of Psychology, Swansea University, Singleton Park, Swansea, Wales, UK
| | - Antony J Bayer
- Division of Population Medicine, Cardiff University, University Hospital Llandough, Penarth, Wales, UK
| | - Andrea Tales
- Department of Psychology, Swansea University, Singleton Park, Swansea, Wales, UK
| |
Collapse
|
50
|
White matter microstructural variability mediates the relation between obesity and cognition in healthy adults. Neuroimage 2018; 172:239-249. [DOI: 10.1016/j.neuroimage.2018.01.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/05/2017] [Accepted: 01/12/2018] [Indexed: 01/28/2023] Open
|