1
|
Yokota H, Edama M, Kawanabe Y, Hirabayashi R, Sekikne C, Akuzawa H, Ishigaki T, Otsuru N, Saito K, Kojima S, Miyaguchi S, Onishi H. Effects of transcutaneous auricular vagus nerve stimulation at left cymba concha on experimental pain as assessed with the nociceptive withdrawal reflex, and correlation with parasympathetic activity. Eur J Neurosci 2024; 59:2826-2835. [PMID: 38469939 DOI: 10.1111/ejn.16305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to clarify the effects of transcutaneous auricular vagus nerve stimulation (taVNS) to the left cymba concha on the pain perception using nociceptive withdrawal reflex (NWR), which is known to be associated with chronic pain, and to investigate whether there is a relationship between taVNS-induced suppression of the NWR and parasympathetic activation. We applied either 3.0 mA, 100 Hz taVNS for 120 s on the left cymba concha (taVNS condition) or the left earlobe (Sham condition) for 20 healthy adults. NWR threshold was measured before (Baseline), immediately after (Post 0), 10 min (Post 10) and 30 min after (Post 30) stimulation. The NWR threshold was obtained from biceps femoris muscle by applying electrical stimulation to the sural nerve. During taVNS, electrocardiogram was recorded, and changes in autonomic nervous activity measured by heart rate variability (HRV) were analyzed. We found that the NWR thresholds at Post 10 and Post 30 increased compared with baseline in the taVNS group (10 min after: p = .008, 30 min after: p = .008). In addition, increased parasympathetic activity by taVNS correlated with a greater increase in NWR threshold at Post 10 and Post 30 (Post 10: p = .003; Post 30: p = .001). The present results of this single-blinded study demonstrate the pain-suppressing effect of taVNS on NWR threshold and suggest that the degree of parasympathetic activation during taVNS may predict the pain-suppressing effect of taVNS after its application.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yurika Kawanabe
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Chie Sekikne
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroshi Akuzawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Tomonobu Ishigaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
2
|
Strohman A, Payne B, In A, Stebbins K, Legon W. Low-Intensity Focused Ultrasound to the Human Dorsal Anterior Cingulate Attenuates Acute Pain Perception and Autonomic Responses. J Neurosci 2024; 44:e1011232023. [PMID: 38182418 PMCID: PMC10883612 DOI: 10.1523/jneurosci.1011-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is a critical brain area for pain and autonomic processing, making it a promising noninvasive therapeutic target. We leverage the high spatial resolution and deep focal lengths of low-intensity focused ultrasound (LIFU) to noninvasively modulate the dACC for effects on behavioral and cardiac autonomic responses using transient heat pain stimuli. A N = 16 healthy human volunteers (6 M/10 F) received transient contact heat pain during either LIFU to the dACC or Sham stimulation. Continuous electroencephalogram (EEG), electrocardiogram (ECG), and electrodermal response (EDR) were recorded. Outcome measures included pain ratings, heart rate variability, EDR response, blood pressure, and the amplitude of the contact heat-evoked potential (CHEP).LIFU reduced pain ratings by 1.09 ± 0.20 points relative to Sham. LIFU increased heart rate variability indexed by the standard deviation of normal sinus beats (SDNN), low-frequency (LF) power, and the low-frequency/high-frequency (LF/HF) ratio. There were no effects on the blood pressure or EDR. LIFU resulted in a 38.1% reduction in the P2 CHEP amplitude. Results demonstrate LIFU to the dACC reduces pain and alters autonomic responses to acute heat pain stimuli. This has implications for the causal understanding of human pain and autonomic processing in the dACC and potential future therapeutic options for pain relief and modulation of homeostatic signals.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA 24016
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
3
|
Xu Z, Soh Z, Kurota Y, Kimura Y, Hirano H, Sasaoka T, Yoshino A, Tsuji T. Neuroimaging-based evidence for sympathetic correlation between brain activity and peripheral vasomotion during pain anticipation. Sci Rep 2024; 14:3383. [PMID: 38337009 PMCID: PMC10858222 DOI: 10.1038/s41598-024-53921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Anticipation of pain engenders anxiety and fear, potentially shaping pain perception and governing bodily responses such as peripheral vasomotion through the sympathetic nervous system (SNS). Sympathetic innervation of vascular tone during pain perception has been quantified using a peripheral arterial stiffness index; however, its innervation role during pain anticipation remains unclear. This paper reports on a neuroimaging-based study designed to investigate the responsivity and attribution of the index at different levels of anticipatory anxiety and pain perception. The index was measured in a functional magnetic resonance imaging experiment that randomly combined three visual anticipation cues and painful stimuli of two intensities. The peripheral and cerebral responses to pain anticipation and perception were quantified to corroborate bodily responsivity, and their temporal correlation was also assessed to identify the response attribution of the index. Contrasting with the high responsivity across levels of pain sensation, a low responsivity of the index across levels of anticipatory anxiety revealed its specificity across pain experiences. Discrepancies between the effects of perception and anticipation were validated across regions and levels of brain activity, providing a brain basis for peripheral response specificity. The index was also characterized by a 1-s lag in both anticipation and perception of pain, implying top-down innervation of the periphery. Our findings suggest that the SNS responds to pain in an emotion-specific and sensation-unbiased manner, thus enabling an early assessment of individual pain perception using this index. This study integrates peripheral and cerebral hemodynamic responses toward a comprehensive understanding of bodily responses to pain.
Collapse
Affiliation(s)
- Ziqiang Xu
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Zu Soh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan.
| | - Yuta Kurota
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Yuya Kimura
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Harutoyo Hirano
- Department of Medical Equipment Engineering, Clinical Collaboration Unit, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takafumi Sasaoka
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Atsuo Yoshino
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Toshio Tsuji
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan.
| |
Collapse
|
4
|
Braun JA, Patel M, Henderson LA, Dawood T, Macefield VG. Electrical stimulation of the ventromedial prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure. Cereb Cortex 2024; 34:bhad422. [PMID: 37950875 DOI: 10.1093/cercor/bhad422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/13/2023] Open
Abstract
We recently showed that transcranial alternating current stimulation of the dorsolateral prefrontal cortex modulates spontaneous bursts of muscle sympathetic nerve activity, heart rate, and blood pressure (Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Comm. 2022:3:2tgac017.). Stimulation was delivered between scalp electrodes placed over the nasion and electroencephalogram (EEG) electrode site F3 (left dorsolateral prefrontal cortex) or F4 (right dorsolateral prefrontal cortex), and therefore the current passed within the anatomical locations underlying the left and right ventromedial prefrontal cortices. Accordingly, we tested the hypothesis that stimulation of the left and right ventromedial prefrontal cortices would also modulate muscle sympathetic nerve activity, although we predicted that this would be weaker than that seen during dorsolateral prefrontal cortex stimulation. We further tested whether stimulation of the right ventromedial prefrontal cortices would cause greater modulation of muscle sympathetic nerve activity, than stimulation of the left ventromedial prefrontal cortices. In 11 individuals, muscle sympathetic nerve activity was recorded via microelectrodes inserted into the right common peroneal nerve, together with continuous blood pressure, electrocardiogram, and respiration. Stimulation was achieved using transcranial alternating current stimulation, +2 to -2 mA, 0.08 Hz, 100 cycles, applied between electrodes placed over the nasion, and EEG electrode site FP1, (left ventromedial prefrontal cortices) or FP2 (right ventromedial prefrontal cortices); for comparison, stimulation was also applied over F4 (right dorsolateral prefrontal cortex). Stimulation of all three cortical sites caused partial entrainment of muscle sympathetic nerve activity to the sinusoidal stimulation, together with modulation of blood pressure and heart rate. We found a significant fall in mean blood pressure of ~6 mmHg (P = 0.039) during stimulation of the left ventromedial prefrontal cortices, as compared with stimulation of the right. We have shown, for the first time, that transcranial alternating current stimulation of the ventromedial prefrontal cortices modulates muscle sympathetic nerve activity and blood pressure in awake humans at rest. However, it is unclear if this modulation occurred through the same brain pathways activated during transcranial alternating current stimulation of the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Joe A Braun
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Mariya Patel
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Sydney, NSW 2006, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, 75 Commerical Road, Melbourne, VIC 3004, Australia
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| |
Collapse
|
5
|
Delon-Martin C, Lefaucheur JP, Hodaj E, Sorel M, Dumolard A, Payen JF, Hodaj H. Neural Correlates of Pain-Autonomic Coupling in Patients With Complex Regional Pain Syndrome Treated by Repetitive Transcranial Magnetic Stimulation of the Motor Cortex. Neuromodulation 2024; 27:188-199. [PMID: 37589642 DOI: 10.1016/j.neurom.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Complex regional pain syndrome (CRPS) is a chronic pain condition involving autonomic dysregulation. In this study, we report the results of an ancillary study to a larger clinical trial investigating the treatment of CRPS by neuromodulation. This ancillary study, based on functional magnetic resonance imaging (fMRI), evaluated the neural correlates of pain in patients with CRPS in relation to the sympathetic nervous system and for its potential relief after repetitive transcranial magnetic stimulation of the motor cortex. MATERIALS AND METHODS Eleven patients with CRPS at one limb (six women, five men, aged 52.0 ± 9.6 years) were assessed before and one month after the end of a five-month repetitive transcranial magnetic stimulation (rTMS) therapy targeting the motor cortex contralateral to the painful limb, by means of electrochemical skin conductance (ESC) measurement, daily pain intensity scores on a visual numerical scale (VNS), and fMRI with motor tasks (alternation of finger movements and rest). The fMRI scans were analyzed voxelwise using ESC and VNS pain score as regressors to derive their neural correlates. The criterion of response to rTMS therapy was defined as ≥30% reduction in VNS pain score one month after treatment compared with baseline. RESULTS At baseline, ESC values were reduced in the affected limb vs the nonaffected limb. There was a covariance of VNS with brain activation in a small region of the primary somatosensory cortex (S1) contralateral to the painful side on fMRI investigation. After rTMS therapy on motor cortex related to the painful limb, the VNS pain scores significantly decreased by 22% on average. The criterion of response was met in six of 11 patients (55%). In these responders, at one month after treatment, ESC value increased and returned to normal in the CRPS-affected limb, and overall, the increase in ESC correlated with the decrease in VNS after motor cortex rTMS therapy. At one month after treatment, there also was a covariance of both variables (ESC and VNS) with fMRI activation of the S1 region previously mentioned. The fMRI activation of other brain regions (middle frontal gyrus and temporo-parietal junction) showed correlation with ESC values before and after treatment. Finally, we found a positive correlation at one month after treatment (not at baseline) between VNS pain score and fMRI activation in the temporo-parietal junction contralateral to painful side. CONCLUSIONS This study first shows a functional pain-autonomic coupling in patients with CRPS, which could involve a specific S1 region. However, the modulation of sympathetic sudomotor activities expressed by ESC changes was rather correlated with functional changes in other brain regions. Finally, the pain relief observed at one month after rTMS treatment was associated with a reduced activation of the temporo-parietal junction on the side in which rTMS was performed. These findings open perspectives to define new targets or biomarkers for using rTMS to treat CRPS-associated pain. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT02817880.
Collapse
Affiliation(s)
- Chantal Delon-Martin
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France.
| | - Jean-Pascal Lefaucheur
- EA University Paris Est Créteil, Health Faculty, Créteil, France; AP-HP, Clinical Neurophysiology Unit, Henri Mondor Hospital, Créteil, France
| | - Enkeledja Hodaj
- CHU Grenoble Alpes, Clinical Investigation Center, Grenoble, France
| | - Marc Sorel
- Sud-Seine-et-Marne Hospital, Center for Pain Evaluation and Treatment, Nemours, France
| | | | - Jean-François Payen
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France; CHU Grenoble Alpes, Pain Center, Grenoble, France
| | - Hasan Hodaj
- University of Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France; CHU Grenoble Alpes, Pain Center, Grenoble, France
| |
Collapse
|
6
|
Kong Y, Posada-Quintero HF, Tran H, Talati A, Acquista TJ, Chen IP, Chon KH. Differentiating between stress- and EPT-induced electrodermal activity during dental examination. Comput Biol Med 2023; 155:106695. [PMID: 36805230 PMCID: PMC10062482 DOI: 10.1016/j.compbiomed.2023.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Dental pain invokes the sympathetic nervous system, which can be measured by electrodermal activity (EDA). In the dental clinic, accurate quantification of pain is needed because it could enable optimized drug-dose treatments, thereby potentially reducing drug addiction. However, a confounding factor is that during pain there is also lingering residual stress, hence, both contribute to the EDA response. Therefore, we investigated whether EDA can differentiate stress from pain during dental examination. The use of electrical pulp test (EPT) is an ideal approach to tease out the dynamics of stress and mimic pain with lingering residual stress. Once the electrical sensation is felt and reaches a critical current threshold, the subject removes the probe from their tooth, hence, this stage of data represents largely EPT stimulus and the residual stress-induced EDA response is smaller. EPT was performed on necrotic and vital teeth in fifty-one subjects. We defined four different data groups of reactions based on each individual's EPT intensity level expectation based on the visual analog scale (VAS) of their baseline trial, as follows: mild stress, mild stress + EPT, strong stress, and strong stress + EPT. EDA-derived features exhibited significant difference between residual lingering stress + EPT groups and stress groups. We obtained 84.6% accuracy with 76.2% sensitivity and 86.8% specificity with multilayer perceptron in differentiating between pure-stress groups vs. stress + EPT groups. Moreover, EPT induced much greater EDA amplitude and faster response than stress. Our finding suggests that our machine learning approach can discriminate between stress and EPT stimulation in EDA signals.
Collapse
Affiliation(s)
- Youngsun Kong
- Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | | | - Hanh Tran
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Ankur Talati
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Thomas J Acquista
- Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Ki H Chon
- Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
7
|
Kimpara K, Arizono S, Tanaka T, Kimpara T, Terada K, Ohgi S. Brain Activation of Unpleasant Emotions Increases Catastrophizing in Patients with Chronic Pain. Pain Manag Nurs 2023; 24:329-334. [PMID: 36781329 DOI: 10.1016/j.pmn.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Catastrophic thinking among patients with chronic pain impairs their quality of life and increases anxiety levels. Further, severe pain causes high emotional brain sensitivity and unpleasant feelings. However, the effects of emotional changes on catastrophic thinking in patients with chronic pain remain unclear. AIMS We hypothesised that emotional brain activity during mild pain stimuli would affect catastrophic thinking in these patients. We aimed to examine the relationship between unpleasant emotional brain activation and catastrophic thinking due to pain stimuli in patients with chronic pain. DESIGN This was a prospective observational study. PARTICIPANTS We included patients with chronic pain and healthy individuals. METHODS The impact of emotional brain activity on catastrophic thinking was evaluated, specifically, the skin conductance response and oxygenated haemoglobin levels using near-infrared spectroscopy. After receiving three different pain stimuli, the participants were evaluated using the Numeric Rating Scale, Pain Catastrophising Scale, and McGill Pain Questionnaire. RESULTS There were 28 patients in the chronic pain group and 33 patients in the healthy group. There was no between-group difference in oxygenated haemoglobin levels during pain stimulation. The chronic pain group showed a higher Pain Catastrophising Scale score and skin conductance response than the healthy group (p < .05). In the chronic pain group, oxygenated haemoglobin levels after pain stimuli were significantly associated with the Pain Catastrophising Scale score and skin conductance response (p < .05). CONCLUSIONS Brain activity of unpleasant emotions may influence catastrophic thinking in patients with chronic pain.
Collapse
Affiliation(s)
- Kazuhiro Kimpara
- School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan; Terada Pain Clinic, Hamamatsu, Japan; School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan.
| | - Shinichi Arizono
- School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
| | - Takako Tanaka
- Department of Physical Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Shohei Ohgi
- School of Rehabilitation Sciences, Seirei Christopher University, Hamamatsu, Japan
| |
Collapse
|
8
|
Li T, Gao Y, He M, Gui Z, Zhao B, Cao Y, Chen T, Zhu J, Wang J, Zhong Q, Zhang Z. P2X7 receptor-activated microglia in cortex is critical for sleep disorder under neuropathic pain. Front Neurosci 2023; 17:1095718. [PMID: 36816134 PMCID: PMC9936193 DOI: 10.3389/fnins.2023.1095718] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Neuropathic pain (NP) is associated with sleep disturbances, which may substantially influence the quality of life. Clinical and animal studies demonstrated that neurotransmitter is one of the main contributors to cause sleep disturbances induced by NP. Recently, it was reported that P2X7 receptors (P2X7R) are widely expressed in microglia, which serves crucial role in neuronal activity in the pain and sleep-awake cycle. In this study, we adopted the chronic constriction injury (CCI) model to establish the progress of chronic pain and investigated whether P2X7R of microglia in cortex played a critical role in sleep disturbance induced by NP. At electroencephalogram (EEG) level, sleep disturbance was observed in mice treated with CCI as they exhibited mechanical and thermal hypersensitivity, and inhibition of P2X7R ameliorated these changes. We showed a dramatic high level of P2X7R and Iba-1 co-expression in the cortical region, and the inhibition of P2X7R also adversely affected it. Furthermore, the power of LFPs in ventral posterior nucleus (VP) and primary somatosensory cortex (S1) which changed in the CCI group was adverse after the inhibition of P2X7R. Furthermore, inhibition of P2X7R also decreased the VP-S1 coherence which increased in CCI group. Nuclear magnetic resonance demonstrated inhibition of P2X7R decreased glutamate (Glu) levels in thalamic and cortical regions which were significantly increased in the CCI mice. Our findings provide evidence that NP has a critical effect on neuronal activity linked to sleep and may built up a new target for the development of sleep disturbances under chronic pain conditions.
Collapse
Affiliation(s)
- Tingting Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Yunling Gao
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,School of Computer Science, Wuhan University, Wuhan, Hubei, China
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jinpiao Zhu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Jie Wang
- Xiangyang Central Hospital, Institute of Neuroscience and Brain Diseases, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Qi Zhong,
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Zongze Zhang,
| |
Collapse
|
9
|
Chao CC, Tseng MT, Hsieh PC, Lin CHJ, Huang SL, Hsieh ST, Chiang MC. Brain Mechanisms of Pain and Dysautonomia in Diabetic Neuropathy: Connectivity Changes in Thalamus and Hypothalamus. J Clin Endocrinol Metab 2022; 107:e1167-e1180. [PMID: 34665863 DOI: 10.1210/clinem/dgab754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT About one-third of diabetic patients suffer from neuropathic pain, which is poorly responsive to analgesic therapy and associated with greater autonomic dysfunction. Previous research on diabetic neuropathy mainly links pain and autonomic dysfunction to peripheral nerve degeneration resulting from systemic metabolic disturbances, but maladaptive plasticity in the central pain and autonomic systems following peripheral nerve injury has been relatively ignored. OBJECTIVE This study aimed to investigate how the brain is affected in painful diabetic neuropathy (PDN), in terms of altered structural connectivity (SC) of the thalamus and hypothalamus that are key regions modulating nociceptive and autonomic responses. METHODS We recruited 25 PDN and 13 painless (PLDN) diabetic neuropathy patients, and 27 healthy adults as controls. The SC of the thalamus and hypothalamus with limbic regions mediating nociceptive and autonomic responses was assessed using diffusion tractography. RESULTS The PDN patients had significantly lower thalamic and hypothalamic SC of the right amygdala compared with the PLDN and control groups. In addition, lower thalamic SC of the insula was associated with more severe peripheral nerve degeneration, and lower hypothalamic SC of the anterior cingulate cortex was associated with greater autonomic dysfunction manifested by decreased heart rate variability. CONCLUSION Our findings indicate that alterations in brain structural connectivity could be a form of maladaptive plasticity after peripheral nerve injury, and also demonstrate a pathophysiological association between disconnection of the limbic circuitry and pain and autonomic dysfunction in diabetes.
Collapse
Affiliation(s)
- Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ming-Tsung Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| | - Paul-Chen Hsieh
- Department of Dermatology, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Yeong-An Orthopedic and Physical Therapy Clinic, Taipei 11155, Taiwan
| | - Shin-Leh Huang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10617, Taiwan
- Center of Precision Medicine, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
10
|
Tian Z, Guo Y, Yin T, Xiao Q, Ha G, Chen J, Wang S, Lan L, Zeng F. Acupuncture Modulation Effect on Pain Processing Patterns in Patients With Migraine Without Aura. Front Neurosci 2021; 15:729218. [PMID: 34512254 PMCID: PMC8427167 DOI: 10.3389/fnins.2021.729218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction In this retrospective study, resting-state functional connectivity (FC) in patients with migraine was analyzed to identify potential pathological pain processing patterns and compared them to those in healthy controls (HCs). The FC patterns in patients between pre- and post-acupuncture sessions were also analyzed to determine how acupuncture affects neurological activity and pain perception during the migraine interictal period. Methods In total, 52 patients with migraine without aura (MwoA) and 60 HCs were recruited. Patients with migraine were given acupuncture treatment sessions for 4 weeks. As a primary observation, functional magnetic resonance images were obtained at the beginning and end of the sessions. HCs received no treatment and underwent one functional magnetic resonance imaging (fMRI) scan after enrollment. After the fMRI data were preprocessed, a region of interest (ROI)-to-ROI analysis was performed with predefined ROIs related to pain processing regions. Results The first analysis showed significantly different FCs between patients with MwoA and HCs [false discovery rate corrected p-value (p-FDR) < 0.05]. The FCs were found to be mainly between the cingulate gyrus (CG) and the insular gyrus, the CG and the inferior parietal lobule (IPL), the CG and the superior frontal gyrus, and the middle frontal gyrus and the IPL. The second analysis indicated that acupuncture treatment partly restored the different FCs found in the first analysis (p-FDR < 0.05). Furthermore, subgroup analysis found different brain activity patterns in headache-intensity restored condition and headache-frequency restored condition. Lastly, the correlation analysis suggested a potential correlation between FCs and clinical symptoms (p < 0.05). Conclusion This study suggests that pain processing is abnormal in migraine, with significantly abnormal FCs in the frontal, parietal, and limbic regions. This finding could be a typical pathological feature of migraine. Acupuncture has been identified to relieve headache symptoms in two ways: it restores the pain processing function and regulates pain perception.
Collapse
Affiliation(s)
- Zilei Tian
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Yin
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingqing Xiao
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Ha
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiyao Chen
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuo Wang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Lan
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Zeng
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, China
| |
Collapse
|
11
|
Bush NJ, Schneider V, Sevel L, Bishop MD, Boissoneault J. Associations of Regional and Network Functional Connectivity With Exercise-Induced Low Back Pain. THE JOURNAL OF PAIN 2021; 22:1606-1616. [PMID: 34111507 DOI: 10.1016/j.jpain.2021.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Musculoskeletal pain is an aversive experience that exists within a variety of conditions and can result in significant impairment for individuals. Gaining greater understanding of the factors related to pain vulnerability and resilience to musculoskeletal pain may help target at-risk individuals for early intervention. This analysis builds on our previous work identifying regions where greater gray matter density was associated with lower pain following standardized, exercise induced musculoskeletal injury. Here we sought to examine the relationship between baseline resting state functional connectivity in a priori regions and networks, and delayed onset muscle soreness (DOMS) pain intensity following a single session of eccentric exercise in healthy adults. Participants completed a baseline functional MRI scan and a high intensity trunk exercise protocol in the erector spinae. Pain intensity ratings were collected 48-hours later. Resting state functional connectivity from four seed regions and 3 networks were separately regressed on pain intensity scores. Results revealed that connectivity between left middle frontal gyrus, the left occipital gyrus and cerebellar network seeds and clusters associated with discriminative, emotional, and cognitive aspects of pain were associated with lower post-DOMS pain. Results suggest resilience to clinically relevant pain is associated with aspects of regional and network neural coherence. Investigations of pain modulatory capacity that integrate multimodal neuroimaging metrics are called for. Perspective: Our results provide key support for the role of structural and functional coherence in regional and network connectivity in adaptive pain response and represent an important step in clarifying neural mechanisms of resilience to clinically relevant pain.
Collapse
Affiliation(s)
- Nicholas J Bush
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Victor Schneider
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida
| | - Landrew Sevel
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee; Osher Center for Integrative Medicine at Vanderbilt, Vanderbilt Medical Center, Nashville, Tennessee
| | - Mark D Bishop
- Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida; Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Jeff Boissoneault
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida; Center for Pain Research and Behavioral Health, University of Florida, Gainesville, Florida.
| |
Collapse
|
12
|
Abend R, Bajaj MA, Harrewijn A, Matsumoto C, Michalska KJ, Necka E, Palacios-Barrios EE, Leibenluft E, Atlas LY, Pine DS. Threat-anticipatory psychophysiological response is enhanced in youth with anxiety disorders and correlates with prefrontal cortex neuroanatomy. J Psychiatry Neurosci 2021; 46:E212-E221. [PMID: 33703868 PMCID: PMC8061736 DOI: 10.1503/jpn.200110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background Threat anticipation engages neural circuitry that has evolved to promote defensive behaviours; perturbations in this circuitry could generate excessive threat-anticipation response, a key characteristic of pathological anxiety. Research into such mechanisms in youth faces ethical and practical limitations. Here, we use thermal stimulation to elicit pain-anticipatory psychophysiological response and map its correlates to brain structure among youth with anxiety and healthy youth. Methods Youth with anxiety (n = 25) and healthy youth (n = 25) completed an instructed threat-anticipation task in which cues predicted nonpainful or painful thermal stimulation; we indexed psychophysiological response during the anticipation and experience of pain using skin conductance response. High-resolution brain-structure imaging data collected in another visit were available for 41 participants. Analyses tested whether the 2 groups differed in their psychophysiological cue-based pain-anticipatory and pain-experience responses. Analyses then mapped psychophysiological response magnitude to brain structure. Results Youth with anxiety showed enhanced psychophysiological response specifically during anticipation of painful stimulation (b = 0.52, p = 0.003). Across the sample, the magnitude of psychophysiological anticipatory response correlated negatively with the thickness of the dorsolateral prefrontal cortex (pFWE < 0.05); psychophysiological response to the thermal stimulation correlated positively with the thickness of the posterior insula (pFWE < 0.05). Limitations Limitations included the modest sample size and the cross-sectional design. Conclusion These findings show that threat-anticipatory psychophysiological response differentiates youth with anxiety from healthy youth, and they link brain structure to psychophysiological response during pain anticipation and experience. A focus on threat anticipation in research on anxiety could delineate relevant neural circuitry.
Collapse
Affiliation(s)
- Rany Abend
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Mira A Bajaj
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Anita Harrewijn
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Chika Matsumoto
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Kalina J Michalska
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Elizabeth Necka
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Esther E Palacios-Barrios
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Ellen Leibenluft
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Lauren Y Atlas
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| | - Daniel S Pine
- From the Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Abend, Bajaj, Harrewijn, Matsumoto, Leibenluft, Pine); the Department of Psychology, University of California Riverside, Riverside, CA (Michalaska); the 3 National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD (Necka, Atlas); and the 1 Department of Psychology, University of Pittsburgh, Pittsburgh, PA (Palacios-Barrios)
| |
Collapse
|
13
|
Current Understanding of the Involvement of the Insular Cortex in Neuropathic Pain: A Narrative Review. Int J Mol Sci 2021; 22:ijms22052648. [PMID: 33808020 PMCID: PMC7961886 DOI: 10.3390/ijms22052648] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain is difficult to cure and is often accompanied by emotional and psychological changes. Exploring the mechanisms underlying neuropathic pain will help to identify a better treatment for this condition. The insular cortex is an important information integration center. Numerous imaging studies have documented increased activity of the insular cortex in the presence of neuropathic pain; however, the specific role of this region remains controversial. Early studies suggested that the insular lobe is mainly involved in the processing of the emotional motivation dimension of pain. However, increasing evidence suggests that the role of the insular cortex is more complex and may even be related to the neural plasticity, cognitive evaluation, and psychosocial aspects of neuropathic pain. These effects contribute not only to the development of neuropathic pain, but also to its comorbidity with neuropsychiatric diseases. In this review, we summarize the changes that occur in the insular cortex in the presence of neuropathic pain and analgesia, as well as the molecular mechanisms that may underlie these conditions. We also discuss potential sex-based differences in these processes. Further exploration of the involvement of the insular lobe will contribute to the development of new pharmacotherapy and psychotherapy treatments for neuropathic pain.
Collapse
|
14
|
Yeater TD, Clark DJ, Hoyos L, Valdes-Hernandez PA, Peraza JA, Allen KD, Cruz-Almeida Y. Chronic Pain is Associated With Reduced Sympathetic Nervous System Reactivity During Simple and Complex Walking Tasks: Potential Cerebral Mechanisms. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:24705470211030273. [PMID: 34286166 PMCID: PMC8267022 DOI: 10.1177/24705470211030273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autonomic dysregulation may lead to blunted sympathetic reactivity in chronic pain states. Autonomic responses are controlled by the central autonomic network (CAN). Little research has examined sympathetic reactivity and associations with brain CAN structures in the presence of chronic pain; thus, the present study aims to investigate how chronic pain influences sympathetic reactivity and associations with CAN brain region volumes. METHODS Sympathetic reactivity was measured as change in skin conductance level (ΔSCL) between a resting reference period and walking periods for typical and complex walking tasks (obstacle and dual-task). Participants included 31 people with (n = 19) and without (n = 12) chronic musculoskeletal pain. Structural 3 T MRI was used to determine gray matter volume associations with ΔSCL in regions of the CAN (i.e., brainstem, amygdala, insula, and anterior cingulate cortex). RESULTS ΔSCL varied across walking tasks (main effect p = 0.036), with lower ΔSCL in chronic pain participants compared to controls across trials 2 and 3 under the obstacle walking condition. ΔSCL during typical walking was associated with multiple CAN gray matter volumes, including brainstem, bilateral insula, amygdala, and right caudal anterior cingulate cortex (p's < 0.05). The difference in ΔSCL from typical-to-obstacle walking were associated with volumes of the midbrain segment of the brainstem and anterior segment of the circular sulcus of the insula (p's < 0.05), with no other significant associations. The difference in ΔSCL from typical-to-dual task walking was associated with the bilateral caudal anterior cingulate cortex, and left rostral cingulate cortex (p's < 0.05). CONCLUSIONS Sympathetic reactivity is blunted during typical and complex walking tasks in persons with chronic pain. Additionally, blunted sympathetic reactivity is associated with CAN brain structure, with direction of association dependent on brain region. These results support the idea that chronic pain may negatively impact typical autonomic responses needed for walking performance via its potential impact on the brain.
Collapse
Affiliation(s)
- Taylor D. Yeater
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida, Gainesville, FL, USA
| | - David J. Clark
- Department of Aging and Geriatric Research, University of Florida, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Lorraine Hoyos
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Aging and Geriatric Research, University of Florida, University of Florida, Gainesville, FL, USA
| | - Pedro A. Valdes-Hernandez
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Aging and Geriatric Research, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Sciences, University of Florida, University of Florida, Gainesville, FL, USA
| | - Julio A. Peraza
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Florida, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Aging and Geriatric Research, University of Florida, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Sciences, University of Florida, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Yu JS, Louer R, Lutfi R, Abu-Sultaneh S, Yabrodi M, Zee-Cheng J, Abulebda K. Adjuvant lidocaine to a propofol-ketamine-based sedation regimen for bone marrow aspirates and biopsy in the pediatric population. Eur J Pediatr 2021; 180:73-80. [PMID: 32556505 DOI: 10.1007/s00431-020-03713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022]
Abstract
Pediatric patients with hematological malignancies repeatedly undergo painful bone marrow aspirates and biopsies (BMABs) in routine care. No standard sedation regimen has been established. This study evaluated the addition of injected local lidocaine to a propofol-ketamine sedation for BMAB and its effects on propofol dosing, safety, and efficacy. A retrospective analysis of children undergoing BMAB with propofol-ketamine with (PK+L) and without (PK-only) the injection of local lidocaine. Patients were matched through propensity probability scores. To measure efficacy, dosing, procedure length, and recovery time were evaluated. To assess safety, adverse and serious events were recorded. As an indirect measurement of analgesia, changes in heart rate and blood pressure were analyzed. Of the 420 encounters included, 188 matched pairs (376 patients) were analyzed. Patient demographics were comparable. The median dose of propofol was not significantly different between both groups. The incidence of adverse events was similar. There were no significant differences in the changes in heart rate and blood pressure with sedation between groups.Conclusion: This study suggests that the addition of local lidocaine injection to a propofol-ketamine sedation for BMAB pediatric patients does not affect the propofol dose, safety, or efficacy properties of the regimen. What is Known: •Although propofol is commonly used, there is no standard sedation regimen for pediatric patients undergoing bone marrow aspiration and biopsy. •Local lidocaine is used in analgesia in the adults undergoing the same procedure. What is New: •Local lidocaine adjuvant to propofol-ketamine sedation does not affect propofol dosing, the safety of efficacy properties of the regimen in the pediatric population.
Collapse
Affiliation(s)
- Jeffrey S Yu
- Indiana University School of Medicine, 340 W 10th St #6200, Indianapolis, IN, 46202-3082, USA
| | - Ryan Louer
- Indiana University School of Medicine, 340 W 10th St #6200, Indianapolis, IN, 46202-3082, USA
| | - Riad Lutfi
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, 705 Riley Hospital Drive, Phase 2, Room 4900, Indianapolis, IN, 46202-5225, USA
| | - Samer Abu-Sultaneh
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, 705 Riley Hospital Drive, Phase 2, Room 4900, Indianapolis, IN, 46202-5225, USA
| | - Mouhammad Yabrodi
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, 705 Riley Hospital Drive, Phase 2, Room 4900, Indianapolis, IN, 46202-5225, USA
| | - Janine Zee-Cheng
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, 705 Riley Hospital Drive, Phase 2, Room 4900, Indianapolis, IN, 46202-5225, USA
| | - Kamal Abulebda
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Riley Hospital for Children at Indiana University Health and Indiana University School of Medicine, 705 Riley Hospital Drive, Phase 2, Room 4900, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
16
|
Chien JH, Colloca L, Korzeniewska A, Meeker TJ, Bienvenu OJ, Saffer MI, Lenz FA. Behavioral, Physiological and EEG Activities Associated with Conditioned Fear as Sensors for Fear and Anxiety. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6751. [PMID: 33255916 PMCID: PMC7728331 DOI: 10.3390/s20236751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Anxiety disorders impose substantial costs upon public health and productivity in the USA and worldwide. At present, these conditions are quantified by self-report questionnaires that only apply to behaviors that are accessible to consciousness, or by the timing of responses to fear- and anxiety-related words that are indirect since they do not produce fear, e.g., Dot Probe Test and emotional Stroop. We now review the conditioned responses (CRs) to fear produced by a neutral stimulus (conditioned stimulus CS+) when it cues a painful laser unconditioned stimulus (US). These CRs include autonomic (Skin Conductance Response) and ratings of the CS+ unpleasantness, ability to command attention, and the recognition of the association of CS+ with US (expectancy). These CRs are directly related to fear, and some measure behaviors that are minimally accessible to consciousness e.g., economic scales. Fear-related CRs include non-phase-locked phase changes in oscillatory EEG power defined by frequency and time post-stimulus over baseline, and changes in phase-locked visual and laser evoked responses both of which include late potentials reflecting attention or expectancy, like the P300, or contingent negative variation. Increases (ERS) and decreases (ERD) in oscillatory power post-stimulus may be generalizable given their consistency across healthy subjects. ERS and ERD are related to the ratings above as well as to anxious personalities and clinical anxiety and can resolve activity over short time intervals like those for some moods and emotions. These results could be incorporated into an objective instrumented test that measures EEG and CRs of autonomic activity and psychological ratings related to conditioned fear, some of which are subliminal. As in the case of instrumented tests of vigilance, these results could be useful for the direct, objective measurement of multiple aspects of the risk, diagnosis, and monitoring of therapies for anxiety disorders and anxious personalities.
Collapse
Affiliation(s)
- Jui-Hong Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - Luana Colloca
- Department of Pain Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD 21201-1595, USA;
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD 21201-1595, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287-7713, USA;
| | - Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - O. Joe Bienvenu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287-7713, USA;
| | - Mark I. Saffer
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - Fred A. Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| |
Collapse
|
17
|
Kiven S, Wang Y, Aich A, Argueta DA, Lei J, Sagi V, Tennakoon M, Bedros SJ, Lambrecht N, Gupta K. Spatiotemporal Alterations in Gait in Humanized Transgenic Sickle Mice. Front Immunol 2020; 11:561947. [PMID: 33178189 PMCID: PMC7593487 DOI: 10.3389/fimmu.2020.561947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sickle cell disease (SCD) is a hemoglobinopathy affecting multiple organs and featuring acute and chronic pain. Purkinje cell damage and hyperalgesia have been demonstrated in transgenic sickle mice. Purkinje cells are associated with movement and neural function which may influence pain. We hypothesized that Purkinje cell damage and/or chronic pain burden provoke compensatory gait changes in sickle mice. We found that Purkinje cells undergoe increased apoptosis as shown by caspase-3 activation. Using an automated gait measurement system, MouseWalker, we characterized spatiotemporal gait characteristics of humanized transgenic BERK sickle mice in comparison to control mice. Sickle mice showed alteration in stance instability and dynamic gait parameters (walking speed, stance duration, swing duration and specific swing indices). Differences in stance instability may reflect motor dysfunction due to damaged Purkinje cells. Alterations in diagonal and all stance indices indicative of hesitation during walking may originate from motor dysfunction and/or arise from fear and/or anticipation of movement-evoked pain. We also demonstrate that stance duration, diagonal swing indices and all stance indices correlate with both mechanical and deep tissue hyperalgesia, while stance instability correlates with only deep tissue hyperalgesia. Therefore, objective analysis of gait in SCD may provide insights into neurological impairment and pain states.
Collapse
Affiliation(s)
- Stacy Kiven
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, United States
| | - Ying Wang
- Department of Anesthesia, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anupam Aich
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jianxun Lei
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, United States
| | - Varun Sagi
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, United States
| | - Madhushan Tennakoon
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, United States
| | - Saad J. Bedros
- College of Science & Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Nils Lambrecht
- Pathology and Laboratory Medicine, Long Beach VA Healthcare System, Long Beach, CA, United States
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Vascular Biology Center, University of Minnesota, Minneapolis, MN, United States
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA, United States
| |
Collapse
|
18
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Allaert J, De Raedt R, Sanchez-Lopez A, Baeken C, Vanderhasselt MA. Mind the social feedback: effects of tDCS applied to the left DLPFC on psychophysiological responses during the anticipation and reception of social evaluations. Soc Cogn Affect Neurosci 2020; 17:131-141. [PMID: 32412085 PMCID: PMC8824563 DOI: 10.1093/scan/nsaa066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
The left dorsolateral prefrontal cortex (lDLPFC) is implicated in anticipatory (i.e. during anticipation of emotional stimuli) and online (i.e. during confrontation with emotional stimuli) emotion regulatory processes. However, research that investigates the causal role of the lDLPFC in these processes is lacking. In this study, 74 participants received active or sham transcranial direct current stimulation (tDCS) over the lDLPFC. Participants were told strangers evaluated them. These (rigged) social evaluations were presented, and in 50% of the trials, participants could anticipate the valence (positive or negative) of the upcoming social feedback. Pupil dilation (a marker of cognitive resource allocation), and skin conductance responses (a marker of arousal) were measured. The results indicate that active (compared to sham) tDCS reduced arousal during the confrontation with anticipated feedback, but only marginally during the confrontation with unanticipated feedback. When participants were given the opportunity to anticipate the social feedback, tDCS reduced arousal, irrespective of whether one was anticipating or being confronted with the anticipated feedback. Moreover, tDCS reduced cognitive resource allocation during anticipation, which was associated with resource allocation increases during the subsequent confrontation. Altogether, results suggest that the lDLPFC is causally implicated in the interplay between anticipatory and online emotion regulatory processes.
Collapse
Affiliation(s)
- Jens Allaert
- Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rudi De Raedt
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Chris Baeken
- Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Department of Psychiatry, Vrije Universiteit Brussel (VUB), University Hospital UZBrussel, Brussels, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Gertler J, Novotny S, Poppe A, Chung YS, Gross JJ, Pearlson G, Stevens MC. Neural correlates of non-specific skin conductance responses during resting state fMRI. Neuroimage 2020; 214:116721. [PMID: 32184189 DOI: 10.1016/j.neuroimage.2020.116721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/27/2020] [Accepted: 03/06/2020] [Indexed: 01/28/2023] Open
Abstract
Skin conductance responses (SCRs) reliably occur in the absence of external stimulation. However, the neural correlates of these non-specific SCRs have been less explored than brain activity associated with stimulus-elicited SCRs. This study modeled spontaneous skin conductance responses observed during an unstructured resting state fMRI scan in 58 adolescents. A Finite Impulse Response (FIR) fMRI model was used to detect any type of hemodynamic response shape time-locked to non-specific SCRs; the shape of these responses was then carefully characterized. The strongest evidence for signal change was found in several sub-regions of sensorimotor cortex. There also was evidence for engagement of discrete areas within the lateral surfaces of the parietal lobe, cingulate cortex, fronto-insular operculum, and both visual and auditory primary processing areas. The hemodynamic profile measured by FIR modeling clearly resembled an event-related response. However, it was a complex response, best explained by two quickly successive, but opposing neuronal impulses across all brain regions - a brief positive response that begins several seconds prior to the SCR with a much longer negative neuronal impulse beginning shortly after the SCR onset. Post hoc exploratory analyses linked these two hemodynamic response phases to different emotion-related individual differences. In conclusion, this study shows the neural correlates of non-specific SCRs are a widespread, cortical network of brain regions engaged in a complex, seemingly biphasic fashion. This bimodal response profile should be considered in replication studies that attempt to directly link brain activity to possible homeostatic mechanisms or seek evidence for alternative mechanisms.
Collapse
Affiliation(s)
| | | | - Andrew Poppe
- Olin Neuropsychiatry Research Center, Hartford, CT, USA
| | - Yu Sun Chung
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - James J Gross
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Michael C Stevens
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Argüello Prada EJ. The Internet of Things (IoT) in pain assessment and management: An overview. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Hyperalgesia when observing pain-related images is a genuine bias in perception and enhances autonomic responses. Sci Rep 2019; 9:15266. [PMID: 31649286 PMCID: PMC6813318 DOI: 10.1038/s41598-019-51743-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
Observing pain in others can enhance our own pain. Two aspects of this effect remain unknown or controversial: first, whether it depends on the 'painfulness' of the visual stimulus; second, whether it reflects a genuine bias in perception or rather a bias in the memory encoding of the percept. Pain ratings and vegetative skin responses were recorded while 21 healthy volunteers received electric nociceptive shocks under three experimental conditions: (i) observing a painful contact between the body and a harmful object; (ii) observing a non-painful body contact, (iii) observing a control scene where the body and the object are not in contact. Pain reports and vegetative responses were enhanced exclusively when the subjects observed a painful body contact. The effect on perception was immediate, abated 3 sec after the shock, and positively correlated with the magnitude of vegetative arousal. This suggests that (a) hyperalgesia during observation of painful scenes was induced by their pain-related nature, and not by the simple body contact, and (b) hyperalgesia emerged from a very rapid bias in the perceptual encoding of the stimulus, and was not the result of a retrospective bias in memory recollection. Observing pain-depicting scenes can modify the processing of concomitant somatic stimuli, increasing their arousal value and shifting perception toward more painful levels.
Collapse
|
23
|
From Anticipation to the Experience of Pain: The Importance of Visceral Versus Somatic Pain Modality in Neural and Behavioral Responses to Pain-Predictive Cues. Psychosom Med 2019; 80:826-835. [PMID: 29870435 DOI: 10.1097/psy.0000000000000612] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The aim of this study was to compare behavioral and neural anticipatory responses to cues predicting either somatic or visceral pain in an associative learning paradigm. METHODS Healthy women (N = 22) underwent functional magnetic resonance imaging. During an acquisition phase, two different visual cues repeatedly signalled either experimental visceral or somatic pain. In a subsequent extinction phase, identical cues were presented without pain. Before and after each phase, cue valence and contingency awareness were assessed on visual analog scales. RESULTS Visceral compared to somatic pain-predictive cues were rated as more unpleasant after acquisition (visceral, 32.18 ± 13.03 mm; somatic, -18.36 ± 10.36 mm; p = .021) with similarly accurate cue-pain contingencies. After extinction, cue valence returned to baseline for both modalities (visceral, 1.55 ± 9.81 mm; somatic, -18.45 ± 7.12; p = .41). During acquisition, analyses of cue-induced neural responses revealed joint neural activation engaging areas associated with attention processing and cognitive control. Enhanced deactivation of posterior insula to visceral cues was observed, which correlated with enhanced responses within the salience network (anterior cingulate cortex, anterior insula) during visceral compared to somatic pain stimulation. During extinction, both pain modalities induced anticipatory neural activation in the extinction and salience network (all pFWE values < .05). CONCLUSIONS Conditioned emotional responses to pain-predictive cues are modality specific and enhanced for the visceral modality, suggesting that pain anticipation is shaped by the salience of painful stimuli. Common but also modality-specific neural mechanisms are involved during cue-pain learning, whereas extinction of cued responses seems unaffected by modality. Future research should examine potential implications for the pathophysiology of chronic pain conditions, especially chronic visceral pain.
Collapse
|
24
|
Neural correlates of aversive anticipation: An activation likelihood estimate meta-analysis across multiple sensory modalities. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:1379-1390. [DOI: 10.3758/s13415-019-00747-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Mayer EA, Labus J, Aziz Q, Tracey I, Kilpatrick L, Elsenbruch S, Schweinhardt P, Van Oudenhove L, Borsook D. Role of brain imaging in disorders of brain-gut interaction: a Rome Working Team Report. Gut 2019; 68:1701-1715. [PMID: 31175206 PMCID: PMC6999847 DOI: 10.1136/gutjnl-2019-318308] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022]
Abstract
Imaging of the living human brain is a powerful tool to probe the interactions between brain, gut and microbiome in health and in disorders of brain-gut interactions, in particular IBS. While altered signals from the viscera contribute to clinical symptoms, the brain integrates these interoceptive signals with emotional, cognitive and memory related inputs in a non-linear fashion to produce symptoms. Tremendous progress has occurred in the development of new imaging techniques that look at structural, functional and metabolic properties of brain regions and networks. Standardisation in image acquisition and advances in computational approaches has made it possible to study large data sets of imaging studies, identify network properties and integrate them with non-imaging data. These approaches are beginning to generate brain signatures in IBS that share some features with those obtained in other often overlapping chronic pain disorders such as urological pelvic pain syndromes and vulvodynia, suggesting shared mechanisms. Despite this progress, the identification of preclinical vulnerability factors and outcome predictors has been slow. To overcome current obstacles, the creation of consortia and the generation of standardised multisite repositories for brain imaging and metadata from multisite studies are required.
Collapse
Affiliation(s)
- Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jennifer Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Qasim Aziz
- Neurogastroenterology Group, Queen Mary University of London, London, UK
| | - Irene Tracey
- Departments of Anaesthetics and Clinical Neurology, Pembroke College, Oxford, UK
| | - Lisa Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sigrid Elsenbruch
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg, Duisburg, Germany
| | | | - Lukas Van Oudenhove
- Translational Research in GastroIntestinal Disorders, KU Leuven Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - David Borsook
- Center for Pain and the Brain, Boston Children's, Massachusetts General and McLean Hospitals, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Vuong QC, Allison JR, Finkelmeyer A, Newton J, Durham J. Brain Responses in CFS and TMD to Autonomic Challenges: An Exploratory fMRI Study. JDR Clin Trans Res 2019; 5:224-232. [PMID: 31461628 DOI: 10.1177/2380084419872135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Dysfunction of the autonomic nervous system (ANS) is seen in chronic fatigue syndrome (CFS) and temporomandibular disorders (TMDs). Both conditions have poorly understood pathophysiology. Several brain structures that play a role in pain and fatigue, such as the insular cortex and basal ganglia, are also implicated in autonomic function. OBJECTIVES ANS dysfunction may point to common neurophysiologic mechanisms underlying the predominant symptoms for CFS and TMD. No studies to date have investigated the combination of both conditions. Thus, our aim was to test whether patients with CFS with or without TMD show differences in brain responses to autonomic challenges. METHODS In this exploratory functional imaging study, patients with CFS who screened positive for TMD (n = 26), patients who screened negative for TMD (n = 16), and age-matched control participants (n = 10) performed the Valsalva maneuver while in a 3-T magnetic resonance imaging scanner. This maneuver is known to activate the ANS. RESULTS For all 3 groups, whole-brain F test showed increased brain activation during the maneuver in the superior and inferior frontal gyri, the left and right putamen and thalamus, and the insular cortex. Furthermore, group contrasts with small-volume correction showed that patients with CFS who screened positive for TMD showed greater activity in the left insular cortex as compared with patients who screened negative and in the left caudate nucleus as compared with controls. CONCLUSION Our results suggest that increased activity in the cortical and subcortical regions observed during autonomic challenges may be modulated by fatigue and pain. ANS dysfunction may be a contributing factor to these findings, and further work is required to tease apart the complex relationship among CFS, TMD, and autonomic functions. KNOWLEDGE TRANSFER STATEMENT Brain activity related to activation of the autonomic nervous system in patients with chronic fatigue syndrome who screened positive for painful temporomandibular disorder was greater than in patients who screened negative; activity was seen in brain regions associated with autonomic functions and pain. These findings suggest that autonomic dysfunction may play a role in the pathophysiology of both conditions, explain some of the apparent comorbidity between them, and offer avenues to help with treatment.
Collapse
Affiliation(s)
- Q C Vuong
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - J R Allison
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Finkelmeyer
- Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - J Newton
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Durham
- School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, UK.,Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.,Dental Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
27
|
Stofkova A, Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron Med 2019; 5:14. [PMID: 32232103 PMCID: PMC7098223 DOI: 10.1186/s42234-019-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The brain, spinal cord and retina are protected from blood-borne compounds by the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB) and blood-retina barrier (BRB) respectively, which create a physical interface that tightly controls molecular and cellular transport. The mechanical and functional integrity of these unique structures between blood vessels and nervous tissues is critical for maintaining organ homeostasis. To preserve the stability of these barriers, interplay between constituent barrier cells, such as vascular endothelial cells, pericytes, glial cells and neurons, is required. When any of these cells are defective, the barrier can fail, allowing blood-borne compounds to encroach neural tissues and cause neuropathologies. Autoimmune diseases of the central nervous system (CNS) and retina are characterized by barrier disruption and the infiltration of activated immune cells. Here we review our recent findings on the role of neural activity in the regulation of these barriers at the vascular endothelial cell level in the promotion of or protection against the development of autoimmune diseases. We suggest nervous system reflexes, which we named gateway reflexes, are fundamentally involved in these diseases. Although their reflex arcs are not completely understood, we identified the activation of specific sensory neurons or receptor cells to which barrier endothelial cells respond as effectors that regulate gateways for immune cells to enter the nervous tissue. We explain this novel mechanism and describe its role in neuroinflammatory conditions, including models of multiple sclerosis and posterior autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- 1Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| | - Masaaki Murakami
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| |
Collapse
|
28
|
Winder K, Linker RA, Seifert F, Wang R, Lee DH, Engelhorn T, Dörfler A, Fröhlich K, Hilz M. Cerebral lesion correlates of sympathetic cardiovascular activation in multiple sclerosis. Hum Brain Mapp 2019; 40:5083-5093. [PMID: 31403742 PMCID: PMC6865522 DOI: 10.1002/hbm.24759] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular autonomic dysfunction is common in multiple sclerosis (MS) and contributes significantly to disability. We hypothesized that cerebral MS‐lesions in specific areas of the central autonomic network might account for imbalance of the sympathetic and parasympathetic cardiovascular modulation. Therefore, we used voxel‐based lesion symptom mapping (VLSM) to determine associations between cardiovascular autonomic dysfunction and cerebral MS‐related lesion sites. In 74 MS‐patients (mean age 37.0 ± 10.5 years), we recorded electrocardiographic RR‐intervals and systolic and diastolic blood pressure. Using trigonometric regressive spectral analysis, we assessed low (0.04–0.15 Hz) and high (0.15–0.5 Hz) frequency RR‐interval‐and blood pressure‐oscillations and determined parasympathetically mediated RR‐interval–high‐frequency modulation, mainly sympathetically mediated RR‐interval–low‐frequency modulation, sympathetically mediated blood pressure‐low‐frequency modulation, and the ratios of sympathetic and parasympathetic RR‐interval‐modulation as an index of sympathetic‐parasympathetic balance. Cerebral MS‐lesions were analyzed on imaging scans. We performed a VLSM‐analysis correlating parameters of autonomic dysfunction with cerebral MS‐lesion sites. The VLSM‐analysis showed associations between increased RR‐interval low‐frequency/high‐frequency ratios and lesions most prominently in the left insular, hippocampal, and right frontal inferior opercular region, and a smaller lesion cluster in the right middle cerebellar peduncle. Increased blood pressure‐low‐frequency powers were associated with lesions primarily in the right posterior parietal white matter and again left insular region. Our data indicate associations between a shift of cardiovascular sympathetic‐parasympathetic balance toward increased sympathetic modulation and left insular and hippocampal lesions, areas of the central autonomic network. The VLSM‐analysis further distinguished between right inferior fronto‐opercular lesions disinhibiting cardiac sympathetic activation and right posterior parietal lesions increasing sympathetic blood pressure modulation.
Collapse
Affiliation(s)
- Klemens Winder
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University Regensburg, Regensburg, Germany
| | - Frank Seifert
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ruihao Wang
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - De-Hyung Lee
- Department of Neurology, University Regensburg, Regensburg, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Fröhlich
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Max Hilz
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
29
|
Karri J, Li S, Chen YT, Stampas A, Li S. Observations of Autonomic Variability Following Central Neuromodulation for Chronic Neuropathic Pain in Spinal Cord Injury. Neuromodulation 2019; 24:427-433. [PMID: 31199549 DOI: 10.1111/ner.12979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) persons with chronic neuropathic pain (NP) demonstrate maladaptive autonomic profiles compared to SCI counterparts without NP (SCI - NP) or able-bodied (AB) controls. These aberrations may be secondary to maladaptive neuroplasticity in the shared circuitry of the pain neuromatrix-central autonomic network interface (PNM-CAN). In this study, we explored the proposed PNM-CAN mechanism in SCI + NP and AB cohorts following centrally-directed neuromodulation to assess if the PNM and CAN are capable of being differentially modulated. MATERIALS AND METHODS Central neuromodulation was administered via breathing-controlled electrical stimulation (BreEStim), previously evidenced to operate at the PNM. To quantify CAN activity, conventional heart rate variability (HRV) recordings were used to gather time and frequency domain parameters of autonomic modulation. SCI + NP (n = 10) and AB (n = 13) cohorts received null and active BreEStim randomly in crossover fashion. HRV data were gathered pretest and 30 minutes posttest. Pain modulation was quantified at both time-points by visual analog scale (VAS) for SCI + NP persons and electrical detection and pain threshold levels (EDT, EPT) for AB persons. RESULTS Following active BreEStim only, SCI + NP persons demonstrated increased parasympathetic tone (increased NN50, p = 0.03, and pNN50, p = 0.02, HRV parameters). This parasympathetic restoration was associated with analgesia (VAS reduction, p < 0.01). Similarly, AB persons demonstrated increased noxious tolerance (increased EPT, p = 0.03, with preserved EDL, p = 0.78) only following active BreEStim. However, this increased pain threshold was not associated with autonomic changes. CONCLUSIONS Central modulation targeting the PNM produced autonomic changes in SCI + NP persons but not AB persons. These findings suggest that AB persons exhibit intact CAN mechanisms capable of compensating for PNM aberrations or simply that SCI + NP persons exhibit altered PNM-CAN machinery altogether. Our collective findings confirm the interconnectedness and maladaptive plasticity of PNM-CAN machinery in SCI + NP persons and suggest that the PNM and CAN circuitry can be differentially modulated.
Collapse
Affiliation(s)
- Jay Karri
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
| | - Shengai Li
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA.,Department of Physical Medicine and Rehabilitation, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yen-Ting Chen
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA.,Department of Physical Medicine and Rehabilitation, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Argyrios Stampas
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA.,Department of Physical Medicine and Rehabilitation, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sheng Li
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA.,Department of Physical Medicine and Rehabilitation, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
30
|
Lerman I, Davis B, Huang M, Huang C, Sorkin L, Proudfoot J, Zhong E, Kimball D, Rao R, Simon B, Spadoni A, Strigo I, Baker DG, Simmons AN. Noninvasive vagus nerve stimulation alters neural response and physiological autonomic tone to noxious thermal challenge. PLoS One 2019; 14:e0201212. [PMID: 30759089 PMCID: PMC6373934 DOI: 10.1371/journal.pone.0201212] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
The mechanisms by which noninvasive vagal nerve stimulation (nVNS) affect central and peripheral neural circuits that subserve pain and autonomic physiology are not clear, and thus remain an area of intense investigation. Effects of nVNS vs sham stimulation on subject responses to five noxious thermal stimuli (applied to left lower extremity), were measured in 30 healthy subjects (n = 15 sham and n = 15 nVNS), with fMRI and physiological galvanic skin response (GSR). With repeated noxious thermal stimuli a group × time analysis showed a significantly (p < .001) decreased response with nVNS in bilateral primary and secondary somatosensory cortices (SI and SII), left dorsoposterior insular cortex, bilateral paracentral lobule, bilateral medial dorsal thalamus, right anterior cingulate cortex, and right orbitofrontal cortex. A group × time × GSR analysis showed a significantly decreased response in the nVNS group (p < .0005) bilaterally in SI, lower and mid medullary brainstem, and inferior occipital cortex. Finally, nVNS treatment showed decreased activity in pronociceptive brainstem nuclei (e.g. the reticular nucleus and rostral ventromedial medulla) and key autonomic integration nuclei (e.g. the rostroventrolateral medulla, nucleus ambiguous, and dorsal motor nucleus of the vagus nerve). In aggregate, noninvasive vagal nerve stimulation reduced the physiological response to noxious thermal stimuli and impacted neural circuits important for pain processing and autonomic output.
Collapse
Affiliation(s)
- Imanuel Lerman
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| | - Bryan Davis
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Mingxiong Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Charles Huang
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, United States of America
- Department of Radiology, VA San Diego Healthcare System, La Jolla, CA, United States of America
| | - Linda Sorkin
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - James Proudfoot
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Edward Zhong
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States of America
| | - Bruce Simon
- electroCore LLC, Basking Ridge NJ, United States of America
| | - Andrea Spadoni
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Irina Strigo
- Department of Psychiatry, VA San Francisco Healthcare System, San Francisco, CA, United States of America
| | - Dewleen G. Baker
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| | - Alan N. Simmons
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States of America
- Department of Psychiatry University of California San Diego School of Medicine, La Jolla, CA, United States of America
| |
Collapse
|
31
|
Gillies MJ, Huang Y, Hyam JA, Aziz TZ, Green AL. Direct neurophysiological evidence for a role of the human anterior cingulate cortex in central command. Auton Neurosci 2019; 216:51-58. [PMID: 30262256 PMCID: PMC6314459 DOI: 10.1016/j.autneu.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/10/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The role of the anterior cingulate cortex (ACC) is still controversial. The ACC has been implicated in such diverse functions as cognition, arousal and emotion in addition to motor and autonomic control. Therefore the ACC is the ideal candidate to orchestrate cardiovascular performance in anticipation of perceived skeletal activity. The aim of this experiment was to investigate whether the ACC forms part of the neural network of central command whereby cardiovascular performance is governed by a top-down mechanism. METHODS & RESULTS Direct local field potential (LFP) recordings were made using intraparenchymal electrodes in six human ACC's to measure changes in neuronal activity during performance of a motor task in which anticipation of exercise was uncoupled from skeletal activity itself. Parallel cardiovascular arousal was indexed by electrocardiographic changes in heart rate. During anticipation of exercise, ACC LFP power within the 25-60 Hz frequency band increased significantly by 21% compared to rest (from 62.7 μV2/Hz (±SE 4.94) to 76.0μV2/Hz (±SE 7.24); p = 0.004). This 25-60 Hz activity increase correlated with a simultaneous heart rate increase during anticipation (Pearson's r = 0.417, p = 0.016). CONCLUSIONS/SIGNIFICANCE We provide the first invasive electrophysiological evidence to support the role of the ACC in both motor preparation and the top-down control of cardiovascular function in exercise. This further implicates the ACC in the body's response to the outside world and its possible involvement in such extreme responses as emotional syncope and hyperventilation. In addition we describe the frequency at which the neuronal ACC populations perform these tasks in the human.
Collapse
Affiliation(s)
- Martin J Gillies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK.
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jonathan A Hyam
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Karri J, Li S, Zhang L, Chen YT, Stampas A, Li S. Neuropathic pain modulation after spinal cord injury by breathing-controlled electrical stimulation (BreEStim) is associated with restoration of autonomic dysfunction. J Pain Res 2018; 11:2331-2341. [PMID: 30349358 PMCID: PMC6190809 DOI: 10.2147/jpr.s174475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Recent findings have implicated supraspinal origins from the pain neuromatrix- central autonomic network (PNM-CAN) in the generation of neuropathic pain (NP) after spinal cord injury (SCI). The aim of this study was to further investigate the theorized PNM-CAN mechanisms in persons with SCI by using a centrally directed pain intervention, provided by breathing-controlled electrical stimulation (BreEStim), to measure resultant autonomic changes measured by time and frequency domain heart rate variability (HRV) analysis. METHODS Null and active BreEStim interventions were administered to SCI+NP subjects (n=10) in a random order. HRV data and VAS pain scores were collected at resting pre-test and 30 minutes post-test time points. Resting HRV data were also collected from SCI-NP subjects (n=11). RESULTS SCI+NP subjects demonstrated a lower baseline HRV and parasympathetic tone, via SD of the normal-to-normal intervals (SDNN) and low frequency (LF) parameters, compared with SCI-NP subjects. However, following active BreEStim, SCI+NP subjects exhibited an increase in HRV and parasympathetic tone, most notably via pairs of successive R-R beat lengths varying by greater than 50 ms (NN50) and proportion of NN50 for total number of beats (pNN50) parameters along with lower VAS scores. Additionally, the post-test SCI+NP group was found to have a statistically comparable autonomic profile to the SCI-NP group across all HRV variables, including SDNN and LF parameters. CONCLUSION The analgesic effects of active BreEStim in SCI+NP subjects were associated with restoration of autonomic dysfunction in this population.
Collapse
Affiliation(s)
- Jay Karri
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Larry Zhang
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
33
|
Dewe H, Watson DG, Kessler K, Braithwaite JJ. The depersonalized brain: New evidence supporting a distinction between depersonalization and derealization from discrete patterns of autonomic suppression observed in a non-clinical sample. Conscious Cogn 2018; 63:29-46. [PMID: 29929064 DOI: 10.1016/j.concog.2018.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Depersonalization and Derealization are characterised by feelings of detachment from one's bodily self/surroundings and a general emotional numbness. We explored predisposition to trait-based experiences of depersonalization/derealization-type experiences and autonomic arousal toward simulated body-threats, which were delivered to the participant's own body (i.e. Self) and when observed being delivered to another individual (i.e. Other). Ninety participants took part in an "Implied Body-Threat Illusion" task (Dewe, Watson, & Braithwaite, 2016) and autonomic arousal was recorded via standardised skin conductance responses and finger temperature. Autonomic suppression in response to threats delivered to the Self correlated with increases in trait-based depersonalization-type experiences. In contrast, autonomic suppression for threats delivered to Others correlated with trait-based derealization-like experiences. Body-temperature and anticipatory arousal did not correlate reliably with predisposition to depersonalization- or derealization-type experiences. The theoretical implications of these findings are discussed in terms of a fronto-limbic autonomic suppression mechanism.
Collapse
Affiliation(s)
- Hayley Dewe
- Behavioural Brain Sciences Centre, School of Psychology, University of Birmingham, UK.
| | | | | | | |
Collapse
|
34
|
Neural pathways in medial septal cholinergic modulation of chronic pain: distinct contribution of the anterior cingulate cortex and ventral hippocampus. Pain 2018; 159:1550-1561. [DOI: 10.1097/j.pain.0000000000001240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Holwerda SW, Luehrs RE, Gremaud AL, Wooldridge NA, Stroud AK, Fiedorowicz JG, Abboud FM, Pierce GL. Relative burst amplitude of muscle sympathetic nerve activity is an indicator of altered sympathetic outflow in chronic anxiety. J Neurophysiol 2018. [PMID: 29537916 DOI: 10.1152/jn.00064.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Relative burst amplitude of muscle sympathetic nerve activity (MSNA) is an indicator of augmented sympathetic outflow and contributes to greater vasoconstrictor responses. Evidence suggests anxiety-induced augmentation of relative MSNA burst amplitude in patients with panic disorder; thus we hypothesized that acute stress would result in augmented relative MSNA burst amplitude and vasoconstriction in individuals with chronic anxiety. Eighteen participants with chronic anxiety (ANX; 8 men, 10 women, 32 ± 2 yr) and 18 healthy control subjects with low or no anxiety (CON; 8 men, 10 women, 39 ± 3 yr) were studied. Baseline MSNA and 24-h blood pressure were similar between ANX and CON ( P > 0.05); however, nocturnal systolic blood pressure % dipping was blunted among ANX ( P = 0.02). Relative MSNA burst amplitude was significantly greater among ANX compared with CON immediately preceding (anticipation) and during physiological stress [2-min cold pressor test; ANX: 73 ± 5 vs. CON: 59 ± 3% arbitrary units (AU), P = 0.03] and mental stress (4-min mental arithmetic; ANX: 65 ± 3 vs. CON: 54 ± 3% AU, P = 0.02). Increases in MSNA burst frequency, incidence, and total activity in response to stress were not augmented among ANX compared with CON ( P > 0.05), and reduction in brachial artery conductance during cold stress was similar between ANX and CON ( P = 0.92). Relative MSNA burst amplitude during mental stress was strongly correlated with state ( P < 0.01) and trait ( P = 0.01) anxiety (State-Trait Anxiety Inventory), independent of age, sex, and body mass index. Thus in response to acute stress, both mental and physiological, individuals with chronic anxiety demonstrate selective augmentation in relative MSNA burst amplitude, indicating enhanced sympathetic drive in a population with higher risk for cardiovascular disease. NEW & NOTEWORTHY Relative burst amplitude of muscle sympathetic nerve activity in response to acute mental and physiological stress is selectively augmented in individuals with chronic anxiety, which is a prevalent condition that is associated with the development of cardiovascular disease. Augmented sympathetic burst amplitude occurs with chronic anxiety in the absence of common comorbidities. These findings provide important insight into the relation between anxiety, acute stress and sympathetic activation.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Rachel E Luehrs
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Allene L Gremaud
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Nealy A Wooldridge
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Amy K Stroud
- Department of Psychiatry, University of Iowa , Iowa City, Iowa
| | - Jess G Fiedorowicz
- Department of Psychiatry, University of Iowa , Iowa City, Iowa.,Department of Epidemiology, University of Iowa , Iowa City, Iowa.,Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Francois M Abboud
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
36
|
de Tommaso M, Ricci K, Libro G, Vecchio E, Delussi M, Montemurno A, Lopalco G, Iannone F. Pain Processing and Vegetative Dysfunction in Fibromyalgia: A Study by Sympathetic Skin Response and Laser Evoked Potentials. PAIN RESEARCH AND TREATMENT 2017; 2017:9747148. [PMID: 29093972 PMCID: PMC5637844 DOI: 10.1155/2017/9747148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM). We aimed to correlate laser evoked potentials (LEPs), Sympathetic Skin Response (SSR), and clinical features in FM patients. METHODS Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ) and severity scores (WPI), anxiety (SAS) and depression (SDS) scales, and questionnaires for neuropathic pain (DN4). RESULTS The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32%) with higher DN4 and FIQ scores, SSR or LEP responses were absent. CONCLUSIONS LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.
Collapse
Affiliation(s)
- Marina de Tommaso
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Katia Ricci
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Giuseppe Libro
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Eleonora Vecchio
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Marianna Delussi
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Anna Montemurno
- Neurophysiopathology of Pain Laboratory, Basic Medical Science, Neuroscience and Sensory System Department, Bari Aldo Moro University, Bari, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Bari Aldo Moro University, Bari, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantation, Bari Aldo Moro University, Bari, Italy
| |
Collapse
|
37
|
Tracy LM, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ. Effects of explicit cueing and ambiguity on the anticipation and experience of a painful thermal stimulus. PLoS One 2017; 12:e0183650. [PMID: 28832636 PMCID: PMC5568281 DOI: 10.1371/journal.pone.0183650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
Many factors can influence the way in which we perceive painful events and noxious stimuli, but less is known about how pain perception is altered by explicit knowledge about the impending sensation. This study aimed to investigate the impact of explicit cueing on anxiety, arousal, and pain experience during the anticipation and delivery of noxious thermal heat stimulations. Fifty-two healthy volunteers were randomised to receive explicit instructions about visual cue-stimulus temperature pairings, or no explicit instructions about the cue-stimulus pairs. A pain anxiety task was used to investigate the effects of explicit cueing on anticipatory anxiety, pain experience and electrophysiological responses. Participants who received explicit instructions about the cue-stimulus pairs (i.e., the relationship between the colour of the cue and the temperature of the associated stimuli) reported significantly higher subjective anxiety prior to the delivery of the thermal heat stimuli (p = .025, partial eta squared = .10). There were no effects of explicit cueing on subsequent pain intensity, unpleasantness, or the electrophysiological response to stimulus delivery. The perceived intensity and unpleasantness of the stimuli decreased across the blocks of the paradigm. In both groups anticipating the ambiguous cue elicited the largest change in electrophysiological arousal, indicating that not knowing the impending stimulus temperature led to increased arousal, compared to being certain of receiving a high temperature thermal stimulus (both p < .001). Perceived stimulus intensity varied between ambiguous and non-ambiguous cues, depending on the temperature of the stimulus. Together these findings highlight the impact and importance of explicit cueing and uncertainty in experimental pain studies, and how these factors influence the way healthy individuals perceive and react to noxious and innocuous thermal stimuli.
Collapse
Affiliation(s)
- Lincoln M Tracy
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, Australia.,Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia
| | - Stephen J Gibson
- Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton, Victoria, Australia
| | - Melita J Giummarra
- Caulfield Pain Management & Research Centre, Caulfield Hospital, Caulfield, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Institute of Safety, Compensation & Recovery Research, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Karri J, Zhang L, Li S, Chen YT, Stampas A, Li S. Heart Rate Variability: A Novel Modality for Diagnosing Neuropathic Pain after Spinal Cord Injury. Front Physiol 2017; 8:495. [PMID: 28769815 PMCID: PMC5513934 DOI: 10.3389/fphys.2017.00495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Heart rate variability (HRV), the physiological variance in the heart's R-R interval length, can be analyzed to produce various parameters reflective of one's autonomic balance. HRV analysis may be used to capture those autonomic aberrations associated with chronic neuropathic pain (NP) in spinal cord injury (SCI). This study assesses the capacity of HRV parameters to diagnose NP in an SCI cohort. Methods: An electrocardiogram (ECG) was collected at rest from able bodied participants (AB, n = 15), participants with SCI only (SCI-NP, n = 11), and those with SCI and NP (SCI+NP, n = 20). HRV parameters were analyzed using conventional time and frequency analysis. Results: At rest, there were no heart rate differences amongst groups. However, SCI+NP participants demonstrated lower overall HRV, as determined by the SDNN time domain parameter, compared to either AB (p < 0.01) or SCI-NP (p < 0.05) groups. Moreover, AB and SCI-NP participants were statistically comparable for all HRV time and frequency domain parameters. Additional analyses demonstrated no differences in HRV parameters between T4, above vs. T5, below SCI groups (for all parameters: p > 0.15) or between C8, above vs. T1, below SCI groups (p > 0.30). Conclusions: Participants with SCI and NP exhibit a lower overall HRV, which can be determined by HRV time domain parameter SDNN. HRV analysis is an innovative modality with the capacity for objective quantification of chronic NP in participants with SCI.
Collapse
Affiliation(s)
- Jay Karri
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| | - Larry Zhang
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at HoustonHouston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann HospitalHouston, TX, United States
| |
Collapse
|
39
|
Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity. Pain 2017; 158:2129-2136. [DOI: 10.1097/j.pain.0000000000001010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Morikawa Y, Takamoto K, Nishimaru H, Taguchi T, Urakawa S, Sakai S, Ono T, Nishijo H. Compression at Myofascial Trigger Point on Chronic Neck Pain Provides Pain Relief through the Prefrontal Cortex and Autonomic Nervous System: A Pilot Study. Front Neurosci 2017; 11:186. [PMID: 28442987 PMCID: PMC5386976 DOI: 10.3389/fnins.2017.00186] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Compression at myofascial trigger points (MTrPs), known as “ischemic compression,” has been reported to provide immediate relief of musculoskeletal pain and reduce the sympathetic activity that exacerbates chronic pain. We conducted a pilot study to investigate the possible involvement of the prefrontal cortex in pain relief obtained by MTrP compression in the present study, and analyzed the relationships among prefrontal hemodynamic activity, activity of the autonomic nervous system, and subjective pain in patients with chronic neck pain, with and without MTrP compression. Twenty-one female subjects with chronic neck pain were randomly assigned to two groups: MTrP compression (n = 11) or Non-MTrP compression (n = 10). Compression for 30 s was conducted 4 times. During the experiment, prefrontal hemodynamic activity [changes in Oxy-hemoglobin (Hb), Deoxy-Hb, and Total-Hb concentrations] and autonomic activity based on heart rate variability (HRV) were monitored by using near infrared spectroscopy (NIRS) and electrocardiography (ECG), respectively. The results indicated that MTrP compression significantly reduced subjective pain compared with Non-MTrP compression. The spectral frequency-domain analyses of HRV indicated that a low frequency (LF) component of HRV was decreased, and a high frequency (HF) component of HRV was increased during MTrP compression, while LF/HF ratio was decreased during MTrP compression. In addition, prefrontal hemodynamic activity was significantly decreased during MTrP compression compared with Non-MTrP compression. Furthermore, changes in autonomic activity were significantly correlated with changes in subjective pain and prefrontal hemodynamic activity. Along with previous studies indicating a role for sympathetic activity in the exacerbation of chronic pain, the present results suggest that MTrP compression in the neck region alters the activity of the autonomic nervous system via the prefrontal cortex to reduce subjective pain.
Collapse
Affiliation(s)
- Yoshiki Morikawa
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Kouich Takamoto
- Department of Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Toru Taguchi
- Department of Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Susumu Urakawa
- Department of Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Shigekazu Sakai
- Department of Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Taketoshi Ono
- Department of Judo Neurophysiotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyama, Japan
| |
Collapse
|
41
|
Chien JH, Colloca L, Korzeniewska A, Cheng JJ, Campbell CM, Hillis AE, Lenz FA. Oscillatory EEG activity induced by conditioning stimuli during fear conditioning reflects Salience and Valence of these stimuli more than Expectancy. Neuroscience 2017; 346:81-93. [PMID: 28077278 PMCID: PMC5426483 DOI: 10.1016/j.neuroscience.2016.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022]
Abstract
Imaging studies have described hemodynamic activity during fear conditioning protocols with stimulus trains in which a visual conditioned stimulus (CS+) is paired with an aversive unconditioned stimulus (US, painful laser pulse) while another visual stimulus is unpaired (CS-). We now test the hypothesis that CS Event Related Spectral Perturbations (ERSPs) are related to ratings of CS Expectancy (likelihood of pairing with the US), Valence (unpleasantness) and Salience (ability to capture attention). ERSP windows in EEG were defined by both time after the CS and frequency, and showed increased oscillatory power (Event Related Synchronization, ERS) in the Delta/Theta Windows (0-8Hz) and the Gamma Window (30-55Hz). Decreased oscillatory power (Event Related Desynchronization - ERD) was found in Alpha (8-14Hz) and Beta Windows (14-30Hz). The Delta/Theta ERS showed a differential effect of CS+ versus CS- at Prefrontal, Frontal and Midline Channels, while Alpha and Beta ERD were greater at Parietal and Occipital Channels early in the stimulus train. The Gamma ERS Window increased from habituation to acquisition over a broad area from frontal and occipital electrodes. The CS Valence and Salience were greater for CS+ than CS-, and were correlated with each other and with the ERD at overlapping channels, particularly in the Alpha Window. Expectancy and CS Skin Conductance Response were greater for CS+ than CS- and were correlated with ERSP at fewer channels than Valence or Salience. These results suggest that Alpha ERSP activity during fear conditioning reflects Valence and Salience of the CSs more than conditioning per se.
Collapse
Affiliation(s)
- J H Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - L Colloca
- Department of Pain Translational Symptom Science, School of Nursing, and Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, USA
| | - A Korzeniewska
- Departments of Neurology and Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - J J Cheng
- Department of Neurosurgery, Emory University, Atlanta, USA
| | - C M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - A E Hillis
- Departments of Neurology and Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - F A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
42
|
Leuchs L, Schneider M, Czisch M, Spoormaker VI. Neural correlates of pupil dilation during human fear learning. Neuroimage 2016; 147:186-197. [PMID: 27915119 DOI: 10.1016/j.neuroimage.2016.11.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/12/2016] [Accepted: 11/30/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Fear conditioning and extinction are prevailing experimental and etiological models for normal and pathological anxiety. Pupil dilations in response to conditioned stimuli are increasingly used as a robust psychophysiological readout of fear learning, but their neural correlates remain unknown. We aimed at identifying the neural correlates of pupil responses to threat and safety cues during a fear learning task. METHODS Thirty-four healthy subjects underwent a fear conditioning and extinction paradigm with simultaneous functional magnetic resonance imaging (fMRI) and pupillometry. After a stringent preprocessing and artifact rejection procedure, trial-wise pupil responses to threat and safety cues were entered as parametric modulations to the fMRI general linear models. RESULTS Trial-wise magnitude of pupil responses to both conditioned and safety stimuli correlated positively with activity in dorsal anterior cingulate cortex (dACC), thalamus, supramarginal gyrus and insula for the entire fear learning task, and with activity in the dACC during the fear conditioning phase in particular. Phasic pupil responses did not show habituation, but were negatively correlated with tonic baseline pupil diameter, which decreased during the task. Correcting phasic pupil responses for the tonic baseline pupil diameter revealed thalamic activity, which was also observed in an analysis employing a linear (declining) time modulation. CONCLUSION Pupil dilations during fear conditioning and extinction provide useful readouts to track fear learning on a trial-by-trial level, particularly with simultaneous fMRI. Whereas phasic pupil responses reflect activity in brain regions involved in fear learning and threat appraisal, most prominently in dACC, tonic changes in pupil diameter may reflect changes in general arousal.
Collapse
Affiliation(s)
- Laura Leuchs
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Max Schneider
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Michael Czisch
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | |
Collapse
|
43
|
Karshikoff B, Jensen KB, Kosek E, Kalpouzos G, Soop A, Ingvar M, Olgart Höglund C, Lekander M, Axelsson J. Why sickness hurts: A central mechanism for pain induced by peripheral inflammation. Brain Behav Immun 2016; 57:38-46. [PMID: 27058164 DOI: 10.1016/j.bbi.2016.04.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 11/17/2022] Open
Abstract
Low-grade systemic inflammation has been implicated in chronic pain, as well as in comorbid diseases like depression and fatigue. We have previously shown that women's pain perception and regulation is more affected by systemic inflammation than that of men. Here we investigated the neural substrates underlying these effects using an fMRI paradigm previously employed in a clinical population. Fifty-one participants (29 women) were injected with 0.6ng/kg lipopolysaccharide (LPS) or saline to induce a peripheral inflammatory response. The subjects were then tested with a pressure pain fMRI paradigm designed to capture descending pain inhibitory activity 2h after injection, and blood was sampled for cytokine analysis. The subjects injected with LPS became more pain sensitive compared to the placebo group, and the heightened pain sensitivity was paralleled by decreased activity in the ventrolateral prefrontal cortex and the rostral anterior cingulate cortex (rACC) compared to placebo; areas involved in descending pain regulation. The LPS group also had higher activity in the anterior insular cortex, an area underpinning affective and interoceptive pain processing. Women displayed overall less pain-evoked rACC activity compared to men, which may have rendered women less resilient to immune provocation, possibly explaining sex differences in LPS-induced pain sensitivity. Our findings elucidate the pain-related brain circuits affected by experimental peripheral inflammation, strengthening the theoretical link between systemic inflammation and weakened pain regulation in chronic pain disorders. The results further suggest a possible mechanism underlying the female predominance in many chronic pain disorders.
Collapse
Affiliation(s)
- B Karshikoff
- Karolinska Pain Center, Behavioral Medicine Pain Treatment Service, Karolinska University Hospital, Solna, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - K B Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - E Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - G Kalpouzos
- Aging Research Center (ARC), Department of Neurobiology, Cares Sciences and Society, Karolinska Institutet and Stockholm University, Sweden
| | - A Soop
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - M Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - C Olgart Höglund
- Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine Solna and CMM, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - M Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - J Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc Natl Acad Sci U S A 2016; 113:9922-7. [PMID: 27528671 DOI: 10.1073/pnas.1605044113] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.
Collapse
|
45
|
Does pain catastrophizing contribute to threat-evoked amplification of pain and spinal nociception? Pain 2016; 157:456-465. [DOI: 10.1097/j.pain.0000000000000392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Hong JY, Naliboff B, Labus JS, Gupta A, Kilpatrick LA, Ashe-McNalley C, Stains J, Heendeniya N, Smith SR, Tillisch K, Mayer EA. Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation. Neurogastroenterol Motil 2016; 28:127-38. [PMID: 26526698 PMCID: PMC4943658 DOI: 10.1111/nmo.12710] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND A majority of the subjects with irritable bowel syndrome (IBS) show increased behavioral and brain responses to expected and delivered aversive visceral stimuli during controlled rectal balloon distension, and during palpation of the sigmoid colon. We aimed to determine if altered brain responses to cued and uncued pain expectation are also seen in the context of a noxious somatic pain stimulus applied to the same dermatome as the sigmoid colon. METHODS A task-dependent functional magnetic resonance imaging technique was used to investigate the brain activity of 37 healthy controls (18 females) and 37 IBS subjects (21 females) during: (i) a cued expectation of an electric shock to the abdomen vs a cued safe condition; and (ii) an uncued cross-hair condition in which the threat is primarily based on context vs a cued safe condition. KEY RESULTS Regions within the salience, attention, default mode, and emotional arousal networks were more activated by the cued abdominal threat condition and the uncued condition than in the cued safe condition. During the uncued condition contrasted to the cued safe condition, IBS subjects (compared to healthy control subjects) showed greater brain activations in the affective (amygdala, anterior insula) and attentional (middle frontal gyrus) regions, and in the thalamus and precuneus. These disease-related differences were primarily seen in female subjects. CONCLUSIONS & INFERENCES The observed greater engagement of cognitive and emotional brain networks in IBS subjects during contextual threat may reflect the propensity of IBS subjects to overestimate the likelihood and severity of future abdominal pain.
Collapse
Affiliation(s)
- Jui-Yang Hong
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095,Department of Bioengineering, University of California, Los Angeles, California 90095
| | - Bruce Naliboff
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Brain Research Institute, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Jennifer S. Labus
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Brain Research Institute, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Arpana Gupta
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Lisa A. Kilpatrick
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Cody Ashe-McNalley
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Jean Stains
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Nuwanthi Heendeniya
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Suzanne R. Smith
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Kirsten Tillisch
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095
| | - Emeran A. Mayer
- Oppenheimer Center for Neurobiology of Stress, University of California, Los Angeles, California 90095,Pain and Interoception Imaging Network (PAIN), University of California, Los Angeles, California 90095,Department of Medicine, University of California, Los Angeles, California 90095,Brain Research Institute, University of California, Los Angeles, California 90095,Division of Digestive Diseases, University of California, Los Angeles, California 90095,Department of Psychiatry, University of California, Los Angeles, California 90095,Ahmanson Lovelace Brain Mapping Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
47
|
Abstract
Despite an extensive body of reported information about peripheral and central mechanisms involved in the pathophysiology of IBS symptoms, no comprehensive disease model has emerged that would guide the development of novel, effective therapies. In this Review, we will first describe novel insights into some key components of brain-gut interactions, starting with the emerging findings of distinct functional and structural brain signatures of IBS. We will then point out emerging correlations between these brain networks and genomic, gastrointestinal, immune and gut-microbiome-related parameters. We will incorporate this new information, as well as the reported extensive literature on various peripheral mechanisms, into a systems-based disease model of IBS, and discuss the implications of such a model for improved understanding of the disorder, and for the development of more-effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Jennifer S Labus
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Kirsten Tillisch
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA and West Los Angeles VA Medical Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Steven W Cole
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California at Irvine, 4038 Bren Hall, Irvine, CA 92697-3435, USA
| |
Collapse
|
48
|
Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study. PLoS One 2015; 10:e0131951. [PMID: 26158464 PMCID: PMC4497661 DOI: 10.1371/journal.pone.0131951] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Collapse
|
49
|
Li K, Zhang Y, Ning Y, Zhang H, Liu H, Fu C, Ren Y, Zou Y. The effects of acupuncture treatment on the right frontoparietal network in migraine without aura patients. J Headache Pain 2015; 16:518. [PMID: 25916336 PMCID: PMC4411327 DOI: 10.1186/s10194-015-0518-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/14/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Functional and structural abnormalities in resting-state brain networks in migraine patients have been confirmed by previous functional magnetic resonance imaging (fMRI) studies. However, few studies focusing on the neural responses of therapeutic treatment on migraine have been conducted. In this study, we tried to examined the treatment-related effects of standard acupuncture treatment on the right frontoparietal network (RFPN) in migraine patients. METHODS A total of 12 migraine without aura (MWoA) patients were recruited to undergo resting-state fMRI scanning and were rescanned after 4 weeks standard acupuncture treatment. Another 12 matched healthy control (HC) subjects underwent once scanning for comparison. We analyzed the functional connectivity of the RFPN between MWoA patients and HC subjects before treatment and that of the MWoA patients before and after treatment. Diffusion tensor images (DTI) data analyzing was also performed to detect fiber-related treatment responses. RESULTS We observed significantly decreased FC in the RFPN and that the decreased FC could be reversed by acupuncture treatment. The changes of FC in MWoA patients was negatively correlated with the decrease of visual analogue scale (VAS) scores after treatment. This study indicated that acupuncture treatment for MWoA patients was associated with normalizing effects on the intrinsic decreased FC of the RFPN. CONCLUSIONS Our study provided new insights into the treatment-related neural responses in MWoA patients and suggested potential functional pathways for the evaluation of treatment in MWoA patients. Future studies are still in need to confirm the current results and to elucidate the complex neural mechanisms of acupuncture treatment.
Collapse
Affiliation(s)
- Kuangshi Li
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100700, China,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seifert F, Kallmünzer B, Gutjahr I, Breuer L, Winder K, Kaschka I, Kloska S, Doerfler A, Hilz MJ, Schwab S, Köhrmann M. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke. J Neurol 2015; 262:1182-90. [DOI: 10.1007/s00415-015-7684-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
|