1
|
Petrušić I, Radović M, Daković M, Radojičić A, Coppola G. Subsegmentation of the hippocampus in subgroups of migraine with aura patients: advanced structural neuroimaging study. J Headache Pain 2024; 25:182. [PMID: 39420262 PMCID: PMC11484179 DOI: 10.1186/s10194-024-01888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND This study investigated for a possible contributing role of hippocampus in the different clinical phenotypic manifestations of migraine aura. METHODS Herein, patients were categorized as those with pure visual aura (MwAv), those who reported additional somatosensory and dysphasic symptoms (MwAvsd), and healthy controls (HCs). Neuroimaging data obtained using FreeSurfer-based segmentation of hippocampal subfields were compared between HCs and patients with migraine with aura, as well as between HCs and those with MwAv and MwAvsd. The average migraine aura complexity score (MACS) was calculated for each patient to investigate the correlation between hippocampal subfield volume and migraine aura complexity. RESULTS Herein, 46 patients with migraine with aura (28 MwAvsd and 18 MwAv) and 31 HCs were included. There were no significant differences in the hippocampal subfields between HCs and patients with migraine with aura. The average MACS negatively correlated with the volumes of the left and right hippocampi, Cornu Ammonis (CA) 1, CA3, CA4, molecular layer, left granule cell layer of the dentate gyrus, hippocampal fissure, and hippocampus-amygdala transition area. The MwAvsd subgroup had significantly smaller whole hippocampal volumes in both hemispheres, as well as in both subicula, compared with the MwAv subgroup and HCs. In addition, the left molecular layer, right CA1, and hippocampal fissures were significantly smaller in the MwAvsd group than in the MwAv subgroup and HCs. CONCLUSIONS Smaller left and right hippocampal volumes, particularly of the subiculum/CA1 area, may play an important role in the pathophysiology of somatosensory and dysphasic symptoms in migraine with aura.
Collapse
Affiliation(s)
- Igor Petrušić
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski Trg Street, Belgrade, 11000, Serbia.
| | - Mojsije Radović
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski Trg Street, Belgrade, 11000, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Daković
- Faculty of Physical Chemistry, University of Belgrade, 12-16 Studentski Trg Street, Belgrade, 11000, Serbia
| | - Aleksandra Radojičić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Headache Center, Neurology Clinic, University Clinical Center of Serbia, Belgrade, Serbia
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| |
Collapse
|
2
|
Xu J, Tan S, Wen J, Zhang M, Xu X. Progression of hippocampal subfield atrophy and asymmetry in Alzheimer's disease. Eur J Neurosci 2024; 60:6091-6106. [PMID: 39308012 DOI: 10.1111/ejn.16543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/17/2024]
Abstract
Alzheimer's disease (AD) affects the hippocampus during its progression, but the specific observable changes of hippocampal subfields during disease progression remain poorly understood. In this study, we employed an event-based model (EBM) to determine the sequence of occurrence of hippocampal subfield atrophy in mild cognitive impairment (MCI) and AD cohorts. Subjects (207) were included: 86 MCI, 53 AD, and 68 healthy controls from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants underwent structural magnetic resonance imaging (MRI) scans to analyse the hippocampal subfields. We assigned each patient to a specific EBM stage, based on the number of their abnormal subfields. A combination of 2-year follow-up MRI scans were applied to demonstrate the longitudinal consistency and utility of the model's staging system. The model estimated that the earliest atrophy occurs in the hippocampal fissure, then spreading to other subregions in both MCI and AD. We identified a marked divergence between the sequences of left and right hippocampal subfields atrophy, so inter-hemispheric asymmetry pattern was further analysed. The sequence of asymmetry index (AI) increases beginning in the molecular and granule cell layers of the dentate gyrus (GC-ML-DG), cornus ammonis (CA) 4, and the molecular layer (ML). Longitudinal analysis confirms the efficacy of the model. In addition, the model stages were significantly correlated with patients' memory scores (p < .05). Collectively, we used a data-driven method to provide new insight into AD hippocampal progression. The present model could aid in understanding of the disease stages, as well as tracking memory decline.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine. No.88 Jiefang Road, Hangzhou, China
| |
Collapse
|
3
|
Ikemitsu N, Kanazawa Y, Haga A, Hayashi H, Matsumoto Y, Harada M. Determination of Alzheimer's disease based on morphology and atrophy using machine learning combined with automated segmentation. Acta Radiol 2024; 65:359-366. [PMID: 38196180 DOI: 10.1177/02841851231218384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
BACKGROUND To evaluate the degree of cerebral atrophy for Alzheimer's disease (AD), voxel-based morphometry has been performed with magnetic resonance imaging. Detailed morphological changes in a specific tissue area having the most evidence of atrophy were not considered by the machine-learning technique. PURPOSE To develop a machine-learning system that can capture morphology features for determination of atrophy of brain tissue in early-stage AD and classification of healthy participants or patients. MATERIAL AND METHODS Three-dimensional T1-weighted (3D-T1W) data were obtained from AD Neuroimaging Initiative (200 healthy controls and 200 patients with early-stage AD). Automated segmentation of 3D-T1W data was performed. Deep learning (DL) and support vector machine (SVM) were trained using 66-segmented volume values as input and AD diagnosis as output. DL was performed using 66 volume values or gray matter (GM) and white matter (WM) volume values. SVM learning was performed using 66 volume values and six regions with high variable importance. 3D convolutional neural network (3D-CNN) was trained using the segmented images. Accuracy and area under curve (AUC) were obtained. Variable importance was evaluated from logistic regression analysis. RESULTS DL for GM and WM volume values, accuracy 0.6; SVM for all volume values, accuracy 0.82 and AUC 0.81; DL for all volume values, accuracy 0.82 and AUC 0.8; 3D-CNN using segmental images of the whole brain, accuracy 0.5 and AUC 0.51. SVM using volume values of six regions, accuracy 0.82; image-based 3D-CNN, highest accuracy 0.69. CONCLUSION Our results show that atrophic features are more considerable than morphological features in the early detection of AD.
Collapse
Affiliation(s)
- Natsuki Ikemitsu
- Graduate school of Health Science, Tokushima University, Tokushima, Japan
| | - Yuki Kanazawa
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akihiro Haga
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Hayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yuki Matsumoto
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masafumi Harada
- Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Malykhin N, Pietrasik W, Hoang KN, Huang Y. Contributions of hippocampal subfields and subregions to episodic memory performance in healthy cognitive aging. Neurobiol Aging 2024; 133:51-66. [PMID: 37913626 DOI: 10.1016/j.neurobiolaging.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/01/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
In the present study we investigated whether hippocampal subfield (cornu ammonis 1-3, dentate gyrus, and subiculum) and anteroposterior hippocampal subregion (head,body, and tail) volumes can predict episodic memory function using high-field high resolution structural magnetic resonance imaging (MRI). We recruited 126 healthy participants (18-85 years). MRI datasets were collected on a 4.7 T system. Participants were administered the Wechsler Memory Scale (WMS-IV) to evaluate episodic memory function. Structural equation modeling was used to test the relationship between studied variables. We found that the volume of the dentate gyrus subfield and posterior hippocampus (body) showed a significant direct effect on visuospatial memory performance; additionally, an indirect effect of age on visuospatial memory mediated through these hippocampal subfield/subregion was significant. Logical and verbal memory were not significantly associated with hippocampal subfield or subregion volumes.
Collapse
Affiliation(s)
- Nikolai Malykhin
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| | - Wojciech Pietrasik
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kim Ngan Hoang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Yushan Huang
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Cao J, Tang Y, Chen S, Yu S, Wan K, Yin W, Zhen W, Zhao W, Zhou X, Zhu X, Sun Z. The Hippocampal Subfield Volume Reduction and Plasma Biomarker Changes in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 2024; 98:907-923. [PMID: 38489180 DOI: 10.3233/jad-231114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The hippocampus consists of histologically and functionally distinct subfields, which shows differential vulnerabilities to Alzheimer's disease (AD)-associated pathological changes. Objective To investigate the atrophy patterns of the main hippocampal subfields in patients with mild cognitive impairment (MCI) and AD and the relationships among the hippocampal subfield volumes, plasma biomarkers and cognitive performance. Methods This cross-sectional study included 119 patients stratified into three categories: normal cognition (CN; N = 40), MCI (N = 39), and AD (N = 40). AD-related plasma biomarkers were measured, including amyloid-β (Aβ)42, Aβ40, Aβ42/Aβ40 ratio, p-tau181, and p-tau217, and the hippocampal subfield volumes were calculated using automated segmentation and volumetric procedures implemented in FreeSurfer. Results The subiculum body, cornu ammonis (CA) 1-head, CA1-body, CA4-body, molecular_layer_HP-head, molecular_layer_HP-body, and GC-ML-DG-body volumes were smaller in the MCI group than in the CN group. The subiculum body and CA1-body volumes accurately distinguished MCI from CN (area under the curve [AUC] = 0.647-0.657). The subiculum-body, GC-ML-DG-body, CA4-body, and molecular_layer_HP-body volumes accurately distinguished AD from MCI (AUC = 0.822-0.833) and AD from CN (AUC = 0.903-0.905). The p-tau 217 level served as the best plasma indicator of AD and correlated with broader hippocampal subfield volumes. Moreover, mediation analysis demonstrated that the subiculum-body volume mediated the associations between the p-tau217 and p-tau181 levels, and the Montreal Cognitive Assessment and Auditory Verbal Learning Test recognition scores. Conclusions Hippocampal subfields with distinctive atrophy patterns may mediate the effects of tau pathology on cognitive function. The subiculum-body may be the most clinically meaningful hippocampal subfield, which could be an effective target region for assessing disease progression.
Collapse
Affiliation(s)
- Jing Cao
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yating Tang
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shujian Chen
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siqi Yu
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenwen Yin
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhui Zhen
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, Th First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Zhang J, Xie L, Cheng C, Liu Y, Zhang X, Wang H, Hu J, Yu H, Xu J. Hippocampal subfield volumes in mild cognitive impairment and alzheimer's disease: a systematic review and meta-analysis. Brain Imaging Behav 2023; 17:778-793. [PMID: 37768441 DOI: 10.1007/s11682-023-00804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
The hippocampus is a complex structure that consists of several subfields with distinct and specialized functions. Although numerous studies have been performed to explore hippocampal atrophy at the sub-regional level in mild cognitive impairment (MCI) and Alzheimer's disease (AD), the results have been inconsistent especially for whether and which subfields can be served as the most potential biomarkers in MCI and AD. Herein, we used a meta-analytic approach to synthesize the extant literatures on hippocampal subfields in MCI and AD through PubMed, Web of Science, and Embase (PROSPERO CRD42021257586). As a result, a total of twenty studies using Freesurfer 5 and Freesurfer 6 were included in this investigation. These studies revealed that at the sub-regional level, hippocampal subfield volume reductions in MCI and AD were not restricted to specific subfields, and subiculum and presubiculum had the largest z-scores across most comparisons. However, none of the subfield performed much better in discriminating MCI and HC, AD and MCI, AD and HC as compared to whole hippocampus volume. These results suggested that we should explore the changes in the hippocampal subfields in subtypes of MCI or even at an earlier stage, that is subjective cognitive impairment.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Linlin Xie
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Changjiang Cheng
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Yongfeng Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoyu Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingting Hu
- College of Creative Design, Shenzhen Technology University, Shenzhen, China
| | - Haibo Yu
- The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China.
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Homayouni R, Canada KL, Saifullah S, Foster D, Thill C, Raz N, Daugherty AM, Ofen N. Age-related differences in hippocampal subfield volumes across the human lifespan: A meta-analysis. Hippocampus 2023; 33:1292-1315. [PMID: 37881160 PMCID: PMC10841547 DOI: 10.1002/hipo.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The human hippocampus (Hc) is critical for memory function across the lifespan. It is comprised of cytoarchitectonically distinct subfields: dentate gyrus (DG), cornu ammonis sectors (CA) 1-4, and subiculum, each of which may be differentially susceptible to neurodevelopmental and neurodegenerative mechanisms. Identifying age-related differences in Hc subfield volumes can provide insights into neural mechanisms of memory function across the lifespan. Limited evidence suggests that DG and CA3 volumes differ across development while other regions remain relatively stable, and studies of adulthood implicate a downward trend in all subfield volumes with prominent age effects on CA1. Due to differences in methods and limited sampling for any single study, the magnitude of age effects on Hc subfield volumes and their probable lifespan trajectories remain unclear. Here, we conducted a meta-analysis on cross-sectional studies (n = 48,278 participants, ages = 4-94 years) to examine the association between age and Hc subfield volumes in development (n = 11 studies), adulthood (n = 30 studies), and a combined lifespan sample (n = 41 studies) while adjusting estimates for sample sizes. In development, age was positively associated with DG and CA3-4 volumes, whereas in adulthood a negative association was observed with all subfield volumes. Notably, the observed age effects were not different across subfield volumes within each age group. All subfield volumes showed a nonlinear age pattern across the lifespan with DG and CA3-4 volumes showing a more distinct age trajectory as compared to the other subfields. Lastly, among all the study-level variables, only female percentage of the study sample moderated the age effect on CA1 volume: a higher female-to-male ratio in the study sample was linked to the greater negative association between age and CA1 volume. These results document that Hc subfield volumes differ as a function of age offering broader implications for constructing theoretical models of lifespan memory development.
Collapse
Affiliation(s)
- Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | | | | | - Da’Jonae Foster
- Department of Psychology, Wayne State University, Detroit, MI
| | | | - Naftali Raz
- Department of Psychology, Stony Brook University, Stony Brook, NY
- Max Planck Institute for Human Development, Berlin, Germany
| | - Ana M. Daugherty
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI
- Department of Psychology, Wayne State University, Detroit, MI
| |
Collapse
|
8
|
Christopher-Hayes NJ, Embury CM, Wiesman AI, May PE, Schantell M, Johnson CM, Wolfson SL, Murman DL, Wilson TW. Piecing it together: atrophy profiles of hippocampal subfields relate to cognitive impairment along the Alzheimer's disease spectrum. Front Aging Neurosci 2023; 15:1212197. [PMID: 38020776 PMCID: PMC10644116 DOI: 10.3389/fnagi.2023.1212197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction People with Alzheimer's disease (AD) experience more rapid declines in their ability to form hippocampal-dependent memories than cognitively normal healthy adults. Degeneration of the whole hippocampal formation has previously been found to covary with declines in learning and memory, but the associations between subfield-specific hippocampal neurodegeneration and cognitive impairments are not well characterized in AD. To improve prognostic procedures, it is critical to establish in which hippocampal subfields atrophy relates to domain-specific cognitive declines among people along the AD spectrum. In this study, we examine high-resolution structural magnetic resonance imaging (MRI) of the medial temporal lobe and extensive neuropsychological data from 29 amyloid-positive people on the AD spectrum and 17 demographically-matched amyloid-negative healthy controls. Methods Participants completed a battery of neuropsychological exams including select tests of immediate recollection, delayed recollection, and general cognitive status (i.e., performance on the Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). Hippocampal subfield volumes (CA1, CA2, CA3, dentate gyrus, and subiculum) were measured using a dedicated MRI slab sequence targeting the medial temporal lobe and used to compute distance metrics to quantify AD spectrum-specific atrophic patterns and their impact on cognitive outcomes. Results Our results replicate prior studies showing that CA1, dentate gyrus, and subiculum hippocampal subfield volumes were significantly reduced in AD spectrum participants compared to amyloid-negative controls, whereas CA2 and CA3 did not exhibit such patterns of atrophy. Moreover, degeneration of the subiculum along the AD spectrum was linked to a significant decline in general cognitive status measured by the MMSE, while degeneration scores of the CA1 and dentate gyrus were more widely associated with declines on the MMSE and tests of learning and memory. Discussion These findings provide evidence that subfield-specific patterns of hippocampal degeneration, in combination with cognitive assessments, may constitute a sensitive prognostic approach and could be used to better track disease trajectories among individuals on the AD spectrum.
Collapse
Affiliation(s)
- Nicholas J. Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Mind and Brain, University of California, Davis, CA, United States
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pamela E. May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, UNMC, Omaha, NE, United States
| | | | | | - Daniel L. Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- Memory Disorders and Behavioral Neurology Program, UNMC, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, UNMC, Omaha, NE, United States
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
9
|
Lai YM, Chang YL. Age-related differences in associative memory recognition of Chinese characters and hippocampal subfield volumes. Biol Psychol 2023; 183:108657. [PMID: 37562576 DOI: 10.1016/j.biopsycho.2023.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Associative memory is a type of hippocampal-dependent episodic memory that declines with age. Studies have examined the neural substrates underlying associative memory and considered the hippocampus holistically; however, the association between associative memory decline and volumetric change in hippocampal subfields in the context of normal aging remains uncharacterized. Leveraging the distinct linguistic features of Chinese characters to evaluate distinct types of false recognition, we investigated age-related differences in associative recognition and hippocampal subfield volumes, as well as the relationship between behavioral performance and hippocampal morphometry in 25 younger adults and 32 older adults. The results showed an age-related associative memory deficit, which was exacerbated after a 30-min delay. Older adults showed higher susceptibility to false alarm errors with recombined and orthographically related foils compared to phonologically or semantically related ones. Moreover, we detected a disproportionately age-related, time-dependent increase in orthographic errors. Older adults exhibited smaller volumes in all hippocampal subfields when compared to younger adults, with a less pronounced effect observed in the CA2/3 subfield. Group-collapsed correlational analyses revealed associations between specific hippocampal subfields and associative memory but not item memory. Additionally, multi-subfield regions had prominent associations with delayed recognition. These findings underscore the significance of multiple hippocampal subfields in various hippocampal-dependent processes including associative memory, recollection-based retrieval, and pattern separation ability. Moreover, our observations of age-related difficulty in differentiating perceptually similar foils from targets provide a unique opportunity for examining the essential contribution of individual hippocampal subfields to the pattern separation process in mnemonic recognition.
Collapse
Affiliation(s)
- Ya-Mei Lai
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Clinical Psychology Center, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
de Flores R, Demeilliez-Servouin S, Kuhn E, Chauveau L, Landeau B, Delcroix N, Gonneaud J, Vivien D, Chételat G. Respective influence of beta-amyloid and APOE ε4 genotype on medial temporal lobe subregions in cognitively unimpaired older adults. Neurobiol Dis 2023; 181:106127. [PMID: 37061167 DOI: 10.1016/j.nbd.2023.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023] Open
Abstract
Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aβ) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aβ + (n = 24) and Aβ- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aβ and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aβ to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.
Collapse
Affiliation(s)
- Robin de Flores
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France.
| | - Solène Demeilliez-Servouin
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Elizabeth Kuhn
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Léa Chauveau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Brigitte Landeau
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | | | - Julie Gonneaud
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Denis Vivien
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| | - Gaël Chételat
- INSERM UMR-S U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Caen-Normandie University, GIP Cyceron, France
| |
Collapse
|
11
|
Qu H, Ge H, Wang L, Wang W, Hu C. Volume changes of hippocampal and amygdala subfields in patients with mild cognitive impairment and Alzheimer's disease. Acta Neurol Belg 2023:10.1007/s13760-023-02235-9. [PMID: 37043115 DOI: 10.1007/s13760-023-02235-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/06/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Automated segmentation of hippocampal and amygdala subfields could improve classification accuracy of Mild Cognitive Impairments (MCI) and Alzheimer's Disease (AD) individuals. METHODS We applied T1-weighted magnetic resonance imaging (MRI) for 21 AD, 39 MCI and 32 normal control (NC) participants at 3-Tesla MRI. Twelve hippocampal subfields and 9 amygdala subfields in each hemisphere were analyzed using FreeSurfer 6.0. RESULTS Smaller volumes were observed in right/left whole hippocampus, right/left hippocampal tail, right/left subiculum, right Cornu ammonis 1(CA1), right/left molecular layer, right granule cell-molecular layer-dentate gyrus (GC-ML-DG), right CA4, right fimbria, right whole amygdala, right/left accessory basal, right anterior amygdala area, left central, left medial and right/left cortical nucleus of AD group compared to both MCI and NC groups (p < 0.001). The volumes of right presubiculum, right CA3, right hippocampus-amygdala-transition-area (HATA), right lateral, right basal, right central, right medial, right cortico-amygdaloid transition (CAT) and right paralaminar nucleus were significantly larger in NC than AD group (p ≤ 0.001), while the volumes of right subiculum, right CA1, right molecular layer, right whole hippocampus, right whole amygdala, right basal and right accessory basal were significantly larger in NC than MCI group (p ≤ 0.002). Trend analysis showed that most hippocampus and amygdala subfields have a trend of atrophy with the decline of cognitive function. Six core components were identified by the hierarchical clustering. The combined Receiver operating characteristic (ROC) analysis achieved the diagnostic performances (AUC: 0.81) in differentiating AD from MCI; (AUC: 0.79) in differentiating MCI from NC and (AUC: 0.97) in differentiating AD from NC. CONCLUSIONS Volumetric differences of hippocampus and amygdala were at a finer subfields scale, and the volumes of right basal nucleus, left parasubiculum, left medial nucleus, left GC-ML-DG, left hippocampal fissure, and right fimbria can be employed as neuroimaging biomarkers to assist the clinical diagnosis of MCI and AD.
Collapse
Affiliation(s)
- Hang Qu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu, China
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Haitao Ge
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Liping Wang
- Department of Biobank, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou Jiangsu, China.
| |
Collapse
|
12
|
Increased Hippocampal-Inferior Temporal Gyrus White Matter Connectivity following Donepezil Treatment in Patients with Early Alzheimer's Disease: A Diffusion Tensor Probabilistic Tractography Study. J Clin Med 2023; 12:jcm12030967. [PMID: 36769615 PMCID: PMC9917574 DOI: 10.3390/jcm12030967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing each year, and a defective hippocampus has been primarily associated with an early stage of AD. However, the effect of donepezil treatment on hippocampus-related networks is unknown. Thus, in the current study, we evaluated the hippocampal white matter (WM) connectivity in patients with early-stage AD before and after donepezil treatment using probabilistic tractography, and we further determined the WM integrity and changes in brain volume. Ten patients with early-stage AD (mean age = 72.4 ± 7.9 years; seven females and three males) and nine healthy controls (HC; mean age = 70.7 ± 3.5 years; six females and three males) underwent a magnetic resonance (MR) examination. After performing the first MR examination, the patients received donepezil treatment for 6 months. The brain volumes and diffusion tensor imaging scalars of 11 regions of interest (the superior/middle/inferior frontal gyrus, the superior/middle/inferior temporal gyrus, the amygdala, the caudate nucleus, the hippocampus, the putamen, and the thalamus) were measured using MR imaging and DTI, respectively. Seed-based structural connectivity analyses were focused on the hippocampus. The patients with early AD had a lower hippocampal volume and WM connectivity with the superior frontal gyrus and higher mean diffusivity (MD) and radial diffusivity (RD) in the amygdala than HC (p < 0.05, Bonferroni-corrected). However, brain areas with a higher (or lower) brain volume and WM connectivity were not observed in the HC compared with the patients with early AD. After six months of donepezil treatment, the patients with early AD showed increased hippocampal-inferior temporal gyrus (ITG) WM connectivity (p < 0.05, Bonferroni-corrected).
Collapse
|
13
|
Zuo Z, Li G, Chen Y, Qiao P, Zhu J, Wang P, Wu F, Yu H, Jiang Y, Yang J, Li G, Jiang R, Du F. Atrophy in subcortical gray matter in adult patients with moyamoya disease. Neurol Sci 2023; 44:1709-1717. [PMID: 36622475 PMCID: PMC10102099 DOI: 10.1007/s10072-022-06583-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/21/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Acute cerebrovascular accidents, long-term hypoperfusion, and/or remote neuronal degeneration may lead to structural alterations in patients with moyamoya disease (MMD). This study sought to comprehensively investigate the distribution characteristics of subcortical gray matter volume and their correlations with angiographic changes in the intracranial artery in patients with MMD. METHOD One hundred forty-two patients with MMD and 142 age- and sex-matched healthy controls underwent 3-dimensional high-resolution structural magnetic resonance imaging. Volumes of subcortical gray matter and subregions of the hippocampus and amygdala were calculated, and the degree of stenosis/occlusion of intracranial arteries in patients with MMD was evaluated on MR angiography. RESULTS Volume reductions in the thalamus, caudate, putamen, hippocampus, amygdala, pallidum, and nucleus accumbens were found in patients with MMD. Hippocampal subfields and amygdala subnuclei in patients with MMD showed distinct vulnerability, and morphological alterations in specific subregions were more obvious than in the whole hippocampus/amygdala. Volume loss in several subcortical areas was related to disease duration and intracranial arterial changes. CONCLUSIONS Our findings revealed structural alteration patterns of subcortical gray matter in MMD. The specific atrophy in subregions of the hippocampus and the amygdala suggested potential cognitive and affective impairments in MMD, which warrants further investigation. Chronic cerebral hemodynamic alterations in MMD may play a pivotal role in morphological changes in subcortical areas.
Collapse
Affiliation(s)
- Zhiwei Zuo
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Guo Li
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Ya Chen
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Penggang Qiao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Zhu
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Peng Wang
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Fa Wu
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Hongmei Yu
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Yalan Jiang
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Jindou Yang
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Gongjie Li
- Department of Radiology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Rui Jiang
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China
| | - Feizhou Du
- Department of Radiology, The General Hospital of Western Theater Command, 270# Tianhui Road, Rongdu Avenue, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
14
|
Xie L, Wisse LEM, Wang J, Ravikumar S, Khandelwal P, Glenn T, Luther A, Lim S, Wolk DA, Yushkevich PA. Deep label fusion: A generalizable hybrid multi-atlas and deep convolutional neural network for medical image segmentation. Med Image Anal 2023; 83:102683. [PMID: 36379194 PMCID: PMC10009820 DOI: 10.1016/j.media.2022.102683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Deep convolutional neural networks (DCNN) achieve very high accuracy in segmenting various anatomical structures in medical images but often suffer from relatively poor generalizability. Multi-atlas segmentation (MAS), while less accurate than DCNN in many applications, tends to generalize well to unseen datasets with different characteristics from the training dataset. Several groups have attempted to integrate the power of DCNN to learn complex data representations and the robustness of MAS to changes in image characteristics. However, these studies primarily focused on replacing individual components of MAS with DCNN models and reported marginal improvements in accuracy. In this study we describe and evaluate a 3D end-to-end hybrid MAS and DCNN segmentation pipeline, called Deep Label Fusion (DLF). The DLF pipeline consists of two main components with learnable weights, including a weighted voting subnet that mimics the MAS algorithm and a fine-tuning subnet that corrects residual segmentation errors to improve final segmentation accuracy. We evaluate DLF on five datasets that represent a diversity of anatomical structures (medial temporal lobe subregions and lumbar vertebrae) and imaging modalities (multi-modality, multi-field-strength MRI and Computational Tomography). These experiments show that DLF achieves comparable segmentation accuracy to nnU-Net (Isensee et al., 2020), the state-of-the-art DCNN pipeline, when evaluated on a dataset with similar characteristics to the training datasets, while outperforming nnU-Net on tasks that involve generalization to datasets with different characteristics (different MRI field strength or different patient population). DLF is also shown to consistently improve upon conventional MAS methods. In addition, a modality augmentation strategy tailored for multimodal imaging is proposed and demonstrated to be beneficial in improving the segmentation accuracy of learning-based methods, including DLF and DCNN, in missing data scenarios in test time as well as increasing the interpretability of the contribution of each individual modality.
Collapse
Affiliation(s)
- Long Xie
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA.
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Jiancong Wang
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Sadhana Ravikumar
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Pulkit Khandelwal
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Trevor Glenn
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Anica Luther
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
| | - Sydney Lim
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - David A Wolk
- Penn Memory Center, University of Pennsylvania, Philadelphia, USA; Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Paul A Yushkevich
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
15
|
Maglione AV, do Nascimento BPP, Ribeiro MO, de Souza TJL, da Silva REC, Sato MA, Penatti CAA, Britto LRG, de Souza JS, Maciel RMB, da Conceição RR, Laureano-Melo R, Giannocco G. Triiodothyronine Treatment reverses Depression-Like Behavior in a triple-transgenic animal model of Alzheimer's Disease. Metab Brain Dis 2022; 37:2735-2750. [PMID: 35951206 DOI: 10.1007/s11011-022-01055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.
Collapse
Affiliation(s)
- Andréa V Maglione
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Bruna P P do Nascimento
- Laboratory of Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Talytha J L de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Renata E C da Silva
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André- Brazil, São Paulo, Santo André, Brazil
| | - Carlos A A Penatti
- Laboratory of Human Physiology, Universidade Nove de Julho, São Paulo, Brazil
| | - Luiz R G Britto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina S de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| | - Roberto Laureano-Melo
- Laboratory of Physiopharmacoly and Behavior, Universidade de Barra Mansa, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
16
|
Shahid SS, Wen Q, Risacher SL, Farlow MR, Unverzagt FW, Apostolova LG, Foroud TM, Zetterberg H, Blennow K, Saykin AJ, Wu YC. Hippocampal-subfield microstructures and their relation to plasma biomarkers in Alzheimer's disease. Brain 2022; 145:2149-2160. [PMID: 35411392 PMCID: PMC9630875 DOI: 10.1093/brain/awac138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
Hippocampal subfields exhibit differential vulnerabilities to Alzheimer's disease-associated pathology including abnormal accumulation of amyloid-β deposition and neurofibrillary tangles. These pathological processes extensively impact on the structural and functional interconnectivities of the subfields and may explain the association between hippocampal dysfunction and cognitive deficits. In this study, we investigated the degree of alterations in the microstructure of hippocampal subfields across the clinical continuum of Alzheimer's disease. We applied a grey matter-specific multi-compartment diffusion model (Cortical-Neurite orientation dispersion and density imaging) to understand the differential effects of Alzheimer's disease pathology on the hippocampal subfield microstructure. A total of 119 participants were included in this cross-sectional study. Participants were stratified into three categories, cognitively normal (n = 47), mild cognitive impairment (n = 52), and Alzheimer's disease (n = 19). Diffusion MRI, plasma biomarkers and neuropsychological test scores were used to determine the association between the microstructural integrity and Alzheimer's disease-associated molecular indicators and cognition. For Alzheimer's disease-related plasma biomarkers, we studied amyloid-β, total tau and neurofilament light; for Alzheimer's disease-related neuropsychological tests, we included the Trail Making Test, Rey Auditory Verbal Learning Test, Digit Span and Montreal Cognitive Assessment. Comparisons between cognitively normal subjects and those with mild cognitive impairment showed significant microstructural alterations in the hippocampal cornu ammonis (CA) 4 and dentate gyrus region, whereas CA 1-3 was the most sensitive region for the later stages in the Alzheimer's disease clinical continuum. Among imaging metrics for microstructures, the volume fraction of isotropic diffusion for interstitial free water demonstrated the largest effect size in between-group comparisons. Regarding the plasma biomarkers, neurofilament light appeared to be the most sensitive biomarker for associations with microstructural imaging findings in CA4-dentate gyrus. CA 1-3 was the subfield which had stronger correlations between cognitive performance and microstructural metrics. Particularly, poor performance on the Rey Auditory Verbal Learning Test and Montreal Cognitive Assessment was associated with decreased intracellular volume fraction. Overall, our findings support the value of tissue-specific microstructural imaging for providing pathologically relevant information manifesting in the plasma biomarkers and neuropsychological outcomes across various stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qiuting Wen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu Chien Wu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Rechberger S, Li Y, Kopetzky SJ, Butz-Ostendorf M. Automated High-Definition MRI Processing Routine Robustly Detects Longitudinal Morphometry Changes in Alzheimer's Disease Patients. Front Aging Neurosci 2022; 14:832828. [PMID: 35747446 PMCID: PMC9211026 DOI: 10.3389/fnagi.2022.832828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Longitudinal MRI studies are of increasing importance to document the time course of neurodegenerative diseases as well as neuroprotective effects of a drug candidate in clinical trials. However, manual longitudinal image assessments are time consuming and conventional assessment routines often deliver unsatisfying study outcomes. Here, we propose a profound analysis pipeline that consists of the following coordinated steps: (1) an automated and highly precise image processing stream including voxel and surface based morphometry using latest highly detailed brain atlases such as the HCP MMP 1.0 atlas with 360 cortical ROIs; (2) a profound statistical assessment using a multiplicative model of annual percent change (APC); and (3) a multiple testing correction adopted from genome-wide association studies that is optimally suited for longitudinal neuroimaging studies. We tested this analysis pipeline with 25 Alzheimer's disease patients against 25 age-matched cognitively normal subjects with a baseline and a 1-year follow-up conventional MRI scan from the ADNI-3 study. Even in this small cohort, we were able to report 22 significant measurements after multiple testing correction from SBM (including cortical volume, area and thickness) complementing only three statistically significant volume changes (left/right hippocampus and left amygdala) found by VBM. A 1-year decrease in brain morphometry coincided with an increasing clinical disability and cognitive decline in patients measured by MMSE, CDR GLOBAL, FAQ TOTAL and NPI TOTAL scores. This work shows that highly precise image assessments, APC computation and an adequate multiple testing correction can produce a significant study outcome even for small study sizes. With this, automated MRI processing is now available and reliable for routine use and clinical trials.
Collapse
Affiliation(s)
| | - Yong Li
- Biomax Informatics, Munich, Germany
| | - Sebastian J. Kopetzky
- Biomax Informatics, Munich, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Markus Butz-Ostendorf
- Biomax Informatics, Munich, Germany
- Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
18
|
Chételat G. How to use neuroimaging biomarkers in the diagnosis framework of neurodegenerative diseases? Rev Neurol (Paris) 2022; 178:490-497. [DOI: 10.1016/j.neurol.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022]
|
19
|
Association of Hippocampal Subfield Volumes with Amyloid-Beta Deposition in Alzheimer's Disease. J Clin Med 2022; 11:jcm11061526. [PMID: 35329851 PMCID: PMC8955328 DOI: 10.3390/jcm11061526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the relationship between hippocampal subfield volumes and cortical amyloid-beta (Aβ) deposition in Alzheimer’s disease (AD). Fifty participants (11 cognitively unimpaired [CU], 10 with mild cognitive impairment [MCI], and 29 with AD) who underwent 18F-florbetaben positron emission tomography, magnetic resonance imaging, and neuropsychological tests were enrolled. The hippocampal subfield volumes were obtained using an automated brain volumetry system with the Winterburn atlas and were compared among the diagnostic groups, and the correlations with the Aβ deposition and AD risk factors were determined. Patients with MCI and AD showed decreased volume in the stratum radiatum/lacunosum/moleculare (SRLM) of the cornu ammonis (CA)1 and CA4-dentate gyrus (DG) compared with the CU. Decreased SRLM and CA4-DG volumes were associated with an increased Aβ deposition in the global cortex (R = −0.459, p = 0.001; R = −0.393, p = 0.005, respectively). The SRLM and CA4-DG volumes aided in the distinction of AD from CU (areas under the receiver operating characteristic [AUROC] curve = 0.994 and 0.981, respectively, p < 0.001), and Aβ+ from Aβ− individuals (AUROC curve = 0.949 and 0.958, respectively, p < 0.001). Hippocampal subfield volumes demonstrated potential as imaging biomarkers in the diagnosis and detection of AD and Aβ deposition, respectively.
Collapse
|
20
|
Kagerer SM, Schroeder C, van Bergen JMG, Schreiner SJ, Meyer R, Steininger SC, Vionnet L, Gietl AF, Treyer V, Buck A, Pruessmann KP, Hock C, Unschuld PG. Low Subicular Volume as an Indicator of Dementia-Risk Susceptibility in Old Age. Front Aging Neurosci 2022; 14:811146. [PMID: 35309894 PMCID: PMC8926841 DOI: 10.3389/fnagi.2022.811146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Hippocampal atrophy is an established Alzheimer’s Disease (AD) biomarker. Volume loss in specific subregions as measurable with ultra-high field magnetic resonance imaging (MRI) may reflect earliest pathological alterations. Methods Data from positron emission tomography (PET) for estimation of cortical amyloid β (Aβ) and high-resolution 7 Tesla T1 MRI for assessment of hippocampal subfield volumes were analyzed in 61 non-demented elderly individuals who were divided into risk-categories as defined by high levels of cortical Aβ and low performance in standardized episodic memory tasks. Results High cortical Aβ and low episodic memory interactively predicted subicular volume [F(3,57) = 5.90, p = 0.018]. The combination of high cortical Aβ and low episodic memory was associated with significantly lower subicular volumes, when compared to participants with high episodic memory (p = 0.004). Discussion Our results suggest that low subicular volume is linked to established indicators of AD risk, such as increased cortical Aβ and low episodic memory. Our data support subicular volume as a marker of dementia-risk susceptibility in old-aged non-demented persons.
Collapse
Affiliation(s)
- Sonja M. Kagerer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clemens Schroeder
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | | | - Simon J. Schreiner
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Stefanie C. Steininger
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laetitia Vionnet
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Anton F. Gietl
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Paul G. Unschuld
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- *Correspondence: Paul G. Unschuld,
| |
Collapse
|
21
|
Niaz MR, Ridwan AR, Wu Y, Bennett DA, Arfanakis K. Development and evaluation of a high resolution 0.5mm isotropic T1-weighted template of the older adult brain. Neuroimage 2022; 248:118869. [PMID: 34986396 PMCID: PMC8855670 DOI: 10.1016/j.neuroimage.2021.118869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 10/28/2022] Open
Abstract
Investigating the structure of the older adult brain at high spatial resolution is of high significance, and a dedicated older adult structural brain template with sub-millimeter resolution is currently lacking. Therefore, the purpose of this work was twofold: (A) to develop a 0.5mm isotropic resolution standardized T1-weighted template of the older adult brain by applying principles of super resolution to high quality MRI data from 222 older adults (65-95 years of age), and (B) to systematically compare the new template to other standardized and study-specific templates in terms of image quality and performance when used as a reference for alignment of older adult data. The new template exhibited higher spatial resolution and improved visualization of fine structural details of the older adult brain compared to a template constructed using a conventional template building approach and the same data. In addition, the new template exhibited higher image sharpness and did not contain image artifacts observed in some of the other templates considered in this work. Due to the above enhancements, the new template provided higher inter-subject spatial normalization precision for older adult data compared to the other templates, and consequently enabled detection of smaller inter-group morphometric differences in older adult data. Finally, the new template was among those that were most representative of older adult brain data. Overall, the new template constructed here is an important resource for studies of aging, and the findings of the present work have important implications in template selection for investigations on older adults.
Collapse
Affiliation(s)
- Mohammad Rakeen Niaz
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - Abdur Raquib Ridwan
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - Yingjuan Wu
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, Chicago, IL 60616, United States; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States.
| |
Collapse
|
22
|
Coad BM, Ghomroudi PA, Sims R, Aggleton JP, Vann SD, Metzler-Baddeley C. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiol Aging 2022; 113:39-54. [PMID: 35303671 PMCID: PMC9084919 DOI: 10.1016/j.neurobiolaging.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 12/02/2022]
Abstract
Age-related inverted U-shaped curve of hippocampal myelin/neurite packing. Reduced hippocampal myelin/neurite packing and size/complexity in obesity. APOE modifies the effects of obesity on hippocampal size/complexity. Age-related slowing of spatial navigation but no risk effects on cognition. CA/DG predict episodic memory and subiculum predicts spatial navigation performance.
Characterizing age- and risk-related hippocampal vulnerabilities may inform about the neural underpinnings of cognitive decline. We studied the impact of three risk-factors, Apolipoprotein (APOE)-ε4, a family history of dementia, and central obesity, on the CA1, CA2/3, dentate gyrus and subiculum of 158 cognitively healthy adults (38-71 years). Subfields were labelled with the Automatic Segmentation of Hippocampal Subfields and FreeSurfer (version 6) protocols. Volumetric and microstructural measurements from quantitative magnetization transfer and Neurite Orientation Density and Dispersion Imaging were extracted for each subfield and reduced to three principal components capturing apparent myelin/neurite packing, size/complexity, and metabolism. Aging was associated with an inverse U-shaped curve on myelin/neurite packing and affected all subfields. Obesity led to reductions in myelin/neurite packing and size/complexity regardless of APOE and family history of dementia status. However, amongst individuals with a healthy Waist-Hip-Ratio, APOE ε4 carriers showed lower size/complexity than non-carriers. Segmentation protocol type did not affect this risk pattern. These findings reveal interactive effects between APOE and central obesity on the hippocampal formation of cognitively healthy adults.
Collapse
|
23
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Quek YE, Fung YL, Cheung MWL, Vogrin SJ, Collins SJ, Bowden SC. Agreement Between Automated and Manual MRI Volumetry in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Magn Reson Imaging 2021; 56:490-507. [PMID: 34964531 DOI: 10.1002/jmri.28037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Automated magnetic resonance imaging (MRI) volumetry is a promising tool to evaluate regional brain volumes in dementia and especially Alzheimer's disease (AD). PURPOSE To compare automated methods and the gold standard manual segmentation in measuring regional brain volumes on MRI across healthy controls, patients with mild cognitive impairment, and patients with dementia due to AD. STUDY TYPE Systematic review and meta-analysis. DATA SOURCES MEDLINE, Embase, and PsycINFO were searched through October 2021. FIELD STRENGTH 1.0 T, 1.5 T, or 3.0 T. ASSESSMENT Two review authors independently identified studies for inclusion and extracted data. Methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). STATISTICAL TESTS Standardized mean differences (SMD; Hedges' g) were pooled using random-effects meta-analysis with robust variance estimation. Subgroup analyses were undertaken to explore potential sources of heterogeneity. Sensitivity analyses were conducted to examine the impact of the within-study correlation between effect estimates on the meta-analysis results. RESULTS Seventeen studies provided sufficient data to evaluate the hippocampus, lateral ventricles, and parahippocampal gyrus. The pooled SMD for the hippocampus, lateral ventricles, and parahippocampal gyrus were 0.22 (95% CI -0.50 to 0.93), 0.12 (95% CI -0.13 to 0.37), and -0.48 (95% CI -1.37 to 0.41), respectively. For the hippocampal data, subgroup analyses suggested that the pooled SMD was invariant across clinical diagnosis and field strength. Subgroup analyses could not be conducted on the lateral ventricles data and the parahippocampal gyrus data due to insufficient data. The results were robust to the selected within-study correlation value. DATA CONCLUSION While automated methods are generally comparable to manual segmentation for measuring hippocampal, lateral ventricle, and parahippocampal gyrus volumes, wide 95% CIs and large heterogeneity suggest that there is substantial uncontrolled variance. Thus, automated methods may be used to measure these regions in patients with AD but should be used with caution. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Yi-En Quek
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yi Leng Fung
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mike W-L Cheung
- Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore, Singapore
| | - Simon J Vogrin
- Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Steven J Collins
- Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Stephen C Bowden
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Neurosciences, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
25
|
Chauveau L, Kuhn E, Palix C, Felisatti F, Ourry V, de La Sayette V, Chételat G, de Flores R. Medial Temporal Lobe Subregional Atrophy in Aging and Alzheimer's Disease: A Longitudinal Study. Front Aging Neurosci 2021; 13:750154. [PMID: 34720998 PMCID: PMC8554299 DOI: 10.3389/fnagi.2021.750154] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Medial temporal lobe (MTL) atrophy is a key feature of Alzheimer's disease (AD), however, it also occurs in typical aging. To enhance the clinical utility of this biomarker, we need to better understand the differential effects of age and AD by encompassing the full AD-continuum from cognitively unimpaired (CU) to dementia, including all MTL subregions with up-to-date approaches and using longitudinal designs to assess atrophy more sensitively. Age-related trajectories were estimated using the best-fitted polynomials in 209 CU adults (aged 19–85). Changes related to AD were investigated among amyloid-negative (Aβ−) (n = 46) and amyloid-positive (Aβ+) (n = 14) CU, Aβ+ patients with mild cognitive impairment (MCI) (n = 33) and AD (n = 31). Nineteen MCI-to-AD converters were also compared with 34 non-converters. Relationships with cognitive functioning were evaluated in 63 Aβ+ MCI and AD patients. All participants were followed up to 47 months. MTL subregions, namely, the anterior and posterior hippocampus (aHPC/pHPC), entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36 [as perirhinal cortex (PRC) substructures], and parahippocampal cortex (PHC), were segmented from a T1-weighted MRI using a new longitudinal pipeline (LASHiS). Statistical analyses were performed using mixed models. Adult lifespan models highlighted both linear (PRC, BA35, BA36, PHC) and nonlinear (HPC, aHPC, pHPC, ERC) trajectories. Group comparisons showed reduced baseline volumes and steeper volume declines over time for most of the MTL subregions in Aβ+ MCI and AD patients compared to Aβ− CU, but no differences between Aβ− and Aβ+ CU or between Aβ+ MCI and AD patients (except in ERC). Over time, MCI-to-AD converters exhibited a greater volume decline than non-converters in HPC, aHPC, and pHPC. Most of the MTL subregions were related to episodic memory performances but not to executive functioning or speed processing. Overall, these results emphasize the benefits of studying MTL subregions to distinguish age-related changes from AD. Interestingly, MTL subregions are unequally vulnerable to aging, and those displaying non-linear age-trajectories, while not damaged in preclinical AD (Aβ+ CU), were particularly affected from the prodromal stage (Aβ+ MCI). This volume decline in hippocampal substructures might also provide information regarding the conversion from MCI to AD-dementia. All together, these findings provide new insights into MTL alterations, which are crucial for AD-biomarkers definition.
Collapse
Affiliation(s)
- Léa Chauveau
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Elizabeth Kuhn
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Cassandre Palix
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France
| | | | - Valentin Ourry
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France.,U1077 NIMH, Inserm, Caen-Normandie University, École Pratique des Hautes Études, Caen, France
| | - Vincent de La Sayette
- U1077 NIMH, Inserm, Caen-Normandie University, École Pratique des Hautes Études, Caen, France
| | - Gaël Chételat
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Robin de Flores
- U1237 PhIND, Inserm, Caen-Normandie University, GIP Cyceron, Caen, France
| |
Collapse
|
26
|
Sodoma MJ, Cole RC, Sloan TJ, Hamilton CM, Kent JD, Magnotta VA, Voss MW. Hippocampal acidity and volume are differentially associated with spatial navigation in older adults. Neuroimage 2021; 245:118682. [PMID: 34728245 PMCID: PMC8867536 DOI: 10.1016/j.neuroimage.2021.118682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The hippocampus is negatively affected by aging and is critical for spatial navigation. While there is evidence that wayfinding navigation tasks are especially sensitive to preclinical hippocampal deterioration, these studies have primarily used volumetric hippocampal imaging without considering microstructural properties or anatomical variation within the hippocampus. T1ρ is an MRI measure sensitive to regional pH, with longer relaxation rates reflecting acidosis as a marker of metabolic dysfunction and neuropathological burden. For the first time, we investigate how measures of wayfinding including landmark location learning and delayed memory in cognitively normal older adults (N = 84) relate to both hippocampal volume and T1ρ in the anterior and posterior hippocampus. Regression analyses revealed hippocampal volume was bilaterally related to learning, while right lateralized T1ρ was related to delayed landmark location memory and bilateral T1ρ was related to the delayed use of a cognitive map. Overall, results suggest hippocampal volume and T1ρ relaxation rate tap into distinct mechanisms involved in preclinical cognitive decline as assessed by wayfinding navigation, and laterality influenced these relationships more than the anterior-posterior longitudinal axis of the hippocampus.
Collapse
Affiliation(s)
- Matthew J Sodoma
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| | - Rachel C Cole
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Taylor J Sloan
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Chase M Hamilton
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - James D Kent
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Psychology, University of Texas at Austin, Austin, TX, 78712 USA
| | - Vincent A Magnotta
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Department of Radiology, University of Iowa, Iowa City, IA 52242, UCA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA; Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Samara A, Raji CA, Li Z, Hershey T. Comparison of Hippocampal Subfield Segmentation Agreement between 2 Automated Protocols across the Adult Life Span. AJNR Am J Neuroradiol 2021; 42:1783-1789. [PMID: 34353786 DOI: 10.3174/ajnr.a7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE The hippocampus is a frequent focus of quantitative neuroimaging research, and structural hippocampal alterations are related to multiple neurocognitive disorders. An increasing number of neuroimaging studies are focusing on hippocampal subfield regional involvement in these disorders using various automated segmentation approaches. Direct comparisons among these approaches are limited. The purpose of this study was to compare the agreement between two automated hippocampal segmentation algorithms in an adult population. MATERIALS AND METHODS We compared the results of 2 automated segmentation algorithms for hippocampal subfields (FreeSurfer v6.0 and volBrain) within a single imaging data set from adults (n = 176, 89 women) across a wide age range (20-79 years). Brain MR imaging was acquired on a single 3T scanner as part of the IXI Brain Development Dataset and included T1- and T2-weighted MR images. We also examined subfield volumetric differences related to age and sex and the impact of different intracranial volume and total hippocampal volume normalization methods. RESULTS Estimated intracranial volume and total hippocampal volume of both protocols were strongly correlated (r = 0.93 and 0.9, respectively; both P < .001). Hippocampal subfield volumes were correlated (ranging from r = 0.42 for the subiculum to r = 0.78 for the cornu ammonis [CA]1, all P < .001). However, absolute volumes were significantly different between protocols. volBrain produced larger CA1 and CA4-dentate gyrus and smaller CA2-CA3 and subiculum volumes compared with FreeSurfer v6.0. Regional age- and sex-related differences in subfield volumes were qualitatively and quantitatively different depending on segmentation protocol and intracranial volume/total hippocampal volume normalization method. CONCLUSIONS The hippocampal subfield volume relationship to demographic factors and disease states should undergo nuanced interpretation, especially when considering different segmentation protocols.
Collapse
Affiliation(s)
- A Samara
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
| | - C A Raji
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
| | - Z Li
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Psychological and Brain Sciences (Z.L.), Washington University School of Medicine, St. Louis, Missouri
| | - T Hershey
- From the Department of Psychiatry (A.S., Z.L., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology (C.A.R., T.H.), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Zeng Q, Li K, Luo X, Wang S, Xu X, Li Z, Zhang T, Liu X, Fu Y, Xu X, Wang C, Wang T, Zhou J, Liu Z, Chen Y, Huang P, Zhang M. Distinct Atrophy Pattern of Hippocampal Subfields in Patients with Progressive and Stable Mild Cognitive Impairment: A Longitudinal MRI Study. J Alzheimers Dis 2021; 79:237-247. [PMID: 33252076 DOI: 10.3233/jad-200775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Predicting the prognosis of mild cognitive impairment (MCI) has outstanding clinical value, and the hippocampal volume is a reliable imaging biomarker of AD diagnosis. OBJECTIVE We aimed to longitudinally assess hippocampal sub-regional difference (volume and asymmetry) among progressive MCI (pMCI), stable MCI (sMCI) patients, and normal elderly. METHODS We identified 29 pMCI, 52 sMCI, and 102 normal controls (NC) from the ADNI database. All participants underwent neuropsychological assessment and 3T MRI scans three times. The time interval between consecutive MRI sessions was about 1 year. Volumes of hippocampal subfield were measured by Freesurfer. Based on the analysis of variance, repeated measures analyses, and receiver operating characteristic curves, we compared cross-sectional and longitudinal alteration sub-regional volume and asymmetry index. RESULTS Compared to NC, both MCI groups showed significant atrophy in all subfields. At baseline, pMCI have a smaller volume than sMCI in the bilateral subiculum, molecular layer (ML), the molecular and granule cell layers of the dentate gyrus, cornu ammonis 4, and right tail. Furthermore, repeated measures analyses revealed that pMCI patients showed a faster volume loss than sMCI in bilateral subiculum and ML. After controlling for age, gender, and education, most results remained unchanged. However, none of the hippocampal sub-regional volumes performed better than the whole hippocampus in ROC analyses, and no asymmetric difference between pMCI and sMCI was found. CONCLUSION The faster volume loss in subiculum and ML suggest a higher risk of disease progression in MCI patients. The hippocampal asymmetry may have smaller value in predicting the MCI prognosis.
Collapse
Affiliation(s)
- Qingze Zeng
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Kaicheng Li
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiao Luo
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Shuyue Wang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiaopei Xu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Zheyu Li
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Tianyi Zhang
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiaocao Liu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Yanv Fu
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Xiaojun Xu
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Chao Wang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Tao Wang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Jiong Zhou
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Zhirong Liu
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Yanxing Chen
- Department of Neurology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Peiyu Huang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | - Minming Zhang
- Department of Radiology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, China
| | | |
Collapse
|
29
|
Hüttenrauch M, Lopez-Noguerola JS, Castro-Obregón S. Connecting Mind-Body Therapy-Mediated Effects to Pathological Features of Alzheimer's Disease. J Alzheimers Dis 2021; 82:S65-S90. [PMID: 33044183 DOI: 10.3233/jad-200743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a complex, multifactorial neurodegenerative disorder that represents a major and increasing global health challenge. In most cases, the first clinical symptoms of AD are preceded by neuropathological changes in the brain that develop years to decades before their onset. Therefore, research in the last years has focused on this preclinical stage of AD trying to discover intervention strategies that might, if implemented effectively, delay or prevent disease progression. Among those strategies, mind-body therapies such as yoga and meditation have gained increasing interest as complementary alternative interventions. Several studies have reported a positive impact of yoga and meditation on brain health in both healthy older adults and dementia patients. However, the underlying neurobiological mechanisms contributing to these effects are currently not known in detail. More specifically, it is not known whether yogic interventions, directly or indirectly, can modulate risk factors or pathological mechanisms involved in the development of dementia. In this article, we first review the literature on the effects of yogic practices on outcomes such as cognitive functioning and neuropsychiatric symptoms in patients with mild cognitive impairment and dementia. Then, we analyze how yogic interventions affect different risk factors as well as aspects of AD pathophysiology based on observations of studies in healthy individuals or subjects with other conditions than dementia. Finally, we integrate this evidence and propose possible mechanisms that might explain the positive effects of yogic interventions in cognitively impaired individuals.
Collapse
Affiliation(s)
- Melanie Hüttenrauch
- División de Neurosciencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| | - José Sócrates Lopez-Noguerola
- Área Académica de Gerontología, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, México
| | - Susana Castro-Obregón
- División de Neurosciencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
30
|
Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Kuijf HJ, Witkamp TD, Hendrikse J, Biessels GJ, Geerlings MI. Vascular Risk Factors of Hippocampal Subfield Volumes in Persons without Dementia: The Medea 7T Study. J Alzheimers Dis 2021; 77:1223-1239. [PMID: 32925029 PMCID: PMC7683058 DOI: 10.3233/jad-200159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vascular risk factors have been associated with risk of Alzheimer's disease (AD) and volume loss of the hippocampus, but the associations with subfields of the hippocampus are understudied. Knowing if vascular risk factors contribute to hippocampal subfield atrophy may improve our understanding of vascular contributions to neurodegenerative diseases. OBJECTIVE To investigate the associations between age, sex, and vascular risk factors with hippocampal subfields volumes on 7T MRI in older persons without dementia. METHODS From the Medea 7T study, 283 participants (67±9 years, 68% men) without dementia had 7T brain MRI and hippocampal subfield segmentation. Subfields were automatically segmented on the 3D T2-weighted 7T images with ASHS software. Using linear mixed models, we estimated adjusted associations of age, sex, and vascular risk factors with z-scores of volumes of the entorhinal cortex (ERC), subiculum (SUB), Cornu Ammonis (CA)1, CA2, CA3, CA4, and dentate gyrus (DG), and tail as multivariate correlated outcomes. RESULTS Increasing age was associated with smaller volumes in all subfields, except CA4/DG. Current smoking was associated with smaller ERC and SUB volumes; moderate alcohol use with smaller CA1 and CA4/DG, obesity with smaller volumes of ERC, SUB, CA2, CA3, and tail; and diabetes mellitus with smaller SUB volume. Sex, former smoking, and hypertension were not associated with subfield volumes. When formally tested, no risk factor affected the subfield volumes differentially. CONCLUSION Several vascular risk factors were associated with smaller volumes of specific hippocampal subfields. However, no statistical evidence was found that subfields were differentially affected by these risk factors.
Collapse
Affiliation(s)
- Kim Blom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maarten H T Zwartbol
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Theo D Witkamp
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
31
|
Wearn AR, Nurdal V, Saunders-Jennings E, Knight MJ, Madan CR, Fallon SJ, Isotalus HK, Kauppinen RA, Coulthard EJ. T2 heterogeneity as an in vivo marker of microstructural integrity in medial temporal lobe subfields in ageing and mild cognitive impairment. Neuroimage 2021; 238:118214. [PMID: 34116150 PMCID: PMC8350145 DOI: 10.1016/j.neuroimage.2021.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
A better understanding of early brain changes that precede loss of independence in diseases like Alzheimer's disease (AD) is critical for development of disease-modifying therapies. Quantitative MRI, such as T2 relaxometry, can identify microstructural changes relevant to early stages of pathology. Recent evidence suggests heterogeneity of T2 may be a more informative MRI measure of early pathology than absolute T2. Here we test whether T2 markers of brain integrity precede the volume changes we know are present in established AD and whether such changes are most marked in medial temporal lobe (MTL) subfields known to be most affected early in AD. We show that T2 heterogeneity was greater in people with mild cognitive impairment (MCI; n = 49) compared to healthy older controls (n = 99) in all MTL subfields, but this increase was greatest in MTL cortices, and smallest in dentate gyrus. This reflects the spatio-temporal progression of neurodegeneration in AD. T2 heterogeneity in CA1-3 and entorhinal cortex and volume of entorhinal cortex showed some ability to predict cognitive decline, where absolute T2 could not, however further studies are required to verify this result. Increases in T2 heterogeneity in MTL cortices may reflect localised pathological change and may present as one of the earliest detectible brain changes prior to atrophy. Finally, we describe a mechanism by which memory, as measured by accuracy and reaction time on a paired associate learning task, deteriorates with age. Age-related memory deficits were explained in part by lower subfield volumes, which in turn were directly associated with greater T2 heterogeneity. We propose that tissue with high T2 heterogeneity represents extant tissue at risk of permanent damage but with the potential for therapeutic rescue. This has implications for early detection of neurodegenerative diseases and the study of brain-behaviour relationships.
Collapse
Affiliation(s)
- Alfie R Wearn
- Bristol Medical School, University of Bristol, Institute of Clinical Neurosciences, Learning & Research Building at Southmead Hospital, Bristol BS10 5NB, UK.
| | - Volkan Nurdal
- Bristol Medical School, University of Bristol, Institute of Clinical Neurosciences, Learning & Research Building at Southmead Hospital, Bristol BS10 5NB, UK
| | - Esther Saunders-Jennings
- Bristol Medical School, University of Bristol, Institute of Clinical Neurosciences, Learning & Research Building at Southmead Hospital, Bristol BS10 5NB, UK
| | - Michael J Knight
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Sean-James Fallon
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol, NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Hanna K Isotalus
- Bristol Medical School, University of Bristol, Institute of Clinical Neurosciences, Learning & Research Building at Southmead Hospital, Bristol BS10 5NB, UK
| | | | - Elizabeth J Coulthard
- Bristol Medical School, University of Bristol, Institute of Clinical Neurosciences, Learning & Research Building at Southmead Hospital, Bristol BS10 5NB, UK; Clinical Neurosciences, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
32
|
Cremona S, Zago L, Mellet E, Petit L, Laurent A, Pepe A, Tsuchida A, Beguedou N, Joliot M, Tzourio C, Mazoyer B, Crivello F. Novel characterization of the relationship between verbal list-learning outcomes and hippocampal subfields in healthy adults. Hum Brain Mapp 2021; 42:5264-5277. [PMID: 34453474 PMCID: PMC8519870 DOI: 10.1002/hbm.25614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
The relationship between hippocampal subfield volumetry and verbal list‐learning test outcomes have mostly been studied in clinical and elderly populations, and remain controversial. For the first time, we characterized a relationship between verbal list‐learning test outcomes and hippocampal subfield volumetry on two large separate datasets of 447 and 1,442 healthy young and middle‐aged adults, and explored the processes that could explain this relationship. We observed a replicable positive linear correlation between verbal list‐learning test free recall scores and CA1 volume, specific to verbal list learning as demonstrated by the hippocampal subfield volumetry independence from verbal intelligence. Learning meaningless items was also positively correlated with CA1 volume, pointing to the role of the test design rather than word meaning. Accordingly, we found that association‐based mnemonics mediated the relationship between verbal list‐learning test outcomes and CA1 volume. This mediation suggests that integrating items into associative representations during verbal list‐learning tests explains CA1 volume variations: this new explanation is consistent with the associative functions of the human CA1.
Collapse
Affiliation(s)
- Sandrine Cremona
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Laure Zago
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Emmanuel Mellet
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Laurent Petit
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Alexandre Laurent
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Antonietta Pepe
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Ami Tsuchida
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Naka Beguedou
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Marc Joliot
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| | - Christophe Tzourio
- Université de Bordeaux - Département Santé publique, INSERM, BPH U 1219, Bordeaux, France
| | - Bernard Mazoyer
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France.,Institut des maladies neurodégénératives clinique, CHU de Bordeaux, Bordeaux, France
| | - Fabrice Crivello
- Université de Bordeaux - Neurocampus, CEA, CNRS, IMN UMR 5293, Bordeaux, France
| |
Collapse
|
33
|
Weis CN, Webb EK, Huggins AA, Kallenbach M, Miskovich TA, Fitzgerald JM, Bennett KP, Krukowski JL, deRoon-Cassini TA, Larson CL. Stability of hippocampal subfield volumes after trauma and relationship to development of PTSD symptoms. Neuroimage 2021; 236:118076. [PMID: 33878374 PMCID: PMC8284190 DOI: 10.1016/j.neuroimage.2021.118076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The hippocampus plays a central role in post-traumatic stress disorder (PTSD) pathogenesis, and the majority of neuroimaging research on PTSD has studied the hippocampus in its entirety. Although extensive literature demonstrates changes in hippocampal volume are associated with PTSD, fewer studies have probed the relationship between symptoms and the hippocampus' functionally and structurally distinct subfields. We utilized data from a longitudinal study examining post-trauma outcomes to determine whether hippocampal subfield volumes change post-trauma and whether specific subfields are significantly associated with, or prospectively related to, PTSD symptom severity. As a secondary aim, we leveraged our unique study design sample to also investigate reliability of hippocampal subfield volumes using both cross-sectional and longitudinal pipelines available in FreeSurfer v6.0. METHODS Two-hundred and fifteen traumatically injured individuals were recruited from an urban Emergency Department. Two-weeks post-injury, participants underwent two consecutive days of neuroimaging (time 1: T1, and time 2: T2) with magnetic resonance imaging (MRI) and completed self-report assessments. Six-months later (time 3: T3), participants underwent an additional scan and were administered a structured interview assessing PTSD symptoms. First, we calculated reliability of hippocampal measurements at T1 and T2 (automatically segmented with FreeSurfer v6.0). We then examined the prospective (T1 subfields) and cross-sectional (T3 subfields) relationship between volumes and PTSD. Finally, we tested whether change in subfield volumes between T1 and T3 explained PTSD symptom variability. RESULTS After controlling for sex, age, and total brain volume, none of the subfield volumes (T1) were prospectively related to T3 PTSD symptoms nor were subfield volumes (T3) associated with current PTSD symptoms (T3). Tl - T2 reliability of all hippocampal subfields ranged from good to excellent (intraclass correlation coefficient (ICC) values > 0.83), with poorer reliability in the hippocampal fissure. CONCLUSION Our study was a novel examination of the prospective relationship between hippocampal subfield volumes in relation to PTSD in a large trauma-exposed urban sample. There was no significant relationship between subfield volumes and PTSD symptoms, however, we confirmed FreeSurfer v6.0 hippocampal subfield segmentation is reliable when applied to a traumatically-injured sample, using both cross-sectional and longitudinal analysis pipelines. Although hippocampal subfield volumes may be an important marker of individual variability in PTSD, findings are likely conditional on the timing of the measurements (e.g. acute or chronic post-trauma periods) and analysis strategy (e.g. cross-sectional or prospective).
Collapse
Affiliation(s)
- C N Weis
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States.
| | - E K Webb
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - A A Huggins
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - M Kallenbach
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - T A Miskovich
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - J M Fitzgerald
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - K P Bennett
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - J L Krukowski
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - T A deRoon-Cassini
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| | - C L Larson
- University of Wisconsin Milwaukee, Psychology, Department of Psychology, 334 Garland Hall, 2441 E. Hartford Ave, Milwaukee, WI 53211, United States
| |
Collapse
|
34
|
Carlson ML, Toueg TN, Khalighi MM, Castillo J, Shen B, Azevedo EC, DiGiacomo P, Mouchawar N, Chau G, Zaharchuk G, James ML, Mormino EC, Zeineh MM. Hippocampal subfield imaging and fractional anisotropy show parallel changes in Alzheimer's disease tau progression using simultaneous tau-PET/MRI at 3T. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12218. [PMID: 34337132 PMCID: PMC8319659 DOI: 10.1002/dad2.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common form of dementia, characterized primarily by abnormal aggregation of two proteins, tau and amyloid beta. We assessed tau pathology and white matter connectivity changes in subfields of the hippocampus simultaneously in vivo in AD. METHODS Twenty-four subjects were scanned using simultaneous time-of-flight 18F-PI-2620 tau positron emission tomography/3-Tesla magnetic resonance imaging and automated segmentation. RESULTS We observed extensive tau elevation in the entorhinal/perirhinal regions, intermediate tau elevation in cornu ammonis 1/subiculum, and an absence of tau elevation in the dentate gyrus, relative to controls. Diffusion tensor imaging showed parahippocampal gyral fractional anisotropy was lower in AD and mild cognitive impairment compared to controls and strongly correlated with early tau accumulation in the entorhinal and perirhinal cortices. DISCUSSION This study demonstrates the potential for quantifiable patterns of 18F-PI2620 binding in hippocampus subfields, accompanied by diffusion and volume metrics, to be valuable markers of AD.
Collapse
Affiliation(s)
| | - Tyler N. Toueg
- Department of NeurologyStanford UniversityStanfordCaliforniaUSA
| | | | - Jessa Castillo
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Bin Shen
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | | | - Phillip DiGiacomo
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | | | - Gustavo Chau
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Michelle L. James
- Department of NeurologyStanford UniversityStanfordCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | | | | |
Collapse
|
35
|
Panitz DY, Berkovich-Ohana A, Mendelsohn A. Age-related functional connectivity along the hippocampal longitudinal axis. Hippocampus 2021; 31:1115-1127. [PMID: 34319631 DOI: 10.1002/hipo.23377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023]
Abstract
Accumulated evidence points toward a long-axis functional division of the hippocampus, with its anterior part primarily associated with emotional processes and the posterior with navigation and cognition. It is yet unclear, however, how functional connectivity between areas along the hippocampal longitudinal axis and other brain regions differ, and how they are affected by age. Applying an anatomically driven general linear model-based functional connectivity analysis on a large database of resting-state fMRI data, we demonstrate that independent of age, the posterior hippocampus is functionally connected primarily with sensory and motor areas, the middle hippocampus with the default mode network, and the anterior with limbic and prefrontal regions. Along with an age-related disintegration of intra-hippocampal BOLD signal uniformity, the middle and posterior sub-regions exhibit mostly decreases in their functional connectivity with cortical regions, whereas the anterior hippocampus and ventral striatum appear to become more synchronized with age. These findings indicate that long-axis hippocampal areas are tuned to particular functional networks, which do not age in a unified manner.
Collapse
Affiliation(s)
- Daniel Yochai Panitz
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| | - Aviva Berkovich-Ohana
- Faculty of Education, Department of Learning, Instruction and Teacher Education, and Department of Counseling and Human Development, University of Haifa, Haifa, Israel.,Edmond Safra Brain Research Center, University of Haifa, Haifa, Israel.,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| |
Collapse
|
36
|
Hippocampal subfield volumes across the healthy lifespan and the effects of MR sequence on estimates. Neuroimage 2021; 233:117931. [DOI: 10.1016/j.neuroimage.2021.117931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 01/18/2023] Open
|
37
|
Postel C, Mary A, Dayan J, Fraisse F, Vallée T, Guillery-Girard B, Viader F, Sayette VDL, Peschanski D, Eustache F, Gagnepain P. Variations in response to trauma and hippocampal subfield changes. Neurobiol Stress 2021; 15:100346. [PMID: 34113695 PMCID: PMC8170416 DOI: 10.1016/j.ynstr.2021.100346] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Models of posttraumatic stress disorder (PTSD) suggest that the hippocampus is key to the persistence of traumatic memory. Yet very little is known about the precise changes that take place in this structure, nor their relation with PTSD symptoms. Previous studies have mostly used magnetic resonance imaging (MRI) at low resolutions, making it impossible to identify sensitive anatomical landmarks, or compared groups often unequally matched in terms of traumatic exposure. The present cross-sectional study included 92 individuals who had all been exposed to the terrorist attacks in Paris on November 13, 2015 (53 of whom subsequently developed PTSD) and 56 individuals who had not been exposed. Hippocampal subfield volumes were estimated using cross-validated automatic segmentation of high-resolution MRI images. Results revealed changes in CA1 and CA2-3/dentate gyrus (DG) volumes in individuals with PTSD, but not in resilient (i.e., exposed but without PTSD) individuals, after controlling for potential nuisance variables such as previous traumatic exposure and substance abuse. In line with current models of hippocampal subfield functions, CA1 changes were linked to the uncontrollable re-experiencing of intrusive memories, while CA2-3/DG changes, potentially exacerbated by comorbid depression, fostered the overgeneralization of fear linked to avoidance and hypervigilance behaviors. Additional analyses revealed that CA1 integrity was linked to optimum functioning of the memory control network in resilient individuals. These findings shed new light on potential pathophysiological mechanisms in the hippocampus subtending the development of PTSD and the failure to recover from trauma.
Collapse
Affiliation(s)
- Charlotte Postel
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Alison Mary
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Centre for Research in Cognition and Neurosciences (CRCN), UNI-ULB Neuroscience Institute, Université libre de Bruxelles, 1050, Brussels, Belgium
| | - Jacques Dayan
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Florence Fraisse
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Thomas Vallée
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Bérengère Guillery-Girard
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Fausto Viader
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Vincent de la Sayette
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Denis Peschanski
- Université Paris I Panthéon Sorbonne, HESAM Université, EHESS, CNRS, UMR8209, Paris, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Pierre Gagnepain
- Normandie Univ, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| |
Collapse
|
38
|
Bussy A, Patel R, Plitman E, Tullo S, Salaciak A, Bedford SA, Farzin S, Béland ML, Valiquette V, Kazazian C, Tardif CL, Devenyi GA, Chakravarty MM. Hippocampal shape across the healthy lifespan and its relationship with cognition. Neurobiol Aging 2021; 106:153-168. [PMID: 34280848 DOI: 10.1016/j.neurobiolaging.2021.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
The study of the hippocampus across the healthy adult lifespan has rendered inconsistent findings. While volumetric measurements have often been a popular technique for analysis, more advanced morphometric techniques have demonstrated compelling results that highlight the importance and improved specificity of shape-based measures. Here, the MAGeT Brain algorithm was applied on 134 healthy individuals aged 18-81 years old to extract hippocampal subfield volumes and hippocampal shape measurements, namely: local surface area (SA) and displacement. We used linear-, second- or third-order natural splines to examine the relationships between hippocampal measures and age. In addition, partial least squares analyses were performed to relate volume and shape measurements with cognitive and demographic information. Volumetric results indicated a relative preservation of the right cornus ammonis 1 with age and a global volume reduction linked with older age, female sex, lower levels of education and cognitive performance. Vertex-wise analysis demonstrated an SA preservation in the anterior hippocampus with a peak during the sixth decade, while the posterior hippocampal SA gradually decreased across lifespan. Overall, SA decrease was linked to older age, female sex and, to a lesser extent lower levels of education and cognitive performance. Outward displacement in the lateral hippocampus and inward displacement in the medial hippocampus were enlarged with older age, lower levels of cognition and education, indicating an accentuation of the hippocampal "C" shape with age. Taken together, our findings suggest that vertex-wise analyses have higher spatial specifity and that sex, education, and cognition are implicated in the differential impact of age on hippocampal subregions throughout its anteroposterior and medial-lateral axes. This article is part of the Virtual Special Issue titled COGNITIVE NEU- ROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Aurélie Bussy
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| | - Raihaan Patel
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Eric Plitman
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stephanie Tullo
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Alyssa Salaciak
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Saashi A Bedford
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sarah Farzin
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marie-Lise Béland
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Vanessa Valiquette
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Christina Kazazian
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Santini T, Koo M, Farhat N, Campos VP, Alkhateeb S, Vieira MAC, Butters MA, Rosano C, Aizenstein HJ, Mettenburg J, Novelli EM, Ibrahim TS. Analysis of hippocampal subfields in sickle cell disease using ultrahigh field MRI. Neuroimage Clin 2021; 30:102655. [PMID: 34215139 PMCID: PMC8102634 DOI: 10.1016/j.nicl.2021.102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/05/2022]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions. We conducted 7T MRI imaging in individuals with SCD, including the HbSS, HbSC and HbS/beta thalassemia genotypes (n = 53), and healthy race and age-matched controls (n = 47), using a customized head coil. Both T1- and T2-weighted images were used for automatic segmentation of the hippocampal subfields. Individuals with SCD had, on average, significantly smaller volume of the region including the Dentate Gyrus and Cornu Ammonis (CA) 2 and 3 as compared to the control group. Other hippocampal subregions also showed a trend towards smaller volumes in the SCD group. These findings support and extend previous reports of reduced volume in the temporal lobe in SCD patients. Further studies are necessary to investigate the mechanisms that lead to structural changes in the hippocampus subfields and their relationship with cognitive performance in SCD patients.
Collapse
Affiliation(s)
- Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minseok Koo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vinicius P Campos
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Salem Alkhateeb
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Enrico M Novelli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
40
|
Wisse LEM, Ungrady MB, Ittyerah R, Lim SA, Yushkevich PA, Wolk DA, Irwin DJ, Das SR, Grossman M. Cross-sectional and longitudinal medial temporal lobe subregional atrophy patterns in semantic variant primary progressive aphasia. Neurobiol Aging 2021; 98:231-241. [PMID: 33341654 PMCID: PMC8018475 DOI: 10.1016/j.neurobiolaging.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
T1-magnetic resonance imaging (MRI) studies report early atrophy in the left anterior temporal lobe, especially the perirhinal cortex, in semantic variant primary progressive aphasia (svPPA). Improved segmentation protocols using high-resolution T2-MRI have enabled fine-grained medial temporal lobe (MTL) subregional measurements, which may provide novel information on the atrophy pattern and disease progression in svPPA. We aimed to investigate the MTL subregional atrophy pattern cross-sectionally and longitudinally in patients with svPPA as compared with controls and patients with Alzheimer's disease (AD). MTL subregional volumes were obtained using the Automated Segmentation for Hippocampal Subfields software from high-resolution T2-MRIs in 15 svPPA, 37 AD, and 23 healthy controls. All MTL volumes were corrected for intracranial volume and parahippocampal cortices for slice number. Longitudinal atrophy rates of all subregions were obtained using an unbiased deformation-based morphometry pipeline in 6 svPPA patients, 9 controls, and 12 AD patients. Cross-sectionally, significant volume loss was observed in svPPA compared with controls in the left MTL, right cornu ammonis 1 (CA1), Brodmann area (BA)35, and BA36 (subdivisions of the perirhinal cortex). Compared with AD patients, svPPA patients had significantly smaller left CA1, BA35, and left and right BA36 volumes. Longitudinally, svPPA patients had significantly greater atrophy rates of left and right BA36 than controls but not relative to AD patients. Fine-grained analysis of MTL atrophy patterns provides information about the evolution of atrophy in svPPA. These results indicate that MTL subregional measures might be useful markers to track disease progression or for clinical trials in svPPA.
Collapse
Affiliation(s)
- Laura E M Wisse
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Diagnostic Radiology, Lund University, Lund, Sweden.
| | - Molly B Ungrady
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney A Lim
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine Center for Neurodegenerative Disease Research (CNDR), University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu R Das
- Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Wisse LEM, Chételat G, Daugherty AM, de Flores R, la Joie R, Mueller SG, Stark CEL, Wang L, Yushkevich PA, Berron D, Raz N, Bakker A, Olsen RK, Carr VA. Hippocampal subfield volumetry from structural isotropic 1 mm 3 MRI scans: A note of caution. Hum Brain Mapp 2021; 42:539-550. [PMID: 33058385 PMCID: PMC7775994 DOI: 10.1002/hbm.25234] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023] Open
Abstract
Spurred by availability of automatic segmentation software, in vivo MRI investigations of human hippocampal subfield volumes have proliferated in the recent years. However, a majority of these studies apply automatic segmentation to MRI scans with approximately 1 × 1 × 1 mm3 resolution, a resolution at which the internal structure of the hippocampus can rarely be visualized. Many of these studies have reported contradictory and often neurobiologically surprising results pertaining to the involvement of hippocampal subfields in normal brain function, aging, and disease. In this commentary, we first outline our concerns regarding the utility and validity of subfield segmentation on 1 × 1 × 1 mm3 MRI for volumetric studies, regardless of how images are segmented (i.e., manually or automatically). This image resolution is generally insufficient for visualizing the internal structure of the hippocampus, particularly the stratum radiatum lacunosum moleculare, which is crucial for valid and reliable subfield segmentation. Second, we discuss the fact that automatic methods that are employed most frequently to obtain hippocampal subfield volumes from 1 × 1 × 1 mm3 MRI have not been validated against manual segmentation on such images. For these reasons, we caution against using volumetric measurements of hippocampal subfields obtained from 1 × 1 × 1 mm3 images.
Collapse
Affiliation(s)
- Laura E. M. Wisse
- Diagnostic RadiologyLund UniversityLundSweden
- Penn Image Computing and Science Laboratory, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Memory Center, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gaël Chételat
- Université Normandie, InsermUniversité de Caen‐Normandie, Inserm UMR‐S U1237CaenFrance
| | - Ana M. Daugherty
- Department of PsychologyWayne State UniversityDetroitMichiganUSA
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
- Department of Psychiatry and Behavioral NeurosciencesWayne State UniversityDetroitMichiganUSA
| | - Robin de Flores
- Université Normandie, InsermUniversité de Caen‐Normandie, Inserm UMR‐S U1237CaenFrance
| | - Renaud la Joie
- Memory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Susanne G. Mueller
- Department of RadiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Imaging of Neurodegenerative DiseasesSan Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Craig E. L. Stark
- Department of Neurobiology and BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of RadiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul A. Yushkevich
- Penn Image Computing and Science Laboratory, Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Naftali Raz
- Department of PsychologyWayne State UniversityDetroitMichiganUSA
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Arnold Bakker
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Valerie A. Carr
- Department of PsychologySan Jose State UniversitySan JoseCaliforniaUSA
| |
Collapse
|
42
|
Chiappiniello A, Tarducci R, Muscio C, Bruzzone MG, Bozzali M, Tiraboschi P, Nigri A, Ambrosi C, Chipi E, Ferraro S, Festari C, Gasparotti R, Gianeri R, Giulietti G, Mascaro L, Montanucci C, Nicolosi V, Rosazza C, Serra L, Frisoni GB, Perani D, Tagliavini F, Jovicich J. Automatic multispectral MRI segmentation of human hippocampal subfields: an evaluation of multicentric test-retest reproducibility. Brain Struct Funct 2021; 226:137-150. [PMID: 33231744 PMCID: PMC7817563 DOI: 10.1007/s00429-020-02172-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Accurate and reproducible automated segmentation of human hippocampal subfields is of interest to study their roles in cognitive functions and disease processes. Multispectral structural MRI methods have been proposed to improve automated hippocampal subfield segmentation accuracy, but the reproducibility in a multicentric setting is, to date, not well characterized. Here, we assessed test-retest reproducibility of FreeSurfer 6.0 hippocampal subfield segmentations using multispectral MRI analysis pipelines (22 healthy subjects scanned twice, a week apart, at four 3T MRI sites). The harmonized MRI protocol included two 3D-T1, a 3D-FLAIR, and a high-resolution 2D-T2. After within-session T1 averaging, subfield volumes were segmented using three pipelines with different multispectral data: two longitudinal ("long_T1s" and "long_T1s_FLAIR") and one cross-sectional ("long_T1s_FLAIR_crossT2"). Volume reproducibility was quantified in magnitude (reproducibility error-RE) and space (DICE coefficient). RE was lower in all hippocampal subfields, except for hippocampal fissure, using the longitudinal pipelines compared to long_T1s_FLAIR_crossT2 (average RE reduction of 0.4-3.6%). Similarly, the longitudinal pipelines showed a higher spatial reproducibility (1.1-7.8% of DICE improvement) in all hippocampal structures compared to long_T1s_FLAIR_crossT2. Moreover, long_T1s_FLAIR provided a small but significant RE improvement in comparison to long_T1s (p = 0.015), whereas no significant DICE differences were found. In addition, structures with volumes larger than 200 mm3 had better RE (1-2%) and DICE (0.7-0.95) than smaller structures. In summary, our study suggests that the most reproducible hippocampal subfield FreeSurfer segmentations are derived from a longitudinal pipeline using 3D-T1s and 3D-FLAIR. Adapting a longitudinal pipeline to include high-resolution 2D-T2 may lead to further improvements.
Collapse
Affiliation(s)
- Andrea Chiappiniello
- Department of Physics, University of Turin, Turin, Italy.
- Medical Physics Department, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini 1, 06129, Perugia, Italy.
| | - Roberto Tarducci
- Medical Physics Department, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini 1, 06129, Perugia, Italy
| | - Cristina Muscio
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Pietro Tiraboschi
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Ambrosi
- Neuroradiology Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Elena Chipi
- Laboratory of Clinical Neurochemistry, Neurology Clinic, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Stefania Ferraro
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ruben Gianeri
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Giulietti
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorella Mascaro
- Department of Diagnostic Imaging, Medical Physics Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Chiara Montanucci
- Laboratory of Clinical Neurochemistry, Neurology Clinic, Center for Memory Disturbances, University of Perugia, Perugia, Italy
| | - Valentina Nicolosi
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Cristina Rosazza
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Serra
- Neuroimaging Laboratory, Fondazione IRCCS Santa Lucia, Rome, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Laboratory of Neuroimaging of Aging, LANVIE, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - Daniela Perani
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V/Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Scientific Direction, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
43
|
Sasabayashi D, Yoshimura R, Takahashi T, Takayanagi Y, Nishiyama S, Higuchi Y, Mizukami Y, Furuichi A, Kido M, Nakamura M, Noguchi K, Suzuki M. Reduced Hippocampal Subfield Volume in Schizophrenia and Clinical High-Risk State for Psychosis. Front Psychiatry 2021; 12:642048. [PMID: 33828496 PMCID: PMC8019805 DOI: 10.3389/fpsyt.2021.642048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies in schizophrenia demonstrated volume reduction in hippocampal subfields divided on the basis of specific cytoarchitecture and function. However, it remains unclear whether this abnormality exists prior to the onset of psychosis and differs across illness stages. MRI (3 T) scans were obtained from 77 patients with schizophrenia, including 24 recent-onset and 40 chronic patients, 51 individuals with an at-risk mental state (ARMS) (of whom 5 subsequently developed psychosis within the follow-up period), and 87 healthy controls. Using FreeSurfer software, hippocampal subfield volumes were measured and compared across the groups. Both schizophrenia and ARMS groups exhibited significantly smaller volumes for the bilateral Cornu Ammonis 1 area, left hippocampal tail, and right molecular layer of the hippocampus than the healthy control group. Within the schizophrenia group, chronic patients exhibited a significantly smaller volume for the left hippocampal tail than recent-onset patients. The left hippocampal tail volume was positively correlated with onset age, and negatively correlated with duration of psychosis and duration of medication in the schizophrenia group. Reduced hippocampal subfield volumes observed in both schizophrenia and ARMS groups may represent a common biotype associated with psychosis vulnerability. Volumetric changes of the left hippocampal tail may also suggest ongoing atrophy after the onset of schizophrenia.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Ryo Yoshimura
- Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Health Administration Center, University of Toyama, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yuko Mizukami
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
44
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
45
|
Fung YL, Ng KET, Vogrin SJ, Meade C, Ngo M, Collins SJ, Bowden SC. Comparative Utility of Manual versus Automated Segmentation of Hippocampus and Entorhinal Cortex Volumes in a Memory Clinic Sample. J Alzheimers Dis 2020; 68:159-171. [PMID: 30814357 DOI: 10.3233/jad-181172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Structural neuroimaging is a useful non-invasive biomarker commonly employed to evaluate the integrity of mesial temporal lobe structures that are typically compromised in Alzheimer's disease. Advances in quantitative neuroimaging have permitted the development of automated segmentation protocols (e.g., FreeSurfer) with significantly increased efficiency compared to earlier manual techniques. While these protocols have been found to be suitable for large-scale, multi-site research studies, we were interested in assessing the practical utility and reliability of automated FreeSurfer protocols compared to manual volumetry on routinely acquired clinical scans. Independent validation studies with newer automated segmentation protocols are scarce. Two FreeSurfer protocols for each of two regions of interest-the hippocampus and entorhinal cortex-were compared against manual volumetry. High reliability and agreement was found between FreeSurfer and manual hippocampal protocols, however, there was lower reliability and agreement between FreeSurfer and manual entorhinal protocols. Although based on a the relatively small sample of subjects drawn from a memory clinic (n = 27), our study findings suggest further refinements to improve measurement error and most accurately depict true regional brain volumes using automated segmentation protocols are required, especially for non-hippocampal mesial temporal structures, to achieve maximal utility for routine clinical evaluations.
Collapse
Affiliation(s)
- Yi Leng Fung
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly E T Ng
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Simon J Vogrin
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Catherine Meade
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Michael Ngo
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Steven J Collins
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Fitzroy, Victoria, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen C Bowden
- School of Psychological Sciences, University of Melbourne, Parkville, Victoria, Australia.,Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
46
|
Hayek D, Thams F, Flöel A, Antonenko D. Dentate Gyrus Volume Mediates the Effect of Fornix Microstructure on Memory Formation in Older Adults. Front Aging Neurosci 2020; 12:79. [PMID: 32265687 PMCID: PMC7098987 DOI: 10.3389/fnagi.2020.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related deterioration in white and gray matter is linked to cognitive deficits. Reduced microstructure of the fornix, the major efferent pathway of the hippocampus, and volume of the dentate gyrus (DG), may cause age-associated memory decline. However, the linkage between these anatomical determinants and memory retrieval in healthy aging are poorly understood. In 30 older adults, we acquired diffusion tensor and T1-weighted images for individual deterministic tractography and volume estimation. A memory task, administered outside of the scanner to assess retrieval of learned associations, required discrimination of previously acquired picture-word pairs. The results showed that fornix fractional anisotropy (FA) and left DG volumes were related to successful retrieval. These brain-behavior associations were observed for correct rejections, but not hits, indicating specificity of memory network functioning for detecting false associations. Mediation analyses showed that left DG volume mediated the effect of fornix FA on memory (48%), but not vice versa. These findings suggest that reduced microstructure induces volume loss and thus negatively affects retrieval of learned associations, complementing evidence of a pivotal role of the fornix in healthy aging. Our study offers a neurobehavioral model to explain variability in memory retrieval in older adults, an important prerequisite for the development of interventions to counteract cognitive decline.
Collapse
Affiliation(s)
- Dayana Hayek
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Daria Antonenko
- Department of Neurology, NeuroCure Clinical Research Center, Berlin Institute of Health, Corporate Member of Freie Universität Berlin, Charité - Universitätsmedizin Berlin, Humboldt-Universität Berlin, Berlin, Germany.,Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
47
|
Multiparametric imaging hippocampal neurodegeneration and functional connectivity with simultaneous PET/MRI in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2020; 47:2440-2452. [PMID: 32157432 PMCID: PMC7396401 DOI: 10.1007/s00259-020-04752-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Purpose The objective of this study is to investigate the hippocampal neurodegeneration and its associated aberrant functions in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) patients using simultaneous PET/MRI. Methods Forty-two cognitively normal controls (NC), 38 MCI, and 22 AD patients were enrolled in this study. All subjects underwent 18F-FDG PET/functional MRI (fMRI) and high-resolution T1-weighted MRI scans on a hybrid GE Signa PET/MRI scanner. Neurodegeneration in hippocampus and its subregions was quantified by regional gray matter volume and 18F-FDG standardized uptake value ratio (SUVR) relative to cerebellum. An iterative reblurred Van Cittert iteration method was used for voxelwise partial volume correction on 18F-FDG PET images. Regional gray matter volume was estimated from voxel-based morphometric analysis with MRI. fMRI data were analyzed after slice time correction and head motion correction using statistical parametric mapping (SPM12) with DPARSF toolbox. The regions of interest including hippocampus, cornu ammonis (CA1), CA2/3/dentate gyrus (DG), and subiculum were defined in the standard MNI space. Results Patient groups had reduced SUVR, gray matter volume, and functional connectivity compared to NC in CA1, CA2/3/DG, and subiculum (AD < MCI < NC). There was a linear correlation between the left CA2/3DG gray matter volume and 18F-FDG SUVR in AD patients (P < 0.001, r = 0.737). Significant correlation was also found between left CA2/3/DG-superior medial frontal gyrus functional connectivity and left CA2/3/DG hypometabolism in patients with AD. The functional connectivity of right CA1-precuneus in patients with MCI and right subiculum-superior frontal gyrus in patients with AD was positively correlated with mini mental status examination scores (P < 0.05). Conclusion Our findings demonstrate that the associations existed at subregional hippocampal level between the functional connectivity measured by fMRI and neurodegeneration measured by structural MRI and 18F-FDG PET. Our results may provide a basis for precision neuroimaging of hippocampus in AD.
Collapse
|
48
|
Duan Y, Lin Y, Rosen D, Du J, He L, Wang Y. Identifying Morphological Patterns of Hippocampal Atrophy in Patients With Mesial Temporal Lobe Epilepsy and Alzheimer Disease. Front Neurol 2020; 11:21. [PMID: 32038474 PMCID: PMC6989594 DOI: 10.3389/fneur.2020.00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose: Mesial temporal lobe epilepsy (MTLE) and Alzheimer's disease (AD) are two distinct neurological disorders associated with hippocampal atrophy. Our goal is to analyze the morphologic patterns of hippocampal atrophy to better understand the underlying pathological and clinical characteristics of the two conditions. Methods: Twenty-five patients with AD and 20 healthy controls with matched age and gender were recruited into the AD group. Twenty-three MTLE patients and 28 healthy controls with matched age and gender were recruited into the MTLE group. All subjects were scanned on 3T-MRI scanner. Automated volumetric analysis was applied to measure and compare the hippocampal volume of the two respective groups. Vertex-based morphologic analysis was applied to characterize the morphologic patterns of hippocampal atrophy within and between groups, and a correlation analysis was performed. Results: Volumetric analysis revealed significantly decreased hippocampal volume in both AD and MTLE patients compared to the controls. In the patients with AD, the mean total hippocampal volume was 32.70% smaller than that of healthy controls, without a significant difference between the left and the right hippocampus (p < 0.05). In patients with MTLE, a significant reduction in unilateral hippocampal volume was observed, with a mean volume reduction of 28.38% as compared with healthy controls (p < 0.05). Vertex-based morphologic analysis revealed a generalized shrinkage of the hippocampi in AD patients, especially in bilateral medial and lateral regions. In MTLE group, atrophy was seen in the ipsilateral head, ipsilateral lateral body and slightly contralateral tail of the hippocampus (FWE-corrected, p < 0.05). Conclusions: MTLE and AD have distinctive morphologic patterns of hippocampal atrophy, which provide new insight into the radiology-pathology correlation in these diseases.
Collapse
Affiliation(s)
- Yiran Duan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dennis Rosen
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Jialin Du
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liu He
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Luders E, Kurth F. Structural differences between male and female brains. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:3-11. [PMID: 33008534 DOI: 10.1016/b978-0-444-64123-6.00001-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research based on structural magnetic resonance imaging (MRI) has revealed a number of sex differences in the anatomy of the human brain. The first part of this chapter presents an excerpt of these findings discriminating among effects on a global, regional, and local level. While findings are far from consistent and conclusive, there is general consensus with respect to sex-specific brain size, with male brains being bigger on average than female brains. So, the question arises as to whether any of the observed sex differences are merely driven by brain size. The second part of this chapter thus sheds light on a unique scientific attempt to discriminate between brain size effects and sex effects. The overarching goal of this chapter is to exemplify the variety of findings and to demonstrate that the presence, magnitude, and direction of significant sex differences strongly depend on the measurement applied. The assumption that sex differences are simply a by-product of brain size, rather than pure (size independent) sex effects has proven to be true for some but certainly not all findings. Therefore, when examining the possible sexual dimorphism of the brain, it is imperative to avoid oversimplification and generalization.
Collapse
Affiliation(s)
- Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
de Flores R, Berron D, Ding SL, Ittyerah R, Pluta JB, Xie L, Adler DH, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Liu W, Pickup S, Das SR, Wolk DA, Yushkevich PA, Wisse LEM. Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation. Hippocampus 2019; 30:545-564. [PMID: 31675165 DOI: 10.1002/hipo.23172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 11/07/2022]
Abstract
Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
Collapse
Affiliation(s)
- Robin de Flores
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Berron
- Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington.,Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John B Pluta
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Long Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Adler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John L Robinson
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa Schuck
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weixia Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura E M Wisse
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|