1
|
Hays MA, Daraie AH, Smith RJ, Sarma SV, Crone NE, Kang JY. Network excitability of stimulation-induced spectral responses helps localize the seizure onset zone. Clin Neurophysiol 2024; 166:43-55. [PMID: 39096821 PMCID: PMC11401764 DOI: 10.1016/j.clinph.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE While evoked potentials elicited by single pulse electrical stimulation (SPES) may assist seizure onset zone (SOZ) localization during intracranial EEG (iEEG) monitoring, induced high frequency activity has also shown promising utility. We aimed to predict SOZ sites using induced cortico-cortical spectral responses (CCSRs) as an index of excitability within epileptogenic networks. METHODS SPES was conducted in 27 epilepsy patients undergoing iEEG monitoring and CCSRs were quantified by significant early (10-200 ms) increases in power from 10 to 250 Hz. Using response power as CCSR network connection strengths, graph centrality measures (metrics quantifying each site's influence within the network) were used to predict whether sites were within the SOZ. RESULTS Across patients with successful surgical outcomes, greater CCSR centrality predicted SOZ sites and SOZ sites targeted for surgical treatment with median AUCs of 0.85 and 0.91, respectively. We found that the alignment between predicted and targeted SOZ sites predicted surgical outcome with an AUC of 0.79. CONCLUSIONS These findings indicate that network analysis of CCSRs can be used to identify increased excitability of SOZ sites and discriminate important surgical targets within the SOZ. SIGNIFICANCE CCSRs may supplement traditional passive iEEG monitoring in seizure localization, potentially reducing the need for recording numerous seizures.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Amir H Daraie
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neuroengineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Nagata K, Kunii N, Fujitani S, Shimada S, Saito N. Evaluating cortical excitatory and inhibitory activity through interictal intracranial electroencephalography in mesial temporal lobe epilepsy. Front Neurosci 2024; 18:1424401. [PMID: 39381684 PMCID: PMC11458560 DOI: 10.3389/fnins.2024.1424401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Gamma oscillation regularity (GOR) indicates the synchronization of inhibitory interneurons, while the reactivity of cortico-cortical evoked potentials (CCEPs) is supposed to reflect local cortical excitability. Under the assumption that the early response of CCEP near the stimulation site also indicates excitatory activity primarily mediated by pyramidal cells, we aimed to visualize the cortical inhibitory and excitatory activities using GOR and CCEP in combination and to use them to predict the epileptogenic zone (EZ) in mesial temporal lobe epilepsy (MTLE). In five patients who underwent intracranial electrode implantation, GOR and CCEP reactivity in the vicinity of the stimulation site was quantified. The interictal GOR was calculated using multiscale entropy (MSE), the decrease of which was related to the enhanced GOR. These parameters were compared on an electrode-and-electrode basis, and spatially visualized on the brain surface. As a result, elevated GOR and CCEP reactivities, indicative of enhanced inhibitory and excitatory activities, were observed in the epileptogenic regions. Elevated CCEP reactivity was found to be localized to a restricted area centered on the seizure onset region, whereas GOR elevation was observed in a broader region surrounding it. Although these parameters independently predicted the EZ with high specificity, we combined the two to introduce a novel parameter, the excitatory and inhibitory (EI) index. The EI index predicted EZ with increased specificity compared with GOR or CCEP reactivity alone. Our results demonstrate that GOR and CCEP reactivity provided a quantitative visualization of the distribution of cortical inhibitory and excitatory activities and highlighted the relationship between the two parameters. The combination of GOR and CCEP reactivities are expected to serve as biomarkers for localizing the epileptogenic zone in MTLE from interictal intracranial electroencephalograms.
Collapse
Affiliation(s)
- Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoto Kunii
- Department of Neurosurgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Rigoni I, Vorderwülbecke BJ, Carboni M, Roehri N, Spinelli L, Tononi G, Seeck M, Perogamvros L, Vulliémoz S. Network alterations in temporal lobe epilepsy during non-rapid eye movement sleep and wakefulness. Clin Neurophysiol 2024; 159:56-65. [PMID: 38335766 DOI: 10.1016/j.clinph.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Investigate sleep and temporal lobe epilepsy (TLE) effects on brain networks derived from electroencephalography (EEG). METHODS High-density EEG was recorded during non-rapid eye movement (NREM) sleep stage 2 (N2) and wakefulness in 23 patients and healthy controls (HC). Epochs without epileptic discharges were source-reconstructed in 72 brain regions and connectivity was estimated. We calculated network integration and segregation at global (global efficiency, GE; average clustering coefficient, avgCC) and hemispheric level. These were compared between groups across frequency bands and correlated with the individual proportion of wakefulness- or sleep-related seizures. RESULTS At the global level, patients had higher delta GE, delta avgCC and theta avgCC than controls, irrespective of the vigilance state. During wakefulness, theta GE of patients was higher than controls and, for patients, theta GE during wakefulness was higher than during N2. Wake-to-sleep differences in TLE were notable only in the ipsilateral hemisphere. Only measures from wakefulness recordings correlated with the proportion of wakefulness- or sleep-related seizures. CONCLUSIONS TLE network alterations are more prominent during wakefulness and at lower frequencies. Increased integration and segregation suggest a pathological 'small world' configuration with a possible inhibitory role. SIGNIFICANCE Network alterations in TLE occur and are easier to detect during wakefulness.
Collapse
Affiliation(s)
- I Rigoni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland.
| | - B J Vorderwülbecke
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland; Epilepsy-Center Berlin-Brandenburg, Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Carboni
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - N Roehri
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Spinelli
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - G Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | - M Seeck
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| | - L Perogamvros
- Center for Sleep Medicine, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - S Vulliémoz
- EEG and Epilepsy Unit, University Hospital and Faculty of Medicine of Geneva, University of Geneva, Switzerland
| |
Collapse
|
5
|
Bugnon T, Mayner WGP, Cirelli C, Tononi G. Sleep and wake in a model of the thalamocortical system with Martinotti cells. Eur J Neurosci 2024; 59:703-736. [PMID: 36215116 PMCID: PMC10083195 DOI: 10.1111/ejn.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to the alternation between active (UP) and silent (DOWN) states during sleep slow waves (SWs) remain poorly understood. Previous models have explained the transition to the DOWN state by a progressive failure of excitation because of the build-up of adaptation currents or synaptic depression. However, these models are at odds with recent studies suggesting a role for presynaptic inhibition by Martinotti cells (MaCs) in generating SWs. Here, we update a classical large-scale model of sleep SWs to include MaCs and propose a different mechanism for the generation of SWs. In the wake mode, the network exhibits irregular and selective activity with low firing rates (FRs). Following an increase in the strength of background inputs and a modulation of synaptic strength and potassium leak potential mimicking the reduced effect of acetylcholine during sleep, the network enters a sleep-like regime in which local increases of network activity trigger bursts of MaC activity, resulting in strong disfacilitation of the local network via presynaptic GABAB1a -type inhibition. This model replicates findings on slow wave activity (SWA) during sleep that challenge previous models, including low and skewed FRs that are comparable between the wake and sleep modes, higher synchrony of transitions to DOWN states than to UP states, the possibility of triggering SWs by optogenetic stimulation of MaCs, and the local dependence of SWA on synaptic strength. Overall, this work points to a role for presynaptic inhibition by MaCs in the generation of DOWN states during sleep.
Collapse
Affiliation(s)
- Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - William G. P. Mayner
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| |
Collapse
|
6
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
7
|
van den Boom MA, Gregg NM, Valencia GO, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJ, Leijten FS, Worrell GA, Hermes D. ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574915. [PMID: 38260687 PMCID: PMC10802406 DOI: 10.1101/2024.01.09.574915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
Collapse
Affiliation(s)
- Max A. van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | | | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
- Stichting Epilepsie Instellingen Nederland (SEIN); Zwolle, The Netherlands
| | - Geertjan J.M. Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Gregory A. Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN; USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
8
|
Xie T, Foutz TJ, Adamek M, Swift JR, Inman CS, Manns JR, Leuthardt EC, Willie JT, Brunner P. Single-pulse electrical stimulation artifact removal using the novel matching pursuit-based artifact reconstruction and removal method (MPARRM). J Neural Eng 2023; 20:066036. [PMID: 38063368 PMCID: PMC10751949 DOI: 10.1088/1741-2552/ad1385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Objective.Single-pulse electrical stimulation (SPES) has been widely used to probe effective connectivity. However, analysis of the neural response is often confounded by stimulation artifacts. We developed a novel matching pursuit-based artifact reconstruction and removal method (MPARRM) capable of removing artifacts from stimulation-artifact-affected electrophysiological signals.Approach.To validate MPARRM across a wide range of potential stimulation artifact types, we performed a bench-top experiment in which we suspended electrodes in a saline solution to generate 110 types of real-world stimulation artifacts. We then added the generated stimulation artifacts to ground truth signals (stereoelectroencephalography signals from nine human subjects recorded during a receptive speech task), applied MPARRM to the combined signal, and compared the resultant denoised signal with the ground truth signal. We further applied MPARRM to artifact-affected neural signals recorded from the hippocampus while performing SPES on the ipsilateral basolateral amygdala in nine human subjects.Main results.MPARRM could remove stimulation artifacts without introducing spectral leakage or temporal spread. It accommodated variable stimulation parameters and recovered the early response to SPES within a wide range of frequency bands. Specifically, in the early response period (5-10 ms following stimulation onset), we found that the broadband gamma power (70-170 Hz) of the denoised signal was highly correlated with the ground truth signal (R=0.98±0.02, Pearson), and the broadband gamma activity of the denoised signal faithfully revealed the responses to the auditory stimuli within the ground truth signal with94%±1.47%sensitivity and99%±1.01%specificity. We further found that MPARRM could reveal the expected temporal progression of broadband gamma activity along the anterior-posterior axis of the hippocampus in response to the ipsilateral amygdala stimulation.Significance.MPARRM could faithfully remove SPES artifacts without confounding the electrophysiological signal components, especially during the early-response period. This method can facilitate the understanding of the neural response mechanisms of SPES.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Thomas J Foutz
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Markus Adamek
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States of America
| | - James R Swift
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Cory S Inman
- Department of Psychology, University of Utah, Salt Lake City, UT, United States of America
| | - Joseph R Manns
- Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jon T Willie
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| | - Peter Brunner
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States of America
- National Center for Adaptive Neurotechnologies, St. Louis, MO, United States of America
| |
Collapse
|
9
|
Novitskaya Y, Dümpelmann M, Schulze-Bonhage A. Physiological and pathological neuronal connectivity in the living human brain based on intracranial EEG signals: the current state of research. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1297345. [PMID: 38107334 PMCID: PMC10723837 DOI: 10.3389/fnetp.2023.1297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Over the past decades, studies of human brain networks have received growing attention as the assessment and modelling of connectivity in the brain is a topic of high impact with potential application in the understanding of human brain organization under both physiological as well as various pathological conditions. Under specific diagnostic settings, human neuronal signal can be obtained from intracranial EEG (iEEG) recording in epilepsy patients that allows gaining insight into the functional organisation of living human brain. There are two approaches to assess brain connectivity in the iEEG-based signal: evaluation of spontaneous neuronal oscillations during ongoing physiological and pathological brain activity, and analysis of the electrophysiological cortico-cortical neuronal responses, evoked by single pulse electrical stimulation (SPES). Both methods have their own advantages and limitations. The paper outlines available methodological approaches and provides an overview of current findings in studies of physiological and pathological human brain networks, based on intracranial EEG recordings.
Collapse
Affiliation(s)
- Yulia Novitskaya
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Zelmann R, Paulk AC, Tian F, Balanza Villegas GA, Dezha Peralta J, Crocker B, Cosgrove GR, Richardson RM, Williams ZM, Dougherty DD, Purdon PL, Cash SS. Differential cortical network engagement during states of un/consciousness in humans. Neuron 2023; 111:3479-3495.e6. [PMID: 37659409 PMCID: PMC10843836 DOI: 10.1016/j.neuron.2023.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
What happens in the human brain when we are unconscious? Despite substantial work, we are still unsure which brain regions are involved and how they are impacted when consciousness is disrupted. Using intracranial recordings and direct electrical stimulation, we mapped global, network, and regional involvement during wake vs. arousable unconsciousness (sleep) vs. non-arousable unconsciousness (propofol-induced general anesthesia). Information integration and complex processing we`re reduced, while variability increased in any type of unconscious state. These changes were more pronounced during anesthesia than sleep and involved different cortical engagement. During sleep, changes were mostly uniformly distributed across the brain, whereas during anesthesia, the prefrontal cortex was the most disrupted, suggesting that the lack of arousability during anesthesia results not from just altered overall physiology but from a disconnection between the prefrontal and other brain areas. These findings provide direct evidence for different neural dynamics during loss of consciousness compared with loss of arousability.
Collapse
Affiliation(s)
- Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Fangyun Tian
- Department of Anesthesia, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick L Purdon
- Department of Anesthesia, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Rossel O, Schlosser-Perrin F, Duffau H, Matsumoto R, Mandonnet E, Bonnetblanc F. Short-range axono-cortical evoked-potentials in brain tumor surgery: Waveform characteristics as markers of direct connectivity. Clin Neurophysiol 2023; 153:189-201. [PMID: 37353389 DOI: 10.1016/j.clinph.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE Intraoperative measurement of axono-cortical evoked potentials (ACEP) has emerged as a promising tool for studying neural connectivity. However, it is often difficult to determine if the activity recorded by cortical grids is generated by stimulated tracts or by spurious phenomena. This study aimed to identify criteria that would indicate a direct neurophysiological connection between a recording contact and a stimulated pathway. METHODS Electrical stimulation was applied to white matter fascicles within the resection cavity, while the evoked response was recorded at the cortical level in seven patients. RESULTS By analyzing the ACEP recordings, we identified a main epicenter characterized by a very early positive (or negative) evoked response occurring just after the stimulation artifact (<5 ms, |Amplitude| > 100 µV) followed by an early and large negative (or positive) monophasic evoked response (<40 ms; |Amplitude| > 300 µV). The neighboring activity had a different waveform and was attenuated compared to the hot-spot activity. CONCLUSIONS It is possible to distinguish the hotspot with direct connectivity to the stimulated site from neighboring activity using the identified criteria. SIGNIFICANCE The electrogenesis of the ACEP at the hotspot and neighboring activity is discussed.
Collapse
Affiliation(s)
| | | | - Hugues Duffau
- Département de Neurochirurgie, Centre Hospitalier Universitaire de Montpellier Gui de Chauliac, Montpellier, France
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan
| | - Emmanuel Mandonnet
- Département de Neurochirurgie, Centre Hospitalier Universitaire, Hôpital Lariboisière, Paris, France
| | | |
Collapse
|
12
|
Claar LD, Rembado I, Kuyat JR, Russo S, Marks LC, Olsen SR, Koch C. Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. eLife 2023; 12:RP84630. [PMID: 37358562 DOI: 10.7554/elife.84630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Perturbational complexity analysis predicts the presence of consciousness in volunteers and patients by stimulating the brain with brief pulses, recording EEG responses, and computing their spatiotemporal complexity. We examined the underlying neural circuits in mice by directly stimulating cortex while recording with EEG and Neuropixels probes during wakefulness and isoflurane anesthesia. When mice are awake, stimulation of deep cortical layers reliably evokes locally a brief pulse of excitation, followed by a biphasic sequence of 120 ms profound off period and a rebound excitation. A similar pattern, partially attributed to burst spiking, is seen in thalamic nuclei and is associated with a pronounced late component in the evoked EEG. We infer that cortico-thalamo-cortical interactions drive the long-lasting evoked EEG signals elicited by deep cortical stimulation during the awake state. The cortical and thalamic off period and rebound excitation, and the late component in the EEG, are reduced during running and absent during anesthesia.
Collapse
Affiliation(s)
- Leslie D Claar
- MindScope Program, Allen Institute, Seattle, United States
| | - Irene Rembado
- MindScope Program, Allen Institute, Seattle, United States
| | | | - Simone Russo
- MindScope Program, Allen Institute, Seattle, United States
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Lydia C Marks
- MindScope Program, Allen Institute, Seattle, United States
| | - Shawn R Olsen
- MindScope Program, Allen Institute, Seattle, United States
| | - Christof Koch
- MindScope Program, Allen Institute, Seattle, United States
| |
Collapse
|
13
|
Usami K, Matsumoto R, Korzeniewska A, Shimotake A, Matsuhashi M, Nakae T, Kikuchi T, Yoshida K, Kunieda T, Takahashi R, Crone NE, Ikeda A. The dynamics of cortical interactions in visual recognition of object category: living versus nonliving. Cereb Cortex 2023; 33:5740-5750. [PMID: 36408645 PMCID: PMC10152084 DOI: 10.1093/cercor/bhac456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Noninvasive brain imaging studies have shown that higher visual processing of objects occurs in neural populations that are separable along broad semantic categories, particularly living versus nonliving objects. However, because of their limited temporal resolution, these studies have not been able to determine whether broad semantic categories are also reflected in the dynamics of neural interactions within cortical networks. We investigated the time course of neural propagation among cortical areas activated during object naming in 12 patients implanted with subdural electrode grids prior to epilepsy surgery, with a special focus on the visual recognition phase of the task. Analysis of event-related causality revealed significantly stronger neural propagation among sites within ventral temporal lobe (VTL) at early latencies, around 250 ms, for living objects compared to nonliving objects. Differences in other features, including familiarity, visual complexity, and age of acquisition, did not significantly change the patterns of neural propagation. Our findings suggest that the visual processing of living objects relies on stronger causal interactions among sites within VTL, perhaps reflecting greater integration of visual feature processing. In turn, this may help explain the fragility of naming living objects in neurological diseases affecting VTL.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, MD 21287, United States
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Moriyama 524-8524, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon 791-0295, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, MD 21287, United States
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Krishnan B, Tousseyn S, Wang ZI, Murakami H, Wu G, Burgess R, Iasemidis L, Najm I, Alexopoulos AV. Novel noninvasive identification of patient-specific epileptic networks in focal epilepsies: Linking single-photon emission computed tomography perfusion during seizures with resting-state magnetoencephalography dynamics. Hum Brain Mapp 2023; 44:1695-1710. [PMID: 36480260 PMCID: PMC9921232 DOI: 10.1002/hbm.26168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/31/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Single-photon emission computed tomography (SPECT) during seizures and magnetoencephalography (MEG) during the interictal state are noninvasive modalities employed in the localization of the epileptogenic zone in patients with drug-resistant focal epilepsy (DRFE). The present study aims to investigate whether there exists a preferentially high MEG functional connectivity (FC) among those regions of the brain that exhibit hyperperfusion or hypoperfusion during seizures. We studied MEG and SPECT data in 30 consecutive DRFE patients who had resective epilepsy surgery. We parcellated each ictal perfusion map into 200 regions of interest (ROIs) and generated ROI time series using source modeling of MEG data. FC between ROIs was quantified using coherence and phase-locking value. We defined a generalized linear model to relate the connectivity of each ROI, ictal perfusion z score, and distance between ROIs. We compared the coefficients relating perfusion z score to FC of each ROI and estimated the connectivity within and between resected and unresected ROIs. We found that perfusion z scores were strongly correlated with the FC of hyper-, and separately, hypoperfused ROIs across patients. High interictal connectivity was observed between hyperperfused brain regions inside and outside the resected area. High connectivity was also observed between regions of ictal hypoperfusion. Importantly, the ictally hypoperfused regions had a low interictal connectivity to regions that became hyperperfused during seizures. We conclude that brain regions exhibiting hyperperfusion during seizures highlight a preferentially connected interictal network, whereas regions of ictal hypoperfusion highlight a separate, discrete and interconnected, interictal network.
Collapse
Affiliation(s)
- Balu Krishnan
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | - Simon Tousseyn
- Academic Center for EpileptologyKempenhaeghe and Maastricht UMC+HeezeThe Netherlands
| | - Zhong Irene Wang
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | - Hiroatsu Murakami
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | - Guiyun Wu
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | - Richard Burgess
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | - Leonidas Iasemidis
- Department of Translational NeuroscienceBarrow Neurological InstituteScottsdaleArizonaUSA
- Department of NeurologyBarrow Neurological InstituteScottsdaleArizonaUSA
| | - Imad Najm
- Neurological InstituteEpilepsy Center, Cleveland ClinicClevelandOhioUSA
| | | |
Collapse
|
15
|
Parmigiani S, Mikulan EP, Russo S, Sarasso S, Zauli FM, Rubino A, Cattani A, Fecchio M, Giampiccolo D, Lanzone J, D'Orio P, Del Vecchio M, Avanzini P, Nobili L, Sartori I, Massimini M, Pigorini A. Simultaneous stereo-EEG and high-density scalp EEG recordings to study the effects of intracerebral stimulation parameters. Brain Stimul 2022; 15:664-675. [PMID: 35421585 DOI: 10.1016/j.brs.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEPs) recorded by stereo-electroencephalography (SEEG) are a valuable tool to investigate brain reactivity and effective connectivity. However, invasive recordings are spatially sparse since they depend on clinical needs. This sparsity hampers systematic comparisons across-subjects, the detection of the whole-brain effects of intracortical stimulation, as well as their relationships to the EEG responses evoked by non-invasive stimuli. OBJECTIVE To demonstrate that CCEPs recorded by high-density electroencephalography (hd-EEG) provide additional information with respect SEEG alone and to provide an open, curated dataset to allow for further exploration of their potential. METHODS The dataset encompasses SEEG and hd-EEG recordings simultaneously acquired during Single Pulse Electrical Stimulation (SPES) in drug-resistant epileptic patients (N = 36) in whom stimulations were delivered with different physical, geometrical, and topological parameters. Differences in CCEPs were assessed by amplitude, latency, and spectral measures. RESULTS While invasively and non-invasively recorded CCEPs were generally correlated, differences in pulse duration, angle and stimulated cortical area were better captured by hd-EEG. Further, intracranial stimulation evoked site-specific hd-EEG responses that reproduced the spectral features of EEG responses to transcranial magnetic stimulation (TMS). Notably, SPES, albeit unperceived by subjects, elicited scalp responses that were up to one order of magnitude larger than the responses typically evoked by sensory stimulation in awake humans. CONCLUSIONS CCEPs can be simultaneously recorded with SEEG and hd-EEG and the latter provides a reliable descriptor of the effects of SPES as well as a common reference to compare the whole-brain effects of intracortical stimulation to those of non-invasive transcranial or sensory stimulations in humans.
Collapse
Affiliation(s)
- S Parmigiani
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - E P Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - S Russo
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, Milan, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy
| | - F M Zauli
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Philosophy "Piero Martinetti", Università degli Studi di Milano, Milan, Italy
| | - A Rubino
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - A Cattani
- Department of Mathematics & Statistics, Boston University, Boston, MA, USA
| | - M Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - D Giampiccolo
- Department of Neurosurgery, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK; Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - J Lanzone
- Department of Systems Medicine, Neuroscience, University of Rome Tor Vergata, Rome, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department of Milano Institute, Milan, Italy
| | - P D'Orio
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy; Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - M Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - P Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - L Nobili
- Child Neuropsychiatry, IRCCS Istituto G. Gaslini, Genova, Italy
| | - I Sartori
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco" Università degli Studi di Milano, Milan, Italy; Department of Biomedical, V, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Paulk AC, Zelmann R, Crocker B, Widge AS, Dougherty DD, Eskandar EN, Weisholtz DS, Richardson RM, Cosgrove GR, Williams ZM, Cash SS. Local and distant cortical responses to single pulse intracranial stimulation in the human brain are differentially modulated by specific stimulation parameters. Brain Stimul 2022; 15:491-508. [PMID: 35247646 PMCID: PMC8985164 DOI: 10.1016/j.brs.2022.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electrical neuromodulation via direct electrical stimulation (DES) is an increasingly common therapy for a wide variety of neuropsychiatric diseases. Unfortunately, therapeutic efficacy is inconsistent, likely due to our limited understanding of the relationship between the massive stimulation parameter space and brain tissue responses. OBJECTIVE To better understand how different parameters induce varied neural responses, we systematically examined single pulse-induced cortico-cortico evoked potentials (CCEP) as a function of stimulation amplitude, duration, brain region, and whether grey or white matter was stimulated. METHODS We measured voltage peak amplitudes and area under the curve (AUC) of intracranially recorded stimulation responses as a function of distance from the stimulation site, pulse width, current injected, location relative to grey and white matter, and brain region stimulated (N = 52, n = 719 stimulation sites). RESULTS Increasing stimulation pulse width increased responses near the stimulation location. Increasing stimulation amplitude (current) increased both evoked amplitudes and AUC nonlinearly. Locally (<15 mm), stimulation at the boundary between grey and white matter induced larger responses. In contrast, for distant sites (>15 mm), white matter stimulation consistently produced larger responses than stimulation in or near grey matter. The stimulation location-response curves followed different trends for cingulate, lateral frontal, and lateral temporal cortical stimulation. CONCLUSION These results demonstrate that a stronger local response may require stimulation in the grey-white boundary while stimulation in the white matter could be needed for network activation. Thus, stimulation parameters tailored for a specific anatomical-functional outcome may be key to advancing neuromodulatory therapy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Darin D Dougherty
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel S Weisholtz
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - R Mark Richardson
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02114, USA
| | - Ziv M Williams
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
17
|
Sonoda M, Silverstein BH, Jeong JW, Sugiura A, Nakai Y, Mitsuhashi T, Rothermel R, Luat AF, Sood S, Asano E. Six-dimensional dynamic tractography atlas of language connectivity in the developing brain. Brain 2021; 144:3340-3354. [PMID: 34849596 PMCID: PMC8677551 DOI: 10.1093/brain/awab225] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 11/12/2022] Open
Abstract
During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.
Collapse
Affiliation(s)
- Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Ayaka Sugiura
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Yasuo Nakai
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo, 1138421, Japan
| | - Robert Rothermel
- Department of Psychiatry, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Koganemaru S, Mizuno F, Takahashi T, Takemura Y, Irisawa H, Matsuhashi M, Mima T, Mizushima T, Kansaku K. Event-Related Desynchronization and Corticomuscular Coherence Observed During Volitional Swallow by Electroencephalography Recordings in Humans. Front Hum Neurosci 2021; 15:643454. [PMID: 34899209 PMCID: PMC8664381 DOI: 10.3389/fnhum.2021.643454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Swallowing in humans involves many cortical areas although it is partly mediated by a series of brainstem reflexes. Cortical motor commands are sent to muscles during swallow. Previous works using magnetoencephalography showed event-related desynchronization (ERD) during swallow and corticomuscular coherence (CMC) during tongue movements in the bilateral sensorimotor and motor-related areas. However, there have been few analogous works that use electroencephalography (EEG). We investigated the ERD and CMC in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow by EEG recordings in 18 healthy human subjects. As a result, we found a significant ERD in the beta frequency band and CMC in the theta, alpha, and beta frequency bands during swallow in those cortical areas. These results suggest that EEG can detect the desynchronized activity and oscillatory interaction between the cortex and pharyngeal muscles in the bilateral sensorimotor, premotor, and inferior prefrontal areas during volitional swallow in humans.
Collapse
Affiliation(s)
- Satoko Koganemaru
- Department of Regenerative Systems Neuroscience, Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Physiology, Dokkyo Medical University, Mibu, Japan
| | - Fumiya Mizuno
- Division of Rehabilitation Medicine, Dokkyo Medical University Hospital, Mibu, Japan
| | | | - Yuu Takemura
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Hiroshi Irisawa
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuya Mima
- The Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Takashi Mizushima
- Department of Rehabilitation Medicine, Dokkyo Medical University, Mibu, Japan
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University, Mibu, Japan
| |
Collapse
|
19
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
20
|
Pototskiy E, Dellinger JR, Bumgarner S, Patel J, Sherrerd-Smith W, Musto AE. Brain injuries can set up an epileptogenic neuronal network. Neurosci Biobehav Rev 2021; 129:351-366. [PMID: 34384843 DOI: 10.1016/j.neubiorev.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Development of epilepsy or epileptogenesis promotes recurrent seizures. As of today, there are no effective prophylactic therapies to prevent the onset of epilepsy. Contributing to this deficiency of preventive therapy is the lack of clarity in fundamental neurobiological mechanisms underlying epileptogenesis and lack of reliable biomarkers to identify patients at risk for developing epilepsy. This limits the development of prophylactic therapies in epilepsy. Here, neural network dysfunctions reflected by oscillopathies and microepileptiform activities, including neuronal hyperexcitability and hypersynchrony, drawn from both clinical and experimental epilepsy models, have been reviewed. This review suggests that epileptogenesis reflects a progressive and dynamic dysfunction of specific neuronal networks which recruit further interconnected groups of neurons, with this resultant pathological network mediating seizure occurrence, recurrence, and progression. In the future, combining spatial and temporal resolution of neuronal non-invasive recordings from patients at risk of developing epilepsy, together with analytics and computational tools, may contribute to determining whether the brain is undergoing epileptogenesis in asymptomatic patients following brain injury.
Collapse
Affiliation(s)
- Esther Pototskiy
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; College of Sciences, Old Dominion University, Norfolk, Virginia
| | - Joshua Ryan Dellinger
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Stuart Bumgarner
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Jay Patel
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - William Sherrerd-Smith
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA
| | - Alberto E Musto
- Department of Anatomy & Pathology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA; Department of Neurology, Eastern Virginia Medical School, Department of Pathology, Norfolk, Virginia, USA.
| |
Collapse
|
21
|
Yamao Y, Matsumoto R, Kunieda T, Nakae T, Nishida S, Inano R, Shibata S, Kikuchi T, Arakawa Y, Yoshida K, Ikeda A, Miyamoto S. Effects of propofol on cortico-cortical evoked potentials in the dorsal language white matter pathway. Clin Neurophysiol 2021; 132:1919-1926. [PMID: 34182277 DOI: 10.1016/j.clinph.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE In order to evaluate the clinical utility even under general anesthesia, the present study aimed to clarify the effect of anesthesia on the cortico-cortical evoked potentials (CCEPs). METHODS We analyzed 14 patients' data in monitoring the integrity of the dorsal language pathway by using CCEPs both under general anesthesia with propofol and remifentanil and awake condition, with the main aim of clarifying the effect of anesthesia on the distribution and waveform of CCEPs. RESULTS The distribution of larger CCEP response sites, including the locus of the maximum CCEP response site, was marginally affected by anesthesia. With regard to similarity of waveforms, the mean waveform correlation coefficient indicated a strong agreement. CCEP N1 amplitude increased by an average of 25.8% from general anesthesia to waking, except three patients. CCEP N1 latencies had no correlation in changes between the two conditions. CONCLUSIONS We demonstrated that the distribution of larger CCEP responses was marginally affected by anesthesia and that the CCEP N1 amplitude had tendency to increase from general anesthesia to the awake condition. SIGNIFICANCE The CCEP method provides the efficiency of intraoperative monitoring for dorsal language white matter pathway even under general anesthesia.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Nishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rika Inano
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiya Shibata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, Chu CJ, Cash SS, Paulk AC. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021; 237:118094. [PMID: 33940142 DOI: 10.1016/j.neuroimage.2021.118094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Measuring connectivity in the human brain involves innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation. To examine how different measures of connectivity correlate with one another, we compared 'passive' measures of connectivity during resting state conditions to the more 'active' probing measures of connectivity with single pulse electrical stimulation (SPES). We measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 out of 104 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8). The CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network. These results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.
Collapse
Affiliation(s)
- Britni Crocker
- Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Ostrowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02124; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Wang Y, Hays MA, Coogan C, Kang JY, Flinker A, Arya R, Korzeniewska A, Crone NE. Spatial-Temporal Functional Mapping Combined With Cortico-Cortical Evoked Potentials in Predicting Cortical Stimulation Results. Front Hum Neurosci 2021; 15:661976. [PMID: 33935673 PMCID: PMC8079642 DOI: 10.3389/fnhum.2021.661976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Functional human brain mapping is commonly performed during invasive monitoring with intracranial electroencephalographic (iEEG) electrodes prior to resective surgery for drug resistant epilepsy. The current gold standard, electrocortical stimulation mapping (ESM), is time consuming, sometimes elicits pain, and often induces after discharges or seizures. Moreover, there is a risk of overestimating eloquent areas due to propagation of the effects of stimulation to a broader network of language cortex. Passive iEEG spatial-temporal functional mapping (STFM) has recently emerged as a potential alternative to ESM. However, investigators have observed less correspondence between STFM and ESM maps of language than between their maps of motor function. We hypothesized that incongruities between ESM and STFM of language function may arise due to propagation of the effects of ESM to cortical areas having strong effective connectivity with the site of stimulation. We evaluated five patients who underwent invasive monitoring for seizure localization, whose language areas were identified using ESM. All patients performed a battery of language tasks during passive iEEG recordings. To estimate the effective connectivity of stimulation sites with a broader network of task-activated cortical sites, we measured cortico-cortical evoked potentials (CCEPs) elicited across all recording sites by single-pulse electrical stimulation at sites where ESM was performed at other times. With the combination of high gamma power as well as CCEPs results, we trained a logistic regression model to predict ESM results at individual electrode pairs. The average accuracy of the classifier using both STFM and CCEPs results combined was 87.7%, significantly higher than the one using STFM alone (71.8%), indicating that the correspondence between STFM and ESM results is greater when effective connectivity between ESM stimulation sites and task-activated sites is taken into consideration. These findings, though based on a small number of subjects to date, provide preliminary support for the hypothesis that incongruities between ESM and STFM may arise in part from propagation of stimulation effects to a broader network of cortical language sites activated by language tasks, and suggest that more studies, with larger numbers of patients, are needed to understand the utility of both mapping techniques in clinical practice.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adeen Flinker
- Department of Neurology, New York University School of Medicine, New York, NY, United States
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d'Orio P, Cattani A, Francione S, Tassi L, Bassetti CLA, Lo Russo G, Nobili L, Sartori I, Massimini M. Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. Neuroimage 2021; 234:117964. [PMID: 33771696 DOI: 10.1016/j.neuroimage.2021.117964] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
Focal cortical lesions are known to result in large-scale functional alterations involving distant areas; however, little is known about the electrophysiological mechanisms underlying these network effects. Here, we addressed this issue by analysing the short and long distance intracranial effects of controlled structural lesions in humans. The changes in Stereo-Electroencephalographic (SEEG) activity after Radiofrequency-Thermocoagulation (RFTC) recorded in 21 epileptic subjects were assessed with respect to baseline resting wakefulness and sleep activity. In addition, Cortico-Cortical Evoked Potentials (CCEPs) recorded before the lesion were employed to interpret these changes with respect to individual long-range connectivity patterns. We found that small structural ablations lead to the generation and large-scale propagation of sleep-like slow waves within the awake brain. These slow waves match those recorded in the same subjects during sleep, are prevalent in perilesional areas, but can percolate up to distances of 60 mm through specific long-range connections, as predicted by CCEPs. Given the known impact of slow waves on information processing and cortical plasticity, demonstrating their intrusion and percolation within the awake brain add key elements to our understanding of network dysfunction after cortical injuries.
Collapse
Affiliation(s)
- S Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - E Mikulan
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - A Rubino
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - F M Zauli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - S Parmigiani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - P d'Orio
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy; Institute of Neuroscience, CNR, via Volturno 39E, 43125 Parma, Italy
| | - A Cattani
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, 53719, USA
| | - S Francione
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Tassi
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - C L A Bassetti
- Department of Neurology, Inselspital, University of Bern, Switzerland
| | - G Lo Russo
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - L Nobili
- Child Neuropsychiatry, IRCCS Istituto G. Gaslini, Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - I Sartori
- "C. Munari" Epilepsy Surgery Centre, Department of Neuroscience, Niguarda Hospital, Milan 20162, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; IRCCS, Fondazione Don Carlo Gnocchi, Milan 20148, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
25
|
Kobayashi K, Matsumoto R, Usami K, Matsuhashi M, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Cortico-cortical evoked potential by single-pulse electrical stimulation is a generally safe procedure. Clin Neurophysiol 2021; 132:1033-1040. [PMID: 33743298 DOI: 10.1016/j.clinph.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) by single-pulse electrical stimulation (SPES) is useful to investigate effective connectivity and cortical excitability. We aimed to clarify the safety of CCEPs. METHODS We retrospectively analyzed 29 consecutive patients with intractable partial epilepsy undergoing chronic subdural grid implantation and CCEP recording. Repetitive SPES (1 Hz) was systematically applied to a pair of adjacent electrodes over almost all electrodes. We evaluated the incidences of afterdischarges (ADs) and clinical seizures. RESULTS Out of 1283 electrode pairs, ADs and clinical seizures were observed in 12 and 5 pairs (0.94% and 0.39%, per electrode pair) in 7 and 3 patients (23.3% and 10.0%, per patient), respectively. Of the 18-82 pairs per patient, ADs and clinical seizures were induced in 0-4 and 0-3 pairs, respectively. Stimulating 4 SOZ (seizure onset zone) (2.5%) and 8 non-SOZ pairs (0.75%) resulted in ADs. We observed clinical seizures in stimulating 4 SOZ (2.5%) and 1 non-SOZ pair (0.09%). The incidence of clinical seizures varied significantly between SOZ and non-SOZ stimulations (p = 0.001), while the difference in AD incidence tended towards significance (p = 0.058). CONCLUSION Although caution should be taken in stimulating SOZ, CCEP is a safe procedure for presurgical evaluation. SIGNIFICANCE CCEP is safe under the established protocol.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Department of Epilepsy, Neurological Institute, Cleveland Clinic, USA.
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
26
|
Sarasso S, D'Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S, Devalle G, Rosanova M, Massimini M. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain 2021; 143:3672-3684. [PMID: 33188680 PMCID: PMC7805800 DOI: 10.1093/brain/awaa338] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
The functional consequences of focal brain injury are thought to be contingent on neuronal alterations extending beyond the area of structural damage. This phenomenon, also known as diaschisis, has clinical and metabolic correlates but lacks a clear electrophysiological counterpart, except for the long-standing evidence of a relative EEG slowing over the injured hemisphere. Here, we aim at testing whether this EEG slowing is linked to the pathological intrusion of sleep-like cortical dynamics within an awake brain. We used a combination of transcranial magnetic stimulation and electroencephalography (TMS/EEG) to study cortical reactivity in a cohort of 30 conscious awake patients with chronic focal and multifocal brain injuries of ischaemic, haemorrhagic and traumatic aetiology. We found that different patterns of cortical reactivity typically associated with different brain states (coma, sleep, wakefulness) can coexist within the same brain. Specifically, we detected the occurrence of prominent sleep-like TMS-evoked slow waves and off-periods—reflecting transient suppressions of neuronal activity—in the area surrounding focal cortical injuries. These perilesional sleep-like responses were associated with a local disruption of signal complexity whereas complex responses typical of the awake brain were present when stimulating the contralesional hemisphere. These results shed light on the electrophysiological properties of the tissue surrounding focal brain injuries in humans. Perilesional sleep-like off-periods can disrupt network activity but are potentially reversible, thus representing a principled read-out for the neurophysiological assessment of stroke patients, as well as an interesting target for rehabilitation.
Collapse
Affiliation(s)
- Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Chalfont Centre for Epilepsy, Chalfont St. Peter, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Fecchio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Silvia Casarotto
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Alessandro Viganò
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Cristina Landi
- Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | | | - Olivia Gosseries
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Matteo Quarenghi
- Unità Operativa Radiologia, Azienda Ospedaliera Vizzolo P -Risonanza Magnetica- ASST Melegnano e Martesana, Vizzolo Predabissi, Italy
| | - Steven Laureys
- Coma Science Group, University and University Hospital of Liege, GIGA-Consciousness, 4000 Liege, Belgium
| | - Guya Devalle
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, Italy
| | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
27
|
Silverstein BH, Asano E, Sugiura A, Sonoda M, Lee MH, Jeong JW. Dynamic tractography: Integrating cortico-cortical evoked potentials and diffusion imaging. Neuroimage 2020; 215:116763. [PMID: 32294537 DOI: 10.1016/j.neuroimage.2020.116763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Cortico-cortical evoked potentials (CCEPs) are utilized to identify effective networks in the human brain. Following single-pulse electrical stimulation of cortical electrodes, evoked responses are recorded from distant cortical areas. A negative deflection (N1) which occurs 10-50 ms post-stimulus is considered to be a marker for direct cortico-cortical connectivity. However, with CCEPs alone it is not possible to observe the white matter pathways that conduct the signal or accurately predict N1 amplitude and latency at downstream recoding sites. Here, we develop a new approach, termed "dynamic tractography," which integrates CCEP data with diffusion-weighted imaging (DWI) data collected from the same patients. This innovative method allows greater insights into cortico-cortical networks than provided by each method alone and may improve the understanding of large-scale networks that support cognitive functions. The dynamic tractography model produces several fundamental hypotheses which we investigate: 1) DWI-based pathlength predicts N1 latency; 2) DWI-based pathlength negatively predicts N1 voltage; and 3) fractional anisotropy (FA) along the white matter path predicts N1 propagation velocity. METHODS Twenty-three neurosurgical patients with drug-resistant epilepsy underwent both extraoperative CCEP recordings and preoperative DWI scans. Subdural grids of 3 mm diameter electrodes were used for stimulation and recording, with 98-128 eligible electrodes per patient. CCEPs were elicited by trains of 1 Hz stimuli with an intensity of 5 mA and recorded at a sample rate of 1 kHz. N1 peak and latency were defined as the maximum of a negative deflection within 10-50 ms post-stimulus with a z-score > 5 relative to baseline. Electrodes and DWI were coregistered to construct electrode connectomes for white matter quantification. RESULTS Clinical variables (age, sex, number of anti-epileptic drugs, handedness, and stimulated hemisphere) did not correlate with the key outcome measures (N1 peak amplitude, latency, velocity, or DWI pathlength). All subjects and electrodes were therefore pooled into a group-level analysis to determine overall patterns. As hypothesized, DWI path length positively predicted N1 latency (R2 = 0.81, β = 1.51, p = 4.76e-16) and negatively predicted N1 voltage (R2 = 0.79, β = -0.094, p = 9.30e-15), while FA predicted N1 propagation velocity (R2 = 0.35, β = 48.0, p = 0.001). CONCLUSION We have demonstrated that the strength and timing of the CCEP N1 is dependent on the properties of the underlying white matter network. Integrated CCEP and DWI visualization allows robust localization of intact axonal pathways which effectively interconnect eloquent cortex.
Collapse
Affiliation(s)
- Brian H Silverstein
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA; Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Dept. of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Ayaka Sugiura
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Masaki Sonoda
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA
| | - Min-Hee Lee
- Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Translational Imaging Laboratory, Wayne State University, Detroit, MI, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA; Dept. of Pediatrics, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Dept. of Neurology, Wayne State University, Children's Hospital of Michigan, Detroit, MI, USA; Translational Imaging Laboratory, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
28
|
Usami K, Milsap GW, Korzeniewska A, Collard MJ, Wang Y, Lesser RP, Anderson WS, Crone NE. Cortical Responses to Input From Distant Areas are Modulated by Local Spontaneous Alpha/Beta Oscillations. Cereb Cortex 2020; 29:777-787. [PMID: 29373641 DOI: 10.1093/cercor/bhx361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Any given area in human cortex may receive input from multiple, functionally heterogeneous areas, potentially representing different processing threads. Alpha (8-13 Hz) and beta oscillations (13-20 Hz) have been hypothesized by other investigators to gate local cortical processing, but their influence on cortical responses to input from other cortical areas is unknown. To study this, we measured the effect of local oscillatory power and phase on cortical responses elicited by single-pulse electrical stimulation (SPES) at distant cortical sites, in awake human subjects implanted with intracranial electrodes for epilepsy surgery. In 4 out of 5 subjects, the amplitudes of corticocortical evoked potentials (CCEPs) elicited by distant SPES were reproducibly modulated by the power, but not the phase, of local oscillations in alpha and beta frequencies. Specifically, CCEP amplitudes were higher when average oscillatory power just before distant SPES (-110 to -10 ms) was high. This effect was observed in only a subset (0-33%) of sites with CCEPs and, like the CCEPs themselves, varied with stimulation at different distant sites. Our results suggest that although alpha and beta oscillations may gate local processing, they may also enhance the responsiveness of cortex to input from distant cortical sites.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Griffin W Milsap
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maxwell J Collard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yujing Wang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Ronald P Lesser
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Bouchard M, Lina JM, Gaudreault PO, Dubé J, Gosselin N, Carrier J. EEG connectivity across sleep cycles and age. Sleep 2020; 43:5613705. [PMID: 31691825 DOI: 10.1093/sleep/zsz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES In young adults, sleep is associated with important changes in cerebral connectivity during the first cycle of non-rapid eye movement (NREM) sleep. Our study aimed to evaluate how electroencephalography (EEG) connectivity during sleep differs between young and older individuals, and across the sleep cycles. METHODS We used imaginary coherence to estimate EEG connectivity during NREM and rapid eye movement (REM) sleep in 30 young (14 women; 20-30 years) and 29 older (18 women; 50-70 years) individuals. We also explored the association between coherence and cognitive measures. RESULTS Older individuals showed lower EEG connectivity in stage N2 but higher connectivity in REM and stage N3 compared to the younger cohort. Age-related differences in N3 were driven by the first sleep cycle. EEG connectivity was lower in REM than N3, especially in younger individuals. Exploratory analyses, controlling for the effects of age, indicated that higher EEG connectivity in delta during N2 was associated with higher processing speed, whereas, during REM sleep, lower EEG connectivity in delta and sigma was associated with higher verbal memory performance and a higher global averaged intelligence quotient score. CONCLUSION Our results indicated that age modifies sleep EEG connectivity but the direction and the magnitude of these effects differ between sleep stages and cycles. Results in N3 and REM point to a reduced ability of the older brains to disconnect as compared to the younger ones. Our results also support the notion that cerebral functional connectivity during sleep may be associated with cognitive functions.
Collapse
Affiliation(s)
- Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Deparment of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Department of Electrical Engineering, École de Technologie Supérieure, Montreal, QC, Canada
| | - Pierre-Olivier Gaudreault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Deparment of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Deparment of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Deparment of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada.,Deparment of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
30
|
Sleep related epilepsy in focal cortical dysplasia type 2: Insights from sleep recordings in presurgical evaluation. Clin Neurophysiol 2020; 131:609-615. [DOI: 10.1016/j.clinph.2019.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023]
|
31
|
Kang X, Boly M, Findlay G, Jones B, Gjini K, Maganti R, Struck AF. Quantitative spatio-temporal characterization of epileptic spikes using high density EEG: Differences between NREM sleep and REM sleep. Sci Rep 2020; 10:1673. [PMID: 32015406 PMCID: PMC6997449 DOI: 10.1038/s41598-020-58612-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we applied high-density EEG recordings (HD-EEG) to quantitatively characterize the fine-grained spatiotemporal distribution of inter-ictal epileptiform discharges (IEDs) across different sleep stages. We quantified differences in spatial extent and duration of IEDs at the scalp and cortical levels using HD-EEG source-localization, during non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep, in six medication-refractory focal epilepsy patients during epilepsy monitoring unit admission. Statistical analyses were performed at single subject level and group level across different sleep stages for duration and distribution of IEDs. Tests were corrected for multiple comparisons across all channels and time points. Compared to NREM sleep, IEDs during REM sleep were of significantly shorter duration and spatially more restricted. Compared to NREM sleep, IEDs location in REM sleep also showed a higher concordance with electrographic ictal onset zone from scalp EEG recording. This study supports the localizing value of REM IEDs over NREM IEDs and suggests that HD-EEG may be of clinical utility in epilepsy surgery work-up.
Collapse
Affiliation(s)
- Xuan Kang
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Melanie Boly
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Graham Findlay
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Benjamin Jones
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.,University of Wisconsin-Madison Department of Psychiatry, Madison, Wisconsin, 53705, USA
| | - Klevest Gjini
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Rama Maganti
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA
| | - Aaron F Struck
- University of Wisconsin-Madison Department of Neurology, Madison, Wisconsin, 53705, USA.
| |
Collapse
|
32
|
Usami K. Does single stimulus elucidate the complex mystery of sleep? Clin Neurophysiol 2019; 131:463-464. [PMID: 31836421 DOI: 10.1016/j.clinph.2019.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
33
|
Bensaid S, Modolo J, Merlet I, Wendling F, Benquet P. COALIA: A Computational Model of Human EEG for Consciousness Research. Front Syst Neurosci 2019; 13:59. [PMID: 31798421 PMCID: PMC6863981 DOI: 10.3389/fnsys.2019.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 01/27/2023] Open
Abstract
Understanding the origin of the main physiological processes involved in consciousness is a major challenge of contemporary neuroscience, with crucial implications for the study of Disorders of Consciousness (DOC). The difficulties in achieving this task include the considerable quantity of experimental data in this field, along with the non-intuitive, nonlinear nature of neuronal dynamics. One possibility of integrating the main results from the experimental literature into a cohesive framework, while accounting for nonlinear brain dynamics, is the use of physiologically-inspired computational models. In this study, we present a physiologically-grounded computational model, attempting to account for the main micro-circuits identified in the human cortex, while including the specificities of each neuronal type. More specifically, the model accounts for thalamo-cortical (vertical) regulation of cortico-cortical (horizontal) connectivity, which is a central mechanism for brain information integration and processing. The distinct neuronal assemblies communicate through feedforward and feedback excitatory and inhibitory synaptic connections implemented in a template brain accounting for long-range connectome. The EEG generated by this physiologically-based simulated brain is validated through comparison with brain rhythms recorded in humans in two states of consciousness (wakefulness, sleep). Using the model, it is possible to reproduce the local disynaptic disinhibition of basket cells (fast GABAergic inhibition) and glutamatergic pyramidal neurons through long-range activation of vasoactive intestinal-peptide (VIP) interneurons that induced inhibition of somatostatin positive (SST) interneurons. The model (COALIA) predicts that the strength and dynamics of the thalamic output on the cortex control the local and long-range cortical processing of information. Furthermore, the model reproduces and explains clinical results regarding the complexity of transcranial magnetic stimulation TMS-evoked EEG responses in DOC patients and healthy volunteers, through a modulation of thalamo-cortical connectivity that governs the level of cortico-cortical communication. This new model provides a quantitative framework to accelerate the study of the physiological mechanisms involved in the emergence, maintenance and disruption (sleep, anesthesia, DOC) of consciousness.
Collapse
Affiliation(s)
| | | | | | - Fabrice Wendling
- INSERM, Laboratoire Traitement du Signal et de l’Image (LTSI)—U1099, University of Rennes, Rennes, France
| | | |
Collapse
|
34
|
Sleep modulates effective connectivity: A study using intracranial stimulation and recording. Clin Neurophysiol 2019; 131:529-541. [PMID: 31708382 DOI: 10.1016/j.clinph.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Sleep is an active process with an important role in memory. Epilepsy patients often display a disturbed sleep architecture, with consequences on cognition. We aimed to investigate the effect of sleep on cortical networks' organization. METHODS We analyzed cortico-cortical evoked responses elicited by single pulse electrical stimulation (SPES) using intracranial depth electrodes in 25 patients with drug-resistant focal epilepsy explored using stereo-EEG. We applied the SPES protocol during wakefulness and NREM - N2 sleep. We analyzed 31,710 significant responses elicited by 799 stimulations covering most brain structures, epileptogenic or non-epileptogenic. We analyzed effective connectivity between structures using a graph-theory approach. RESULTS Sleep increases excitability in the brain, regardless of epileptogenicity. Local and distant connections are differently modulated by sleep, depending on the tissue epileptogenicity. In non-epileptogenic areas, frontal lobe connectivity is enhanced during sleep. There is increased connectivity between the hippocampus and temporal neocortex, while perisylvian structures are disconnected from the temporal lobe. In epileptogenic areas, we found a clear interhemispheric difference, with decreased connectivity in the right hemisphere during sleep. CONCLUSIONS Sleep modulates brain excitability and reconfigures functional brain networks, depending on tissue epileptogenicity. SIGNIFICANCE We found specific patterns of information flow during sleep in physiologic and pathologic structures, with possible implications for cognition.
Collapse
|
35
|
Takeyama H, Matsumoto R, Usami K, Nakae T, Kobayashi K, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Human entorhinal cortex electrical stimulation evoked short-latency potentials in the broad neocortical regions: Evidence from cortico-cortical evoked potential recordings. Brain Behav 2019; 9:e01366. [PMID: 31361093 PMCID: PMC6749511 DOI: 10.1002/brb3.1366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE We aimed at clarifying the clinical significance of the responses evoked by human entorhinal cortex (EC) electrical stimulation by means of cortico-cortical evoked potentials (CCEPs). METHODS We enrolled nine patients with medically intractable medial temporal lobe epilepsy who underwent invasive presurgical evaluations with subdural or depth electrodes. Single-pulse electrical stimulation was delivered to the EC and fusiform gyrus (FG), and their evoked potentials were compared. The correlation between the evoked potentials and Wechsler Memory Scale-Revised (WMS-R) score was analyzed to investigate whether memory circuit was involved in the generation of the evoked potentials. RESULTS In most electrodes placed on the neocortex, EC stimulation induced unique evoked potentials with positive polarity, termed as "widespread P1" (P1w). Compared with FG stimulation, P1w induced by EC stimulation were distinguished by their high occurrence rate, short peak latency (mean: 20.1 ms), small peak amplitude, and waveform uniformity among different recording sites. A stimulation of more posterior parts of the EC induced P1w with shorter latency and larger amplitude. P1w peak amplitude had a positive correlation (r = .69) with the visual memory score of the WMS-R. In one patient, with depth electrode implanted into the hippocampus, the giant evoked potentials were recorded in the electrodes of the anterior hippocampus and EC near the stimulus site. CONCLUSIONS The human EC electrical stimulation evoked the short-latency potentials in the broad neocortical regions. The origin of P1w remains unclear, although the limited evidence suggests that P1w is the far-field potential by the volume conduction of giant evoked potential from the EC itself and hippocampus. The significance of the present study is that those evoked potentials may be a potential biomarker of memory impairment in various neurological diseases, and we provided direct evidence for the functional subdivisions along the anterior-posterior axis in the human EC.
Collapse
Affiliation(s)
- Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University, Kyoto, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University, Kyoto, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Kyoto, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga Medical Center for Adults, Moriyama, Japan
| | | | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Usami K, Korzeniewska A, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Kunieda T, Mikuni N, Kikuchi T, Yoshida K, Miyamoto S, Takahashi R, Ikeda A, Crone NE. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep 2019; 42:zsz050. [PMID: 30794319 PMCID: PMC6559171 DOI: 10.1093/sleep/zsz050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing versus planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality (ERC) analysis, we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow-wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Matsuhashi
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University Graduate School of medicine, Sakyo-ku, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon city, Ehime, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Rosanova M, Fecchio M, Casarotto S, Sarasso S, Casali AG, Pigorini A, Comanducci A, Seregni F, Devalle G, Citerio G, Bodart O, Boly M, Gosseries O, Laureys S, Massimini M. Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients. Nat Commun 2018; 9:4427. [PMID: 30356042 PMCID: PMC6200777 DOI: 10.1038/s41467-018-06871-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
Unresponsive wakefulness syndrome (UWS) patients may retain intact portions of the thalamocortical system that are spontaneously active and reactive to sensory stimuli but fail to engage in complex causal interactions, resulting in loss of consciousness. Here, we show that loss of brain complexity after severe injuries is due to a pathological tendency of cortical circuits to fall into silence (OFF-period) upon receiving an input, a behavior typically observed during sleep. Spectral and phase domain analysis of EEG responses to transcranial magnetic stimulation reveals the occurrence of OFF-periods in the cortex of UWS patients (N = 16); these events never occur in healthy awake individuals (N = 20) but are similar to those detected in healthy sleeping subjects (N = 8). Crucially, OFF-periods impair local causal interactions, and prevent the build-up of global complexity in UWS. Our findings link potentially reversible local events to global brain dynamics that are relevant for pathological loss and recovery of consciousness. Many brain-injured patients retain large cortical islands that are intact, active and reactive but blocked in a state of low complexity, leading to unconsciousness. Here, the authors show that this loss of complexity is due to the pathological engagement of sleep-like neuronal mechanisms.
Collapse
Affiliation(s)
- M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy.,Fondazione Europea per la Ricerca Biomedica Onlus, Milan, 20063, Italy.,Neurointensive Care Unit, ASTT Grande Ospedale Metropolitano Niguarda, Milan, 20162, Italy
| | - M Fecchio
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - S Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy.,IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy
| | - S Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - A G Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12231-280, Brazil
| | - A Pigorini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - A Comanducci
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy
| | - F Seregni
- Department of Paediatrics, Cambridge University Hospital NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - G Devalle
- IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy
| | - G Citerio
- Scuola di Medicina e Chirurgia, University of Milan Bicocca, Milan, 20126, Italy
| | - O Bodart
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - M Boly
- Department of Neurology, University of Wisconsin, Madison, WI, 53705, USA.,Department of Psychiatry, University of Wisconsin, Madison, WI, 53719, USA
| | - O Gosseries
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - S Laureys
- GIGA-consciousness, Coma Science Group, University and University Hospital of Liège, Liège, 4000, Belgium
| | - M Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, 20157, Italy. .,IRCCS Fondazione Don Gnocchi, Milan, 20149, Italy.
| |
Collapse
|
38
|
Hitomi T, Inouchi M, Takeyama H, Kobayashi K, Sultana S, Inoue T, Nakayama Y, Shimotake A, Matsuhashi M, Matsumoto R, Chin K, Takahashi R, Ikeda A. Sleep is associated with reduction of epileptiform discharges in benign adult familial myoclonus epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 11:18-21. [PMID: 30591883 PMCID: PMC6305661 DOI: 10.1016/j.ebcr.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/20/2018] [Accepted: 09/27/2018] [Indexed: 11/18/2022]
Abstract
To clarify the effects of sleep on cortical irritability in benign adult familial myoclonus epilepsy (BAFME), we retrospectively compared epileptiform discharges of electroencephalographies (EEGs) between awake and sleep periods in 5 patients (mean age: 49.6 ± 20.3 years). We also analyzed polysomnography (PSG) of 1 patient. Epileptiform discharges were significantly more frequent during the awake period (1.3 ± 1.2/min) than those during light sleep stages (0.02 ± 0.04/min) (P < 0.05). Regarding PSG analysis, epileptiform discharges were also reduced during all sleep stages compared to those during awake periods. Our study suggests a relative reduction in cortical irritability during sleep in BAFME.
Collapse
Key Words
- ADCME, autosomal dominant cortical tremor, myoclonus, and epilepsy
- BAFME, benign adult familial myoclonus epilepsy
- Benign adult familial myoclonus epilepsy (BAFME)
- EEG, electroencephalography
- EMG, electromyography
- Effects of sleep modification on cortical irritability
- Epileptiform discharges
- FCMTE, familial cortical myoclonic tremor with epilepsy
- PSG, polysomnography
- REM, rapid eye movement
- ULD, Unverricht-Lundborg disease
- nCPAP, nasal continuous positive airway pressure
Collapse
Affiliation(s)
- Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Morito Inouchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Takeyama
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shamima Sultana
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Inoue
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Nakayama
- Department of Clinical Laboratory, Kyoto University Hospital, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuo Chin
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Usami K, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Shimotake A, Kikuchi T, Yoshida K, Kunieda T, Mikuni N, Miyamoto S, Takahashi R, Ikeda A. Phasic REM Transiently Approaches Wakefulness in the Human Cortex-A Single-Pulse Electrical Stimulation Study. Sleep 2017; 40:3804412. [PMID: 28482107 DOI: 10.1093/sleep/zsx077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/06/2017] [Indexed: 11/14/2022] Open
Abstract
Study Objectives To investigate the changes in cortical neural responses induced by external inputs during phasic rapid eye movement (p-REM) sleep. Methods Single-pulse electrical stimulation (SPES) was directly applied to the human cortex during REM sleep through subdural electrodes, in seven patients who underwent invasive presurgical evaluation for intractable partial epilepsy. SPES was applied to parts of the cortex through the subdural electrodes, and induced cortical responses were recorded from adjacent and remote cortical areas. Phase-locked corticocortical-evoked potentials (CCEPs) and nonphase-locked or induced CCEP-related high gamma activity (CCEP-HGA, 100-200 Hz), which are considered proxies for cortical connectivity and cortical excitability, respectively, were compared among wakefulness, p-REM (within ±2 seconds of significant bursts of REM), and tonic REM (t-REM) (periphasic REM) periods. Results During REM sleep, SPES elicited a transient increase in CCEP-HGA, followed by a subsequent decrease or suppression. The HGA suppression during both p-REM and t-REM was stronger than during wakefulness. However, its suppression during p-REM was weaker than during t-REM. On the other hand, the CCEP waveform did not show any significant difference between the two REM periods. Conclusions Cortical excitability to exogenous input was different between p-REM and t-REM. The change of the cortical excitability in p-REM was directed toward wakefulness, which may produce incomplete short bursts of consciousness, leading to dreams.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan.,Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Masao Matsuhashi
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University Graduate School of medicine, Shogoin, Sakyo-ku, Kyoto, Japan.,Human Brain Research Center, Kyoto University Graduate School of medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan.,Department of Neurosurgery, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Kyoto,Japan
| |
Collapse
|
40
|
Gkogkidis CA, Wang X, Schubert T, Gierthmühlen M, Kohler F, Schulze-Bonhage A, Burgard W, Rickert J, Haberstroh J, Schüttler M, Stieglitz T, Ball T. Closed-loop interaction with the cerebral cortex using a novel micro-ECoG-based implant: the impact of beta vs. gamma stimulation frequencies on cortico-cortical spectral responses. BRAIN-COMPUTER INTERFACES 2017. [DOI: 10.1080/2326263x.2017.1381829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- C. Alexis Gkogkidis
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Xi Wang
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Tobias Schubert
- Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Mortimer Gierthmühlen
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Andreas Schulze-Bonhage
- Epilepsy Center, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfram Burgard
- Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | | | - Jörg Haberstroh
- CEMT, Experimental Surgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Tonio Ball
- Translational Neurotechnology Lab, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Kobayashi K, Matsumoto R, Matsuhashi M, Usami K, Shimotake A, Kunieda T, Kikuchi T, Yoshida K, Mikuni N, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A. High frequency activity overriding cortico-cortical evoked potentials reflects altered excitability in the human epileptic focus. Clin Neurophysiol 2017; 128:1673-1681. [PMID: 28750290 DOI: 10.1016/j.clinph.2017.06.249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/10/2017] [Accepted: 06/22/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed to clarify that high frequency activity (HFA) of cortico-cortical evoked potentials (CCEPs), elicited by single pulse electrical stimulation (SPES), reflects cortical excitability. METHODS We recruited 16 patients with refractory partial epilepsy who had chronic subdural electrode implantation for presurgical evaluation. A repetitive SPES was given to (1) the seizure onset zone (SOZ) and (2) the control cortices (non-seizure onset zone: nSOZ). CCEPs were recorded from the neighboring cortices within SOZ and nSOZ. We applied short-time Fourier transform to obtain the induced responses for the timing of early (<50ms after SPES) and late CCEP components and analyzed the logarithmic power change for ripple (<200Hz) and fast ripple (>200Hz) bands. RESULTS Twenty-one clear CCEPs were recorded for both the SOZ and nSOZ. The HFA power of early CCEPs in SOZ significantly increased compared to that in nSOZ in both frequency bands, particularly in mesial temporal lobe epilepsy (MTLE). CONCLUSION Similar to the features of spontaneous pathological HFOs, the power of stimulus-induced HFAs in SOZ were greater than that outside SOZ, particularly in MTLE. SIGNIFICANCE HFA overriding CCEPs can be a surrogate marker of cortical excitability in epileptic focus.
Collapse
Affiliation(s)
- Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Masao Matsuhashi
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon City, Ehime 791-0295, Japan; Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, South 1, West 16, Chuo-ku, Sapporo 060-8543, Japan.
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
42
|
Single pulse electrical stimulation and high-frequency oscillations, a complicated marriage. Clin Neurophysiol 2017; 128:1026-1027. [PMID: 28341565 DOI: 10.1016/j.clinph.2017.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/23/2022]
|
43
|
Feng M, He Z, Liu B, Li Z, Tao G, Wu D, Xiang H. Consciousness loss during epileptogenesis: implication for VLPO-PnO circuits. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:1-7. [PMID: 28337311 PMCID: PMC5344992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
There is a growing concern about consciousness loss during epileptic seizures. Understanding neural mechanisms could lead to a better comprehension of cerebral circuit function in the control of consciousness loss in intractable epilepsy. We propose that ventrolateral preoptic area (VLPO)- PnO (nucleus pontis oralis) circuits may serve a major role in the loss of consciousness in drug-refractory epilepsy. Future behavioural and neuroimaging studies are clearly needed to understand the functional connectivity between the VLPO and PnO during loss of consciousness in drug-refractory epilepsy, to greatly prevent unconsciousness in this disorder and improve the quality of life in patients with intractable epilepsy.
Collapse
Affiliation(s)
- Maohui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study CenterWuhan, PR China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| | - Guorong Tao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghai, PR China
| | - Duozhi Wu
- Department of Anesthesiology, People’s Hospital of Hainan ProvinceHaikou, PR China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, PR China
| |
Collapse
|
44
|
Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 2016; 44:27-36. [PMID: 27939100 DOI: 10.1016/j.seizure.2016.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
In the last decade, single pulse electrical stimulation (SPES) has been used as an investigational tool in the field of epilepsy surgery. Direct cortical stimulation applied at a frequency of ∼1Hz can probe cortico-cortical connections by averaging electrocorticogram time-lock to the stimuli (2×20-30 trials). These evoked potentials that emanate from adjacent and remote cortices have been termed cortico-cortical evoked potentials (CCEPs). Although limited to patients undergoing invasive presurgical evaluations with intracranial electrodes, CCEP provides a novel way to explore inter-areal connectivity in vivo in the living human brain to probe functional brain networks such as language and cognitive motor networks. In addition to its impact on systems neuroscience, this method, in combination with 50Hz electrical cortical stimulation, could contribute clinically to map the functional brain systems by tracking the cortico-cortical connections among the functional cortical regions in each individual patient. This approach may help identify the normal cortico-cortical network within pathology as well as reveal connections that might arise from neural plasticity. Because of its high practicality, it has been recently applied for intraoperative monitoring of the functional brain networks for patients with brain tumor. With regard to epilepsy, SPES has been used for the two major purposes, one to probe cortical excitability of the focus, namely, epileptogenicity, and the other to probe seizure networks. Both early (i.e., CCEP) and delayed responses, and probably their high frequency oscillation counterparts, are regarded as a surrogate marker of epileptogenicity. With regards to its impact on the human brain connectivity map, worldwide collaboration is warranted to establish the standardized CCEP connectivity map as a solid reference for non-invasive connectome researches.
Collapse
Affiliation(s)
- Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
45
|
Lovati C, Giani L, D'Amico D, Mariani C. Sleep, headaches and cerebral energy control: a synoptic view. Expert Rev Neurother 2016; 17:239-250. [PMID: 27547918 DOI: 10.1080/14737175.2016.1226133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The amount of cerebral functions is particularly elevated. This intense activity requires a great expenditure of energy: the restoration of energy is the fundamental function of sleep whilst the slowdown in energy consumption may be considered the physiological effect of primary headaches. The continuous interaction of sleep and primary headaches is possible as they share many anatomical and functional cerebral systems. Areas covered: This review describes how sleep and headaches are reciprocally involved in preservation and restoration of brain energy. Data were obtained from the most relevant and recent works available in PubMed about this topic. Expert commentary: The energetic view of sleep, primary headaches and their relationship may have relevant clinical consequences: the investigation and the modification of the multiple aspects, primarily environmental, that may influence sleep and headache, become mandatory to facilitate the cerebral energy preservation by reducing its consumption and by ensuring its recovery.
Collapse
Affiliation(s)
| | - Luca Giani
- b Neurology Unit , Luigi Sacco Hospital, Milan Study University , Milan , Italy
| | - Domenico D'Amico
- c Headache Center , C. Besta Neurological Institute and Foundation , Milan , Italy
| | - Claudio Mariani
- b Neurology Unit , Luigi Sacco Hospital, Milan Study University , Milan , Italy
| |
Collapse
|
46
|
Trebaul L, Rudrauf D, Job AS, Mălîia MD, Popa I, Barborica A, Minotti L, Mîndruţă I, Kahane P, David O. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials. J Neurosci Methods 2016; 264:94-102. [PMID: 26952846 PMCID: PMC4840016 DOI: 10.1016/j.jneumeth.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. NEW METHOD In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. RESULTS Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. COMPARISON WITH EXISTING METHOD The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. CONCLUSIONS This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies.
Collapse
Affiliation(s)
- Lena Trebaul
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; Inserm, U1216, F-38000 Grenoble, France
| | - David Rudrauf
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; Inserm, U1216, F-38000 Grenoble, France
| | - Anne-Sophie Job
- Inserm, U1216, F-38000 Grenoble, France; Laboratoire de Neurophysiopathologie de l'Epilepsie, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | | | - Irina Popa
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | - Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania; FHC Inc, Bowdoin, ME, USA
| | - Lorella Minotti
- Inserm, U1216, F-38000 Grenoble, France; Laboratoire de Neurophysiopathologie de l'Epilepsie, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | - Ioana Mîndruţă
- Neurology Department, University Emergency Hospital, Bucharest, Romania; Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Philippe Kahane
- Inserm, U1216, F-38000 Grenoble, France; Laboratoire de Neurophysiopathologie de l'Epilepsie, Centre Hospitalier Universitaire Grenoble-Alpes, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; Inserm, U1216, F-38000 Grenoble, France.
| |
Collapse
|