1
|
Gastaldon S, Busan P, Molinaro N, Lizarazu M. Cortical Tracking of Speech Is Reduced in Adults Who Stutter When Listening for Speaking. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:4339-4357. [PMID: 39437265 DOI: 10.1044/2024_jslhr-24-00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE The purpose of this study was to investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to typically fluent adults (TFAs) to test the involvement of the speech-motor network in tracking rhythmic speech information. METHOD Participants' electroencephalogram was recorded while they simply listened to sentences (listening only) or completed them by naming a picture (listening for speaking), thus manipulating the upcoming involvement of speech production. We analyzed speech-brain coherence and brain connectivity during listening. RESULTS During the listening-for-speaking task, AWS exhibited reduced CTS in the 3- to 5-Hz range (theta), corresponding to the syllabic rhythm. The effect was localized in the left inferior parietal and right pre/supplementary motor regions. Connectivity analyses revealed that TFAs had stronger information transfer in the theta range in both tasks in fronto-temporo-parietal regions. When considering the whole sample of participants, increased connectivity from the right superior temporal cortex to the left sensorimotor cortex was correlated with faster naming times in the listening-for-speaking task. CONCLUSIONS Atypical speech-motor functioning in stuttering impacts speech perception, especially in situations requiring articulatory alertness. The involvement of frontal and (pre)motor regions in CTS in TFAs is highlighted. Further investigation is needed into speech perception in individuals with speech-motor deficits, especially when smooth transitioning between listening and speaking is required, such as in real-life conversational settings. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27234885.
Collapse
Affiliation(s)
- Simone Gastaldon
- Department of Developmental and Social Psychology, University of Padua, Italy
- Padova Neuroscience Center, University of Padua, Italy
| | - Pierpaolo Busan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Nicola Molinaro
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Issa MF, Khan I, Ruzzoli M, Molinaro N, Lizarazu M. On the speech envelope in the cortical tracking of speech. Neuroimage 2024; 297:120675. [PMID: 38885886 DOI: 10.1016/j.neuroimage.2024.120675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The synchronization between the speech envelope and neural activity in auditory regions, referred to as cortical tracking of speech (CTS), plays a key role in speech processing. The method selected for extracting the envelope is a crucial step in CTS measurement, and the absence of a consensus on best practices among the various methods can influence analysis outcomes and interpretation. Here, we systematically compare five standard envelope extraction methods the absolute value of Hilbert transform (absHilbert), gammatone filterbanks, heuristic approach, Bark scale, and vocalic energy), analyzing their impact on the CTS. We present performance metrics for each method based on the recording of brain activity from participants listening to speech in clear and noisy conditions, utilizing intracranial EEG, MEG and EEG data. As expected, we observed significant CTS in temporal brain regions below 10 Hz across all datasets, regardless of the extraction methods. In general, the gammatone filterbanks approach consistently demonstrated superior performance compared to other methods. Results from our study can guide scientists in the field to make informed decisions about the optimal analysis to extract the CTS, contributing to advancing the understanding of the neuronal mechanisms implicated in CTS.
Collapse
Affiliation(s)
- Mohamed F Issa
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Department of Scientific Computing, Faculty of Computers and Artificial Intelligence, Benha University, Benha, Egypt.
| | - Izhar Khan
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Manuela Ruzzoli
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| |
Collapse
|
3
|
Schwarz J, Lizarazu M, Lallier M, Klimovich-Gray A. Phonological deficits in dyslexia impede lexical processing of spoken words: Linking behavioural and MEG data. Cortex 2024; 171:204-222. [PMID: 38029653 DOI: 10.1016/j.cortex.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Phonological difficulties have been identified as a core deficit in developmental dyslexia, yet everyday speech comprehension, which relies on phonological processing, is seemingly unaffected. This raises the question as to how dyslexic readers process spoken words to achieve normal word comprehension. Here we establish a link between neural correlates of lexical and sublexical processing in auditory words and behaviourally measured phonological deficits using magnetoencephalography (MEG). Spatiotemporally resolved cortical responses to phonological and lexico-semantic information were computed with the event-related regression technique (Hauk et al., 2009) and correlated with dyslexic and non-dyslexic subjects' phonological skills. We found that phonological deficits reduced cortical responses to both phonological and lexico-semantic information (phonological neighbours and word frequency). Individuals with lower phonological skills - independent of dyslexia diagnosis - showed weaker neural responses to phonological neighbourhood information in both hemispheres 200-500 ms after word onset and reduced sensitivity to written and spoken word frequency between 200 and 650 ms. Dyslexic readers showed weaker responses to written word frequency in particular compared to the control group, pointing towards an additional effect of print exposure on auditory word processing. Source space analysis localised phonological and lexico-semantic effect peaks to the left superior temporal gyrus, a key area that has been related to core deficits in dyslexia across a range of neuroimaging studies. The results provide comprehensive evidence that phonological deficits impact both sublexical and lexical stages of spoken word processing and that these deficits cannot be fully compensated through neural re-organization of lexical-distributional information at the single word level. Theoretical and practical implications for typical readers, dyslexic readers, and readers with developmental language disorder are discussed.
Collapse
Affiliation(s)
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language (BCBL), Donostia, San Sebastian, Spain
| | - Marie Lallier
- Basque Center on Cognition, Brain and Language (BCBL), Donostia, San Sebastian, Spain
| | | |
Collapse
|
4
|
Lasnick OHM, Hoeft F. Sensory temporal sampling in time: an integrated model of the TSF and neural noise hypothesis as an etiological pathway for dyslexia. Front Hum Neurosci 2024; 17:1294941. [PMID: 38234592 PMCID: PMC10792016 DOI: 10.3389/fnhum.2023.1294941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Much progress has been made in research on the causal mechanisms of developmental dyslexia. In recent years, the "temporal sampling" account of dyslexia has evolved considerably, with contributions from neurogenetics and novel imaging methods resulting in a much more complex etiological view of the disorder. The original temporal sampling framework implicates disrupted neural entrainment to speech as a causal factor for atypical phonological representations. Yet, empirical findings have not provided clear evidence of a low-level etiology for this endophenotype. In contrast, the neural noise hypothesis presents a theoretical view of the manifestation of dyslexia from the level of genes to behavior. However, its relative novelty (published in 2017) means that empirical research focused on specific predictions is sparse. The current paper reviews dyslexia research using a dual framework from the temporal sampling and neural noise hypotheses and discusses the complementary nature of these two views of dyslexia. We present an argument for an integrated model of sensory temporal sampling as an etiological pathway for dyslexia. Finally, we conclude with a brief discussion of outstanding questions.
Collapse
Affiliation(s)
- Oliver H. M. Lasnick
- brainLENS Laboratory, Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
5
|
Cainelli E, Vedovelli L, Carretti B, Bisiacchi P. EEG correlates of developmental dyslexia: a systematic review. ANNALS OF DYSLEXIA 2023; 73:184-213. [PMID: 36417146 PMCID: PMC10247570 DOI: 10.1007/s11881-022-00273-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/25/2022] [Indexed: 06/08/2023]
Abstract
Dyslexia is one of the most studied learning disorders. Despite this, its biological basis and main causes are still not fully understood. Electroencephalography (EEG) could be a powerful tool in identifying the underlying mechanisms, but knowledge of the EEG correlates of developmental dyslexia (DD) remains elusive. We aimed to systematically review the evidence on EEG correlates of DD and establish their quality. In July 2021, we carried out an online search of the PubMed and Scopus databases to identify published articles on EEG correlates in children with dyslexia aged 6 to 12 years without comorbidities. We follow the PRISMA guidelines and assess the quality using the Appraisal Tool questionnaire. Our final analysis included 49 studies (14% high quality, 63% medium, 20% low, and 2% very low). Studies differed greatly in methodology, making a summary of their results challenging. However, some points came to light. Even at rest, children with dyslexia and children in the control group exhibited differences in several EEG measures, particularly in theta and alpha frequencies; these frequencies appear to be associated with learning performance. During reading-related tasks, the differences between dyslexic and control children seem more localized in the left temporoparietal sites. The EEG activity of children with dyslexia and children in the control group differed in many aspects, both at rest and during reading-related tasks. Our data are compatible with neuroimaging studies in the same diagnostic group and expand the literature by offering new insights into functional significance.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Barbara Carretti
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35133, Padua, Italy
- Padova Neuroscience Centre, PNC, Padua, Italy
| |
Collapse
|
6
|
Van Herck S, Economou M, Bempt FV, Ghesquière P, Vandermosten M, Wouters J. Pulsatile modulation greatly enhances neural synchronization at syllable rate in children. Neuroimage 2023:120223. [PMID: 37315772 DOI: 10.1016/j.neuroimage.2023.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023] Open
Abstract
Neural processing of the speech envelope is of crucial importance for speech perception and comprehension. This envelope processing is often investigated by measuring neural synchronization to sinusoidal amplitude-modulated stimuli at different modulation frequencies. However, it has been argued that these stimuli lack ecological validity. Pulsatile amplitude-modulated stimuli, on the other hand, are suggested to be more ecologically valid and efficient, and have increased potential to uncover the neural mechanisms behind some developmental disorders such a dyslexia. Nonetheless, pulsatile stimuli have not yet been investigated in pre-reading and beginning reading children, which is a crucial age for developmental reading research. We performed a longitudinal study to examine the potential of pulsatile stimuli in this age range. Fifty-two typically reading children were tested at three time points from the middle of their last year of kindergarten (5 years old) to the end of first grade (7 years old). Using electroencephalography, we measured neural synchronization to syllable rate and phoneme rate sinusoidal and pulsatile amplitude-modulated stimuli. Our results revealed that the pulsatile stimuli significantly enhance neural synchronization at syllable rate, compared to the sinusoidal stimuli. Additionally, the pulsatile stimuli at syllable rate elicited a different hemispheric specialization, more closely resembling natural speech envelope tracking. We postulate that using the pulsatile stimuli greatly increases EEG data acquisition efficiency compared to the common sinusoidal amplitude-modulated stimuli in research in younger children and in developmental reading research.
Collapse
Affiliation(s)
- Shauni Van Herck
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium.
| | - Maria Economou
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium; Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | | | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Belgium
| |
Collapse
|
7
|
Bouhon M, Ferreira C, Bahuon S, Tillmann B, Bedoin N. Improving non-native duration contrast with dichotic training in dyslexic and non-dyslexic individuals. DYSLEXIA (CHICHESTER, ENGLAND) 2023; 29:151-158. [PMID: 36840422 DOI: 10.1002/dys.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 05/10/2023]
Abstract
Perceiving and producing English phonemic vowel length contrasts is challenging for non-native speakers. According to multi-time resolution models, endogenous slow/fast rhythms contribute, respectively, in the right/left hemispheres, to long/short acoustic cue processing. This study introduced a perceptual training method implementing dichotic stimulation to improve /i:/-/ɪ/ processing by promoting hemispheric complementarity. Twenty non-dyslexic and 20 dyslexic French adults received 1 hr-training over 3 days. Productions were evaluated with pre-/post-tests. Training enhanced vowel duration contrast in word production by /i:/ lengthening and /ɪ/ shortening in both groups. Adults with dyslexia compensated fewer /i:/ lengthening by /ɪ/ shortening than did non-dyslexic adults. Transfer from perceptual training to production seems possible for foreign-language learning even in dyslexic adults. The extent to which dichotic presentation contributed to training effectiveness cannot be evaluated here, but the triggering of lengthening and shortening mechanisms suggests that lateralized complementary skills have been enhanced by dichotic stimulation.
Collapse
Affiliation(s)
- Margot Bouhon
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRSUMR 5292, Inserm U 1028, Bron, France
- University of Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, Trajectoires Team, CNRS-UMR 5292, Inserm U 1028, Bron, France
- Contentsquare, Lyon, France
| | - Claire Ferreira
- Lyon Neuroscience Research Center, Trajectoires Team, CNRS-UMR 5292, Inserm U 1028, Bron, France
- University of Lyon 2, Lyon, France
| | - Sandy Bahuon
- Lyon Neuroscience Research Center, Trajectoires Team, CNRS-UMR 5292, Inserm U 1028, Bron, France
- University of Lyon 2, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CNRSUMR 5292, Inserm U 1028, Bron, France
- University of Lyon 1, Lyon, France
| | - Nathalie Bedoin
- Lyon Neuroscience Research Center, Trajectoires Team, CNRS-UMR 5292, Inserm U 1028, Bron, France
- University of Lyon 2, Lyon, France
| |
Collapse
|
8
|
Klimovich-Gray A, Di Liberto G, Amoruso L, Barrena A, Agirre E, Molinaro N. Increased top-down semantic processing in natural speech linked to better reading in dyslexia. Neuroimage 2023; 273:120072. [PMID: 37004829 DOI: 10.1016/j.neuroimage.2023.120072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Early research proposed that individuals with developmental dyslexia use contextual information to facilitate lexical access and compensate for phonological deficits. Yet at present there is no corroborating neuro-cognitive evidence. We explored this with a novel combination of magnetoencephalography (MEG), neural encoding and grey matter volume analyses. We analysed MEG data from 41 adult native Spanish speakers (14 with dyslexic symptoms) who passively listened to naturalistic sentences. We used multivariate Temporal Response Function analysis to capture online cortical tracking of both auditory (speech envelope) and contextual information. To compute contextual information tracking we used word-level Semantic Surprisal derived using a Transformer Neural Network language model. We related online information tracking to participants' reading scores and grey matter volumes within the reading-linked cortical network. We found that right hemisphere envelope tracking was related to better phonological decoding (pseudoword reading) for both groups, with dyslexic readers performing worse overall at this task. Consistently, grey matter volume in the superior temporal and bilateral inferior frontal areas increased with better envelope tracking abilities. Critically, for dyslexic readers only, stronger Semantic Surprisal tracking in the right hemisphere was related to better word reading. These findings further support the notion of a speech envelope tracking deficit in dyslexia and provide novel evidence for top-down semantic compensatory mechanisms.
Collapse
|
9
|
Van Herck S, Economou M, Vanden Bempt F, Glatz T, Ghesquière P, Vandermosten M, Wouters J. Neural synchronization and intervention in pre-readers who later on develop dyslexia. Eur J Neurosci 2023; 57:547-567. [PMID: 36518008 PMCID: PMC10108076 DOI: 10.1111/ejn.15894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
A growing number of studies has investigated temporal processing deficits in dyslexia. These studies largely focus on neural synchronization to speech. However, the importance of rise times for neural synchronization is often overlooked. Furthermore, targeted interventions, phonics-based and auditory, are being developed, but little is known about their impact. The current study investigated the impact of a 12-week tablet-based intervention. Children at risk for dyslexia received phonics-based training, either with (n = 31) or without (n = 31) auditory training, or engaged in active control training (n = 29). Additionally, neural synchronization and processing of rise times was longitudinally investigated in children with dyslexia (n = 26) and typical readers (n = 52) from pre-reading (5 years) to beginning reading age (7 years). The three time points in the longitudinal study correspond to intervention pre-test, post-test and consolidation, approximately 1 year after completing the intervention. At each time point neural synchronization was measured to sinusoidal stimuli and pulsatile stimuli with shortened rise times at syllable (4 Hz) and phoneme rates (20 Hz). Our results revealed no impact on neural synchronization at syllable and phoneme rate of the phonics-based and auditory training. However, we did reveal atypical hemispheric specialization at both syllable and phoneme rates in children with dyslexia. This was detected even before the onset of reading acquisition, pointing towards a possible causal rather than consequential mechanism in dyslexia. This study contributes to our understanding of the temporal processing deficits underlying the development of dyslexia, but also shows that the development of targeted interventions is still a work in progress.
Collapse
Affiliation(s)
- Shauni Van Herck
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maria Economou
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Femke Vanden Bempt
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Toivo Glatz
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Institute of Public HealthCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Maaike Vandermosten
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Leuven Child & Youth Institute (L‐C&Y)KU LeuvenLeuvenBelgium
| | - Jan Wouters
- Research Group ExpORL, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Peter V, Goswami U, Burnham D, Kalashnikova M. Impaired neural entrainment to low frequency amplitude modulations in English-speaking children with dyslexia or dyslexia and DLD. BRAIN AND LANGUAGE 2023; 236:105217. [PMID: 36529116 DOI: 10.1016/j.bandl.2022.105217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Neural synchronization to amplitude-modulated noise at three frequencies (2 Hz, 5 Hz, 8 Hz) thought to be important for syllable perception was investigated in English-speaking school-aged children. The theoretically-important delta-band (∼2Hz, stressed syllable level) was included along with two syllable-level rates. The auditory steady state response (ASSR) was recorded using EEG in 36 7-to-12-year-old children. Half of the sample had either dyslexia or dyslexia and DLD (developmental language disorder). In comparison to typically-developing children, children with dyslexia or with dyslexia and DLD showed reduced ASSRs for 2 Hz stimulation but similar ASSRs at 5 Hz and 8 Hz. These novel data for English ASSRs converge with prior data suggesting that children with dyslexia have atypical synchrony between brain oscillations and incoming auditory stimulation at ∼ 2 Hz, the rate of stressed syllable production across languages. This atypical synchronization likely impairs speech processing, phonological processing, and possibly syntactic processing, as predicted by Temporal Sampling theory.
Collapse
Affiliation(s)
- Varghese Peter
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia; School of Health and Behavioural Sciences, University of the Sunshine Coast, Australia
| | - Usha Goswami
- Centre for Neuroscience in Education, University of Cambridge, UK
| | - Denis Burnham
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Marina Kalashnikova
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia; BCBL. Basque Center on Cognition, Brain and Language, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
11
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
12
|
Xiao H, Amaerjiang N, Wang W, Li M, Zunong J, En H, Zhao X, Wen C, Yu Y, Huang L, Hu Y. Hearing thresholds elevation and potential association with emotional problems among 1,914 children in Beijing, China. Front Public Health 2022; 10:937301. [PMID: 35991012 PMCID: PMC9386347 DOI: 10.3389/fpubh.2022.937301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
Objectives School-aged children may experience hearing loss and emotional problems. Previous studies have shown a bidirectional relationship between hearing loss and emotional problems in the elderly population, and we aimed to analyze the association between hearing thresholds and emotional problems in school-aged children. Methods Based on the Beijing Child Growth and Health Cohort (PROC) study, the hearing screenings were conducted in November 2019 using pure tone audiometry. A total of 1,877 parents completed the Strengths and Difficulties Questionnaire (SDQ) to assess children's emotional and behavioral status. We used generalized linear regression analysis to assess the potential association of emotional problems with hearing thresholds, based on multiple imputed datasets with a sample size of 1,914. Results The overall pass rate of hearing screening was 91.5%. The abnormal rate of SDQ total difficulties was 55.8%. Emotional symptoms were positively associated with left ear average hearing thresholds (β = 0.24, 95%CI: 0.08-0.40), and right ear average hearing thresholds (β = 0.18, 95%CI: 0.04-0.32). Conduct problems, hyperactivity/inattention, peer problems, and prosocial behaviors had no association with the pass rate of the hearing screening. Regarding emotional symptoms, boys with many fears and who are easily scared coincided with increased right ear average hearing thresholds (β = 0.67, 95%CI: 0.01-1.33). Girls having many worries, frequently feeling unhappy and downhearted were positively associated with left and right ear average hearing thresholds, respectively (β = 0.96, 95%CI: 0.20-1.73; β = 0.72, 95%CI: 0.07-1.37). Conclusions The co-occurrence of hearing problems and emotional problems of children aged 6-8 in Beijing attracts attention. It is important to address undiscovered hearing loss and emotional problems from the perspective of comorbidity driving factors.
Collapse
Affiliation(s)
- Huidi Xiao
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Nubiya Amaerjiang
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Weiwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Menglong Li
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Jiawulan Zunong
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| | - Hui En
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuelei Zhao
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Cheng Wen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yiding Yu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Lihui Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Yifei Hu
- Department of Child, Adolescent Health and Maternal Care, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Azaiez N, Loberg O, Hämäläinen JA, Leppänen PHT. Brain Source Correlates of Speech Perception and Reading Processes in Children With and Without Reading Difficulties. Front Neurosci 2022; 16:921977. [PMID: 35928008 PMCID: PMC9344064 DOI: 10.3389/fnins.2022.921977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neural correlates in reading and speech processing have been addressed extensively in the literature. While reading skills and speech perception have been shown to be associated with each other, their relationship remains debatable. In this study, we investigated reading skills, speech perception, reading, and their correlates with brain source activity in auditory and visual modalities. We used high-density event-related potentials (ERPs), fixation-related potentials (FRPs), and the source reconstruction method. The analysis was conducted on 12–13-year-old schoolchildren who had different reading levels. Brain ERP source indices were computed from frequently repeated Finnish speech stimuli presented in an auditory oddball paradigm. Brain FRP source indices were also computed for words within sentences presented in a reading task. The results showed significant correlations between speech ERP sources and reading scores at the P100 (P1) time range in the left hemisphere and the N250 time range in both hemispheres, and a weaker correlation for visual word processing N170 FRP source(s) in the posterior occipital areas, in the vicinity of the visual word form areas (VWFA). Furthermore, significant brain-to-brain correlations were found between the two modalities, where the speech brain sources of the P1 and N250 responses correlated with the reading N170 response. The results suggest that speech processes are linked to reading fluency and that brain activations to speech are linked to visual brain processes of reading. These results indicate that a relationship between language and reading systems is present even after several years of exposure to print.
Collapse
Affiliation(s)
- Najla Azaiez
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- *Correspondence: Najla Azaiez ; orcid.org/0000-0002-7525-3745
| | - Otto Loberg
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Bournemouth, United Kingdom
| | - Jarmo A. Hämäläinen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, Jyväskylä Center for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Paavo H. T. Leppänen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
- Department of Psychology, Jyväskylä Center for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
14
|
Granados Barbero R, Ghesquière P, Wouters J. Development of Atypical Reading at Ages 5 to 9 Years and Processing of Speech Envelope Modulations in the Brain. Front Comput Neurosci 2022; 16:894578. [PMID: 35782088 PMCID: PMC9248325 DOI: 10.3389/fncom.2022.894578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Different studies have suggested that during speech processing readers with dyslexia present atypical levels of neural entrainment as well as atypical functional hemispherical asymmetries in comparison with typical readers. In this study, we evaluated these differences in children and the variation with age before and after starting with formal reading instruction. Synchronized neural auditory processing activity was quantified based on auditory steady-state responses (ASSRs) from EEG recordings. The stimulation was modulated at syllabic and phonemic fluctuation rates present in speech. We measured the brain activation patterns and the hemispherical asymmetries in children at three age points (5, 7, and 9 years old). Despite the well-known heterogeneity during developmental stages, especially in children and in dyslexia, we could extract meaningful common oscillatory patterns. The analyses included (1) the estimations of source localization, (2) hemispherical preferences using a laterality index, measures of neural entrainment, (3) signal-to-noise ratios (SNRs), and (4) connectivity using phase coherence measures. In this longitudinal study, we confirmed that the existence of atypical levels of neural entrainment and connectivity already exists at pre-reading stages. Overall, these measures reflected a lower ability of the dyslectic brain to synchronize with syllabic rate stimulation. In addition, our findings reinforced the hypothesis of a later maturation of the processing of beta rhythms in dyslexia. This investigation emphasizes the importance of longitudinal studies in dyslexia, especially in children, where neural oscillatory patterns as well as differences between typical and atypical developing children can vary in the span of a year.
Collapse
Affiliation(s)
- Raúl Granados Barbero
- Research Group Experimental ORL, Department of Neurosciences, Katholieke University of Leuven, Leuven, Belgium
- *Correspondence: Raúl Granados Barbero
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, Katholieke University of Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental ORL, Department of Neurosciences, Katholieke University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Ní Choisdealbha Á, Attaheri A, Rocha S, Brusini P, Flanagan SA, Mead N, Gibbon S, Olawole-Scott H, Williams I, Grey C, Boutris P, Ahmed H, Goswami U. Neural detection of changes in amplitude rise time in infancy. Dev Cogn Neurosci 2022; 54:101075. [PMID: 35078120 PMCID: PMC8792064 DOI: 10.1016/j.dcn.2022.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/21/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022] Open
Abstract
Amplitude rise times play a crucial role in the perception of rhythm in speech, and reduced perceptual sensitivity to differences in rise time is related to developmental language difficulties. Amplitude rise times also play a mechanistic role in neural entrainment to the speech amplitude envelope. Using an ERP paradigm, here we examined for the first time whether infants at the ages of seven and eleven months exhibit an auditory mismatch response to changes in the rise times of simple repeating auditory stimuli. We found that infants exhibited a mismatch response (MMR) to all of the oddball rise times used for the study. The MMR was more positive at seven than eleven months of age. At eleven months, there was a shift to a mismatch negativity (MMN) that was more pronounced over left fronto-central electrodes. The MMR over right fronto-central electrodes was sensitive to the size of the difference in rise time. The results indicate that neural processing of changes in rise time is present at seven months, supporting the possibility that early speech processing is facilitated by neural sensitivity to these important acoustic cues.
Collapse
Affiliation(s)
- Áine Ní Choisdealbha
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom.
| | - Adam Attaheri
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Sinead Rocha
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Perrine Brusini
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Sheila A Flanagan
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Natasha Mead
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Samuel Gibbon
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Helen Olawole-Scott
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Isabel Williams
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Christina Grey
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Panagiotis Boutris
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Henna Ahmed
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, United Kingdom
| |
Collapse
|
16
|
Mandke K, Flanagan S, Macfarlane A, Gabrielczyk F, Wilson A, Gross J, Goswami U. Neural sampling of the speech signal at different timescales by children with dyslexia. Neuroimage 2022; 253:119077. [PMID: 35278708 DOI: 10.1016/j.neuroimage.2022.119077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Phonological difficulties characterize individuals with dyslexia across languages. Currently debated is whether these difficulties arise from atypical neural sampling of (or entrainment to) auditory information in speech at slow rates (<10 Hz, related to speech rhythm), faster rates, or neither. MEG studies with adults suggest that atypical sampling in dyslexia affects faster modulations in the neurophysiological gamma band, related to phoneme-level representation. However, dyslexic adults have had years of reduced experience in converting graphemes to phonemes, which could itself cause atypical gamma-band activity. The present study was designed to identify specific linguistic timescales at which English children with dyslexia may show atypical entrainment. Adopting a developmental focus, we hypothesized that children with dyslexia would show atypical entrainment to the prosodic and syllable-level information that is exaggerated in infant-directed speech and carried primarily by amplitude modulations <10 Hz. MEG was recorded in a naturalistic story-listening paradigm. The modulation bands related to different types of linguistic information were derived directly from the speech materials, and lagged coherence at multiple temporal rates spanning 0.9-40 Hz was computed. Group differences in lagged speech-brain coherence between children with dyslexia and control children were most marked in neurophysiological bands corresponding to stress and syllable-level information (<5 Hz in our materials), and phoneme-level information (12-40 Hz). Functional connectivity analyses showed network differences between groups in both hemispheres, with dyslexic children showing significantly reduced global network efficiency. Global network efficiency correlated with dyslexic children's oral language development and with control children's reading development. These developmental data suggest that dyslexia is characterized by atypical neural sampling of auditory information at slower rates. They also throw new light on the nature of the gamma band temporal sampling differences reported in MEG dyslexia studies with adults.
Collapse
Affiliation(s)
- Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
| | - Sheila Flanagan
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Annabel Macfarlane
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Fiona Gabrielczyk
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Angela Wilson
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
17
|
Destoky F, Bertels J, Niesen M, Wens V, Vander Ghinst M, Rovai A, Trotta N, Lallier M, De Tiège X, Bourguignon M. The role of reading experience in atypical cortical tracking of speech and speech-in-noise in dyslexia. Neuroimage 2022; 253:119061. [PMID: 35259526 DOI: 10.1016/j.neuroimage.2022.119061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking relates to reduced reading experience, and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with mild and severe dyslexia. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Severe dyslexia was characterized by lower rapid automatized naming (RAN) abilities compared with mild dyslexia, and phrasal CTS lateralized to the right hemisphere in children with mild dyslexia and all control groups but not in children with severe dyslexia. Finally, an alteration in phrasal CTS was uncovered in children with dyslexia compared with age-matched controls in babble noise conditions but not in other less challenging listening conditions (non-speech noise or noiseless conditions); no such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls demonstrates that such alterations are associated with reduced reading level, suggesting they are merely driven by reduced reading experience rather than a cause of dyslexia. Finally, our result of altered hemispheric lateralization of phrasal CTS in relation with altered RAN abilities in severe dyslexia is in line with a temporal sampling deficit of speech at phrasal rate in dyslexia.
Collapse
Affiliation(s)
- Florian Destoky
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium.
| | - Julie Bertels
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Consciousness, Cognition and Computation Group, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Maxime Niesen
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Service d'ORL et de Chirurgie Cervico-Faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Vincent Wens
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Service d'ORL et de Chirurgie Cervico-Faciale, ULB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Antonin Rovai
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain
| | - Xavier De Tiège
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; Department of Functional Neuroima ging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Leenik Street, Brussels 1070, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain; Laboratory of Neurophysiology and Movement Biomechanics, UNI-ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
18
|
Turker S, Hartwigsen G. The use of noninvasive brain stimulation techniques to improve reading difficulties in dyslexia: A systematic review. Hum Brain Mapp 2022; 43:1157-1173. [PMID: 34716977 PMCID: PMC8764483 DOI: 10.1002/hbm.25700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up-to-date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long-lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the "classical" reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading-related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS-induced improvements in dyslexia.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Alexander von Humboldt FoundationBerlinGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
19
|
Mittag M, Larson E, Taulu S, Clarke M, Kuhl PK. Reduced Theta Sampling in Infants at Risk for Dyslexia across the Sensitive Period of Native Phoneme Learning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031180. [PMID: 35162202 PMCID: PMC8835181 DOI: 10.3390/ijerph19031180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Research on children and adults with developmental dyslexia-a specific difficulty in learning to read and spell-suggests that phonological deficits in dyslexia are linked to basic auditory deficits in temporal sampling. However, it remains undetermined whether such deficits are already present in infancy, especially during the sensitive period when the auditory system specializes in native phoneme perception. Because dyslexia is strongly hereditary, it is possible to examine infants for early predictors of the condition before detectable symptoms emerge. This study examines low-level auditory temporal sampling in infants at risk for dyslexia across the sensitive period of native phoneme learning. Using magnetoencephalography (MEG), we found deficient auditory sampling at theta in at-risk infants at both 6 and 12 months, indicating atypical auditory sampling at the syllabic rate in those infants across the sensitive period for native-language phoneme learning. This interpretation is supported by our additional finding that auditory sampling at theta predicted later vocabulary comprehension, nonlinguistic communication and the ability to combine words. Our results indicate a possible early marker of risk for dyslexia.
Collapse
Affiliation(s)
- Maria Mittag
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195-7988, USA; (E.L.); (S.T.); (M.C.)
- Correspondence: (M.M.); (P.K.K.)
| | - Eric Larson
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195-7988, USA; (E.L.); (S.T.); (M.C.)
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195-7988, USA; (E.L.); (S.T.); (M.C.)
- Department of Physics, University of Washington, Seattle, WA 98195-7988, USA
| | - Maggie Clarke
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195-7988, USA; (E.L.); (S.T.); (M.C.)
| | - Patricia K. Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195-7988, USA; (E.L.); (S.T.); (M.C.)
- Correspondence: (M.M.); (P.K.K.)
| |
Collapse
|
20
|
Granados Barbero R, de Vos A, Ghesquière P, Wouters J. Atypical processing in neural source analysis of speech envelope modulations in adolescents with dyslexia. Eur J Neurosci 2021; 54:7839-7859. [PMID: 34730259 DOI: 10.1111/ejn.15515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Different studies have suggested that language and developmental disorders such as dyslexia are associated with a disturbance of auditory entrainment and of the functional hemispheric asymmetries during speech processing. These disorders typically result from an issue in the phonological component of language that causes problems to represent and manipulate the phonological structure of words at the syllable and/or phoneme level. We used Auditory Steady-State Responses (ASSRs) in EEG recordings to investigate the brain activation and hemisphere asymmetry of theta, alpha, beta and low-gamma range oscillations in typical readers and readers with dyslexia. The aim was to analyse whether the group differences found in previous electrode level studies were caused by a different source activation pattern or conversely was an effect that could be found on the active brain sources. We could not find differences in the brain locations of the main active brain sources. However, we observed differences in the extracted waveforms. The group average of the first DSS component of all signal-to-noise ratios of ASSR at source level was higher than the group averages at the electrode level. These analyses included a lower alpha synchronisation in adolescents with dyslexia and the possibility of compensatory mechanisms in theta, beta and low-gamma frequency bands. The main brain auditory sources were located in cortical regions around the auditory cortex. Thus, the differences observed in auditory EEG experiments would, according to our findings, have their origin in the intrinsic oscillatory mechanisms of the brain cortical sources related to speech perception.
Collapse
Affiliation(s)
- Raúl Granados Barbero
- Research Group Experimental ORL, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Astrid de Vos
- Research Group Experimental ORL, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental ORL, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Kershner JR. Multisensory deficits in dyslexia may result from a locus coeruleus attentional network dysfunction. Neuropsychologia 2021; 161:108023. [PMID: 34530025 DOI: 10.1016/j.neuropsychologia.2021.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
A fundamental educational requirement of beginning reading is to learn, access, and rapidly process associations between novel visuospatial symbols and their phonological representations in speech. Children with difficulties in such cross-modal integration are often divided into dyslexia subtypes, based on whether their primary problem is with the written or spoken component of decoding. The present review suggests that starting in infancy, perceptions of audiovisual speech are integrated by mutual oscillatory phase-resetting between sensory cortices, and throughout development visual and auditory experiences are coupled into unified perceptions. Entirely separate subtypes are incompatible with this view. Visual or auditory deficits will invariably affect processing to some degree in both domains. It is suggested that poor auditory/visual integration may be diagnostic for both forms of dyslexia, stemming from an encoding weakness in the early cross-sensory binding of audiovisual speech. The review presents a model of dyslexia as a dysfunction of the large-scale ventral and dorsal attention networks controlling such binding. Excessive glutamatergic neuronal excitability of the attention networks by the Locus coeruleus-norepinephrine system may interfere with multisensory integration, with deleterious effects on the acquisition of reading by degrading graphene/phoneme conversion.
Collapse
Affiliation(s)
- John R Kershner
- Dept. of Applied Psychology and Human Resources University of Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
22
|
Ríos-López P, Molinaro N, Bourguignon M, Lallier M. Right-hemisphere coherence to speech at pre-reading stages predicts reading performance one year later. JOURNAL OF COGNITIVE PSYCHOLOGY 2021. [DOI: 10.1080/20445911.2021.1986514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Paula Ríos-López
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Centre for Behavioral and Brain Sciences, Magdeburg, Germany
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Mathieu Bourguignon
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
- Laboratoire de Cartographie Fonctionnelle du Cerveau, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| |
Collapse
|
23
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
24
|
Lizarazu M, Carreiras M, Bourguignon M, Zarraga A, Molinaro N. Language Proficiency Entails Tuning Cortical Activity to Second Language Speech. Cereb Cortex 2021; 31:3820-3831. [PMID: 33791775 DOI: 10.1093/cercor/bhab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/12/2022] Open
Abstract
Cortical tracking of linguistic structures in speech, such as phrases (<3 Hz, delta band) and syllables (3-8 Hz, theta band), is known to be crucial for speech comprehension. However, it has not been established whether this effect is related to language proficiency. Here, we investigate how auditory cortical activity in second language (L2) learners tracked L2 speech. Using magnetoencephalography, we recorded brain activity from participants listening to Spanish and Basque. Participants were Spanish native (L1) language speakers studying Basque (L2) at the same language center at three different levels: beginner (Grade 1), intermediate (Grade 2), and advanced (Grade 3). We found that 1) both delta and theta tracking to L2 speech in the auditory cortex were related to L2 learning proficiency and that 2) top-down modulations of activity in the left auditory regions during L2 speech listening-by the left inferior frontal and motor regions in delta band and by the left middle temporal regions in theta band-were also related to L2 proficiency. Altogether, these results indicate that the ability to learn an L2 is related to successful cortical tracking of L2 speech and its modulation by neuronal oscillations in higher-order cortical regions.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, EHESS, CNRS, PSL University, Paris 75005, France
| | - Manuel Carreiras
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Mathieu Bourguignon
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium.,Laboratory of neurophysiology and movement biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Asier Zarraga
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain
| | - Nicola Molinaro
- BCBL, Basque center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
25
|
Molinaro N, Lizarazu M, Baldin V, Pérez-Navarro J, Lallier M, Ríos-López P. Speech-brain phase coupling is enhanced in low contextual semantic predictability conditions. Neuropsychologia 2021; 156:107830. [PMID: 33771540 DOI: 10.1016/j.neuropsychologia.2021.107830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Semantic prediction and cortical entrainment to the acoustic landmarks of the speech envelope are two fundamental yet qualitatively different mechanisms that facilitate speech comprehension. However, it is not clear how and to what extent those mechanisms interact with each other. On the one hand, richer semantic context could enhance the perceptual representation of a predictable stimulus, thus improving speech entrainment. On the other hand, pre-activating an upcoming item could inhibit further bottom-up analyses to minimize processing costs, thus weakening speech entrainment. To test these competing hypotheses, we recorded EEG activity from 27 participants while they listened to a 14-min recording of text reading. The passage contained target words presented twice: once in a highly constraining and once in a minimally constraining context. First, we measured event related potentials on target words in the two conditions. In line with previous research, we showed that semantic predictability modulated the N400 amplitude: words in minimally constraining contexts elicited larger negative amplitudes than words in highly constraining contexts between 250 and 450 ms. Second, we evaluated speech entrainment effects by analyzing phase alignment between neural activity and the envelope of target words. Importantly, we found increased speech entrainment for words in minimally constraining compared to highly constraining contexts between 400 and 450 ms. Both effects were located in central electrodes and were significantly correlated. Our results indicate a trade-off between semantic pre-activation and cortical entrainment to speech and support the cost minimization hypothesis.
Collapse
Affiliation(s)
- Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Veronica Baldin
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Jose Pérez-Navarro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Paula Ríos-López
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Leibniz Institute for Neurobiology, Magdeburg, Germany; Centre for Behavioural and Brain Sciences, Magdeburg, Germany
| |
Collapse
|
26
|
de Lange P, Boto E, Holmes N, Hill RM, Bowtell R, Wens V, De Tiège X, Brookes MJ, Bourguignon M. Measuring the cortical tracking of speech with optically-pumped magnetometers. Neuroimage 2021; 233:117969. [PMID: 33744453 DOI: 10.1016/j.neuroimage.2021.117969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g., language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.
Collapse
Affiliation(s)
- Paul de Lange
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Laboratory of neurophysiology and movement biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain.
| |
Collapse
|
27
|
Neural entrainment to speech and nonspeech in dyslexia: Conceptual replication and extension of previous investigations. Cortex 2021; 137:160-178. [PMID: 33618156 DOI: 10.1016/j.cortex.2020.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/02/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Whether phonological deficits in developmental dyslexia are associated with impaired neural sampling of auditory information is still under debate. Previous findings suggested that dyslexic participants showed atypical neural entrainment to slow and/or fast temporal modulations in speech, which might affect prosodic/syllabic and phonemic processing respectively. However, the large methodological variations across these studies do not allow us to draw clear conclusions on the nature of the entrainment deficit in dyslexia. Using magnetoencephalography, we measured neural entrainment to nonspeech and speech in both groups. We first aimed to conceptually replicate previous studies on auditory entrainment in dyslexia, using the same measurement methods as in previous studies, and also using new measurement methods (cross-correlation analyses) to better characterize the synchronization between stimulus and brain response. We failed to observe any of the significant group differences that had previously been reported in delta, theta and gamma frequency bands, whether using speech or nonspeech stimuli. However, when analyzing amplitude cross-correlations between noise stimuli and brain responses, we found that control participants showed larger responses than dyslexic participants in the delta range in the right hemisphere and in the gamma range in the left hemisphere. Overall, our results are weakly consistent with the hypothesis that dyslexic individuals show an atypical entrainment to temporal modulations. Our attempt at replicating previously published results highlights the multiple weaknesses of this research area, particularly low statistical power due to small sample size, and the lack of methodological standards inducing considerable heterogeneity of measurement and analysis methods across studies.
Collapse
|
28
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Lizarazu M, Lallier M, Bourguignon M, Carreiras M, Molinaro N. Impaired neural response to speech edges in dyslexia. Cortex 2020; 135:207-218. [PMID: 33387899 DOI: 10.1016/j.cortex.2020.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 12/01/2022]
Abstract
Speech comprehension has been proposed to critically rely on oscillatory cortical tracking, that is, phase alignment of neural oscillations to the slow temporal modulations (envelope) of speech. Speech-brain entrainment is readjusted over time as transient events (edges) in speech lead to speech-brain phase realignment. Auditory behavioral research suggests that phonological deficits in dyslexia are linked to difficulty in discriminating speech edges. Importantly, research to date has not specifically examined neural responses to speech edges in dyslexia. In the present study, we used MEG to record brain activity from normal and dyslexic readers while they listened to speech. We computed phase locking values (PLVs) to evaluate phase entrainment between neural oscillations and the speech envelope time-locked to edge onsets. In both groups, we observed that edge onsets induced phase resets in the auditory oscillations tracking speech, thereby enhancing their entrainment to speech. Importantly, dyslexic readers showed weaker PLVs compared to normal readers in left auditory regions from ~.15 sec to ~.65 sec after edge onset. Our results indicate that the neural mechanism that adapts cortical entrainment to the speech envelope is impaired in dyslexia. These findings here are consistent with the temporal sampling theory of developmental dyslexia.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; LSCP, Département d'études Cognitives, ENS, EHESS, CNRS, PSL Research University, 75005, Paris, France.
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Mathieu Bourguignon
- Laboratoire de Cartographie Fonctionnelle du Cerveau, Hopital Erasme, Universite Libre de Bruxelles, Brussels, Belgium
| | - Manuel Carreiras
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
30
|
Speech-Brain Frequency Entrainment of Dyslexia with and without Phonological Deficits. Brain Sci 2020; 10:brainsci10120920. [PMID: 33260681 PMCID: PMC7760068 DOI: 10.3390/brainsci10120920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Developmental dyslexia is a cognitive disorder characterized by difficulties in linguistic processing. Our purpose is to distinguish subtypes of developmental dyslexia by the level of speech–EEG frequency entrainment (δ: 1–4; β: 12.5–22.5; γ1: 25–35; and γ2: 35–80 Hz) in word/pseudoword auditory discrimination. Depending on the type of disabilities, dyslexics can divide into two subtypes—with less pronounced phonological deficits (NoPhoDys—visual dyslexia) and with more pronounced ones (PhoDys—phonological dyslexia). For correctly recognized stimuli, the δ-entrainment is significantly worse in dyslexic children compared to controls at a level of speech prosody and syllabic analysis. Controls and NoPhoDys show a stronger δ-entrainment in the left-hemispheric auditory cortex (AC), anterior temporal lobe (ATL), frontal, and motor cortices than PhoDys. Dyslexic subgroups concerning normolexics have a deficit of δ-entrainment in the left ATL, inferior frontal gyrus (IFG), and the right AC. PhoDys has higher δ-entrainment in the posterior part of adjacent STS regions than NoPhoDys. Insufficient low-frequency β changes over the IFG, the inferior parietal lobe of PhoDys compared to NoPhoDys correspond to their worse phonological short-term memory. Left-dominant 30 Hz-entrainment for normolexics to phonemic frequencies characterizes the right AC, adjacent regions to superior temporal sulcus of dyslexics. The pronounced 40 Hz-entrainment in PhoDys than the other groups suggest a hearing “reassembly” and a poor phonological working memory. Shifting up to higher-frequency γ-entrainment in the AC of NoPhoDys can lead to verbal memory deficits. Different patterns of cortical reorganization based on the left or right hemisphere lead to differential dyslexic profiles.
Collapse
|
31
|
Ríos‐López P, Molinaro N, Bourguignon M, Lallier M. Development of neural oscillatory activity in response to speech in children from 4 to 6 years old. Dev Sci 2020; 23:e12947. [PMID: 32043677 PMCID: PMC7685108 DOI: 10.1111/desc.12947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/18/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022]
Abstract
Recent neurophysiological theories propose that the cerebral hemispheres collaborate to resolve the complex temporal nature of speech, such that left-hemisphere (or bilateral) gamma-band oscillatory activity would specialize in coding information at fast rates (phonemic information), whereas right-hemisphere delta- and theta-band activity would code for speech's slow temporal components (syllabic and prosodic information). Despite the relevance that neural entrainment to speech might have for reading acquisition and for core speech perception operations such as the perception of intelligible speech, no study had yet explored its development in young children. In the current study, speech-brain entrainment was recorded via EEG in a cohort of children at three different time points since they were 4-5 to 6-7 years of age. Our results showed that speech-brain entrainment occurred only at delta frequencies (0.5 Hz) at all testing times. The fact that, from the longitudinal perspective, coherence increased in bilateral temporal electrodes suggests that, contrary to previous hypotheses claiming for an innate right-hemispheric bias for processing prosodic information, at 7 years of age the low-frequency components of speech are processed in a bilateral manner. Lastly, delta speech-brain entrainment in the right hemisphere was related to an indirect measure of intelligibility, providing preliminary evidence that the entrainment phenomenon might support core linguistic operations since early childhood.
Collapse
Affiliation(s)
- Paula Ríos‐López
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| | - Nicola Molinaro
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Mathieu Bourguignon
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
- Laboratoire de Cartographie fonctionnelle du CerveauUniversite libre de BruxellesBrusselsBelgium
| | - Marie Lallier
- BCBL ‐ Basque Center on Cognition, Brain and LanguageDonostia/San SebastianSpain
| |
Collapse
|
32
|
The relation between neurofunctional and neurostructural determinants of phonological processing in pre-readers. Dev Cogn Neurosci 2020; 46:100874. [PMID: 33130464 PMCID: PMC7606842 DOI: 10.1016/j.dcn.2020.100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022] Open
Abstract
Phonological processing skills are known as the most robust cognitive predictor of reading ability. Therefore, the neural determinants of phonological processing have been extensively investigated by means of either neurofunctional or neurostructural techniques. However, to fully understand how the brain represents and processes phonological information, there is need for studies that combine both methods. The present study applies such a multimodal approach with the aim of investigating the pre-reading relation between neural measures of auditory temporal processing, white matter properties of the reading network and phonological processing skills. We administered auditory steady-state responses, diffusion-weighted MRI scans and phonological awareness tasks in 59 pre-readers. Our results demonstrate that a stronger rightward lateralization of syllable-rate (4 Hz) processing coheres with higher fractional anisotropy in the left fronto-temporoparietal arcuate fasciculus. Both neural features each in turn relate to better phonological processing skills. As such, the current study provides novel evidence for the existence of a pre-reading relation between functional measures of syllable-rate processing, structural organization of the arcuate fasciculus and cognitive precursors of reading development. Moreover, our findings demonstrate the value of combining different neural techniques to gain insight in the underlying neural systems for reading (dis)ability.
Collapse
|
33
|
Marchesotti S, Nicolle J, Merlet I, Arnal LH, Donoghue JP, Giraud AL. Selective enhancement of low-gamma activity by tACS improves phonemic processing and reading accuracy in dyslexia. PLoS Biol 2020; 18:e3000833. [PMID: 32898188 PMCID: PMC7478834 DOI: 10.1371/journal.pbio.3000833] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The phonological deficit in dyslexia is associated with altered low-gamma oscillatory function in left auditory cortex, but a causal relationship between oscillatory function and phonemic processing has never been established. After confirming a deficit at 30 Hz with electroencephalography (EEG), we applied 20 minutes of transcranial alternating current stimulation (tACS) to transiently restore this activity in adults with dyslexia. The intervention significantly improved phonological processing and reading accuracy as measured immediately after tACS. The effect occurred selectively for a 30-Hz stimulation in the dyslexia group. Importantly, we observed that the focal intervention over the left auditory cortex also decreased 30-Hz activity in the right superior temporal cortex, resulting in reinstating a left dominance for the oscillatory response. These findings establish a causal role of neural oscillations in phonological processing and offer solid neurophysiological grounds for a potential correction of low-gamma anomalies and for alleviating the phonological deficit in dyslexia.
Collapse
Affiliation(s)
| | - Johanna Nicolle
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | | | - Luc H. Arnal
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
- Institut de l’Audition, Institut Pasteur, INSERM, Paris, France
| | - John P. Donoghue
- Brown University, Providence, Rhode Island, United States of America
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Thiede A, Glerean E, Kujala T, Parkkonen L. Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia. Neuroimage 2020; 216:116799. [DOI: 10.1016/j.neuroimage.2020.116799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022] Open
|
35
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
36
|
Kershner JR. Dyslexia as an adaptation to cortico-limbic stress system reactivity. Neurobiol Stress 2020; 12:100223. [PMID: 32435671 PMCID: PMC7231974 DOI: 10.1016/j.ynstr.2020.100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/07/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
A new school of thought in evolutionary developmental biology, combined with research in the neurobiology of stress, suggest that early exposure to stressful circumstances may be a cause of dyslexia. A balance between epigenetic, stress-induced and cognitive-growth genetic programs modulates the brain's cellular, regional, and network homeostasis. This balance is essential for adaptability to the normative range of everyday stress. However, even mild chronic stress exposition may overactivate the hypothalmic-pituitary-adrenal stress axis, upsetting the homeostatic balance between these programs, and exposing the brain to harmful levels of stress hormones. A protective strategy to sustained disequilibrium precociously advances maturation at the cost of neuroplasticity, which blunts stress axis reactivity but also compromises learning potential in the prefrontal cortex and networks associated with dyslexia. Stress exceeding an individual's range of resilience: (1) reduces levels of TFEB and BDNF, gene regulatory factors prolonging maturation and neuroplasticity; (2) interferes with the insular cortex, amygdala and hippocampus in coordinating afferent visceral signals with cognitive performance; (3) over-recruits the brain's Default Mode network; and (4) amplifies release from the Locus coeruleus/norepinephrine system which impairs the entrainment of oscillations in the lower phonological frequencies of speech. Evidence supporting a stress-growth imbalance is preliminary, but holds promise for reconceptualizing the neurobiology of dyslexia and reducing its prevalence.
Collapse
Affiliation(s)
- John R. Kershner
- University of Toronto, Dept of Applied Psychology University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
37
|
De Vos A, Vanvooren S, Ghesquière P, Wouters J. Subcortical auditory neural synchronization is deficient in pre-reading children who develop dyslexia. Dev Sci 2020; 23:e12945. [PMID: 32034978 DOI: 10.1111/desc.12945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/19/2023]
Abstract
Auditory processing of temporal information in speech is sustained by synchronized firing of neurons along the entire auditory pathway. In school-aged children and adults with dyslexia, neural synchronization deficits have been found at cortical levels of the auditory system, however, these deficits do not appear to be present in pre-reading children. An alternative role for subcortical synchronization in reading development and dyslexia has been suggested, but remains debated. By means of a longitudinal study, we assessed cognitive reading-related skills and subcortical auditory steady-state responses (80 Hz ASSRs) in a group of children before formal reading instruction (pre-reading), after 1 year of formal reading instruction (beginning reading), and after 3 years of formal reading instruction (more advanced reading). Children were retrospectively classified into three groups based on family risk and literacy achievement: typically developing children without a family risk for dyslexia, typically developing children with a family risk for dyslexia, and children who developed dyslexia. Our results reveal that children who developed dyslexia demonstrate decreased 80 Hz ASSRs at the pre-reading stage. This effect is no longer present after the onset of reading instruction, due to an atypical developmental increase in 80 Hz ASSRs between the pre-reading and the beginning reading stage. A forward stepwise logistic regression analysis showed that literacy achievement was predictable with an accuracy of 90.4% based on a model including three significant predictors, that is, family risk for dyslexia (R = .31), phonological awareness (R = .23), and 80 Hz ASSRs (R = .26). Given that (1) abnormalities in subcortical ASSRs preceded reading acquisition in children who developed dyslexia and (2) subcortical ASSRs contributed to the prediction of literacy achievement, subcortical auditory synchronization deficits may constitute a pre-reading risk factor in the emergence of dyslexia.
Collapse
Affiliation(s)
- Astrid De Vos
- Department of Neurosciences, Research Group Experimental ORL, KU Leuven - University of Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sophie Vanvooren
- Department of Neurosciences, Research Group Experimental ORL, KU Leuven - University of Leuven, Leuven, Belgium.,Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, Research Group Experimental ORL, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Ladányi E, Persici V, Fiveash A, Tillmann B, Gordon RL. Is atypical rhythm a risk factor for developmental speech and language disorders? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 11:e1528. [PMID: 32244259 PMCID: PMC7415602 DOI: 10.1002/wcs.1528] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Although a growing literature points to substantial variation in speech/language abilities related to individual differences in musical abilities, mainstream models of communication sciences and disorders have not yet incorporated these individual differences into childhood speech/language development. This article reviews three sources of evidence in a comprehensive body of research aligning with three main themes: (a) associations between musical rhythm and speech/language processing, (b) musical rhythm in children with developmental speech/language disorders and common comorbid attentional and motor disorders, and (c) individual differences in mechanisms underlying rhythm processing in infants and their relationship with later speech/language development. In light of converging evidence on associations between musical rhythm and speech/language processing, we propose the Atypical Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm are at higher risk for developmental speech/language disorders. The hypothesis is framed within the larger epidemiological literature in which recent methodological advances allow for large-scale testing of shared underlying biology across clinically distinct disorders. A series of predictions for future work testing the Atypical Rhythm Risk Hypothesis are outlined. We suggest that if a significant body of evidence is found to support this hypothesis, we can envision new risk factor models that incorporate atypical rhythm to predict the risk of developing speech/language disorders. Given the high prevalence of speech/language disorders in the population and the negative long-term social and economic consequences of gaps in identifying children at-risk, these new lines of research could potentially positively impact access to early identification and treatment. This article is categorized under: Linguistics > Language in Mind and Brain Neuroscience > Development Linguistics > Language Acquisition.
Collapse
Affiliation(s)
- Enikő Ladányi
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Valentina Persici
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychology, Università degli Studi di Milano - Bicocca, Milan, Italy.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Anna Fiveash
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, CRNL, INSERM, University of Lyon 1, U1028, CNRS, UMR5292, Lyon, France
| | - Reyna L Gordon
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Gaudet I, Hüsser A, Vannasing P, Gallagher A. Functional Brain Connectivity of Language Functions in Children Revealed by EEG and MEG: A Systematic Review. Front Hum Neurosci 2020; 14:62. [PMID: 32226367 PMCID: PMC7080982 DOI: 10.3389/fnhum.2020.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/29/2023] Open
Abstract
The development of language functions is of great interest to neuroscientists, as these functions are among the fundamental capacities of human cognition. For many years, researchers aimed at identifying cerebral correlates of language abilities. More recently, the development of new data analysis tools has generated a shift toward the investigation of complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very interesting systematic review on the development of functional language networks, explored through the use of functional magnetic resonance imaging (fMRI). Compared to fMRI and because of their excellent temporal resolution, magnetoencephalography (MEG) and electroencephalography (EEG) provide different and important information on brain activity. Both therefore constitute crucial neuroimaging techniques for the investigation of the maturation of functional language brain networks. The main objective of this systematic review is to provide a state of knowledge on the investigation of language-related cerebral networks in children, through the use of EEG and MEG, as well as a detailed portrait of relevant MEG and EEG data analysis methods used in that specific research context. To do so, we have summarized the results and systematically compared the methodological approach of 24 peer-reviewed EEG or MEG scientific studies that included healthy children and children with or at high risk of language disabilities, from birth up to 18 years of age. All included studies employed functional and effective connectivity measures, such as coherence, phase locking value, and Phase Slope Index, and did so using different experimental paradigms (e.g., at rest or during language-related tasks). This review will provide more insight into the use of EEG and MEG for the study of language networks in children, contribute to the current state of knowledge on the developmental path of functional connectivity in language networks during childhood and adolescence, and finally allow future studies to choose the most appropriate type of connectivity analysis.
Collapse
Affiliation(s)
- Isabelle Gaudet
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Alejandra Hüsser
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Phetsamone Vannasing
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada
| | - Anne Gallagher
- Laboratoire d'imagerie optique en neurodéveloppement (LIONLAB), Sainte-Justine University Hospital Research Center, Montréal, QC, Canada.,Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
40
|
Kachlicka M, Saito K, Tierney A. Successful second language learning is tied to robust domain-general auditory processing and stable neural representation of sound. BRAIN AND LANGUAGE 2019; 192:15-24. [PMID: 30831377 DOI: 10.1016/j.bandl.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
There is a great deal of individual variability in outcome in second language learning, the sources of which are still poorly understood. We hypothesized that individual differences in auditory processing may account for some variability in second language learning. We tested this hypothesis by examining psychoacoustic thresholds, auditory-motor temporal integration, and auditory neural encoding in adult native Polish speakers living in the UK. We found that precise English vowel perception and accurate English grammatical judgment were linked to lower psychoacoustic thresholds, better auditory-motor integration, and more consistent frequency-following responses to sound. Psychoacoustic thresholds and neural sound encoding explained independent variance in vowel perception, suggesting that they are dissociable indexes of sound processing. These results suggest that individual differences in second language acquisition success stem at least in part from domain-general difficulties with auditory perception, and that auditory training could help facilitate language learning in some individuals with specific auditory impairments.
Collapse
Affiliation(s)
- Magdalena Kachlicka
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom; Institute for Environmental Design and Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kazuya Saito
- Institute of Education, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Adam Tierney
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
41
|
Lizarazu M, Lallier M, Molinaro N. Phase-amplitude coupling between theta and gamma oscillations adapts to speech rate. Ann N Y Acad Sci 2019; 1453:140-152. [PMID: 31020680 PMCID: PMC6850406 DOI: 10.1111/nyas.14099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
Low- and high-frequency cortical oscillations play an important role in speech processing. Low-frequency neural oscillations in the delta (<4 Hz) and theta (4-8 Hz) bands entrain to the prosodic and syllabic rates of speech, respectively. Theta band neural oscillations modulate high-frequency neural oscillations in the gamma band (28-40 Hz), which have been hypothesized to be crucial for processing phonemes in natural speech. Since speech rate is known to vary considerably, both between and within talkers, it has yet to be determined whether this nested gamma response reflects an externally induced rhythm sensitive to the rate of the fine-grained structure of the input or a speech rate-independent endogenous response. Here, we recorded magnetoencephalography responses from participants listening to a speech delivered at different rates: decelerated, normal, and accelerated. We found that the phase of theta band oscillations in left and right auditory regions adjusts to speech rate variations. Importantly, we showed that the peak of the gamma response-coupled to the phase of theta-follows the speech rate. This indicates that gamma activity in auditory regions synchronizes with the fine-grain properties of speech, possibly reflecting detailed acoustic analysis of the input.
Collapse
Affiliation(s)
- Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain.,Laboratoire de Sciences Cognitives et Psycholinguistique, Dept d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, Paris, France
| | - Marie Lallier
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain
| | - Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language, Donostia/San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
42
|
Kershner JR. Neuroscience and education: Cerebral lateralization of networks and oscillations in dyslexia. Laterality 2019; 25:109-125. [PMID: 30987535 DOI: 10.1080/1357650x.2019.1606820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liaison between neuroscience and education has resulted in significant advances in our understanding of the neurobiological learning requirements of individuals with reading disability, the neuroplasticity of the developing brain, and the participation of the right hemisphere in reading. Research in neural network theory and cortical oscillations suggests that the hemispheres collaborate in high-level language processes. The right hemisphere specializes in coding low frequencies of the speech envelope and interhemispheric cognitive control, while the left is specialized for local high frequency, verbal computations. Studies in neural networks, and cortical oscillations which controlled for reading-level, converge in identifying an impaired right hemisphere circuitry of frontoparietal attention networks as a primary cause of dyslexia. Occurring in early development, such a dysfunction would have a cascading negative effect on phonemic processing in the left hemisphere dorsal reading network. Such integrative hemispheric cooperation suggests a more comprehensive approach to early reading instruction and interventions in dyslexia.
Collapse
Affiliation(s)
- John R Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Atypical neural processing of rise time by adults with dyslexia. Cortex 2019; 113:128-140. [DOI: 10.1016/j.cortex.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
|
44
|
Cross-linguistic transfer in bilinguals reading in two alphabetic orthographies: The grain size accommodation hypothesis. Psychon Bull Rev 2018; 25:386-401. [PMID: 28405906 DOI: 10.3758/s13423-017-1273-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reading acquisition is one of the most complex and demanding learning processes faced by children in their first years of schooling. If reading acquisition is challenging in one language, how is it when reading is acquired simultaneously in two languages? What is the impact of bilingualism on the development of literacy? We review behavioral and neuroimaging evidence from alphabetic writing systems suggesting that early bilingualism modulates reading development. Particularly, we show that cross-linguistic variations and cross-linguistic transfer affect bilingual reading strategies as well as their cognitive underpinnings. We stress the fact that the impact of bilingualism on literacy acquisition depends on the specific combination of languages learned and does not manifest itself similarly across bilingual populations. We argue that these differences can be explained by variations due to orthographic depth in the grain sizes used to perform reading and reading-related tasks. Overall, we propose novel hypotheses to shed light on the behavioral and neural variability observed in reading skills among bilinguals.
Collapse
|
45
|
Dresler T, Bugden S, Gouet C, Lallier M, Oliveira DG, Pinheiro-Chagas P, Pires AC, Wang Y, Zugarramurdi C, Weissheimer J. A Translational Framework of Educational Neuroscience in Learning Disorders. Front Integr Neurosci 2018; 12:25. [PMID: 30022931 PMCID: PMC6039789 DOI: 10.3389/fnint.2018.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Neuroimaging has undergone enormous progress during the last two and a half decades. The combination of neuroscientific methods and educational practice has become a focus of interdisciplinary research in order to answer more applied questions. In this realm, conditions that hamper learning success and have deleterious effects in the population - such as learning disorders (LD) - could especially profit from neuroimaging findings. At the moment, however, there is an ongoing debate about how far neuroscientific research can go to inform the practical work in educational settings. Here, we put forward a theoretical translational framework as a method of conducting neuroimaging and bridging it to education, with a main focus on dyscalculia and dyslexia. Our work seeks to represent a theoretical but mainly empirical guide on the benefits of neuroimaging, which can help people working with different aspects of LD, who need to act collaboratively to reach the full potential of neuroimaging. We provide possible ideas regarding how neuroimaging can inform LD at different levels within our multidirectional framework, i.e., mechanisms, diagnosis/prognosis, training/intervention, and community/education. In addition, we discuss methodological, conceptual, and structural limitations that need to be addressed by future research.
Collapse
Affiliation(s)
- Thomas Dresler
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Stephanie Bugden
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
- The Numerical Cognition Lab, Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Camilo Gouet
- Laboratorio de Neurociencias Cognitivas, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marie Lallier
- Basque Center on Cognition, Brain and Language, San Sebastián, Spain
| | - Darlene G. Oliveira
- Instituto Presbiteriano Mackenzie, Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | - Pedro Pinheiro-Chagas
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale, Paris, France
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Ana C. Pires
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| | - Yunqi Wang
- School of International Studies, Zhejiang University, Hangzhou, China
| | - Camila Zugarramurdi
- Basque Center on Cognition, Brain and Language, San Sebastián, Spain
- Centro de Investigación Básica en Psicología, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
46
|
Di Liberto GM, Peter V, Kalashnikova M, Goswami U, Burnham D, Lalor EC. Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. Neuroimage 2018; 175:70-79. [DOI: 10.1016/j.neuroimage.2018.03.072] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022] Open
|
47
|
Molinaro N, Lizarazu M. Delta(but not theta)-band cortical entrainment involves speech-specific processing. Eur J Neurosci 2018; 48:2642-2650. [DOI: 10.1111/ejn.13811] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Nicola Molinaro
- BCBL, Basque Center on Cognition, Brain and Language; Paseo Mikeletegi, 69, 2° 20009 Donostia/San Sebastian Spain
- Ikerbasque, Basque Foundation for Science; Bilbao Spain
| | - Mikel Lizarazu
- BCBL, Basque Center on Cognition, Brain and Language; Paseo Mikeletegi, 69, 2° 20009 Donostia/San Sebastian Spain
- LSCP; Département d’études cognitives; ENS, EHESS; PSL Research University, CNRS; Paris France
| |
Collapse
|
48
|
Meyer L. The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms. Eur J Neurosci 2017; 48:2609-2621. [PMID: 29055058 DOI: 10.1111/ejn.13748] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
49
|
Ramus F, Altarelli I, Jednoróg K, Zhao J, Scotto di Covella L. Neuroanatomy of developmental dyslexia: Pitfalls and promise. Neurosci Biobehav Rev 2017; 84:434-452. [PMID: 28797557 DOI: 10.1016/j.neubiorev.2017.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/18/2023]
Abstract
Investigations into the neuroanatomical bases of developmental dyslexia have now spanned more than 40 years, starting with the post-mortem examination of a few individual brains in the 60s and 70s, and exploding in the 90s with the widespread use of MRI. The time is now ripe to reappraise the considerable amount of data gathered with MRI using different types of sequences (T1, diffusion, spectroscopy) and analysed using different methods (manual, voxel-based or surface-based morphometry, fractional anisotropy and tractography, multivariate analyses…). While selective reviews of mostly small-scale studies seem to provide a coherent view of the brain disruptions that are typical of dyslexia, involving left perisylvian and occipito-temporal regions, we argue that this view may be deceptive and that meta-analyses and large-scale studies rather highlight many inconsistencies and limitations. We discuss problems inherent to small sample size as well as methodological difficulties that still undermine the discovery of reliable neuroanatomical bases of dyslexia, and we outline some recommendations to further improve this research area.
Collapse
Affiliation(s)
- Franck Ramus
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France.
| | - Irene Altarelli
- Brain and Learning Lab, Campus Biotech, University of Geneva, 9 Chemin des Mines, 1205 Geneva, Switzerland
| | - Katarzyna Jednoróg
- Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, Shaanxi, 710062, China
| | - Lou Scotto di Covella
- Laboratoire de sciences cognitives et psycholinguistique (CNRS, ENS, EHESS, PSL Research University), Ecole Normale Supérieure, 29 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
50
|
De Vos A, Vanvooren S, Vanderauwera J, Ghesquière P, Wouters J. A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 2017; 93:206-219. [DOI: 10.1016/j.cortex.2017.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023]
|