1
|
Hagen MP, Provins C, MacNicol E, Li JK, Gomez T, Garcia M, Seeley SH, Legarreta JH, Norgaard M, Bissett PG, Poldrack RA, Rokem A, Esteban O. Quality assessment and control of unprocessed anatomical, functional, and diffusion MRI of the human brain using MRIQC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619532. [PMID: 39484445 PMCID: PMC11526949 DOI: 10.1101/2024.10.21.619532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quality control of MRI data prior to preprocessing is fundamental, as substandard data are known to increase variability spuriously. Currently, no automated or manual method reliably identifies subpar images, given pre-specified exclusion criteria. In this work, we propose a protocol describing how to carry out the visual assessment of T1-weighted, T2-weighted, functional, and diffusion MRI scans of the human brain with the visual reports generated by MRIQC. The protocol describes how to execute the software on all the images of the input dataset using typical research settings (i.e., a high-performance computing cluster). We then describe how to screen the visual reports generated with MRIQC to identify artifacts and potential quality issues and annotate the latter with the "rating widget" ─ a utility that enables rapid annotation and minimizes bookkeeping errors. Integrating proper quality control checks on the unprocessed data is fundamental to producing reliable statistical results and crucial to identifying faults in the scanning settings, preempting the acquisition of large datasets with persistent artifacts that should have been addressed as they emerged.
Collapse
Affiliation(s)
- McKenzie P. Hagen
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Céline Provins
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eilidh MacNicol
- Department of Neuroimaging, King’s College London, London, UK
| | - Jamie K. Li
- Department of Psychology, Stanford University; Palo Alto, CA, USA
| | - Teresa Gomez
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Mélanie Garcia
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saren H. Seeley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jon Haitz Legarreta
- Department of Radiology, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston, MA, USA
| | - Martin Norgaard
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA, USA
| | - Oscar Esteban
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, Stanford University; Palo Alto, CA, USA
| |
Collapse
|
2
|
Schmitt JE, Alexander-Bloch A, Seidlitz J, Raznahan A, Neale MC. The genetics of spatiotemporal variation in cortical thickness in youth. Commun Biol 2024; 7:1301. [PMID: 39390064 PMCID: PMC11467331 DOI: 10.1038/s42003-024-06956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Prior studies have shown strong genetic effects on cortical thickness (CT), structural covariance, and neurodevelopmental trajectories in childhood and adolescence. However, the importance of genetic factors on the induction of spatiotemporal variation during neurodevelopment remains poorly understood. Here, we explore the genetics of maturational coupling by examining 308 MRI-derived regional CT measures in a longitudinal sample of 677 twins and family members. We find dynamic inter-regional genetic covariation in youth, with the emergence of regional subnetworks in late childhood and early adolescence. Three critical neurodevelopmental epochs in genetically-mediated maturational coupling were identified, with dramatic network strengthening near eleven years of age. These changes are associated with statistically-significant (empirical p-value <0.0001) increases in network strength as measured by average clustering coefficient and assortativity. We then identify genes from the Allen Human Brain Atlas with similar co-expression patterns to genetically-mediated structural covariation in children. This set was enriched for genes involved in potassium transport and dendrite formation. Genetically-mediated CT-CT covariance was also strongly correlated with expression patterns for genes located in cells of neuronal origin.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Psychiatry and Radiology, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Aaron Alexander-Bloch
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jakob Seidlitz
- Department of Psychiatry, CHOP-Penn Brain-Gene-Development Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institutes of Mental Health, Building 10, Room 4C110, 10 Center Drive, Bethesda, MD, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Sanchez T, Esteban O, Gomez Y, Pron A, Koob M, Dunet V, Girard N, Jakab A, Eixarch E, Auzias G, Bach Cuadra M. FetMRQC: A robust quality control system for multi-centric fetal brain MRI. Med Image Anal 2024; 97:103282. [PMID: 39053168 DOI: 10.1016/j.media.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Fetal brain MRI is becoming an increasingly relevant complement to neurosonography for perinatal diagnosis, allowing fundamental insights into fetal brain development throughout gestation. However, uncontrolled fetal motion and heterogeneity in acquisition protocols lead to data of variable quality, potentially biasing the outcome of subsequent studies. We present FetMRQC, an open-source machine-learning framework for automated image quality assessment and quality control that is robust to domain shifts induced by the heterogeneity of clinical data. FetMRQC extracts an ensemble of quality metrics from unprocessed anatomical MRI and combines them to predict experts' ratings using random forests. We validate our framework on a pioneeringly large and diverse dataset of more than 1600 manually rated fetal brain T2-weighted images from four clinical centers and 13 different scanners. Our study shows that FetMRQC's predictions generalize well to unseen data while being interpretable. FetMRQC is a step towards more robust fetal brain neuroimaging, which has the potential to shed new insights on the developing human brain.
Collapse
Affiliation(s)
- Thomas Sanchez
- CIBM - Center for Biomedical Imaging, Switzerland; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Oscar Esteban
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Yvan Gomez
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Spain; Department Woman-Mother-Child, CHUV, Lausanne, Switzerland
| | - Alexandre Pron
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France
| | - Mériam Koob
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadine Girard
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France; Service de Neuroradiologie Diagnostique et Interventionnelle, Hôpital Timone, AP-HM, Marseilles, France
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; Research Priority Project Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| | - Elisenda Eixarch
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Spain; IDIBAPS and CIBERER, Barcelona, Spain
| | - Guillaume Auzias
- Aix-Marseille Université, CNRS, Institut de Neurosciences de La Timone, Marseilles, France
| | - Meritxell Bach Cuadra
- CIBM - Center for Biomedical Imaging, Switzerland; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Li J, Jin S, Li Z, Zeng X, Yang Y, Luo Z, Xu X, Cui Z, Liu Y, Wang J. Morphological Brain Networks of White Matter: Mapping, Evaluation, Characterization, and Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400061. [PMID: 39005232 PMCID: PMC11425219 DOI: 10.1002/advs.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.
Collapse
Affiliation(s)
- Junle Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Suhui Jin
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhen Li
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiangli Zeng
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Yuping Yang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Zhenzhen Luo
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
| | - Xiaoyu Xu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100875China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Zaixu Cui
- Chinese Institute for Brain ResearchBeijing102206China
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalBeijing100070China
| | - Jinhui Wang
- Institute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510631China
- Key Laboratory of BrainCognition and Education SciencesMinistry of EducationGuangzhou510631China
- Center for Studies of Psychological ApplicationSouth China Normal UniversityGuangzhou510631China
- Guangdong Key Laboratory of Mental Health and Cognitive ScienceSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
5
|
Nárai Á, Hermann P, Rádosi A, Vakli P, Weiss B, Réthelyi JM, Bunford N, Vidnyánszky Z. Amygdala Volume is Associated with ADHD Risk and Severity Beyond Comorbidities in Adolescents: Clinical Testing of Brain Chart Reference Standards. Res Child Adolesc Psychopathol 2024; 52:1063-1074. [PMID: 38483760 PMCID: PMC11217056 DOI: 10.1007/s10802-024-01190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 07/03/2024]
Abstract
Understanding atypicalities in ADHD brain correlates is a step towards better understanding ADHD etiology. Efforts to map atypicalities at the level of brain structure have been hindered by the absence of normative reference standards. Recent publication of brain charts allows for assessment of individual variation relative to age- and sex-adjusted reference standards and thus estimation not only of case-control differences but also of intraindividual prediction. METHODS Aim was to examine, whether brain charts can be applied in a sample of adolescents (N = 140, 38% female) to determine whether atypical brain subcortical and total volumes are associated with ADHD at-risk status and severity of parent-rated symptoms, accounting for self-rated anxiety and depression, and parent-rated oppositional defiant disorder (ODD) as well as motion. RESULTS Smaller bilateral amygdala volume was associated with ADHD at-risk status, beyond effects of comorbidities and motion, and smaller bilateral amygdala volume was associated with inattention and hyperactivity/impulsivity, beyond effects of comorbidities except for ODD symptoms, and motion. CONCLUSIONS Individual differences in amygdala volume meaningfully add to estimating ADHD risk and severity. Conceptually, amygdalar involvement is consistent with behavioral and functional imaging data on atypical reinforcement sensitivity as a marker of ADHD-related risk. Methodologically, results show that brain chart reference standards can be applied to address clinically informative, focused and specific questions.
Collapse
Affiliation(s)
- Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Alexandra Rádosi
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Pál Vakli
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Béla Weiss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nóra Bunford
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Vakli P, Weiss B, Rozmann D, Erőss G, Nárai Á, Hermann P, Vidnyánszky Z. The effect of head motion on brain age prediction using deep convolutional neural networks. Neuroimage 2024; 294:120646. [PMID: 38750907 DOI: 10.1016/j.neuroimage.2024.120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024] Open
Abstract
Deep learning can be used effectively to predict participants' age from brain magnetic resonance imaging (MRI) data, and a growing body of evidence suggests that the difference between predicted and chronological age-referred to as brain-predicted age difference (brain-PAD)-is related to various neurological and neuropsychiatric disease states. A crucial aspect of the applicability of brain-PAD as a biomarker of individual brain health is whether and how brain-predicted age is affected by MR image artifacts commonly encountered in clinical settings. To investigate this issue, we trained and validated two different 3D convolutional neural network architectures (CNNs) from scratch and tested the models on a separate dataset consisting of motion-free and motion-corrupted T1-weighted MRI scans from the same participants, the quality of which were rated by neuroradiologists from a clinical diagnostic point of view. Our results revealed a systematic increase in brain-PAD with worsening image quality for both models. This effect was also observed for images that were deemed usable from a clinical perspective, with brains appearing older in medium than in good quality images. These findings were also supported by significant associations found between the brain-PAD and standard image quality metrics indicating larger brain-PAD for lower-quality images. Our results demonstrate a spurious effect of advanced brain aging as a result of head motion and underline the importance of controlling for image quality when using brain-predicted age based on structural neuroimaging data as a proxy measure for brain health.
Collapse
Affiliation(s)
- Pál Vakli
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| | - Béla Weiss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Biomatics and Applied Artificial Intelligence Institute, John von Neumann Faculty of Informatics, Óbuda University, Budapest 1034, Hungary.
| | - Dorina Rozmann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - György Erőss
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Ádám Nárai
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary; Doctoral School of Biology and Sportbiology, Institute of Biology, Faculty of Sciences, University of Pécs, Pécs 7624, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary.
| |
Collapse
|
7
|
Bano W, Pulli E, Cantonas L, Sorsa A, Hämäläinen J, Karlsson H, Karlsson L, Saukko E, Sainio T, Peuna A, Korja R, Aro M, Leppänen PH, Tuulari JJ, Merisaari H. Implementing ABCD study Ⓡ MRI sequences for multi-site cohort studies: Practical guide to necessary steps, preprocessing methods, and challenges. MethodsX 2024; 12:102789. [PMID: 38966716 PMCID: PMC11223117 DOI: 10.1016/j.mex.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
Large multi-site studies that combine magnetic resonance imaging (MRI) data across research sites present exceptional opportunities to advance neuroscience research. However, scanner or site variability and non-standardised image acquisition protocols, data processing and analysis pipelines can adversely affect the reliability and repeatability of MRI derived brain measures. We implemented a standardised MRI protocol based on that used in the Adolescent Brain Cognition Development (ABCD)Ⓡ study in two sites, and across four MRI scanners. Twice repeated measurements of a single healthy volunteer were obtained in two sites and in four 3T MRI scanners (vendors: Siemens, Philips, and GE). Imaging data included anatomical scans (T1 weighted, T2 weighted), diffusion weighted imaging (DWI) and resting state functional MRI (rs-fMRI). Standardised containerized pipelines were utilised to pre-process the data and different image quality metrics and test-retest variability of different brain metrics were evaluated. The implementation of the MRI protocols was possible with minor adjustments in acquisition (e.g. repetition time (TR), higher b-values) and exporting (DICOM formats) of images due to different technical performance of the scanners. This study provides practical insights into the implementation of standardised sequences and data processing for multisite studies, showcase the benefits of containerised preprocessing tools, and highlights the need for careful optimisation of multisite image acquisition.
Collapse
Affiliation(s)
- Wajiha Bano
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
| | - Elmo Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
| | - Lucia Cantonas
- Department of Psychology and Education, University of Jyväskylä, Finland
| | - Aino Sorsa
- Department of Psychology and Education, University of Jyväskylä, Finland
| | - Jarmo Hämäläinen
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Psychology and Education, University of Jyväskylä, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Finland
- Department of Child Psychiatry, Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Clinical Medicine, Unit of Public Health, University of Turku, Finland
- Department of Child Psychiatry, Turku University Hospital, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital and University of Turku, Turku, Finland
| | - Arttu Peuna
- Department of Diagnostic Services, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Psychology and Speech-Pathology, University of Turku, Finland
| | - Mikko Aro
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Education, University of Jyväskylä, Finland
| | - Paavo H.T. Leppänen
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Psychology and Education, University of Jyväskylä, Finland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
- Centre of Excellence in Learning Dynamics and Intervention Research (InterLearn), University of Jyväskylä and University of Turku, Finland
- Department of Radiology, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
8
|
Hanson JL, Adkins DJ, Bacas E, Zhou P. Examining the reliability of brain age algorithms under varying degrees of participant motion. Brain Inform 2024; 11:9. [PMID: 38573551 PMCID: PMC10994881 DOI: 10.1186/s40708-024-00223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neurodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland-Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed greatest robustness and reliability (ICCs = 0.956-0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Furthermore, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algorithms is critical to use brain age as a biomarker relevant for clinical outcomes.
Collapse
Affiliation(s)
- Jamie L Hanson
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Dorthea J Adkins
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| | - Eva Bacas
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| | - Peiran Zhou
- Learning, Research & Development Center, University of Pittsburgh, Murdoch Building 3420 Forbes Ave. Rm. 639, Pittsburgh, PA, 15260, USA
| |
Collapse
|
9
|
Loizillon S, Bottani S, Maire A, Ströer S, Dormont D, Colliot O, Burgos N. Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data. Med Image Anal 2024; 93:103073. [PMID: 38176355 DOI: 10.1016/j.media.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Containing the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method from research to clinical data for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data.
Collapse
Affiliation(s)
- Sophie Loizillon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France
| | - Simona Bottani
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France
| | - Aurélien Maire
- AP-HP, Innovation & Données - Département des Services Numériques, Paris 75012, France
| | - Sebastian Ströer
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris 75013, France
| | - Didier Dormont
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris 75013, France; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, DMU DIAMENT, Paris 75013, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France
| | - Ninon Burgos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France.
| |
Collapse
|
10
|
Tomasi D, Volkow ND. Associations between handedness and brain functional connectivity patterns in children. Nat Commun 2024; 15:2355. [PMID: 38491089 PMCID: PMC10943124 DOI: 10.1038/s41467-024-46690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Handedness develops early in life, but the structural and functional brain connectivity patterns associated with it remains unknown. Here we investigate associations between handedness and the asymmetry of brain connectivity in 9- to 10-years old children from the Adolescent Brain Cognitive Development (ABCD) study. Compared to right-handers, left-handers had increased global functional connectivity density in the left-hand motor area and decreased it in the right-hand motor area. A connectivity-based index of handedness provided a sharper differentiation between right- and left-handers. The laterality of hand-motor connectivity varied as a function of handedness in unimodal sensorimotor cortices, heteromodal areas, and cerebellum (P < 0.001) and reproduced across all regions of interest in Discovery and Replication subsamples. Here we show a strong association between handedness and the laterality of the functional connectivity patterns in the absence of differences in structural connectivity, brain morphometrics, and cortical myelin between left, right, and mixed handed children.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Topolnjak E, Gao C, Beason-Held LL, Resnick SM, Schilling KG, Landman BA. Assessment of Subject Head Motion in Diffusion MRI. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12926:129261B. [PMID: 39220213 PMCID: PMC11364405 DOI: 10.1117/12.3006633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Subject head motion during the acquisition of diffusion-weighted imaging (DWI) of the brain induces artifacts and affects image quality. Information about the frequency and extent of motion could reveal which aspects of motion correction are most necessary. Therefore, we investigate the extent of translation and rotation among participants, and how the motion changes during the scan acquisition. We analyze 5,380 DWI scans from 1,034 participants. We measure the rotations and translations in the sagittal, coronal and transverse planes needed to align the volumes to the first and previous volumes, as well as the displacement. The different types of motion are compared with each other and compared over time. The largest rotation (per minute) is around the right - left axis (median 0.378 °/min, range 0.000 - 11.466°) and the largest translation (per minute) is along the anterior - posterior axis (median 1.867 mm/min, range 0.000 - 10.944 mm). We additionally observe that spikes in movement occur at the beginning of the scan, particularly in anterior - posterior translation. The results show that all scans are affected by subtle head motion, which may impact subsequent image analysis.
Collapse
Affiliation(s)
- Ema Topolnjak
- Dept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Chenyu Gao
- Dept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Kurt G Schilling
- Dept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Dept. of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Dept. of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Dept. of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Schuppert C, Rospleszcz S, Hirsch JG, Hoinkiss DC, Köhn A, von Krüchten R, Russe MF, Keil T, Krist L, Schmidt B, Michels KB, Schipf S, Brenner H, Kröncke TJ, Pischon T, Niendorf T, Schulz-Menger J, Forsting M, Völzke H, Hosten N, Bülow R, Zaitsev M, Kauczor HU, Bamberg F, Günther M, Schlett CL. Automated image quality assessment for selecting among multiple magnetic resonance image acquisitions in the German National Cohort study. Sci Rep 2023; 13:22745. [PMID: 38123791 PMCID: PMC10733361 DOI: 10.1038/s41598-023-49569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
In magnetic resonance imaging (MRI), the perception of substandard image quality may prompt repetition of the respective image acquisition protocol. Subsequently selecting the preferred high-quality image data from a series of acquisitions can be challenging. An automated workflow may facilitate and improve this selection. We therefore aimed to investigate the applicability of an automated image quality assessment for the prediction of the subjectively preferred image acquisition. Our analysis included data from 11,347 participants with whole-body MRI examinations performed as part of the ongoing prospective multi-center German National Cohort (NAKO) study. Trained radiologic technologists repeated any of the twelve examination protocols due to induced setup errors and/or subjectively unsatisfactory image quality and chose a preferred acquisition from the resultant series. Up to 11 quantitative image quality parameters were automatically derived from all acquisitions. Regularized regression and standard estimates of diagnostic accuracy were calculated. Controlling for setup variations in 2342 series of two or more acquisitions, technologists preferred the repetition over the initial acquisition in 1116 of 1396 series in which the initial setup was retained (79.9%, range across protocols: 73-100%). Image quality parameters then commonly showed statistically significant differences between chosen and discarded acquisitions. In regularized regression across all protocols, 'structured noise maximum' was the strongest predictor for the technologists' choice, followed by 'N/2 ghosting average'. Combinations of the automatically derived parameters provided an area under the ROC curve between 0.51 and 0.74 for the prediction of the technologists' choice. It is concluded that automated image quality assessment can, despite considerable performance differences between protocols and anatomical regions, contribute substantially to identifying the subjective preference in a series of MRI acquisitions and thus provide effective decision support to readers.
Collapse
Affiliation(s)
- Christopher Schuppert
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Susanne Rospleszcz
- Chair of Epidemiology, Institute of Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians University, Faculty of Medicine, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jochen G Hirsch
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | | | - Alexander Köhn
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Ricarda von Krüchten
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Maximilian F Russe
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Thomas Keil
- Institute for Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karin B Michels
- Institute for Prevention and Cancer Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Simpson-Kent IL, Gataviņš MM, Tooley UA, Boroshok AL, McDermott CL, Park AT, Delgado Reyes L, Bathelt J, Tisdall MD, Mackey AP. Multilayer network associations between the exposome and childhood brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563611. [PMID: 37961103 PMCID: PMC10634748 DOI: 10.1101/2023.10.23.563611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Growing up in a high poverty neighborhood is associated with elevated risk for academic challenges and health problems. Here, we take a data-driven approach to exploring how measures of children's environments relate to the development of their brain structure and function in a community sample of children between the ages of 4 and 10 years. We constructed exposomes including measures of family socioeconomic status, children's exposure to adversity, and geocoded measures of neighborhood socioeconomic status, crime, and environmental toxins. We connected the exposome to two structural measures (cortical thickness and surface area, n = 170) and two functional measures (participation coefficient and clustering coefficient, n = 130). We found dense connections within exposome and brain layers and sparse connections between exposome and brain layers. Lower family income was associated with thinner visual cortex, consistent with the theory that accelerated development is detectable in early-developing regions. Greater neighborhood incidence of high blood lead levels was associated with greater segregation of the default mode network, consistent with evidence that toxins are deposited into the brain along the midline. Our study demonstrates the utility of multilayer network analysis to bridge environmental and neural explanatory levels to better understand the complexity of child development.
Collapse
Affiliation(s)
- Ivan L. Simpson-Kent
- Institute of Psychology, Developmental and Educational Psychology Unit, Leiden University, Leiden, the Netherlands
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mārtiņš M. Gataviņš
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ursula A. Tooley
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Washington University in St. Louis, USA
- Department of Neurology, Washington University in St. Louis, USA
| | - Austin L. Boroshok
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Anne T. Park
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joe Bathelt
- Department of Psychology, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - M. Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson P. Mackey
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Vahermaa V, Aydogan DB, Raij T, Armio RL, Laurikainen H, Saramäki J, Suvisaari J. FreeSurfer 7 quality control: Key problem areas and importance of manual corrections. Neuroimage 2023; 279:120306. [PMID: 37541458 DOI: 10.1016/j.neuroimage.2023.120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
We have studied the effects of manual quality control of brain Magnetic Resonance Imaging (MRI) images processed with Freesurfer. T1 images of first episode psychosis patients (N = 60) and healthy controls (N = 41) were inspected for gray matter boundary errors. The errors were fixed, and the effects of error correction on brain volume, thickness, and surface area were measured. It is commonplace to apply quality control to Freesurfer MRI recordings to ensure that the edges of gray and white matter are detected properly, as incorrect edge detection leads to changes in variables such as volume, cortical thickness, and cortical surface area. We find that while Freesurfer v7.1.1. does regularly make mistakes in identifying the edges of cortical gray matter, correcting these errors yields limited changes in the commonly measured variables listed above. We further find that the software makes fewer gray matter boundary errors when processing female brains. The results suggest that manually correcting gray matter boundary errors may not be worthwhile due to its small effect on the measurements, with potential exceptions for studies that focus on the areas that are more commonly affected by errors: the areas around the cerebellar tentorium, paracentral lobule, and the optic nerves, specifically the horizontal segment of the middle cerebral artery.
Collapse
Affiliation(s)
- Vesa Vahermaa
- Department of Computer Science, Aalto School of Science, Aalto University, Finland; Mental Health Unit, Finnish Institute for Health and Welfare, Finland.
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Science, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto School of Science, Espoo, Finland
| | - Tuukka Raij
- Department of Neuroscience and Biomedical Engineering, Aalto School of Science, Espoo, Finland; University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | - Jari Saramäki
- Department of Computer Science, Aalto School of Science, Aalto University, Finland
| | - Jaana Suvisaari
- Mental Health Unit, Finnish Institute for Health and Welfare, Finland
| |
Collapse
|
15
|
Bedford SA, Ortiz-Rosa A, Schabdach JM, Costantino M, Tullo S, Piercy T, Lai MC, Lombardo MV, Di Martino A, Devenyi GA, Chakravarty MM, Alexander-Bloch AF, Seidlitz J, Baron-Cohen S, Bethlehem RA. The impact of quality control on cortical morphometry comparisons in autism. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-21. [PMID: 38495338 PMCID: PMC10938341 DOI: 10.1162/imag_a_00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 03/19/2024]
Abstract
Structural magnetic resonance imaging (MRI) quality is known to impact and bias neuroanatomical estimates and downstream analysis, including case-control comparisons, and a growing body of work has demonstrated the importance of careful quality control (QC) and evaluated the impact of image and image-processing quality. However, the growing size of typical neuroimaging datasets presents an additional challenge to QC, which is typically extremely time and labour intensive. One of the most important aspects of MRI quality is the accuracy of processed outputs, which have been shown to impact estimated neurodevelopmental trajectories. Here, we evaluate whether the quality of surface reconstructions by FreeSurfer (one of the most widely used MRI processing pipelines) interacts with clinical and demographic factors. We present a tool, FSQC, that enables quick and efficient yet thorough assessment of outputs of the FreeSurfer processing pipeline. We validate our method against other existing QC metrics, including the automated FreeSurfer Euler number, two other manual ratings of raw image quality, and two popular automated QC methods. We show strikingly similar spatial patterns in the relationship between each QC measure and cortical thickness; relationships for cortical volume and surface area are largely consistent across metrics, though with some notable differences. We next demonstrate that thresholding by QC score attenuates but does not eliminate the impact of quality on cortical estimates. Finally, we explore different ways of controlling for quality when examining differences between autistic individuals and neurotypical controls in the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrating that inadequate control for quality can alter results of case-control comparisons.
Collapse
Affiliation(s)
- Saashi A. Bedford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Alfredo Ortiz-Rosa
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
| | - Jenna M. Schabdach
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Manuela Costantino
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Tom Piercy
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Gabriel A. Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - Aaron F. Alexander-Bloch
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Jakob Seidlitz
- Lifespan Brain Institute, The Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridge Lifetime Asperger Syndrome Service (CLASS), Cambridgeshire and Peterborough, United Kingdom
| | - Richard A.I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Torbati ME, Minhas DS, Laymon CM, Maillard P, Wilson JD, Chen CL, Crainiceanu CM, DeCarli CS, Hwang SJ, Tudorascu DL. MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data. Med Image Anal 2023; 89:102926. [PMID: 37595405 PMCID: PMC10529705 DOI: 10.1016/j.media.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 06/06/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets has brought benefits such as higher statistical power, reliability, and robustness to the studies. Despite these promises from growth in sample size, substantial technical variability stemming from differences in scanner specifications exists in the aggregated data and could inadvertently bias any downstream analyses on it. Such a challenge calls for data normalization and/or harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related variability and evaluate the harmonization frameworks. In this study, we propose MISPEL (Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised multi-scanner harmonization method that is naturally extendable to more than two scanners. We also designed a set of criteria to investigate the scanner-related technical variability and evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our knowledge is one of the few datasets of this kind. We also investigated our evaluations using two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping (SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is promising for many other neuroimaging modalities.
Collapse
Affiliation(s)
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA 95816, USA
| | - James D Wilson
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chang-Le Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Charles S DeCarli
- Department of Neurology, University of California Davis, Davis, CA 95816, USA
| | - Seong Jae Hwang
- Department of Artificial Intelligence, Yonsei University, Seoul, South Korea
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Elliott ML, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Mair RW, Eldaief MC, Buckner RL. Brain morphometry in older adults with and without dementia using extremely rapid structural scans. Neuroimage 2023; 276:120173. [PMID: 37201641 PMCID: PMC10330834 DOI: 10.1016/j.neuroimage.2023.120173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
T1-weighted structural MRI is widely used to measure brain morphometry (e.g., cortical thickness and subcortical volumes). Accelerated scans as fast as one minute or less are now available but it is unclear if they are adequate for quantitative morphometry. Here we compared the measurement properties of a widely adopted 1.0 mm resolution scan from the Alzheimer's Disease Neuroimaging Initiative (ADNI = 5'12'') with two variants of highly accelerated 1.0 mm scans (compressed-sensing, CSx6 = 1'12''; and wave-controlled aliasing in parallel imaging, WAVEx9 = 1'09'') in a test-retest study of 37 older adults aged 54 to 86 (including 19 individuals diagnosed with a neurodegenerative dementia). Rapid scans produced highly reliable morphometric measures that largely matched the quality of morphometrics derived from the ADNI scan. Regions of lower reliability and relative divergence between ADNI and rapid scan alternatives tended to occur in midline regions and regions with susceptibility-induced artifacts. Critically, the rapid scans yielded morphometric measures similar to the ADNI scan in regions of high atrophy. The results converge to suggest that, for many current uses, extremely rapid scans can replace longer scans. As a final test, we explored the possibility of a 0'49'' 1.2 mm CSx6 structural scan, which also showed promise. Rapid structural scans may benefit MRI studies by shortening the scan session and reducing cost, minimizing opportunity for movement, creating room for additional scan sequences, and allowing for the repetition of structural scans to increase precision of the estimates.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA.
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Massachusetts General Hospital, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA; Department of Neurology, Massachusetts General Hospital & Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Mark C Eldaief
- Frontotemporal Disorders Unit, Massachusetts General Hospital, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Department of Neurology, Massachusetts General Hospital & Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, 52 Oxford Street, Northwest Laboratory 280.10, Cambridge, MA 02138, USA; Alzheimer's Disease Research Center, Massachusetts General Hospital, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA; Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
18
|
Gao P, Wang YS, Lu QY, Rong MJ, Fan XR, Holmes AJ, Dong HM, Li HF, Zuo XN. Brief mock-scan training reduces head motion during real scanning for children: A growth curve study. Dev Cogn Neurosci 2023; 61:101244. [PMID: 37062244 PMCID: PMC10139901 DOI: 10.1016/j.dcn.2023.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023] Open
Abstract
Pediatric neuroimaging datasets are rapidly increasing in scales. Despite strict protocols in data collection and preprocessing focused on improving data quality, the presence of head motion still impedes our understanding of neurodevelopmental mechanisms. Large head motion can lead to severe noise and artifacts in magnetic resonance imaging (MRI) studies, inflating correlations between adjacent brain areas and decreasing correlations between spatial distant territories, especially in children and adolescents. Here, by leveraging mock-scans of 123 Chinese children and adolescents, we demonstrated the presence of increased head motion in younger participants. Critically, a 5.5-minute training session in an MRI mock scanner was found to effectively suppress the head motion in the children and adolescents. Therefore, we suggest that mock scanner training should be part of the quality assurance routine prior to formal MRI data collection, particularly in large-scale population-level neuroimaging initiatives for pediatrics.
Collapse
Affiliation(s)
- Peng Gao
- College of Information and Computer, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan, Shanxi 030024, China
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Qiu-Yu Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Meng-Jie Rong
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Xue-Ru Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Avram J Holmes
- Department of Psychology, Yale University, 1 Prospect Street, New Haven, CT 06511, USA
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Hai-Fang Li
- College of Information and Computer, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan, Shanxi 030024, China.
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, No 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China; Institute of Psychology, Chinese Academy of Sciences, No 16 Lincui Road, Chaoyang District, Beijing 100101, China; National Basic Science Data Center, No 2 Dongsheng South Road, Haidian District, Beijing 100190, China.
| |
Collapse
|
19
|
Pollak C, Kügler D, Breteler MMB, Reuter M. Quantifying MR Head Motion in the Rhineland Study - A Robust Method for Population Cohorts. Neuroimage 2023; 275:120176. [PMID: 37209757 DOI: 10.1016/j.neuroimage.2023.120176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023] Open
Abstract
Head motion during MR acquisition reduces image quality and has been shown to bias neuromorphometric analysis. The quantification of head motion, therefore, has both neuroscientific as well as clinical applications, for example, to control for motion in statistical analyses of brain morphology, or as a variable of interest in neurological studies. The accuracy of markerless optical head tracking, however, is largely unexplored. Furthermore, no quantitative analysis of head motion in a general, mostly healthy population cohort exists thus far. In this work, we present a robust registration method for the alignment of depth camera data that sensitively estimates even small head movements of compliant participants. Our method outperforms the vendor-supplied method in three validation experiments: 1. similarity to fMRI motion traces as a low-frequency reference, 2. recovery of the independently acquired breathing signal as a high-frequency reference, and 3. correlation with image-based quality metrics in structural T1-weighted MRI. In addition to the core algorithm, we establish an analysis pipeline that computes average motion scores per time interval or per sequence for inclusion in downstream analyses. We apply the pipeline in the Rhineland Study, a large population cohort study, where we replicate age and body mass index (BMI) as motion correlates and show that head motion significantly increases over the duration of the scan session. We observe weak, yet significant interactions between this within-session increase and age, BMI, and sex. High correlations between fMRI and camera-based motion scores of proceeding sequences further suggest that fMRI motion estimates can be used as a surrogate score in the absence of better measures to control for motion in statistical analyses.
Collapse
Affiliation(s)
- Clemens Pollak
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Kügler
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Martin Reuter
- AI in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Yin G, Li T, Jin S, Wang N, Li J, Wu C, He H, Wang J. A comprehensive evaluation of multicentric reliability of single-subject cortical morphological networks on traveling subjects. Cereb Cortex 2023:7169131. [PMID: 37197789 DOI: 10.1093/cercor/bhad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
Despite the prevalence of research on single-subject cerebral morphological networks in recent years, whether they can offer a reliable way for multicentric studies remains largely unknown. Using two multicentric datasets of traveling subjects, this work systematically examined the inter-site test-retest (TRT) reliabilities of single-subject cerebral morphological networks, and further evaluated the effects of several key factors. We found that most graph-based network measures exhibited fair to excellent reliabilities regardless of different analytical pipelines. Nevertheless, the reliabilities were affected by choices of morphological index (fractal dimension > sulcal depth > gyrification index > cortical thickness), brain parcellation (high-resolution > low-resolution), thresholding method (proportional > absolute), and network type (binarized > weighted). For the factor of similarity measure, its effects depended on the thresholding method used (absolute: Kullback-Leibler divergence > Jensen-Shannon divergence; proportional: Jensen-Shannon divergence > Kullback-Leibler divergence). Furthermore, longer data acquisition intervals and different scanner software versions significantly reduced the reliabilities. Finally, we showed that inter-site reliabilities were significantly lower than intra-site reliabilities for single-subject cerebral morphological networks. Altogether, our findings propose single-subject cerebral morphological networks as a promising approach for multicentric human connectome studies, and offer recommendations on how to determine analytical pipelines and scanning protocols for obtaining reliable results.
Collapse
Affiliation(s)
- Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Ningkai Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changwen Wu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou 310058, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Cognition and Education Sciences, Ministry of Education, Beijing 100816, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510000, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510000, China
| |
Collapse
|
21
|
Nakua H, Hawco C, Forde NJ, Joseph M, Grillet M, Johnson D, Jacobs GR, Hill S, Voineskos A, Wheeler AL, Lai MC, Szatmari P, Georgiades S, Nicolson R, Schachar R, Crosbie J, Anagnostou E, Lerch JP, Arnold PD, Ameis SH. Systematic comparisons of different quality control approaches applied to three large pediatric neuroimaging datasets. Neuroimage 2023; 274:120119. [PMID: 37068719 DOI: 10.1016/j.neuroimage.2023.120119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION Poor quality T1-weighted brain scans systematically affect the calculation of brain measures. Removing the influence of such scans requires identifying and excluding scans with noise and artefacts through a quality control (QC) procedure. While QC is critical for brain imaging analyses, it is not yet clear whether different QC approaches lead to the exclusion of the same participants. Further, the removal of poor-quality scans may unintentionally introduce a sampling bias by excluding the subset of participants who are younger and/or feature greater clinical impairment. This study had two aims: 1) examine whether different QC approaches applied to T1-weighted scans would exclude the same participants, and 2) examine how exclusion of poor-quality scans impacts specific demographic, clinical and brain measure characteristics between excluded and included participants in three large pediatric neuroimaging samples. METHODS We used T1-weighted, resting-state fMRI, demographic and clinical data from the Province of Ontario Neurodevelopmental Disorders network (Aim 1: n=553, Aim 2: n=465), the Healthy Brain Network (Aim 1: n=1051, Aim 2: n=558), and the Philadelphia Neurodevelopmental Cohort (Aim 1: n=1087; Aim 2: n=619). Four different QC approaches were applied to T1-weighted MRI (visual QC, metric QC, automated QC, fMRI-derived QC). We used tetrachoric correlation and inter-rater reliability analyses to examine whether different QC approaches excluded the same participants. We examined differences in age, mental health symptoms, everyday/adaptive functioning, IQ and structural MRI-derived brain indices between participants that were included versus excluded following each QC approach. RESULTS Dataset-specific findings revealed mixed results with respect to overlap of QC exclusion. However, in POND and HBN, we found a moderate level of overlap between visual and automated QC approaches (rtet=0.52-0.59). Implementation of QC excluded younger participants, and tended to exclude those with lower IQ, and lower everyday/adaptive functioning scores across several approaches in a dataset-specific manner. Across nearly all datasets and QC approaches examined, excluded participants had lower estimates of cortical thickness and subcortical volume, but this effect did not differ by QC approach. CONCLUSION The results of this study provide insight into the influence of QC decisions on structural pediatric imaging analyses. While different QC approaches exclude different subsets of participants, the variation of influence of different QC approaches on clinical and brain metrics is minimal in large datasets. Overall, implementation of QC tends to exclude participants who are younger, and those who have more cognitive and functional impairment. Given that automated QC is standardized and can reduce between-study differences, the results of this study support the potential to use automated QC for large pediatric neuroimaging datasets.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Natalie J Forde
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Michael Joseph
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Maud Grillet
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Delaney Johnson
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Grace R Jacobs
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Szatmari
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, Ontario, Canada
| | - Russell Schachar
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Crosbie
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics & Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Elyounssi S, Kunitoki K, Clauss JA, Laurent E, Kane K, Hughes DE, Hopkinson CE, Bazer O, Sussman RF, Doyle AE, Lee H, Tervo-Clemmens B, Eryilmaz H, Gollub RL, Barch DM, Satterthwaite TD, Dowling KF, Roffman JL. Uncovering and mitigating bias in large, automated MRI analyses of brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530498. [PMID: 36909456 PMCID: PMC10002762 DOI: 10.1101/2023.02.28.530498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Large, population-based MRI studies of adolescents promise transformational insights into neurodevelopment and mental illness risk 1,2. However, MRI studies of youth are especially susceptible to motion and other artifacts 3,4. These artifacts may go undetected by automated quality control (QC) methods that are preferred in high-throughput imaging studies, 5 and can potentially introduce non-random noise into clinical association analyses. Here we demonstrate bias in structural MRI analyses of children due to inclusion of lower quality images, as identified through rigorous visual quality control of 11,263 T1 MRI scans obtained at age 9-10 through the Adolescent Brain Cognitive Development (ABCD) Study6. Compared to the best-rated images (44.9% of the sample), lower-quality images generally associated with decreased cortical thickness and increased cortical surface area measures (Cohen's d 0.14-2.84). Variable image quality led to counterintuitive patterns in analyses that associated structural MRI and clinical measures, as inclusion of lower-quality scans altered apparent effect sizes in ways that increased risk for both false positives and negatives. Quality-related biases were partially mitigated by controlling for surface hole number, an automated index of topological complexity that differentiated lower-quality scans with good specificity at Baseline (0.81-0.93) and in 1,000 Year 2 scans (0.88-1.00). However, even among the highest-rated images, subtle topological errors occurred during image preprocessing, and their correction through manual edits significantly and reproducibly changed thickness measurements across much of the cortex (d 0.15-0.92). These findings demonstrate that inadequate QC of youth structural MRI scans can undermine advantages of large sample size to detect meaningful associations.
Collapse
Affiliation(s)
- Safia Elyounssi
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Keiko Kunitoki
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Jacqueline A. Clauss
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Eline Laurent
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Kristina Kane
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Dylan E. Hughes
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
- Departments of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles
| | - Casey E. Hopkinson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Oren Bazer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Rachel Freed Sussman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Alysa E. Doyle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Center for Genomic Medicine, Massachusetts General Hospital
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School
| | | | - Hamdi Eryilmaz
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Randy L. Gollub
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| | - Deanna M. Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine
- Penn Lifespan and Neuroimaging Center, University of Pennsylvania Perelman School of Medicine
- Penn-CHOP Lifespan Brain Institute
| | - Kevin F. Dowling
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Department of Psychiatry, University of Pittsburgh
| | - Joshua L. Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital
| |
Collapse
|
23
|
Mareva S, Akarca D, Holmes J. Transdiagnostic profiles of behaviour and communication relate to academic and socioemotional functioning and neural white matter organisation. J Child Psychol Psychiatry 2023; 64:217-233. [PMID: 36127748 PMCID: PMC10087495 DOI: 10.1111/jcpp.13685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Behavioural and language difficulties co-occur in multiple neurodevelopmental conditions. Our understanding of these problems has arguably been slowed by an overreliance on study designs that compare diagnostic groups and fail to capture the overlap across different neurodevelopmental disorders and the heterogeneity within them. METHODS We recruited a large transdiagnostic cohort of children with complex needs (N = 805) to identify distinct subgroups of children with common profiles of behavioural and language strengths and difficulties. We then investigated whether and how these data-driven groupings could be distinguished from a comparison sample (N = 158) on measures of academic and socioemotional functioning and patterns of global and local white matter connectome organisation. Academic skills were assessed via standardised measures of reading and maths. Socioemotional functioning was captured by the parent-rated version of the Strengths and Difficulties Questionnaire. RESULTS We identified three distinct subgroups of children, each with different levels of difficulties in structural language, pragmatic communication, and hot and cool executive functions. All three subgroups struggled with academic and socioemotional skills relative to the comparison sample, potentially representing three alternative but related developmental pathways to difficulties in these areas. The children with the weakest language skills had the most widespread difficulties with learning, whereas those with more pronounced difficulties with hot executive skills experienced the most severe difficulties in the socioemotional domain. Each data-driven subgroup could be distinguished from the comparison sample based on both shared and subgroup-unique patterns of neural white matter organisation. Children with the most pronounced deficits in language, cool executive, or hot executive function were differentiated from the comparison sample by altered connectivity in predominantly thalamocortical, temporal-parietal-occipital, and frontostriatal circuits, respectively. CONCLUSIONS These findings advance our understanding of commonly co-morbid behavioural and language problems and their relationship to behavioural outcomes and neurobiological substrates.
Collapse
Affiliation(s)
- Silvana Mareva
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Danyal Akarca
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Joni Holmes
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- School of Psychology, Faculty of Social SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
24
|
Provins C, MacNicol E, Seeley SH, Hagmann P, Esteban O. Quality control in functional MRI studies with MRIQC and fMRIPrep. FRONTIERS IN NEUROIMAGING 2023; 1:1073734. [PMID: 37555175 PMCID: PMC10406249 DOI: 10.3389/fnimg.2022.1073734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/19/2022] [Indexed: 08/10/2023]
Abstract
The implementation of adequate quality assessment (QA) and quality control (QC) protocols within the magnetic resonance imaging (MRI) research workflow is resource- and time-consuming and even more so is their execution. As a result, QA/QC practices highly vary across laboratories and "MRI schools", ranging from highly specialized knowledge spots to environments where QA/QC is considered overly onerous and costly despite evidence showing that below-standard data increase the false positive and false negative rates of the final results. Here, we demonstrate a protocol based on the visual assessment of images one-by-one with reports generated by MRIQC and fMRIPrep, for the QC of data in functional (blood-oxygen dependent-level; BOLD) MRI analyses. We particularize the proposed, open-ended scope of application to whole-brain voxel-wise analyses of BOLD to correspondingly enumerate and define the exclusion criteria applied at the QC checkpoints. We apply our protocol on a composite dataset (n = 181 subjects) drawn from open fMRI studies, resulting in the exclusion of 97% of the data (176 subjects). This high exclusion rate was expected because subjects were selected to showcase artifacts. We describe the artifacts and defects more commonly found in the dataset that justified exclusion. We moreover release all the materials we generated in this assessment and document all the QC decisions with the expectation of contributing to the standardization of these procedures and engaging in the discussion of QA/QC by the community.
Collapse
Affiliation(s)
- Céline Provins
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eilidh MacNicol
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Saren H. Seeley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Oscar Esteban
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Chen J, Patil KR, Yeo BTT, Eickhoff SB. Leveraging Machine Learning for Gaining Neurobiological and Nosological Insights in Psychiatric Research. Biol Psychiatry 2023; 93:18-28. [PMID: 36307328 DOI: 10.1016/j.biopsych.2022.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Much attention is currently devoted to developing diagnostic classifiers for mental disorders. Complementing these efforts, we highlight the potential of machine learning to gain biological insights into the psychopathology and nosology of mental disorders. Studies to this end have mainly used brain imaging data, which can be obtained noninvasively from large cohorts and have repeatedly been argued to reveal potentially intermediate phenotypes. This may become particularly relevant in light of recent efforts to identify magnetic resonance imaging-derived biomarkers that yield insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In particular, the accuracy of machine learning models may be used as dependent variables to identify features relevant to pathophysiology. Moreover, such approaches may help disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) symptomatology of psychiatric illness. We also point out a multiview perspective that combines data from different sources, bridging molecular and system-level information. Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease entities through unsupervised and semisupervised approaches. The latter, blending unsupervised and supervised concepts, may represent a particularly promising avenue toward dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to flawed input data or analytic procedures that would likely lead to unreliable outputs.
Collapse
Affiliation(s)
- Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences & Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Mendoza S, Scalzo F, Chien A. Determining and Validating Population Differences in Magnetic Resonance Angiography Using Sparse Representation. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2022; 2022:3101-3108. [PMID: 37179739 PMCID: PMC10170968 DOI: 10.1109/bibm55620.2022.9994989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Goal Identifying population differences can serve as an insightful tool for diagnostic radiology. To do so, a reliable preprocessing framework and data representation are vital. Methods We build a machine learning model to visualize gender differences in the circle of Willis (CoW), an integral part of the brain's vasculature. We start with a dataset of 570 individuals and process them for analysis using 389 for the final analysis. Results We find statistical differences between male and female patients in one image plane and visualize where they are. We can see differences between the right and left-hand sides of the brain confirmed using Support Vector Machines (SVM). Conclusion This process can be applied to detect population variations in the vasculature automatically. Significance It can guide debugging and inferring complex machine learning algorithms such as SVM and deep learning models.
Collapse
Affiliation(s)
- Steve Mendoza
- Department of Radiological Science, David Geffen School of Medicine at UCLA
| | - Fabien Scalzo
- Department of Computer Science, Seaver College of Natural Sciences, Pepperdine University, Malibu, United State of America
| | - Aichi Chien
- Department of Radiological Science, David Geffen School of Medicine at UCLA
- Corresponding author Aichi Chien, PhD, Department of Radiological Science, David Geffen School of Medicine at UCLA, 10833 LeConte Ave, Box 957350 Los Angeles, CA 90095.
| |
Collapse
|
27
|
Nárai Á, Hermann P, Auer T, Kemenczky P, Szalma J, Homolya I, Somogyi E, Vakli P, Weiss B, Vidnyánszky Z. Movement-related artefacts (MR-ART) dataset of matched motion-corrupted and clean structural MRI brain scans. Sci Data 2022; 9:630. [PMID: 36253426 PMCID: PMC9576686 DOI: 10.1038/s41597-022-01694-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) provides a unique opportunity to investigate neural changes in healthy and clinical conditions. Its large inherent susceptibility to motion, however, often confounds the measurement. Approaches assessing, correcting, or preventing motion corruption of MRI measurements are under active development, and such efforts can greatly benefit from carefully controlled datasets. We present a unique dataset of structural brain MRI images collected from 148 healthy adults which includes both motion-free and motion-affected data acquired from the same participants. This matched dataset allows direct evaluation of motion artefacts, their impact on derived data, and testing approaches to correct for them. Our dataset further stands out by containing images with different levels of motion artefacts from the same participants, is enriched with expert scoring characterizing the image quality from a clinical point of view and is also complemented with standard image quality metrics obtained from MRIQC. The goal of the dataset is to raise awareness of the issue and provide a useful resource to assess and improve current motion correction approaches.
Collapse
Grants
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- GINOP-2.2.1-18-2018-00001 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
- 2017-1.2.1-NKP-2017-00002 Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFI Office)
Collapse
Affiliation(s)
- Ádám Nárai
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| | - Petra Hermann
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Tibor Auer
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Péter Kemenczky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - János Szalma
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - István Homolya
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Eszter Somogyi
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Pál Vakli
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Béla Weiss
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
28
|
Pardoe HR, Martin SP. In-scanner head motion and structural covariance networks. Hum Brain Mapp 2022; 43:4335-4346. [PMID: 35593313 PMCID: PMC9435006 DOI: 10.1002/hbm.25957] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/08/2022] Open
Abstract
In-scanner head motion systematically reduces estimated regional gray matter volumes obtained from structural brain MRI. Here, we investigate how head motion affects structural covariance networks that are derived from regional gray matter volumetric estimates. We acquired motion-affected and low-motion whole brain T1-weighted MRI in 29 healthy adult subjects and estimated relative regional gray matter volumes using a voxel-based morphometry approach. Structural covariance network analyses were undertaken while systematically increasing the number of included motion-affected scans. We demonstrate that the standard deviation in regional gray matter estimates increases as the number of motion-affected scans increases. This increases pairwise correlations between regions, a key determinant for construction of structural covariance networks. We further demonstrate that head motion systematically alters graph theoretic metrics derived from these networks. Finally, we present evidence that weighting correlations using image quality metrics can mitigate the effects of head motion. Our findings suggest that in-scanner head motion is a source of error that violates the assumption that structural covariance networks reflect neuroanatomical connectivity between brain regions. Results of structural covariance studies should be interpreted with caution, particularly when subject groups are likely to move their heads in the scanner.
Collapse
Affiliation(s)
- Heath R Pardoe
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Samantha P Martin
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Pulli EP, Silver E, Kumpulainen V, Copeland A, Merisaari H, Saunavaara J, Parkkola R, Lähdesmäki T, Saukko E, Nolvi S, Kataja EL, Korja R, Karlsson L, Karlsson H, Tuulari JJ. Feasibility of FreeSurfer Processing for T1-Weighted Brain Images of 5-Year-Olds: Semiautomated Protocol of FinnBrain Neuroimaging Lab. Front Neurosci 2022; 16:874062. [PMID: 35585923 PMCID: PMC9108497 DOI: 10.3389/fnins.2022.874062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023] Open
Abstract
Pediatric neuroimaging is a quickly developing field that still faces important methodological challenges. Pediatric images usually have more motion artifact than adult images. The artifact can cause visible errors in brain segmentation, and one way to address it is to manually edit the segmented images. Variability in editing and quality control protocols may complicate comparisons between studies. In this article, we describe in detail the semiautomated segmentation and quality control protocol of structural brain images that was used in FinnBrain Birth Cohort Study and relies on the well-established FreeSurfer v6.0 and ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) consortium tools. The participants were typically developing 5-year-olds [n = 134, 5.34 (SD 0.06) years, 62 girls]. Following a dichotomous quality rating scale for inclusion and exclusion of images, we explored the quality on a region of interest level to exclude all regions with major segmentation errors. The effects of manual edits on cortical thickness values were relatively minor: less than 2% in all regions. Supplementary Material cover registration and additional edit options in FreeSurfer and comparison to the computational anatomy toolbox (CAT12). Overall, we conclude that despite minor imperfections FreeSurfer can be reliably used to segment cortical metrics from T1-weighted images of 5-year-old children with appropriate quality assessment in place. However, custom templates may be needed to optimize the results for the subcortical areas. Through visual assessment on a level of individual regions of interest, our semiautomated segmentation protocol is hopefully helpful for investigators working with similar data sets, and for ensuring high quality pediatric neuroimaging data.
Collapse
Affiliation(s)
- Elmo P. Pulli
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Eero Silver
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Venla Kumpulainen
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
| | - Anni Copeland
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Harri Merisaari
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Radiology, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Saara Nolvi
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Riikka Korja
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Linnea Karlsson
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hasse Karlsson
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Jetro J. Tuulari
- Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, Turku University Hospital, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Frew S, Samara A, Shearer H, Eilbott J, Vanderwal T. Getting the nod: Pediatric head motion in a transdiagnostic sample during movie- and resting-state fMRI. PLoS One 2022; 17:e0265112. [PMID: 35421115 PMCID: PMC9009630 DOI: 10.1371/journal.pone.0265112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Head motion continues to be a major problem in fMRI research, particularly in developmental studies where an inverse relationship exists between head motion and age. Despite multifaceted and costly efforts to mitigate motion and motion-related signal artifact, few studies have characterized in-scanner head motion itself. This study leverages a large transdiagnostic public dataset (N = 1388, age 5-21y, The Healthy Brain Network Biobank) to characterize pediatric head motion in space, frequency, and time. We focus on practical aspects of head motion that could impact future study design, including comparing motion across groups (low, medium, and high movers), across conditions (movie-watching and rest), and between males and females. Analyses showed that in all conditions, high movers exhibited a different pattern of motion than low and medium movers that was dominated by x-rotation, and z- and y-translation. High motion spikes (>0.3mm) from all participants also showed this pitch-z-y pattern. Problematic head motion is thus composed of a single type of biomechanical motion, which we infer to be a nodding movement, providing a focused target for motion reduction strategies. A second type of motion was evident via spectral analysis of raw displacement data. This was observed in low and medium movers and was consistent with respiration rates. We consider this to be a baseline of motion best targeted in data preprocessing. Further, we found that males moved more than, but not differently from, females. Significant cross-condition differences in head motion were found. Movies had lower mean motion, and especially in high movers, movie-watching reduced within-run linear increases in head motion (i.e., temporal drift). Finally, we used intersubject correlations of framewise displacement (FD-ISCs) to assess for stimulus-correlated motion trends. Subject motion was more correlated in movie than rest, and 8 out of top 10 FD-ISC windows had FD below the mean. Possible reasons and future implications of these findings are discussed.
Collapse
Affiliation(s)
- Simon Frew
- University of Waterloo, Waterloo, Ontario, Canada
| | - Ahmad Samara
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Hallee Shearer
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey Eilbott
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Tamara Vanderwal
- University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Yale Child Study Center, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
31
|
Pan X, Zhang M, Tian A, Chen L, Sun Z, Wang L, Chen P. Exploring the genetic correlation between obesity-related traits and regional brain volumes: Evidence from UK Biobank cohort. Neuroimage Clin 2022; 33:102870. [PMID: 34872017 PMCID: PMC8648807 DOI: 10.1016/j.nicl.2021.102870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To determine whether there is a correlation between obesity-related variants and regional brain volumes. METHODS Based on a mixed linear model (MLM), we analyzed the association between 1,498 obesity-related SNPs in the GWAS Catalog and 164 regional brain volumes from 29,420 participants (discovery cohort N = 19,997, validation cohort N = 9,423) in UK Biobank. The statistically significant brain regions in association analysis were classified into 6 major neural networks (dopamine (DA) motive system, central autonomic network (CAN), cognitive emotion regulation, visual object recognition network, auditory object recognition network, and sensorimotor system). We summarized the association between obesity-related variants (metabolically healthy obesity variants, metabolically unhealthy obesity variants, and unclassified obesity-related variants) and neural networks. RESULTS From association analysis, we determined that 17 obesity-related SNPs were associated with 51 regional brain volumes. Several single SNPs (e.g., rs13107325-T (SLC39A8), rs1876829-C (CRHR1), and rs1538170-T (CENPW)) were associated with multiple regional brain volumes. In addition, several single brain regions (e.g., the white matter, the grey matter in the putamen, subcallosal cortex, and insular cortex) were associated with multiple obesity-related variants. The metabolically healthy obesity variants were mainly associated with the regional brain volumes in the DA motive system, sensorimotor system and cognitive emotion regulation neural networks, while metabolically unhealthy obesity variants were mainly associated with regional brain volumes in the CAN and total tissue volumes. In addition, unclassified obesity-related variants were mainly associated with auditory object recognition network and total tissue volumes. The results of MeSH (medical subject headings) enrichment analysis showed that obesity genes associated with brain structure pointed to the functional relatedness with 5-Hydroxytryptamine receptor 4 (5-HT4), growth differentiation factor 5 (GDF5), and high mobility group protein AT-hook 2 (HMGA2 protein). CONCLUSION In summary, we found that obesity-related variants were associated with different brain volume measures. On the basis of the multiple SNPs, we found that metabolically healthy and unhealthy obesity-related SNPs were associated with different brain neural networks. Based on our enrichment analysis, modifications of the 5-HT4 pathway might be a promising therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Xingchen Pan
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Miaoran Zhang
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Aowen Tian
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lanlan Chen
- School of Clinical Medicine, Jilin University, Changchun, 130000, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China; Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
32
|
Lutti A, Corbin N, Ashburner J, Ziegler G, Draganski B, Phillips C, Kherif F, Callaghan MF, Di Domenicantonio G. Restoring statistical validity in group analyses of motion-corrupted MRI data. Hum Brain Mapp 2022; 43:1973-1983. [PMID: 35112434 PMCID: PMC8933245 DOI: 10.1002/hbm.25767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Motion during the acquisition of magnetic resonance imaging (MRI) data degrades image quality, hindering our capacity to characterise disease in patient populations. Quality control procedures allow the exclusion of the most affected images from analysis. However, the criterion for exclusion is difficult to determine objectively and exclusion can lead to a suboptimal compromise between image quality and sample size. We provide an alternative, data‐driven solution that assigns weights to each image, computed from an index of image quality using restricted maximum likelihood. We illustrate this method through the analysis of quantitative MRI data. The proposed method restores the validity of statistical tests, and performs near optimally in all brain regions, despite local effects of head motion. This method is amenable to the analysis of a broad type of MRI data and can accommodate any measure of image quality.
Collapse
Affiliation(s)
- Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nadège Corbin
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536, CNRS/University Bordeaux, Bordeaux, France.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Gabriel Ziegler
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany
| | - Bogdan Draganski
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christophe Phillips
- GIGA Cyclotron Research Centre - in vivo imaging, GIGA Institute, University of Liège, Liège, Belgium
| | - Ferath Kherif
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Giulia Di Domenicantonio
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Hedges EP, Dimitrov M, Zahid U, Brito Vega B, Si S, Dickson H, McGuire P, Williams S, Barker GJ, Kempton MJ. Reliability of structural MRI measurements: The effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream. Neuroimage 2022; 246:118751. [PMID: 34848299 PMCID: PMC8784825 DOI: 10.1016/j.neuroimage.2021.118751] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Large-scale longitudinal and multi-centre studies are used to explore neuroimaging markers of normal ageing, and neurodegenerative and mental health disorders. Longitudinal changes in brain structure are typically small, therefore the reliability of automated techniques is crucial. Determining the effects of different factors on reliability allows investigators to control those adversely affecting reliability, calculate statistical power, or even avoid particular brain measures with low reliability. This study examined the impact of several image acquisition and processing factors and documented the test-retest reliability of structural MRI measurements. METHODS In Phase I, 20 healthy adults (11 females; aged 20-30 years) were scanned on two occasions three weeks apart on the same scanner using the ADNI-3 protocol. On each occasion, individuals were scanned twice (repetition), after re-entering the scanner (reposition) and after tilting their head forward. At one year follow-up, nine returning individuals and 11 new volunteers were recruited for Phase II (11 females; aged 22-31 years). Scans were acquired on two different scanners using the ADNI-2 and ADNI-3 protocols. Structural images were processed using FreeSurfer (v5.3.0, 6.0.0 and 7.1.0) to provide subcortical and cortical volume, cortical surface area and thickness measurements. Intra-class correlation coefficients (ICC) were calculated to estimate test-retest reliability. We examined the effect of repetition, reposition, head tilt, time between scans, MRI sequence and scanner on reliability of structural brain measurements. Mean percentage differences were also calculated in supplementary analyses. RESULTS Using the FreeSurfer v7.1.0 longitudinal pipeline, we observed high reliability for subcortical and cortical volumes, and cortical surface areas at repetition, reposition, three weeks and one year (mean ICCs>0.97). Cortical thickness reliability was lower (mean ICCs>0.82). Head tilt had the greatest adverse impact on ICC estimates, for example reducing mean right cortical thickness to ICC=0.74. In contrast, changes in ADNI sequence or MRI scanner had a minimal effect. We observed an increase in reliability for updated FreeSurfer versions, with the longitudinal pipeline consistently having a higher reliability than the cross-sectional pipeline. DISCUSSION Longitudinal studies should monitor or control head tilt to maximise reliability. We provided the ICC estimates and mean percentage differences for all FreeSurfer brain regions, which may inform power analyses for clinical studies and have implications for the design of future longitudinal studies.
Collapse
Affiliation(s)
- Emily P Hedges
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Uzma Zahid
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Barbara Brito Vega
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Shuqing Si
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Hannah Dickson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| | - Steven Williams
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Gareth J Barker
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, United Kingdom
| |
Collapse
|
34
|
Eshaghzadeh Torbati M, Minhas DS, Ahmad G, O'Connor EE, Muschelli J, Laymon CM, Yang Z, Cohen AD, Aizenstein HJ, Klunk WE, Christian BT, Hwang SJ, Crainiceanu CM, Tudorascu DL. A multi-scanner neuroimaging data harmonization using RAVEL and ComBat. Neuroimage 2021; 245:118703. [PMID: 34736996 PMCID: PMC8820090 DOI: 10.1016/j.neuroimage.2021.118703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.
Collapse
Affiliation(s)
- Mahbaneh Eshaghzadeh Torbati
- Intelligent System Program, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ghasan Ahmad
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin E O'Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Charles M Laymon
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zixi Yang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Seong Jae Hwang
- Intelligent System Program, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA; Department of Computer Science, University of Pittsburgh School of Computing and Information, Pittsburgh, PA 15213, USA
| | - Ciprian M Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
35
|
Kecskemeti S, Freeman A, Travers BG, Alexander AL. FreeSurfer based cortical mapping and T1-relaxometry with MPnRAGE: Test-retest reliability with and without retrospective motion correction. Neuroimage 2021; 242:118447. [PMID: 34358661 PMCID: PMC8525331 DOI: 10.1016/j.neuroimage.2021.118447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
A test-retest study of FreeSurfer derived cortical thickness, cortical surface area, and cortical volume, as well as quantitative R1 relaxometry assessed on the midpoint of the cortex, was performed on a cohort of pediatric subjects (6-12 years old) scanned without sedation using SNARE-MPnRAGE (self navigated retrospective motion corrected magnetization prepared with n rapid gradient echoes) imaging. Reliability was assessed with coefficients of variation (CoVs) and intraclass correlation coefficients (ICCs) and statistical tests were used to determine differences with and without SNARE motion correction. Comparison of the test-retest measures of SNARE-MPnRAGE with prospectively motion corrected PROMO MPRAGE were also performed. When SNARE motion correction was used all parameters had statistically significant improvements and demonstrated high reliability. Reliability varied depending on parameter, region, and measurement type (vertex or region of interest). For mean thickness/surface area/volume/mean R1 across the regions of FreeSurfer's DK Atlas, the mean CoVs (% x100) were (1.2/1.6/1.9/0.9) and the mean ICCs were (0.88/0.96/0.94/0.83). When assessed on a per-vertex basis, the CoVs and ICCs for thickness/R1 had mean values of (2.9/1.9) and (0.82/0.68) across the regions of the DK Atlas. Retrospectively motion corrected MPnRAGE had significantly lower CoVs and higher ICCs for the morphological measures than PROMO MPRAGE. Motion correction effectively removed motion related biases in nearly all regions for R1 and morphometric measures.
Collapse
Affiliation(s)
- Steven Kecskemeti
- Waisman Center, University of Wisconsin, Madison, United States; Radiology, University of Wisconsin, Madison, United States.
| | - Abigail Freeman
- Waisman Center, University of Wisconsin, Madison, United States; Psychiatry, University of Wisconsin, Madison, United States
| | | | - Andrew L Alexander
- Waisman Center, University of Wisconsin, Madison, United States; Medical Physics, University of Wisconsin, Madison, United States; Psychiatry, University of Wisconsin, Madison, United States
| |
Collapse
|
36
|
Tomasi D, Volkow ND. Associations of family income with cognition and brain structure in USA children: prevention implications. Mol Psychiatry 2021; 26:6619-6629. [PMID: 33990770 PMCID: PMC8590701 DOI: 10.1038/s41380-021-01130-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
Poverty, as assessed by several socioeconomic (SES) factors, has been linked to worse cognitive performance and reduced cortical brain volumes in children. However, the relative contributions of the various SES factors on brain development and the mediating effects between cognition and brain morphometry have not been investigated. Here we used cross-sectional data from the ABCD Study to evaluate associations among various SES and demographic factors, brain morphometrics, and cognition and their reproducibility in two independent subsamples of 3892 children. Among the SES factors, family income (FI) best explained individual differences in cognitive test scores (stronger for crystallized than for fluid cognition), cortical volume (CV), and thickness (CT). Other SES factors that showed significant associations with cognition and brain morphometrics included parental education and neighborhood deprivation, but when controlling for FI, their effect sizes were negligible and their regional brain patterns were not reproducible. Mediation analyses showed that cognitive scores, which we used as surrogate markers of the children's level of cognitive stimulation, partially mediated the association of FI and CT, whereas the mediations of brain morphometrics on the association of FI and cognition were not significant. These results suggest that lack of supportive/educational stimulation in children from low-income families might drive the reduced CV and CT. Thus, strategies to enhance parental supportive stimulation and the quality of education for children in low-income families could help counteract the negative effects of poverty on children's brain development.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
- National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
37
|
Dimitrova R, Pietsch M, Ciarrusta J, Fitzgibbon SP, Williams LZJ, Christiaens D, Cordero-Grande L, Batalle D, Makropoulos A, Schuh A, Price AN, Hutter J, Teixeira RP, Hughes E, Chew A, Falconer S, Carney O, Egloff A, Tournier JD, McAlonan G, Rutherford MA, Counsell SJ, Robinson EC, Hajnal JV, Rueckert D, Edwards AD, O'Muircheartaigh J. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neuroimage 2021; 243:118488. [PMID: 34419595 PMCID: PMC8526870 DOI: 10.1016/j.neuroimage.2021.118488] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Welcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pag Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
38
|
Germann J, Gouveia FV, Brentani H, Bedford SA, Tullo S, Chakravarty MM, Devenyi GA. Involvement of the habenula in the pathophysiology of autism spectrum disorder. Sci Rep 2021; 11:21168. [PMID: 34707133 PMCID: PMC8551275 DOI: 10.1038/s41598-021-00603-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The habenula is a small epithalamic structure with widespread connections to multiple cortical, subcortical and brainstem regions. It has been identified as the central structure modulating the reward value of social interactions, behavioral adaptation, sensory integration and circadian rhythm. Autism spectrum disorder (ASD) is characterized by social communication deficits, restricted interests, repetitive behaviors, and is frequently associated with altered sensory perception and mood and sleep disorders. The habenula is implicated in all these behaviors and results of preclinical studies suggest a possible involvement of the habenula in the pathophysiology of this disorder. Using anatomical magnetic resonance imaging and automated segmentation we show that the habenula is significantly enlarged in ASD subjects compared to controls across the entire age range studied (6-30 years). No differences were observed between sexes. Furthermore, support-vector machine modeling classified ASD with 85% accuracy (model using habenula volume, age and sex) and 64% accuracy in cross validation. The Social Responsiveness Scale (SRS) significantly differed between groups, however, it was not related to individual habenula volume. The present study is the first to provide evidence in human subjects of an involvement of the habenula in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Jürgen Germann
- grid.231844.80000 0004 0474 0428University Health Network, 399 Bathurst Street, Toronto, ON Canada ,grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Flavia Venetucci Gouveia
- grid.42327.300000 0004 0473 9646Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON Canada
| | - Helena Brentani
- grid.11899.380000 0004 1937 0722Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, São Paulo Brazil ,grid.500696.cNational Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, São Paulo Brazil
| | - Saashi A. Bedford
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.5335.00000000121885934Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Tullo
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada
| | - M. Mallar Chakravarty
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Biomedical Engineering, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| | - Gabriel A. Devenyi
- grid.14709.3b0000 0004 1936 8649Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC Canada
| |
Collapse
|
39
|
Ware AL, Shukla A, Guo S, Onicas A, Geeraert BL, Goodyear BG, Yeates KO, Lebel C. Participant factors that contribute to magnetic resonance imaging motion artifacts in children with mild traumatic brain injury or orthopedic injury. Brain Imaging Behav 2021; 16:991-1002. [PMID: 34694520 DOI: 10.1007/s11682-021-00582-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Motion can compromise image quality and confound results, especially in pediatric research. This study evaluated qualitative and quantitative approaches to motion artifacts detection and correction, and whether motion artifacts relate to injury history, age, or sex in children with mild traumatic brain injury or orthopedic injury relative to typically developing children. The concordance between qualitative and quantitative motion ratings was also examined. Children aged 8-16 years with mild traumatic brain injury (n = 141) or orthopedic injury (n = 73) were recruited from the emergency department and completed an MRI scan roughly 2 weeks post-injury. Typically developing children (n = 41) completed a single MRI scan. T1- and diffusion-weighted images were visually inspected and rated for motion artifacts by trained examiners. Quantitative estimates of motion artifacts were derived from FreeSurfer and FSL. Age (younger > older) and sex (boys > girls) were significantly associated with motion artifacts on both T1- and diffusion-weighted images. Children with mild traumatic brain or orthopedic injury had significantly more motion-corrupted diffusion-weighted volumes than typically developing children, but mild traumatic brain injury and orthopedic injury groups did not differ from each other. The exclusion of motion-corrupted volumes did not significantly change diffusion tensor imaging metrics. Results indicate that automated quantitative estimates of motion artifacts, which are less labour-intensive than manual methods, are appropriate. Results have implications for the reliability of structural MRI research and highlight the importance of considering motion artifacts in studies of pediatric mild traumatic brain injury.
Collapse
Affiliation(s)
- Ashley L Ware
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Neurology, University of Utah, Salt Lake City, UT, USA.
| | - Ayushi Shukla
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Sunny Guo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Adrian Onicas
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Bryce L Geeraert
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Bradley G Goodyear
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
40
|
Xenophontos A, Seidlitz J, Liu S, Clasen LS, Blumenthal JD, Giedd JN, Alexander-Bloch A, Raznahan A. Altered Sex Chromosome Dosage Induces Coordinated Shifts in Cortical Anatomy and Anatomical Covariance. Cereb Cortex 2021; 30:2215-2228. [PMID: 31828307 DOI: 10.1093/cercor/bhz235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sex chromosome dosage (SCD) variation increases risk for neuropsychiatric impairment, which may reflect direct SCD effects on brain organization. Here, we 1) map cumulative X- and Y-chromosome dosage effects on regional cortical thickness (CT) and investigate potential functional implications of these effects using Neurosynth, 2) test if this map is organized by patterns of CT covariance that are evident in health, and 3) characterize SCD effects on CT covariance itself. We modeled SCD effects on CT and CT covariance for 308 equally sized regions of the cortical sheet using structural neuroimaging data from 301 individuals with varying numbers of sex chromosomes (169 euploid, 132 aneuploid). Mounting SCD increased CT in the rostral frontal cortex and decreased CT in the lateral temporal cortex, bilaterally. Regions targeted by SCD were associated with social functioning, language processing, and comprehension. Cortical regions with a similar degree of SCD-sensitivity showed heightened CT covariance in health. Finally, greater SCD also increased covariance among regions similarly affected by SCD. Our study both 1) develops novel methods for comparing typical and disease-related structural covariance networks in the brain and 2) uses these techniques to resolve and identify organizing principles for SCD effects on regional cortical anatomy and anatomical covariance.
Collapse
Affiliation(s)
- Anastasia Xenophontos
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA.,Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK
| | - Siyuan Liu
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Liv S Clasen
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jonathan D Blumenthal
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jay N Giedd
- Department of Psychiatry, University of California, La Jolla, CA 92093, USA
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104.,Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104
| | - Armin Raznahan
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Ronan L, Alexander-Bloch A, Fletcher PC. Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb Cortex 2021; 30:2519-2528. [PMID: 31646343 PMCID: PMC7175011 DOI: 10.1093/cercor/bhz257] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of executive function is linked to maturation of prefrontal cortex (PFC) in childhood. Childhood obesity has been associated with changes in brain structure, particularly in PFC, as well as deficits in executive functions. We aimed to determine whether differences in cortical structure mediate the relationship between executive function and childhood obesity. We analyzed MR-derived measures of cortical thickness for 2700 children between the ages of 9 and 11 years, recruited as part of the NIH Adolescent Brain and Cognitive Development (ABCD) study. We related our findings to measures of executive function and body mass index (BMI). In our analysis, increased BMI was associated with significantly reduced mean cortical thickness, as well as specific bilateral reduced cortical thickness in prefrontal cortical regions. This relationship remained after accounting for age, sex, race, parental education, household income, birth-weight, and in-scanner motion. Increased BMI was also associated with lower executive function. Reduced thickness in the rostral medial and superior frontal cortex, the inferior frontal gyrus, and the lateral orbitofrontal cortex partially accounted for reductions in executive function. These results suggest that childhood obesity is associated with compromised executive function. This relationship may be partly explained by BMI-associated reduced cortical thickness in the PFC.
Collapse
Affiliation(s)
- Lisa Ronan
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8HA UK
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, PA 19104, USA
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8HA UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,The Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories (IMS-MRL), University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
42
|
Structural brain measures linked to clinical phenotypes in major depression replicate across clinical centres. Mol Psychiatry 2021; 26:2764-2775. [PMID: 33589737 DOI: 10.1038/s41380-021-01039-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Abnormalities in brain structural measures, such as cortical thickness and subcortical volumes, are observed in patients with major depressive disorder (MDD) who also often show heterogeneous clinical features. This study seeks to identify the multivariate associations between structural phenotypes and specific clinical symptoms, a novel area of investigation. T1-weighted magnetic resonance imaging measures were obtained using 3 T scanners for 178 unmedicated depressed patients at four academic medical centres. Cortical thickness and subcortical volumes were determined for the depressed patients and patients' clinical presentation was characterized by 213 item-level clinical measures, which were grouped into several large, homogeneous categories by K-means clustering. The multivariate correlations between structural and cluster-level clinical-feature measures were examined using canonical correlation analysis (CCA) and confirmed with both 5-fold and leave-one-site-out cross-validation. Four broad types of clinical measures were detected based on clustering: an anxious misery composite (composed of item-level depression, anxiety, anhedonia, neuroticism and suicidality scores); positive personality traits (extraversion, openness, agreeableness and conscientiousness); reported history of physical/emotional trauma; and a reported history of sexual abuse. Responses on the item-level anxious misery measures were negatively associated with cortical thickness/subcortical volumes in the limbic system and frontal lobe; reported childhood history of physical/emotional trauma and sexual abuse measures were negatively correlated with entorhinal thickness and left hippocampal volume, respectively. In contrast, the positive traits measures were positively associated with hippocampal and amygdala volumes and cortical thickness of the highly-connected precuneus and cingulate cortex. Our findings suggest that structural brain measures may reflect neurobiological mechanisms underlying MDD features.
Collapse
|
43
|
Pardoe HR, Martin SP, Zhao Y, George A, Yuan H, Zhou J, Liu W, Devinsky O. Estimation of in-scanner head pose changes during structural MRI using a convolutional neural network trained on eye tracker video. Magn Reson Imaging 2021; 81:101-108. [PMID: 34147591 DOI: 10.1016/j.mri.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION In-scanner head motion is a common cause of reduced image quality in neuroimaging, and causes systematic brain-wide changes in cortical thickness and volumetric estimates derived from structural MRI scans. There are few widely available methods for measuring head motion during structural MRI. Here, we train a deep learning predictive model to estimate changes in head pose using video obtained from an in-scanner eye tracker during an EPI-BOLD acquisition with participants undertaking deliberate in-scanner head movements. The predictive model was used to estimate head pose changes during structural MRI scans, and correlated with cortical thickness and subcortical volume estimates. METHODS 21 healthy controls (age 32 ± 13 years, 11 female) were studied. Participants carried out a series of stereotyped prompted in-scanner head motions during acquisition of an EPI-BOLD sequence with simultaneous recording of eye tracker video. Motion-affected and motion-free whole brain T1-weighted MRI were also obtained. Image coregistration was used to estimate changes in head pose over the duration of the EPI-BOLD scan, and used to train a predictive model to estimate head pose changes from the video data. Model performance was quantified by assessing the coefficient of determination (R2). We evaluated the utility of our technique by assessing the relationship between video-based head pose changes during structural MRI and (i) vertex-wise cortical thickness and (ii) subcortical volume estimates. RESULTS Video-based head pose estimates were significantly correlated with ground truth head pose changes estimated from EPI-BOLD imaging in a hold-out dataset. We observed a general brain-wide overall reduction in cortical thickness with increased head motion, with some isolated regions showing increased cortical thickness estimates with increased motion. Subcortical volumes were generally reduced in motion affected scans. CONCLUSIONS We trained a predictive model to estimate changes in head pose during structural MRI scans using in-scanner eye tracker video. The method is independent of individual image acquisition parameters and does not require markers to be to be fixed to the patient, suggesting it may be well suited to clinical imaging and research environments. Head pose changes estimated using our approach can be used as covariates for morphometric image analyses to improve the neurobiological validity of structural imaging studies of brain development and disease.
Collapse
Affiliation(s)
- Heath R Pardoe
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, USA.
| | - Samantha P Martin
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, USA
| | | | - Allan George
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, USA
| | - Hui Yuan
- Fordham University, New York, USA
| | | | - Wei Liu
- Fordham University, New York, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, NYU Grossman School of Medicine, New York, USA
| |
Collapse
|
44
|
Norbom LB, Ferschmann L, Parker N, Agartz I, Andreassen OA, Paus T, Westlye LT, Tamnes CK. New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Prog Neurobiol 2021; 204:102109. [PMID: 34147583 DOI: 10.1016/j.pneurobio.2021.102109] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies.
Collapse
Affiliation(s)
- Linn B Norbom
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tomáš Paus
- ECOGENE-21, Chicoutimi, Quebec, Canada; Department of Psychology and Psychiatry, University of Toronto, Ontario, Canada; Department of Psychiatry and Centre hospitalier universitaire Sainte-Justine, University of Montreal, Canada
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
45
|
Olafson E, Bedford SA, Devenyi GA, Patel R, Tullo S, Park MTM, Parent O, Anagnostou E, Baron-Cohen S, Bullmore ET, Chura LR, Craig MC, Ecker C, Floris DL, Holt RJ, Lenroot R, Lerch JP, Lombardo MV, Murphy DGM, Raznahan A, Ruigrok ANV, Spencer MD, Suckling J, Taylor MJ, Lai MC, Chakravarty MM. Examining the Boundary Sharpness Coefficient as an Index of Cortical Microstructure in Autism Spectrum Disorder. Cereb Cortex 2021; 31:3338-3352. [PMID: 33693614 PMCID: PMC8196259 DOI: 10.1093/cercor/bhab015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/06/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally specific increased cortical thickness observed in ASD may be driven by several independent biological processes that influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related heterogeneity (age, sex, and intelligence quotient). Using a vertex-based meta-analysis and a large multicenter structural magnetic resonance imaging (MRI) dataset, with a total of 1136 individuals, 415 with ASD (112 female; 303 male), and 721 controls (283 female; 438 male), we observed that individuals with ASD had significantly greater BSC in the bilateral superior temporal gyrus and left inferior frontal gyrus indicating an abrupt transition (high contrast) between white matter and cortical intensities. Individuals with ASD under 18 had significantly greater BSC in the bilateral superior temporal gyrus and right postcentral gyrus; individuals with ASD over 18 had significantly increased BSC in the bilateral precuneus and superior temporal gyrus. Increases were observed in different brain regions in males and females, with larger effect sizes in females. BSC correlated with ADOS-2 Calibrated Severity Score in individuals with ASD in the right medial temporal pole. Importantly, there was a significant spatial overlap between maps of the effect of diagnosis on BSC when compared with cortical thickness. These results invite studies to use BSC as a possible new measure of cortical development in ASD and to further examine the microstructural underpinnings of BSC-related differences and their impact on measures of cortical morphology.
Collapse
Affiliation(s)
- Emily Olafson
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Neuroscience, Weill Cornell Graduate School of Medical Sciences, New York City, NY 10021, USA
| | - Saashi A Bedford
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal H3A 2B4, Canada
| | - Raihaan Patel
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal H3A 2B4, Canada
| | - Stephanie Tullo
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
| | - Min Tae M Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, ON, Canada
| | - Olivier Parent
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Departement de Psychologie, Universite de Montreal, Montreal, QC, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Simon Baron-Cohen
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Edward T Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Lindsay R Chura
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Michael C Craig
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- National Autism Unit, Bethlem Royal Hospital, London BR3 3BX, UK
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of the Goethe University, Frankfurt am Main 60528, Germany
| | - Dorothea L Floris
- Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen 6525 HR, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen 02.275, The Netherlands
| | - Rosemary J Holt
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Rhoshel Lenroot
- Department of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jason P Lerch
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Michael V Lombardo
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems, @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Declan G M Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD 20892-9663, USA
| | - Amber N V Ruigrok
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - Michael D Spencer
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
| | - John Suckling
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Medical Imaging, University of Toronto, Toronto M5G 1X8, Canada
| | | | - Meng-Chuan Lai
- Autism Research Center, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 100229, Taiwan
- Department of Psychiatry, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 2B4, Canada
- Department of Psychiatry, McGill University, Montreal H3A 2B4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal H3A 2B4, Canada
| |
Collapse
|
46
|
Plitman E, Bussy A, Valiquette V, Salaciak A, Patel R, Cupo L, Béland ML, Tullo S, Tardif CL, Rajah MN, Near J, Devenyi GA, Chakravarty MM. The impact of the Siemens Tim Trio to Prisma upgrade and the addition of volumetric navigators on cortical thickness, structure volume, and 1H-MRS indices: An MRI reliability study with implications for longitudinal study designs. Neuroimage 2021; 238:118172. [PMID: 34082116 DOI: 10.1016/j.neuroimage.2021.118172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022] Open
Abstract
Many magnetic resonance imaging (MRI) measures are being studied longitudinally to explore topics such as biomarker detection and clinical staging. A pertinent concern to longitudinal work is MRI scanner upgrades. When upgrades occur during the course of a longitudinal MRI neuroimaging investigation, there may be an impact on the compatibility of pre- and post-upgrade measures. Similarly, subject motion is another issue that may be detrimental to MRI work and embedding volumetric navigators (vNavs) within acquisition sequences has emerged as a technique that allows for prospective motion correction. Our research group recently underwent an upgrade from a Siemens MAGNETOM 3T Tim Trio system to a Siemens MAGNETOM 3T Prisma Fit system. The goals of the current work were to: 1) investigate the impact of this upgrade on commonly used structural imaging measures and proton magnetic resonance spectroscopy indices ("Prisma Upgrade protocol") and 2) examine structural imaging measures in a sequence with vNavs alongside a standard acquisition sequence ("vNav protocol"). While high reliability was observed for most of the investigated MRI outputs, suboptimal reliability was observed for certain indices. Across the scanner upgrade, increases in frontal, temporal, and cingulate cortical thickness (CT) and thalamus volume, along with decreases in parietal CT and amygdala, globus pallidus, hippocampus, and striatum volumes, were observed. No significant impact of the upgrade was found in 1H-MRS analyses. Further, CT estimates were found to be larger in MPRAGE acquisitions compared to vNav-MPRAGE acquisitions mainly within temporal areas, while the opposite was found mostly in parietal brain regions. The results from this work should be considered in longitudinal study designs and comparable prospective motion correction investigations are warranted in cases of marked head movement.
Collapse
Affiliation(s)
- Eric Plitman
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Aurélie Bussy
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Vanessa Valiquette
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Alyssa Salaciak
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Raihaan Patel
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Lani Cupo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Marie-Lise Béland
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Stephanie Tullo
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Christine Lucas Tardif
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - M Natasha Rajah
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Psychology, McGill University, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Jamie Near
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
47
|
Bussy A, Patel R, Plitman E, Tullo S, Salaciak A, Bedford SA, Farzin S, Béland ML, Valiquette V, Kazazian C, Tardif CL, Devenyi GA, Chakravarty MM. Hippocampal shape across the healthy lifespan and its relationship with cognition. Neurobiol Aging 2021; 106:153-168. [PMID: 34280848 DOI: 10.1016/j.neurobiolaging.2021.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
The study of the hippocampus across the healthy adult lifespan has rendered inconsistent findings. While volumetric measurements have often been a popular technique for analysis, more advanced morphometric techniques have demonstrated compelling results that highlight the importance and improved specificity of shape-based measures. Here, the MAGeT Brain algorithm was applied on 134 healthy individuals aged 18-81 years old to extract hippocampal subfield volumes and hippocampal shape measurements, namely: local surface area (SA) and displacement. We used linear-, second- or third-order natural splines to examine the relationships between hippocampal measures and age. In addition, partial least squares analyses were performed to relate volume and shape measurements with cognitive and demographic information. Volumetric results indicated a relative preservation of the right cornus ammonis 1 with age and a global volume reduction linked with older age, female sex, lower levels of education and cognitive performance. Vertex-wise analysis demonstrated an SA preservation in the anterior hippocampus with a peak during the sixth decade, while the posterior hippocampal SA gradually decreased across lifespan. Overall, SA decrease was linked to older age, female sex and, to a lesser extent lower levels of education and cognitive performance. Outward displacement in the lateral hippocampus and inward displacement in the medial hippocampus were enlarged with older age, lower levels of cognition and education, indicating an accentuation of the hippocampal "C" shape with age. Taken together, our findings suggest that vertex-wise analyses have higher spatial specifity and that sex, education, and cognition are implicated in the differential impact of age on hippocampal subregions throughout its anteroposterior and medial-lateral axes. This article is part of the Virtual Special Issue titled COGNITIVE NEU- ROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Aurélie Bussy
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| | - Raihaan Patel
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Eric Plitman
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Stephanie Tullo
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Alyssa Salaciak
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Saashi A Bedford
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Sarah Farzin
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marie-Lise Béland
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Vanessa Valiquette
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Christina Kazazian
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Computional Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Gilmore AD, Buser NJ, Hanson JL. Variations in structural MRI quality significantly impact commonly used measures of brain anatomy. Brain Inform 2021; 8:7. [PMID: 33860392 PMCID: PMC8050166 DOI: 10.1186/s40708-021-00128-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/29/2021] [Indexed: 11/10/2022] Open
Abstract
Subject motion can introduce noise into neuroimaging data and result in biased estimations of brain structure. In-scanner motion can compromise data quality in a number of ways and varies widely across developmental and clinical populations. However, quantification of structural image quality is often limited to proxy or indirect measures gathered from functional scans; this may be missing true differences related to these potential artifacts. In this study, we take advantage of novel informatic tools, the CAT12 toolbox, to more directly measure image quality from T1-weighted images to understand if these measures of image quality: (1) relate to rigorous quality-control checks visually completed by human raters; (2) are associated with sociodemographic variables of interest; (3) influence regional estimates of cortical surface area, cortical thickness, and subcortical volumes from the commonly used Freesurfer tool suite. We leverage public-access data that includes a community-based sample of children and adolescents, spanning a large age-range (N = 388; ages 5-21). Interestingly, even after visually inspecting our data, we find image quality significantly impacts derived cortical surface area, cortical thickness, and subcortical volumes from multiple regions across the brain (~ 23.4% of all areas investigated). We believe these results are important for research groups completing structural MRI studies using Freesurfer or other morphometric tools. As such, future studies should consider using measures of image quality to minimize the influence of this potential confound in group comparisons or studies focused on individual differences.
Collapse
Affiliation(s)
- Alysha D Gilmore
- Learning Research & Development Center, University of Pittsburgh, 3939 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Nicholas J Buser
- Learning Research & Development Center, University of Pittsburgh, 3939 O'Hara Street, Pittsburgh, PA, 15260, USA
| | - Jamie L Hanson
- Learning Research & Development Center, University of Pittsburgh, 3939 O'Hara Street, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
49
|
Reproducible Evaluation of Diffusion MRI Features for Automatic Classification of Patients with Alzheimer's Disease. Neuroinformatics 2021; 19:57-78. [PMID: 32524428 DOI: 10.1007/s12021-020-09469-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diffusion MRI is the modality of choice to study alterations of white matter. In past years, various works have used diffusion MRI for automatic classification of Alzheimer's disease. However, classification performance obtained with different approaches is difficult to compare because of variations in components such as input data, participant selection, image preprocessing, feature extraction, feature rescaling (FR), feature selection (FS) and cross-validation (CV) procedures. Moreover, these studies are also difficult to reproduce because these different components are not readily available. In a previous work (Samper-González et al. 2018), we propose an open-source framework for the reproducible evaluation of AD classification from T1-weighted (T1w) MRI and PET data. In the present paper, we first extend this framework to diffusion MRI data. Specifically, we add: conversion of diffusion MRI ADNI data into the BIDS standard and pipelines for diffusion MRI preprocessing and feature extraction. We then apply the framework to compare different components. First, FS has a positive impact on classification results: highest balanced accuracy (BA) improved from 0.76 to 0.82 for task CN vs AD. Secondly, voxel-wise features generally gives better performance than regional features. Fractional anisotropy (FA) and mean diffusivity (MD) provided comparable results for voxel-wise features. Moreover, we observe that the poor performance obtained in tasks involving MCI were potentially caused by the small data samples, rather than by the data imbalance. Furthermore, no extensive classification difference exists for different degree of smoothing and registration methods. Besides, we demonstrate that using non-nested validation of FS leads to unreliable and over-optimistic results: 5% up to 40% relative increase in BA. Lastly, with proper FR and FS, the performance of diffusion MRI features is comparable to that of T1w MRI. All the code of the framework and the experiments are publicly available: general-purpose tools have been integrated into the Clinica software package ( www.clinica.run ) and the paper-specific code is available at: https://github.com/aramis-lab/AD-ML .
Collapse
|
50
|
Klapwijk ET, van den Bos W, Tamnes CK, Raschle NM, Mills KL. Opportunities for increased reproducibility and replicability of developmental neuroimaging. Dev Cogn Neurosci 2021; 47:100902. [PMID: 33383554 PMCID: PMC7779745 DOI: 10.1016/j.dcn.2020.100902] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Many workflows and tools that aim to increase the reproducibility and replicability of research findings have been suggested. In this review, we discuss the opportunities that these efforts offer for the field of developmental cognitive neuroscience, in particular developmental neuroimaging. We focus on issues broadly related to statistical power and to flexibility and transparency in data analyses. Critical considerations relating to statistical power include challenges in recruitment and testing of young populations, how to increase the value of studies with small samples, and the opportunities and challenges related to working with large-scale datasets. Developmental studies involve challenges such as choices about age groupings, lifespan modelling, analyses of longitudinal changes, and data that can be processed and analyzed in a multitude of ways. Flexibility in data acquisition, analyses and description may thereby greatly impact results. We discuss methods for improving transparency in developmental neuroimaging, and how preregistration can improve methodological rigor. While outlining challenges and issues that may arise before, during, and after data collection, solutions and resources are highlighted aiding to overcome some of these. Since the number of useful tools and techniques is ever-growing, we highlight the fact that many practices can be implemented stepwise.
Collapse
Affiliation(s)
- Eduard T Klapwijk
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Wouter van den Bos
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Kathryn L Mills
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oregon, Eugene, OR, USA
| |
Collapse
|