1
|
Mareckova K, Trbusek F, Marecek R, Chladek J, Koscova Z, Plesinger F, Andrysková L, Brazdil M, Nikolova YS. Maternal depression during the perinatal period and its relationship with emotion regulation in young adulthood: An fMRI study in a prenatal birth cohort. Psychol Med 2025; 55:e39. [PMID: 39933999 DOI: 10.1017/s0033291725000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
BACKGROUND Maternal perinatal mental health is essential for optimal brain development and mental health of the offspring. We evaluated whether maternal depression during the perinatal period and early life of the offspring might be selectively associated with altered brain function during emotion regulation and whether those may further correlate with physiological responses and the typical use of emotion regulation strategies. METHODS Participants included 163 young adults (49% female, 28-30 years) from the ELSPAC prenatal birth cohort who took part in its neuroimaging follow-up and had complete mental health data from the perinatal period and early life. Maternal depressive symptoms were measured mid-pregnancy, 2 weeks, 6 months, and 18 months after birth. Regulation of negative affect was studied using functional magnetic resonance imaging, concurrent skin conductance response (SCR) and heart rate variability (HRV), and assessment of typical emotion regulation strategy. RESULTS Maternal depression 2 weeks after birth interacted with sex and showed a relationship with greater brain response during emotion regulation in a right frontal cluster in women. Moreover, this brain response mediated the relationship between greater maternal depression 2 weeks after birth and greater suppression of emotions in young adult women (ab = 0.11, SE = 0.05, 95% CI [0.016; 0.226]). The altered brain response during emotion regulation and the typical emotion regulation strategy were also as sociated with SCR and HRV. CONCLUSIONS These findings suggest that maternal depression 2 weeks after birth predisposes female offspring to maladaptive emotion regulation skills and particularly to emotion suppression in young adulthood.
Collapse
Affiliation(s)
- Klara Mareckova
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Filip Trbusek
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Radek Marecek
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Chladek
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Zuzana Koscova
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Filip Plesinger
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Lenka Andrysková
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Brain and Mind Research, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto
| |
Collapse
|
2
|
Han Z, Zhang C, Cheng K, Chen Y, Tang Z, Chen L, Ni J, Wang Z. Clinical application of respiratory-gated auricular vagal afferent nerve stimulation. Neuroscience 2025; 565:117-123. [PMID: 39615649 DOI: 10.1016/j.neuroscience.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Vagus nerve stimulation (VNS) has garnered significant attention as a promising bioelectronic therapy. In recent years, respiratory-gated auricular vagal afferent nerve stimulation (RAVANS), a novel non-invasive vagus nerve stimulation technique, has emerged. RAVANS integrates respiration with transcutaneous auricular vagus nerve stimulation (taVNS) and shares a similar mechanism of action to traditional VNS. Similar to conventional Vagus Nerve Stimulation (VNS), RAVANS may mitigate brain injury through three primary pathways: reducing neuronal apoptosis, modulating neurotransmitter release, and influencing inflammatory factor pathways. In this paper, we emphasize how RAVANS enhances the activation of nucleus of the solitary tract (NTS)and the locus coeruleus by regulating the monoaminergic and GABA systems through respiratory control. Additionally, it leverages the beneficial effects of respiration on the central nervous system. In this review, we delineate the potential mechanisms of action of RAVANS, provide a comprehensive overview of its clinical applications in chronic low back pain, migraine, depression, hypertension, and cognitive disorders. Furthermore, we offer future perspectives on optimizing the parameters of RAVANS and its application in post-stroke dysphagia. This will pave the way for new avenues in RAVANS research.
Collapse
Affiliation(s)
- Zhiyuan Han
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Cuicui Zhang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Keling Cheng
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yunfang Chen
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zhiqin Tang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Lewen Chen
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Jun Ni
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Zhiyong Wang
- Department of Rehabilitation, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Department of Rehabilitation, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| |
Collapse
|
3
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. Biol Sex Differ 2024; 15:15. [PMID: 38351045 PMCID: PMC10863151 DOI: 10.1186/s13293-024-00591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. METHOD We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. RESULTS Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (βs) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). CONCLUSION With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA.
| | | | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
4
|
Chaudhary S, Wong HK, Chen Y, Zhang S, Li CSR. Sex differences in the effects of individual anxiety state on regional responses to negative emotional scenes. RESEARCH SQUARE 2023:rs.3.rs-3701951. [PMID: 38196586 PMCID: PMC10775373 DOI: 10.21203/rs.3.rs-3701951/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Men and women are known to show differences in the incidence and clinical manifestations of mood and anxiety disorders. Many imaging studies have investigated the neural correlates of sex differences in emotion processing. However, it remains unclear how anxiety might impact emotion processing differently in men and women. Method We recruited 119 healthy adults and assessed their levels of anxiety using State-Trait Anxiety Inventory (STAI) State score. With functional magnetic resonance imaging (fMRI), we examined regional responses to negative vs. neutral (Neg-Neu) picture matching in the Hariri task. Behavioral data were analyzed using regression and repeated-measures analysis of covariance with age as a covariate, and fMRI data were analyzed using a full-factorial model with sex as a factor and age as a covariate. Results Men and women did not differ in STAI score, or accuracy rate or reaction time (RT) (Neg-Neu). However, STAI scores correlated positively with RT (Neg-Neu) in women but not in men. Additionally, in women, STAI score correlated positively with lingual gyrus (LG) and negatively with medial prefrontal cortex (mPFC) and superior frontal gyrus (SFG) activity during Neg vs. Neu trials. The parameter estimates (β's) of mPFC also correlated with RT (Neg-Neu) in women but not in men. Generalized psychophysiological interaction (gPPI) analysis in women revealed mPFC connectivity with the right inferior frontal gyrus, right SFG, and left parahippocampal gyrus during Neg vs. Neu trials in positive correlation with both STAI score and RT (Neg-Neu). In a mediation analysis, mPFC gPPI but not mPFC activity fully mediated the association between STAI scores and RT (Neg-Neu). Conclusion With anxiety affecting the behavioral and neural responses to negative emotions in women but not in men and considering the known roles of the mPFC in emotion regulation, we discussed heightened sensitivity and regulatory demands during negative emotion processing as neurobehavioral markers of anxiety in women.
Collapse
Affiliation(s)
| | | | - Yu Chen
- Yale School of Medicine: Yale University School of Medicine
| | - Sheng Zhang
- Yale School of Medicine: Yale University School of Medicine
| | | |
Collapse
|
5
|
Simon L, Rab SL, Goldstein P, Magal N, Admon R. Multi-trajectory analysis uncovers latent associations between psychological and physiological acute stress response patterns. Psychoneuroendocrinology 2022; 145:105925. [PMID: 36115320 DOI: 10.1016/j.psyneuen.2022.105925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Encounter with an acute stressor elicits multiple physiological and psychological response trajectories that spread at different times-scales and directions. Associating a single physiological response trajectory with a specific psychological response has remained a challenge, due to putative interactions between the different stress response pathways. Hence, multidimensional analysis of stress response trajectories may be better suited to account for response variability. To test this, 96 healthy female participants underwent a robust acute laboratory stress induction procedure while their psychological [positive and negative affect (PANAS)] and physiological [heart rate (HR), heart rate variability (HRV), saliva cortisol (CORT)] responses were recorded before, during and after stress. Combining these data using unsupervised group-based multi-trajectory modelling uncovered three latent classes that best accounted for variability across psychological and physiological stress response trajectories. These classes were labelled based on their psychological response patterns as: A prototypical response group that depict a moderate increase in negative and decrease in positive affect during stress, with both patterns recovering after stress offset (n = 55); A heightened response group that depict excessive affective responses during stress that recover after stress offset (n = 24); and a lack of recovery group that depict a moderate increase in negative and decrease in positive affect during stress, with both patterns not recovering after stress offset (n = 17). With respect to physiological acute stress trajectories, all three groups exhibited comparable increases in HR and CORT during stress that recovered after stress offset, yet only the prototypical group expressed the expected stress-induced reduction in HRV, while the other two groups exhibited blunted HRV response. Critically, focusing on a single physiological stress response trajectory, including HRV, did not account for psychological response variability and vice versa. Taken together, a multi-trajectory approach may better account for the multidimensionality of acute stress response and uncover latent associations between psychological and physiological response patterns. Compared to the other two groups, the prototypical group also exhibited significantly lower overall stress scores based on the DASS-21 scale. This, alongside the uncovered response patterns, suggest that latent psycho-physiological associations may shed light on stress response adaptivity or lack thereof.
Collapse
Affiliation(s)
- Lisa Simon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Sharona L Rab
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Pavel Goldstein
- School of Public Health, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Noa Magal
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Qiu X, Wang H, Lan Y, Miao J, Pan C, Sun W, Li G, Wang Y, Zhao X, Zhu Z, Zhu S. Blood biomarkers of post-stroke depression after minor stroke at three months in males and females. BMC Psychiatry 2022; 22:162. [PMID: 35241021 PMCID: PMC8896360 DOI: 10.1186/s12888-022-03805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is one of the most common neuropsychiatric complications after stroke. Studies on the underlying mechanisms and biological markers of sex differences in PSD are of great significance, but there are still few such studies. Therefore, the main objective of this study was to investigate the association of biomarkers with PSD at 3 months after minor stroke in men and women. METHODS This was a prospective multicenter cohort study that enrolled 530 patients with minor stroke (males, 415; females, 115). Demographic information and blood samples of patients were collected within 24 h of admission, and followed up at 3 months after stroke onset. PSD was defined as a depressive disorder due to another medical condition with depressive features, major depressive-like episode, or mixed-mood features according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-V). Univariate analysis was performed using the chi-square test, Mann-Whitney U test, or t-test. Partial least-squares discriminant analysis (PLS-DA) was used to distinguish between patients with and without PSD. Factors with variable importance for projection (VIP) > 1.0 were classified as the most important factors in the model segregation. RESULTS The PLS-DA model mainly included component 1 and component 2 for males and females. For males, the model could explain 13% and 16.9% of the variables, respectively, and 29.9% of the variables in total; the most meaningful predictors were exercise habit and fibrinogen level. For females, the model could explain 15.7% and 10.5% of the variables, respectively, and 26.2% of the variables in total; the most meaningful predictors in the model were brain-derived neurotrophic factor (BDNF), magnesium and free T3. Fibrinogen was positively correlated with the Hamilton Depression Scale-17 items (HAMD-17) score. BDNF, magnesium, and free T3 levels were negatively correlated with the HAMD-17 score. CONCLUSIONS This was a prospective cohort study. The most important markers found to be affecting PSD at 3 months were fibrinogen in males, and free T3, magnesium, and BDNF in females. TRIAL REGISTRATION ChiCTR-ROC-17013993 .
Collapse
Affiliation(s)
- Xiuli Qiu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - He Wang
- Department of Medical Affair, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Yan Lan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Chensheng Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Wenzhe Sun
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Yanyan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Zhou Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| |
Collapse
|
7
|
Blokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, Boomsma DI, Penninx BWJH, Hottenga JJ, de Geus EJC, Willemsen G, Milaneschi Y, Tiemeier H, Grabe HJ, Teumer A, Van der Auwera S, Völker U, Hamilton SP, Magnusson PKE, Viktorin A, Mehta D, Mullins N, Adams MJ, Breen G, McIntosh AM, Lewis CM, Hougaard DM, Nordentoft M, Mors O, Mortensen PB, Werge T, Als TD, Børglum AD, Petryshen TL, Smoller JW, Goldstein JM. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol Psychiatry 2022; 91:102-117. [PMID: 34099189 PMCID: PMC8458480 DOI: 10.1016/j.biopsych.2021.02.972] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark; Bioinformatics Research Centre (BiRC), Aarhus, Denmark
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Biogen Inc., Cambridge, Massachusetts
| | - Chris Cotsapas
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Departments of Neurology and Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Stuart Tobet
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert Handa
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - David St Clair
- University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Todd Lencz
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, The Park - Centre for Mental Health, Wacol, Queensland, Australia
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Brian Kelly
- Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Tõnu Esko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hannelore Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes Steixner-Kumar
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, SAR China
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Alan R Sanders
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Joseph D Buxbaum
- Departments of Human Genetics and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Ina Giegling
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | | | - Elvira Bramon
- Mental Health Neuroscience Research Department, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robin M Murray
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - Jimmy Lee
- Research Division and Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roel A Ophoff
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands; Department of Human Genetics, University of California, Los Angeles, California; David Geffen School of Medicine, and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Anil K Malhotra
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Nicholas G Martin
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia; Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andreas J Forstner
- Centre for Human Genetics, University of Marburg, Marburg, Germany; Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sabrina Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- University of Liverpool, Liverpool, United Kingdom; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Marion Leboyer
- Faculté de Médecine, Université Paris Est, Créteil, France; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Stéphane Jamain
- Faculté de Médecine, Université Paris Est, Créteil, France; INSERM U955, Psychiatrie Translationnelle, Créteil, France
| | - Bruno Etain
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France
| | - Frank Bellivier
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France; Paris Bipolar and TRD Expert Centres, FondaMental Foundation, Paris, France
| | - John B Vincent
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pablo Cervantes
- Department of Psychiatry, Mood Disorders Program, McGill University Health Center, Montréal, Québec, Canada
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mark Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Eli A Stahl
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, Germany
| | - Tracy Air
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Austrlalia, Australia
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douglas F Levinson
- Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - James A Knowles
- Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Roy H Perlis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Henning Tiemeier
- Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Divya Mehta
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerome Breen
- NIHR Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben B Mortensen
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; National Centre for Register-Based Research (NCCR), Aarhus University, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Concert Pharmaceuticals, Inc., Lexington, Massachusetts
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jill M Goldstein
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry and Vincent Department of Obstetrics, Gynecology & Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts; MGH-MIT-HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) modulates brain response to stress in major depression. J Psychiatr Res 2021; 142:188-197. [PMID: 34365067 PMCID: PMC8429271 DOI: 10.1016/j.jpsychires.2021.07.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Negative stress significantly impacts major depressive disorder (MDD), given the shared brain circuitry between the stress response and mood. Thus, interventions that target this circuitry will have an important impact on MDD. The aim of this study was to evaluate the acute effects of a novel respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) technique in the modulation of brain activity and connectivity in women with MDD in response to negative stressful stimuli. METHODS Twenty premenopausal women with recurrent MDD in an active episode were included in a cross-over experimental study that included two functional MRI visits within one week, randomized to receive exhalatory- (e-RAVANS) or inhalatory-gated (i-RAVANS) at each visit. Subjects were exposed to a visual stress challenge that preceded and followed RAVANS. A Factorial analysis was used to evaluate the effects of RAVANS on brain activity and connectivity and changes in depressive and anxiety symptomatology post-stress. RESULTS Compared with i-RAVANS, e-RAVANS was significantly associated with increased activation of subgenual anterior cingulate, orbitofrontal and ventromedial prefrontal cortices and increased connectivity between hypothalamus and dorsolateral prefrontal cortex, and from nucleus tractus solitarii to locus coeruleus and ventromedial prefrontal cortex. Changes in brain activity and connectivity after e-RAVANS were significantly associated with a reduction in depressive and anxiety symptoms. CONCLUSIONS Our study suggests exhalatory-gated RAVANS effectively modulates brain circuitries regulating response to negative stress and is associated with significant acute reduction of depressive and anxiety symptomatology in women with recurrent MDD. Findings suggest a potential non-pharmacologic intervention for acute relief of depressive symptomatology in MDD.
Collapse
|
9
|
de Lacy N, Kutz JN, Calhoun VD. Sex-related differences in brain dynamism at rest as neural correlates of positive and negative valence system constructs. Cogn Neurosci 2021; 12:131-154. [PMID: 32715898 PMCID: PMC7881523 DOI: 10.1080/17588928.2020.1793752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Clinical anxiety and depression are the most prevalent mental illnesses, likely representing maladaptive expressions of negative valence systems concerned with conditioned responses to fear, threat, loss, and frustrative nonreward. These conditions exhibit similar, striking sex/gender-related differences in onset, incidence, and severity for which the neural correlates are not yet established. In alarge sample of neurotypical young adults, we demonstrate that intrinsic brain dynamism metrics derived from sex-sensitive models of whole-brain network function are significantly associated with valence system traits. Surprisingly, we found that greater brain dynamism is strongly positively correlated to anxiety and depression traits in males, but almost wholly decoupled from traits for important cognitive control and reappraisal strategies associated with positive valence. Conversely, intrinsic brain dynamism is strongly positively coupled to drive, novelty-seeking and self-control in females with only rare or non-significant directional negative correlation with anxiety and depression traits. Our results suggest that the dynamic neural correlates of traits for valence, anxiety and depression are significantly different in males/men and females/women. These findings may relate to the known sex/gender-related differences in cognitive reappraisal of emotional experiences and clinical presentations of anxiety and depression, with potential relevance to gold standard therapies based on enhancing cognitive control strategies.
Collapse
Affiliation(s)
- Nina de Lacy
- Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific St, Seattle, WA 98195
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Lewis Hall 201, Seattle WA 98195
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| |
Collapse
|
10
|
Martin J, Khramtsova EA, Goleva SB, Blokland GAM, Traglia M, Walters RK, Hübel C, Coleman JRI, Breen G, Børglum AD, Demontis D, Grove J, Werge T, Bralten J, Bulik CM, Lee PH, Mathews CA, Peterson RE, Winham SJ, Wray N, Edenberg HJ, Guo W, Yao Y, Neale BM, Faraone SV, Petryshen TL, Weiss LA, Duncan LE, Goldstein JM, Smoller JW, Stranger BE, Davis LK. Examining Sex-Differentiated Genetic Effects Across Neuropsychiatric and Behavioral Traits. Biol Psychiatry 2021; 89:1127-1137. [PMID: 33648717 PMCID: PMC8163257 DOI: 10.1016/j.biopsych.2020.12.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The origin of sex differences in prevalence and presentation of neuropsychiatric and behavioral traits is largely unknown. Given established genetic contributions and correlations, we tested for a sex-differentiated genetic architecture within and between traits. METHODS Using European ancestry genome-wide association summary statistics for 20 neuropsychiatric and behavioral traits, we tested for sex differences in single nucleotide polymorphism (SNP)-based heritability and genetic correlation (rg < 1). For each trait, we computed per-SNP z scores from sex-stratified regression coefficients and identified genes with sex-differentiated effects using a gene-based approach. We calculated correlation coefficients between z scores to test for shared sex-differentiated effects. Finally, we tested for sex differences in across-trait genetic correlations. RESULTS We observed no consistent sex differences in SNP-based heritability. Between-sex, within-trait genetic correlations were high, although <1 for educational attainment and risk-taking behavior. We identified 4 genes with significant sex-differentiated effects across 3 traits. Several trait pairs shared sex-differentiated effects. The top genes with sex-differentiated effects were enriched for multiple gene sets, including neuron- and synapse-related sets. Most between-trait genetic correlation estimates were not significantly different between sexes, with exceptions (educational attainment and risk-taking behavior). CONCLUSIONS Sex differences in the common autosomal genetic architecture of neuropsychiatric and behavioral phenotypes are small and polygenic and unlikely to fully account for observed sex-differentiated attributes. Larger sample sizes are needed to identify sex-differentiated effects for most traits. For well-powered studies, we identified genes with sex-differentiated effects that were enriched for neuron-related and other biological functions. This work motivates further investigation of genetic and environmental influences on sex differences.
Collapse
Affiliation(s)
- Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.
| | - Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine and Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois; Computational Sciences, Janssen Pharmaceuticals, Spring House, Pennsylvania
| | - Slavina B Goleva
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gabriëlla A M Blokland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michela Traglia
- Department of Psychiatry, University of California San Francisco, San Francisco, California; Institute for Human Genetics, University of California San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Christopher Hübel
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, United Kingdom
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, United Kingdom
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark; Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Phil H Lee
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carol A Mathews
- Department of Psychiatry, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia; Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Stacey J Winham
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Naomi Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Yin Yao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen V Faraone
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Tracey L Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren A Weiss
- Department of Psychiatry, University of California San Francisco, San Francisco, California; Institute for Human Genetics, University of California San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Laramie E Duncan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan W Smoller
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine and Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois; Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Chicago, Illinois
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
11
|
Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later. Proc Natl Acad Sci U S A 2021; 118:2014464118. [PMID: 33876747 DOI: 10.1073/pnas.2014464118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring's risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.
Collapse
|
12
|
Novel polygenic risk score as a translational tool linking depression-related changes in the corticolimbic transcriptome with neural face processing and anhedonic symptoms. Transl Psychiatry 2020; 10:410. [PMID: 33235204 PMCID: PMC7686479 DOI: 10.1038/s41398-020-01093-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Convergent data from imaging and postmortem brain transcriptome studies implicate corticolimbic circuit (CLC) dysregulation in the pathophysiology of depression. To more directly bridge these lines of work, we generated a novel transcriptome-based polygenic risk score (T-PRS), capturing subtle shifts toward depression-like gene expression patterns in key CLC regions, and mapped this T-PRS onto brain function and related depressive symptoms in a nonclinical sample of 478 young adults (225 men; age 19.79 +/- 1.24) from the Duke Neurogenetics Study. First, T-PRS was generated based on common functional SNPs shifting CLC gene expression toward a depression-like state. Next, we used multivariate partial least squares regression to map T-PRS onto whole-brain activity patterns during perceptual processing of social stimuli (i.e., human faces). For validation, we conducted a comparative analysis with a PRS summarizing depression risk variants identified by the Psychiatric Genomics Consortium (PGC-PRS). Sex was modeled as moderating factor. We showed that T-PRS was associated with widespread reductions in neural response to neutral faces in women and to emotional faces and shapes in men (multivariate p < 0.01). This female-specific reductions in neural response to neutral faces was also associated with PGC-PRS (multivariate p < 0.03). Reduced reactivity to neutral faces was further associated with increased self-reported anhedonia. We conclude that women with functional alleles mimicking the postmortem transcriptomic CLC signature of depression have blunted neural activity to social stimuli, which may be expressed as higher anhedonia.
Collapse
|
13
|
Rab SL, Admon R. Parsing inter- and intra-individual variability in key nervous system mechanisms of stress responsivity and across functional domains. Neurosci Biobehav Rev 2020; 120:550-564. [PMID: 32941963 DOI: 10.1016/j.neubiorev.2020.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Exposure to stressful events is omnipresent in modern human life, yet people show considerable heterogeneity in the impact of stress exposure(s) on their functionality and overall health. Encounter with stressor(s) is counteracted by an intricate repertoire of nervous-system responses. This narrative review starts with a brief summary of the vast evidence that supports heart rate variability, cortisol secretion, and large-scale cortical network interactions as kay physiological, endocrinological, and neural mechanisms of stress responsivity, respectively. The second section highlights potential sources for inter-individual variability in these mechanisms, by focusing on biological, environmental, social, habitual, and psychological factors that may influence stress responsivity patterns and thus contribute to heterogeneity in the impact of stress exposure on functionality and health. The third section introduces intra-individually variability in stress responsivity across functional domains as a novel putative source for heterogeneity in the impact of stress exposure. Challenges and future directions are further discussed. Parsing inter- and intra-individual variability in nervous-system mechanisms of stress responsivity and across functional domains is critical towards potential clinical translation.
Collapse
Affiliation(s)
- Sharona L Rab
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
14
|
Padgaonkar NT, Lawrence KE, Hernandez LM, Green SA, Galván A, Dapretto M. Sex Differences in Internalizing Symptoms and Amygdala Functional Connectivity in Neurotypical Youth. Dev Cogn Neurosci 2020; 44:100797. [PMID: 32716854 PMCID: PMC7374605 DOI: 10.1016/j.dcn.2020.100797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023] Open
Abstract
Internalizing symptoms in neurotypical youth relate to amygdala connectivity. Greater modulation is observed in females than in males. Connectivity might be a symptom of or a risk factor for disorders.
Amygdala resting-state functional connectivity (rsFC) is altered in adolescents with internalizing disorders, though the relationship between rsFC and subclinical symptomatology in neurotypical youth remains unclear. Here we examined whether amygdala rsFC varied across a continuum of internalizing symptoms in 110 typically-developing (TD) youths 8 to 17 years old using functional magnetic resonance imaging (fMRI). We assessed overall internalizing symptoms, as well as anxious-depressed, withdrawn-depressed, and somatic complaints. Given known sex differences in the prevalence of internalizing disorders, we compared connectivity between males and females. As compared to males, females with greater internalizing, anxious-depressed, and somatic symptoms displayed greater connectivity with the cingulate gyrus, insula, and somatosensory cortices. In contrast, males with greater anxious-depressed symptoms demonstrated weaker connectivity with the subcallosal prefrontal cortex. Sex differences in rsFC in relation to symptom severity were evident for the whole amygdala and for two of its subnuclei (centromedial and superficial amygdala). Overall, results suggest that, for females, higher internalizing symptoms are associated with greater rsFC between the amygdala and regions implicated in emotional and somatosensory processing, salience detection, and action selection. Future longitudinal investigations are needed to determine whether this hyperconnectivity may confer resilience to, or pose risk for, the development of internalizing disorders.
Collapse
Affiliation(s)
| | - K E Lawrence
- University of California, Los Angeles, United States
| | - L M Hernandez
- University of California, Los Angeles, United States
| | - S A Green
- University of California, Los Angeles, United States
| | - A Galván
- University of California, Los Angeles, United States
| | - M Dapretto
- University of California, Los Angeles, United States.
| |
Collapse
|
15
|
Impact of sex and depressed mood on the central regulation of cardiac autonomic function. Neuropsychopharmacology 2020; 45:1280-1288. [PMID: 32152473 PMCID: PMC7298013 DOI: 10.1038/s41386-020-0651-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Cardiac autonomic dysregulation has been implicated in the comorbidity of major psychiatric disorders and cardiovascular disease, potentially through dysregulation of physiological responses to negative stressful stimuli (here, shortened to stress response). Further, sex differences in these comorbidities are substantial. Here, we tested the hypothesis that mood- and sex-dependent alterations in brain circuitry implicated in the regulation of the stress response are associated with reduced peripheral parasympathetic activity during negative emotional arousal. Fifty subjects (28 females) including healthy controls and individuals with major depression, bipolar psychosis and schizophrenia were evaluated. Functional magnetic resonance imaging and physiology (cardiac pulse) data were acquired during a mild visual stress reactivity challenge. Associations between changes in activity and functional connectivity of the stress response circuitry and variations in cardiovagal activity [normalized high frequency power of heart rate variability (HFn)] were evaluated using GLM analyses, including interactions with depressed mood and sex across disorders. Our results revealed that in women with high depressed mood, lower cardiovagal activity in response to negative affective stimuli was associated with greater activation of hypothalamus and right amygdala and reduced connectivity between hypothalamus and right orbitofrontal cortex, amygdala, and hippocampus. No significant associations were observed in women with low levels of depressed mood or men. Our results revealed mood- and sex-dependent interactions in the central regulation of cardiac autonomic activity in response to negative affective stimuli. These findings provide a potential pathophysiological mechanism for previously observed sex differences in the comorbidity of major depression and cardiovascular disease.
Collapse
|
16
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
17
|
Sawyer KS, Maleki N, Urban T, Marinkovic K, Karson S, Ruiz SM, Harris GJ, Oscar-Berman M. Alcoholism gender differences in brain responsivity to emotional stimuli. eLife 2019; 8:e41723. [PMID: 31038125 PMCID: PMC6491039 DOI: 10.7554/elife.41723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/29/2019] [Indexed: 11/20/2022] Open
Abstract
Men and women may use alcohol to regulate emotions differently, with corresponding differences in neural responses. We explored how the viewing of different types of emotionally salient stimuli impacted brain activity observed through functional magnetic resonance imaging (fMRI) from 42 long-term abstinent alcoholic (25 women) and 46 nonalcoholic (24 women) participants. Analyses revealed blunted brain responsivity in alcoholic compared to nonalcoholic groups, as well as gender differences in those activation patterns. Brain activation in alcoholic men (ALCM) was significantly lower than in nonalcoholic men (NCM) in regions including rostral middle and superior frontal cortex, precentral gyrus, and inferior parietal cortex, whereas activation was higher in alcoholic women (ALCW) than in nonalcoholic women (NCW) in superior frontal and supramarginal cortical regions. The reduced brain reactivity of ALCM, and increases for ALCW, highlighted divergent brain regions and gender effects, suggesting possible differences in the underlying basis for development of alcohol use disorders.
Collapse
Affiliation(s)
- Kayle S Sawyer
- Psychology Research ServiceVA Healthcare SystemBostonUnited States
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
- Department of RadiologyMassachusetts General HospitalBostonUnited States
- Sawyer Scientific, LLCBostonUnited States
| | - Nasim Maleki
- Psychology Research ServiceVA Healthcare SystemBostonUnited States
- Department of PsychiatryMassachusetts General HospitalBostonUnited States
| | - Trinity Urban
- Department of RadiologyMassachusetts General HospitalBostonUnited States
| | - Ksenija Marinkovic
- Department of PsychologySan Diego State UniversitySan DiegoUnited States
| | - Steven Karson
- Department of Computer ScienceDartmouth CollegeHanoverUnited States
| | - Susan M Ruiz
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
| | - Gordon J Harris
- Department of RadiologyMassachusetts General HospitalBostonUnited States
- 3D Imaging ServiceMassachusetts General HospitalBostonUnited States
| | - Marlene Oscar-Berman
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUnited States
- Department of PsychiatryBoston University School of MedicineBostonUnited States
- Department of NeurologyBoston University School of MedicineBostonUnited States
| |
Collapse
|
18
|
Eid RS, Gobinath AR, Galea LAM. Sex differences in depression: Insights from clinical and preclinical studies. Prog Neurobiol 2019; 176:86-102. [PMID: 30721749 DOI: 10.1016/j.pneurobio.2019.01.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Depression represents a global mental health concern, and disproportionally affects women as they are twice more likely to be diagnosed than men. In this review, we provide a summary of evidence to support the notion that differences in depression between men and women span multiple facets of the disease, including epidemiology, symptomology, treatment, and pathophysiology. Through a lens of biological sex, we overview depression-related transcriptional patterns, changes in neuroanatomy and neuroplasticity, and immune signatures. We acknowledge the unique physiological and behavioral demands of pregnancy and motherhood by devoting special attention to depression occurring in the peripartum period. Specifically, we discuss issues surrounding the presentation, time course, treatment, and neurobiology of peripartum depression. We write this review with the intention of highlighting the encouraging advancements in our understanding of sex differences in depression, while underscoring the gaps that remain. A more systematic consideration of biological sex as a variable in depression research will be critical in the discovery and development of pharmacotherapies that are efficacious for both men and women.
Collapse
Affiliation(s)
- Rand S Eid
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Dan R, Canetti L, Keadan T, Segman R, Weinstock M, Bonne O, Reuveni I, Goelman G. Sex differences during emotion processing are dependent on the menstrual cycle phase. Psychoneuroendocrinology 2019; 100:85-95. [PMID: 30296706 DOI: 10.1016/j.psyneuen.2018.09.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/30/2018] [Accepted: 09/24/2018] [Indexed: 01/09/2023]
Abstract
Sex differences in the neural processing of emotion are of special interest considering that mood and anxiety disorders predominant in females. However, these sex-related differences were typically studied without considering the hormonal status of female subjects, although emotion processing in the brain was shown to differ between phases of the menstrual cycle. In this functional MRI study, we demonstrated the influence of the menstrual cycle phase on sex differences in brain activity and functional connectivity during negative and positive emotions, using two different paradigms: emotion perception and emotion experience. Twenty naturally cycling healthy women without premenstrual symptoms were scanned twice: during the mid-follicular and late-luteal menstrual phases, and compared to a matched group of twenty healthy men. During negative emotion perception, men showed increased neural activity in the right hippocampal formation relative to women in the mid-follicular phase, and increased activity in the right cerebellum relative to women in the late-luteal phase. During experience of amusement, reduced putamen-ventrolateral prefrontal cortex and putamen-dorsomedial prefrontal cortex functional connectivity were observed for women in the late-luteal phase relative to men and associated with levels of sex hormones. These neural and hormonal findings were complemented by behavioral reports of reduced amusement and increased sadness in late-luteal women. Our results demonstrate menstrual phase-dependent sex differences in emotion perception and experience and may suggest a biological tendency for a deficient experience of pleasure and reward during the late-luteal phase. These findings may further shed light on the underlying pathophysiology of premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Laura Canetti
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tarek Keadan
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Segman
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Marta Weinstock
- Institute of drug research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omer Bonne
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Inbal Reuveni
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
20
|
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019; 44:59-70. [PMID: 30030541 PMCID: PMC6235859 DOI: 10.1038/s41386-018-0146-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology. Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-dependent way.
Collapse
Affiliation(s)
- Jill M Goldstein
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital (MGH), Boston, MA, 02120, USA.
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA.
| | - Taben Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School, at Massachusetts General Hospital, Boston, MA, USA
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Robert J Handa
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85004, USA
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
21
|
Xiao T, Zhang S, Lee LE, Chao HH, van Dyck C, Li CSR. Exploring Age-Related Changes in Resting State Functional Connectivity of the Amygdala: From Young to Middle Adulthood. Front Aging Neurosci 2018; 10:209. [PMID: 30061823 PMCID: PMC6055042 DOI: 10.3389/fnagi.2018.00209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Functional connectivities of the amygdala support emotional and cognitive processing. Life-span development of resting-state functional connectivities (rsFC) of the amygdala may underlie age-related differences in emotion regulatory mechanisms. To date, age-related changes in amygdala rsFC have been reported through adolescence but not as thoroughly for adulthood. This study investigated age-related differences in amygdala rsFC in 132 young and middle-aged adults (19–55 years). Data processing followed published routines. Overall, amygdala showed positive rsFC with the temporal, sensorimotor and ventromedial prefrontal cortex (vmPFC), insula and lentiform nucleus, and negative rsFC with visual, frontoparietal, and posterior cingulate cortex and caudate head. Amygdala rsFC with the cerebellum was positively correlated with age, and rsFCs with the dorsal medial prefrontal cortex (dmPFC) and somatomotor cortex were negatively correlated with age, at voxel p < 0.001 in combination with cluster p < 0.05 FWE. These age-dependent changes in connectivity appeared to manifest to a greater extent in men than in women, although the sex difference was only evident for the cerebellum in a slope test of age regressions (p = 0.0053). Previous studies showed amygdala interaction with the anterior cingulate cortex (ACC) and vmPFC during emotion regulation. In region of interest analysis, amygdala rsFC with the ACC and vmPFC did not show age-related changes. These findings suggest that intrinsic connectivity of the amygdala evolved from young to middle adulthood in selective brain regions, and may inform future studies of age-related emotion regulation and maladaptive development of the amygdala circuits as an etiological marker of emotional disorders.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Lue-En Lee
- Department of Psychiatry, National Taiwan University, Taipei, Taiwan
| | - Herta H Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States.,VA Connecticut Healthcare System, West Haven, CT, United States
| | - Christopher van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States.,Beijing Huilongguan Hospital, Peking University, Beijing, China
| |
Collapse
|
22
|
Perinatal stress and human hippocampal volume: Findings from typically developing young adults. Sci Rep 2018; 8:4696. [PMID: 29549289 PMCID: PMC5856850 DOI: 10.1038/s41598-018-23046-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/05/2018] [Indexed: 12/27/2022] Open
Abstract
The main objective of this study was to investigate the impact of prenatal and early postnatal stress on hippocampal volume in young adulthood. In sharp contrast to numerous results in animal models, our data from a neuroimaging follow-up (n = 131) of a community-based birth cohort from the Czech Republic (European Longitudinal Study of Pregnancy and Childhood) showed that in typically developing young adults, hippocampal volume was not associated with birth weight, stressful life events during the prenatal or early postnatal period, or dysregulated mood and wellbeing in the mother during the early postnatal period. Interestingly, mother’s anxiety/co-dependence during the first weeks after birth did show long-lasting effects on the hippocampal volume in young adult offspring irrespective of sex. Further analyses revealed that these effects were subfield-specific; present in CA1, CA2/3, CA4, GC-DG, subiculum, molecular layer, and HATA, hippocampal subfields identified by translational research as most stress- and glucocorticoid-sensitive, but not in the remaining subfields. Our findings provide evidence that the type of early stress is critical when studying its effects on the human brain.
Collapse
|
23
|
Mareckova K, Holsen L, Admon R, Whitfield-Gabrieli S, Seidman LJ, Buka SL, Klibanski A, Goldstein J. Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J Affect Disord 2017; 222:88-97. [PMID: 28688266 PMCID: PMC5560420 DOI: 10.1016/j.jad.2017.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Maladaptive responses to negative affective stimuli are pervasive, including clinically ill and healthy people, and men and women respond differently at neural and hormonal levels. Inspired by the Research Domain Criteria initiative, we used a transdiagnostic approach to investigate the impact of sex and dysphoric mood on neural-hormonal responses to negative affective stimuli. METHODS Participants included 99 individuals with major depressive disorder, psychosis and healthy controls. Functional magnetic resonance imaging (fMRI) was complemented with real-time acquisition of hypothalamo-pituitary-adrenal (HPA) and -gonadal (HPG) hormones. fMRI data were analyzed in SPM8 and task-related connectivity was assessed using generalized psychophysiological interaction. RESULTS Across all participants, elevated cortisol response predicted lower brain activity in orbitofrontal cortex and hypothalamus-amygdala connectivity. In those with worse dysphoric mood, elevated cortisol response predicted lower activity in hypothalamus and hippocampus. In women, elevated cortisol response was associated with lower activity in medial prefrontal cortex and low hypothalamo-hippocampal connectivity. In women with high dysphoric mood, elevated cortisol response was associated with low hypothalamo-hippocampal connectivity. There were no interactions with diagnosis or medication. LIMITATIONS There was limited power to correct for multiple comparisons across total number of ROIs and connectivity targets; cortisol responses were relatively low. CONCLUSIONS We conclude that the pathophysiology in neural-hormonal responses to negative affective stimuli is shared across healthy and clinical populations and varies as a function of sex and dysphoric mood. Our findings may contribute to the development of hormonal adjunctive therapeutics that are sex-dependent, underscoring the importance of one's sex to precision medicine.
Collapse
Affiliation(s)
- K. Mareckova
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,CEITEC, Masaryk University, Brno, Czech Republic
| | - L. Holsen
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA
| | - R. Admon
- McLean Hospital, Department of Psychiatry, HMS, Boston, MA USA
| | - S. Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - LJ Seidman
- Beth Israel Deaconess Medical Center, Division of Public Psychiatry, Massachusetts Mental Health Center; Department of Psychiatry, HMS, Boston, MA, USA
| | - SL Buka
- Department of Community Health, Brown University, Providence, RI, USA
| | - A. Klibanski
- Massachusetts General Hospital, Department of Medicine, Neuroendocrine Unit; HMS, Department of Medicine, Boston, MA, USA
| | - J.M. Goldstein
- Connors Center for Women’s Health and Gender Biology, Department of Medicine, Brigham and Women’s Hospital; Department of Psychiatry, Harvard Medical School (HMS), Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Sex- and Estrus-Dependent Differences in Rat Basolateral Amygdala. J Neurosci 2017; 37:10567-10586. [PMID: 28954870 DOI: 10.1523/jneurosci.0758-17.2017] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023] Open
Abstract
Depression and anxiety are diagnosed almost twice as often in women, and the symptomology differs in men and women and is sensitive to sex hormones. The basolateral amygdala (BLA) contributes to emotion-related behaviors that differ between males and females and across the reproductive cycle. This hints at sex- or estrus-dependent features of BLA function, about which very little is known. The purpose of this study was to test whether there are sex differences or estrous cyclicity in rat BLA physiology and to determine their mechanistic correlates. We found substantial sex differences in the activity of neurons in lateral nuclei (LAT) and basal nuclei (BA) of the BLA that were associated with greater excitatory synaptic input in females. We also found strong differences in the activity of LAT and BA neurons across the estrous cycle. These differences were associated with a shift in the inhibition-excitation balance such that LAT had relatively greater inhibition during proestrus which paralleled more rapid cued fear extinction. In contrast, BA had relatively greater inhibition during diestrus that paralleled more rapid contextual fear extinction. These results are the first to demonstrate sex differences in BLA neuronal activity and the impact of estrous cyclicity on these measures. The shift between LAT and BA predominance across the estrous cycle provides a simple construct for understanding the effects of the estrous cycle on BLA-dependent behaviors. These results provide a novel framework to understand the cyclicity of emotional memory and highlight the importance of considering ovarian cycle when studying the BLA of females.SIGNIFICANCE STATEMENT There are differences in emotional responses and many psychiatric symptoms between males and females. This may point to sex differences in limbic brain regions. Here we demonstrate sex differences in neuronal activity in one key limbic region, the basolateral amygdala (BLA), whose activity fluctuates across the estrous cycle due to a shift in the balance of inhibition and excitation across two BLA regions, the lateral and basal nuclei. By uncovering this push-pull shift between lateral and basal nuclei, these results help to explain disparate findings about the effects of biological sex and estrous cyclicity on emotion and provide a framework for understanding fluctuations in emotional memory and psychiatric symptoms.
Collapse
|
25
|
Grossi D, Longarzo M, Quarantelli M, Salvatore E, Cavaliere C, De Luca P, Trojano L, Aiello M. Altered functional connectivity of interoception in illness anxiety disorder. Cortex 2016; 86:22-32. [PMID: 27871020 DOI: 10.1016/j.cortex.2016.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/22/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022]
Abstract
Interoception collects all information coming from the body and is sustained by several brain areas such as insula and cingulate cortex. Here, we used resting-state functional magnetic resonance imaging to investigate functional connectivity (FC) of networks implied in interoception in patients with Illness anxiety disorders (IADs). We observed significantly reduced FC between the left extrastriate body area (EBA) and the paracentral lobule compared to healthy controls. Moreover, the correlation analysis between behavioural questionnaires and ROI to ROI FC showed that higher levels of illness anxiety were related to hyper-connectivity between EBA and amygdala and hippocampus. Scores on a questionnaire for interoceptive awareness were significantly correlated with higher FC between right hippocampus and nucleus accumbens bilaterally, and with higher connectivity between left anterior cingulate cortex (ACC) and left orbitofrontal cortex (OFC). Last, patients showed increased interoceptive awareness, measured by Self-Awareness Questionnaire (SAQ), and reduced capability in recognizing emotions, indicating inverse correlation between interoception and emotional awareness. Taken together our results suggested that, in absence of structural and micro-structural changes, patients with IADs show functional alteration in the neural network involved in the self-body representation; such functional alteration might be the target of possible treatments.
Collapse
Affiliation(s)
- Dario Grossi
- Department of Psychology, Second University of Naples, Italy
| | | | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Elena Salvatore
- Department of Neuroscience Reproductive Sciences and Odontostomatology, University Federico II, Naples, Italy
| | | | | | - Luigi Trojano
- Department of Psychology, Second University of Naples, Italy
| | | |
Collapse
|