1
|
Henson RN, Olszowy W, Tsvetanov KA, Yadav PS, Zeidman P. Evaluating Models of the Ageing BOLD Response. Hum Brain Mapp 2024; 45:e70043. [PMID: 39422406 PMCID: PMC11487563 DOI: 10.1002/hbm.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Neural activity cannot be directly observed using fMRI; rather it must be inferred from the hemodynamic responses that neural activity causes. Solving this inverse problem is made possible through the use of forward models, which generate predicted hemodynamic responses given hypothesised underlying neural activity. Commonly-used hemodynamic models were developed to explain data from healthy young participants; however, studies of ageing and dementia are increasingly shifting the focus toward elderly populations. We evaluated the validity of a range of hemodynamic models across the healthy adult lifespan: from basis sets for the linear convolution models commonly used to analyse fMRI studies, to more advanced models including nonlinear fitting of a parameterised hemodynamic response function (HRF) and nonlinear fitting of a biophysical generative model (hemodynamic modelling, HDM). Using an exceptionally large sample of participants, and a sensorimotor task optimized for detecting the shape of the BOLD response to brief stimulation, we first characterised the effects of age on descriptive features of the response (e.g., peak amplitude and latency). We then compared these to features from more complex nonlinear models, fit to four regions of interest engaged by the task, namely left auditory cortex, bilateral visual cortex, left (contralateral) motor cortex and right (ipsilateral) motor cortex. Finally, we validated the extent to which parameter estimates from these models have predictive validity, in terms of how well they predict age in cross-validated multiple regression. We conclude that age-related differences in the BOLD response can be captured effectively by models with three free parameters. Furthermore, we show that biophysical models like the HDM have predictive validity comparable to more common models, while additionally providing insights into underlying mechanisms, which go beyond descriptive features like peak amplitude or latency, and include estimation of nonlinear effects. Here, the HDM revealed that most of the effects of age on the BOLD response could be explained by an increased rate of vasoactive signal decay and decreased transit rate of blood, rather than changes in neural activity per se. However, in the absence of other types of neural/hemodynamic data, unique interpretation of HDM parameters is difficult from fMRI data alone, and some brain regions in some tasks (e.g., ipsilateral motor cortex) can show responses that are more difficult to capture using current models.
Collapse
Affiliation(s)
- R. N. Henson
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - W. Olszowy
- Wolfson Brain Imaging Centre, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Data Science Unit, Science and ResearchDsm‐Firmenich AGKaiseraugstSwitzerland
| | - K. A. Tsvetanov
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | - P. S. Yadav
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - P. Zeidman
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| |
Collapse
|
2
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
3
|
Frank LR, Galinsky VL, Krigolson O, Tapert SF, Bickel S, Martinez A. Imaging of brain electric field networks. RESEARCH SQUARE 2024:rs.3.rs-2432269. [PMID: 38659785 PMCID: PMC11042417 DOI: 10.21203/rs.3.rs-2432269/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We present a method for direct imaging of the electric field networks in the human brain from electroencephalography (EEG) data with much higher temporal and spatial resolution than functional MRI (fMRI), without the concomitant distortions. The method is validated using simultaneous EEG/fMRI data in healthy subjects, intracranial EEG data in epilepsy patients, and in a direct comparison with standard EEG analysis in a well-established attention paradigm. The method is then demonstrated on a very large cohort of subjects performing a standard gambling task designed to activate the brain's 'reward circuit'. The technique uses the output from standard EEG systems and thus has potential for immediate benefit to a broad range of important basic scientific and clinical questions concerning brain electrical activity, but also provides an inexpensive and portable alternative to function MRI (fMRI).
Collapse
Affiliation(s)
- Lawrence R. Frank
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
- 7Center for Functional MRI, UC San Diego, La Jolla, CA, USA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, UC San Diego, La Jolla, CA, USA
| | - Olave Krigolson
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | | | - Stephan Bickel
- Nathan Kline Institute, Orangeburg, NY, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | |
Collapse
|
4
|
Ao Y, Yang C, Drewes J, Jiang M, Huang L, Jing X, Northoff G, Wang Y. Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan. Hum Brain Mapp 2023; 44:5906-5918. [PMID: 37800366 PMCID: PMC10619384 DOI: 10.1002/hbm.26484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Age-related variations in many regions and/or networks of the human brain have been uncovered using resting-state functional magnetic resonance imaging. However, these findings did not account for the dynamical effect the brain's global activity (global signal [GS]) causes on local characteristics, which is measured by GS topography. To address this gap, we tested GS topography including its correlation with age using a large-scale cross-sectional adult lifespan dataset (n = 492). Both GS topography and its variation with age showed frequency-specific patterns, reflecting the spatiotemporal characteristics of the dynamic change of GS topography with age. A general trend toward dedifferentiation of GS topography with age was observed in both spatial (i.e., less differences of GS between different regions) and temporal (i.e., less differences of GS between different frequencies) dimensions. Further, methodological control analyses suggested that although most age-related dedifferentiation effects remained across different preprocessing strategies, some were triggered by neuro-vascular coupling and physiological noises. Together, these results provide the first evidence for age-related effects on global brain activity and its topographic-dynamic representation in terms of spatiotemporal dedifferentiation.
Collapse
Affiliation(s)
- Yujia Ao
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Chengxiao Yang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Jan Drewes
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Muliang Jiang
- First Affiliated HospitalGuangxi Medical UniversityNanningChina
| | - Lihui Huang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Xiujuan Jing
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Yifeng Wang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| |
Collapse
|
5
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. eLife 2023; 12:e86453. [PMID: 37565644 PMCID: PMC10506795 DOI: 10.7554/elife.86453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here, we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, because differences in fMRI frequency content can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
| | - Daniel EP Gomez
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Department of Radiology, Harvard Medical SchoolBostonUnited States
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Graduate Program for Neuroscience, Boston UniversityBostonUnited States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalCharlestownUnited States
- Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
6
|
Bailes SM, Gomez DEP, Setzer B, Lewis LD. Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525528. [PMID: 36747821 PMCID: PMC9900794 DOI: 10.1101/2023.01.25.525528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has proven to be a powerful tool for noninvasively measuring human brain activity; yet, thus far, fMRI has been relatively limited in its temporal resolution. A key challenge is understanding the relationship between neural activity and the blood-oxygenation-level-dependent (BOLD) signal obtained from fMRI, generally modeled by the hemodynamic response function (HRF). The timing of the HRF varies across the brain and individuals, confounding our ability to make inferences about the timing of the underlying neural processes. Here we show that resting-state fMRI signals contain information about HRF temporal dynamics that can be leveraged to understand and characterize variations in HRF timing across both cortical and subcortical regions. We found that the frequency spectrum of resting-state fMRI signals significantly differs between voxels with fast versus slow HRFs in human visual cortex. These spectral differences extended to subcortex as well, revealing significantly faster hemodynamic timing in the lateral geniculate nucleus of the thalamus. Ultimately, our results demonstrate that the temporal properties of the HRF impact the spectral content of resting-state fMRI signals and enable voxel-wise characterization of relative hemodynamic response timing. Furthermore, our results show that caution should be used in studies of resting-state fMRI spectral properties, as differences can arise from purely vascular origins. This finding provides new insight into the temporal properties of fMRI signals across voxels, which is crucial for accurate fMRI analyses, and enhances the ability of fast fMRI to identify and track fast neural dynamics.
Collapse
Affiliation(s)
| | - Daniel E. P. Gomez
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Beverly Setzer
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston, MA, 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| |
Collapse
|
7
|
Song X, Su X, Chen X, Xu M, Ming D. In Vivo Transcranial Acoustoelectric Brain Imaging of Different Steady-State Visual Stimulation Paradigms. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2233-2241. [PMID: 35930511 DOI: 10.1109/tnsre.2022.3196828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Based on the acoustoelectric (AE) effect, transcranial acoustoelectric brain imaging (tABI) is of potential for brain functional imaging with high temporal and spatial resolution. With nonlinear and non-steady-state, brain electrical signal is microvolt level which makes the development of tABI more difficult. This study demonstrates for the first time in vivo tABI of different steady-state visual stimulation paradigms. METHOD To obtain different brain activation maps, we designed three steady-state visual stimulation paradigms, including binocular, left eye and right eye stimulations. Then, tABI was implemented with one fixed recording electrode. And, based on decoded signal power spectrum (tABI-power) and correlation coefficient between steady-state visual evoked potential (SSVEP) and decoded signal (tABI-cc) respectively, two imaging methods were investigated. To quantitatively evaluate tABI spatial resolution performance, ECoG was implemented at the same time. Finally, we explored the performance of tABI transient imaging. RESULTS Decoded AE signal of activation region is consistent with SSVEP in both time and frequency domains, while that of the nonactivated region is noise. Besides, with transcranial measurement, tABI has a millimeter-level spatial resolution (< 3mm). Meanwhile, it can achieve millisecond-level (125ms) transient brain activity imaging. CONCLUSION Experiment results validate tABI can realize brain functional imaging under complex paradigms and is expected to develop into a brain functional imaging method with high spatiotemporal resolution.
Collapse
|
8
|
Leacy JK, Johnson EM, Lavoie LR, Macilwraith DN, Bambury M, Martin JA, Lucking EF, Linares AM, Saran G, Sheehan DP, Sharma N, Day TA, O'Halloran KD. Variation within the visually evoked neurovascular coupling response of the posterior cerebral artery is not influenced by age or sex. J Appl Physiol (1985) 2022; 133:335-348. [PMID: 35771218 PMCID: PMC9359642 DOI: 10.1152/japplphysiol.00292.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurovascular coupling (NVC) is the temporal and spatial coordination between local neuronal activity and regional cerebral blood flow. The literature is unsettled on whether age and/or sex affect NVC, which may relate to differences in methodology and the quantification of NVC in small sample-sized studies. The aim of this study was to 1) determine the relative and combined contribution of age and sex to the variation observed across several distinct NVC metrics (n = 125, 21–66 yr; 41 males) and 2) present an approach for the comprehensive systematic assessment of the NVC response using transcranial Doppler ultrasound. NVC was measured as the relative change from baseline (absolute and percent change) assessing peak, mean, and total area under the curve (tAUC) of cerebral blood velocity through the posterior cerebral artery (PCAv) during intermittent photic stimulation. In addition, the NVC waveform was compartmentalized into distinct regions, acute (0–9 s), mid (10–19 s), and late (20–30 s), following the onset of photic stimulation. Hierarchical multiple regression modeling was used to determine the extent of variation within each NVC metric attributable to demographic differences in age and sex. After controlling for differences in baseline PCAv, the R2 data suggest that 1.6%, 6.1%, 1.1%, 3.4%, 2.5%, and 4.2% of the variance observed within mean, peak, tAUC, acute, mid, and late response magnitude is attributable to the combination of age and sex. Our study reveals that variability in NVC response magnitude is independent of age and sex in healthy human participants, aged 21–66 yr. NEW & NOTEWORTHY We assessed the variability within the neurovascular coupling response attributable to age and sex (n = 125, 21–66 yr; 41 male). Based on the assessment of posterior cerebral artery responses to visual stimulation, 0%–6% of the variance observed within several metrics of NVC response magnitude are attributable to the combination of age and sex. Therefore, observed differences between age groups and/or sexes are likely a result of other physiological factors.
Collapse
Affiliation(s)
- Jack K Leacy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Emily M Johnson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Lauren R Lavoie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Diane N Macilwraith
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Megan Bambury
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jason A Martin
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Andrea M Linares
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Gurkarn Saran
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Dwayne P Sheehan
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nishan Sharma
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
The temporal dedifferentiation of global brain signal fluctuations during human brain ageing. Sci Rep 2022; 12:3616. [PMID: 35256664 PMCID: PMC8901682 DOI: 10.1038/s41598-022-07578-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/22/2022] [Indexed: 01/18/2023] Open
Abstract
The variation of brain functions as healthy ageing has been discussed widely using resting-state brain imaging. Previous conclusions may be misinterpreted without considering the effects of global signal (GS) on local brain activities. Up to now, the variation of GS with ageing has not been estimated. To fill this gap, we defined the GS as the mean signal of all voxels in the gray matter and systematically investigated correlations between age and indices of GS fluctuations. What's more, these tests were replicated with data after hemodynamic response function (HRF) de-convolution and data without noise regression as well as head motion data to verify effects of non-neural information on age. The results indicated that GS fluctuations varied as ageing in three ways. First, GS fluctuations were reduced with age. Second, the GS power transferred from lower frequencies to higher frequencies with age. Third, the GS power was more evenly distributed across frequencies in ageing brain. These trends were partly influenced by HRF and physiological noise, indicating that the age effects of GS fluctuations are associated with a variety of physiological activities. These results may indicate the temporal dedifferentiation hypothesis of brain ageing from the global perspective.
Collapse
|
10
|
Chettouf S, Triebkorn P, Daffertshofer A, Ritter P. Unimanual sensorimotor learning-A simultaneous EEG-fMRI aging study. Hum Brain Mapp 2022; 43:2348-2364. [PMID: 35133058 PMCID: PMC8996364 DOI: 10.1002/hbm.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 11/06/2022] Open
Abstract
Sensorimotor coordination requires orchestrated network activity in the brain, mediated by inter‐ and intra‐hemispheric interactions that may be affected by aging‐related changes. We adopted a theoretical model, according to which intra‐hemispheric inhibition from premotor to primary motor cortex is mandatory to compensate for inter‐hemispheric excitation through the corpus callosum. To test this as a function of age we acquired electroencephalography (EEG) simultaneously with functional magnetic resonance imaging (fMRI) in two groups of healthy adults (younger N = 13: 20–25 year and older N = 14: 59–70 year) while learning a unimanual motor task. On average, quality of performance of older participants stayed significantly below that of the younger ones. Accompanying decreases in motor‐event‐related EEG β‐activity were lateralized toward contralateral motor regions, albeit more so in younger participants. In this younger group, the mean β‐power during motor task execution was significantly higher in bilateral premotor areas compared to the older adults. In both groups, fMRI blood oxygen level dependent (BOLD) signals were positively correlated with source‐reconstructed β‐amplitudes: positive in primary motor and negative in premotor cortex. This suggests that β‐amplitude modulation is associated with primary motor cortex “activation” (positive BOLD response) and premotor “deactivation” (negative BOLD response). Although the latter results did not discriminate between age groups, they underscore that enhanced modulation in primary motor cortex may be explained by a β‐associated excitatory crosstalk between hemispheres.
Collapse
Affiliation(s)
- Sabrina Chettouf
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Paul Triebkorn
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Andreas Daffertshofer
- Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.,Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neuroscience Berlin, Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
11
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
12
|
Tracking Age Differences in Neural Distinctiveness across Representational Levels. J Neurosci 2021; 41:3499-3511. [PMID: 33637559 DOI: 10.1523/jneurosci.2038-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
The distinctiveness of neural information representation is crucial for successful memory performance but declines with advancing age. Computational models implicate age-related neural dedifferentiation on the level of item representations, but previous studies mostly focused on age differences of categorical information representation in higher-order visual regions. In an age-comparative fMRI study, we combined univariate analyses and whole-brain searchlight pattern similarity analyses to elucidate age differences in neural distinctiveness at both category and item levels and their relation to memory. Thirty-five younger (18-27 years old) and 32 older (67-75 years old) women and men incidentally encoded images of faces and houses, followed by an old/new recognition memory task. During encoding, age-related neural dedifferentiation was shown as reduced category-selective processing in ventral visual cortex and impoverished item specificity in occipital regions. Importantly, successful subsequent memory performance built on high item stability, that is, high representational similarity between initial and repeated presentation of an item, which was greater in younger than older adults. Overall, we found that differences in representational distinctiveness coexist across representational levels and contribute to interindividual and intraindividual variability in memory success, with item specificity being the strongest contributor. Our results close an important gap in the literature, showing that older adults' neural representation of item-specific information in addition to categorical information is reduced compared with younger adults.SIGNIFICANCE STATEMENT A long-standing hypothesis links age-related cognitive decline to a loss of neural specificity. While previous evidence supports the notion of age-related neural dedifferentiation of category-level information in ventral visual cortex, whether or not age differences exist at the item level was a matter of debate. Here, we observed age group differences at both levels as well as associations between both categorical distinctiveness and item specificity to memory performance, with item specificity being the strongest contributor. Importantly, age differences in occipital item specificity were largely due to reduced item stability across repetitions in older adults. Our results suggest that age differences in neural representations can be observed across the entire cortical hierarchy and are not limited to category-level information.
Collapse
|
13
|
Diersch N, Valdes-Herrera JP, Tempelmann C, Wolbers T. Increased Hippocampal Excitability and Altered Learning Dynamics Mediate Cognitive Mapping Deficits in Human Aging. J Neurosci 2021; 41:3204-3221. [PMID: 33648956 PMCID: PMC8026345 DOI: 10.1523/jneurosci.0528-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
Learning the spatial layout of a novel environment is associated with dynamic activity changes in the hippocampus and in medial parietal areas. With advancing age, the ability to learn spatial environments deteriorates substantially but the underlying neural mechanisms are not well understood. Here, we report findings from a behavioral and a fMRI experiment where healthy human older and younger adults of either sex performed a spatial learning task in a photorealistic virtual environment (VE). We modeled individual learning states using a Bayesian state-space model and found that activity in retrosplenial cortex (RSC)/parieto-occipital sulcus (POS) and anterior hippocampus did not change systematically as a function learning in older compared with younger adults across repeated episodes in the environment. Moreover, effective connectivity analyses revealed that the age-related learning deficits were linked to an increase in hippocampal excitability. Together, these results provide novel insights into how human aging affects computations in the brain's navigation system, highlighting the critical role of the hippocampus.SIGNIFICANCE STATEMENT Key structures of the brain's navigation circuit are particularly vulnerable to the deleterious consequences of aging, and declines in spatial navigation are among the earliest indicators for a progression from healthy aging to neurodegenerative diseases. Our study is among the first to provide a mechanistic account about how physiological changes in the aging brain affect the formation of spatial knowledge. We show that neural activity in the aging hippocampus and medial parietal areas is decoupled from individual learning states across repeated episodes in a novel spatial environment. Importantly, we find that increased excitability of the anterior hippocampus might constitute a potential neural mechanism for cognitive mapping deficits in old age.
Collapse
Affiliation(s)
- Nadine Diersch
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Jose P Valdes-Herrera
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
- Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
14
|
Patel GH, Arkin SC, Ruiz-Betancourt DR, Plaza FI, Mirza SA, Vieira DJ, Strauss NE, Klim CC, Sanchez-Peña JP, Bartel LP, Grinband J, Martinez A, Berman RA, Ochsner KN, Leopold DA, Javitt DC. Failure to engage the temporoparietal junction/posterior superior temporal sulcus predicts impaired naturalistic social cognition in schizophrenia. Brain 2021; 144:1898-1910. [PMID: 33710282 DOI: 10.1093/brain/awab081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/24/2020] [Accepted: 12/14/2020] [Indexed: 11/12/2022] Open
Abstract
Schizophrenia is associated with marked impairments in social cognition. However, the neural correlates of these deficits remain unclear. Here we use naturalistic stimuli to examine the role of the right temporoparietal junction/posterior superior temporal sulcus (TPJ-pSTS)-an integrative hub for the cortical networks pertinent to the understanding complex social situations-in social inference, a key component of social cognition, in schizophrenia. Twenty-seven schizophrenia participants and 21 healthy control subjects watched a clip of the film The Good, the Bad and the Ugly while high resolution multiband functional MRI images were collected. We used inter-subject correlation to measure the evoked activity, which we then compared to social cognition as measured by The Awareness of Social Inference Test (TASIT). We also compared between groups the TPJ-pSTS blood oxygen level-dependent activity (i) relationship with the motion content in the film; (ii) synchronization with other cortical areas involved in the viewing of the movie; and (iii) relationship with the frequency of saccades made during the movie. Activation deficits were greatest in middle TPJ (TPJm) and correlated significantly with impaired TASIT performance across groups. Follow-up analyses of the TPJ-pSTS revealed decreased synchronization with other cortical areas, decreased correlation with the motion content of the movie, and decreased correlation with the saccades made during the movie. The functional impairment of the TPJm, a hub area in the middle of the TPJ-pSTS, predicts deficits in social inference in schizophrenia participants by disrupting the integration of visual motion processing into the TPJ. This disrupted integration then affects the use of the TPJ to guide saccades during the visual scanning of the movie clip. These findings suggest that the TPJ may be a treatment target for improving deficits in a key component of social cognition in schizophrenia participants.
Collapse
Affiliation(s)
- Gaurav H Patel
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Sophie C Arkin
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | | | - Fabiola I Plaza
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - Safia A Mirza
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Daniel J Vieira
- Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Casimir C Klim
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Juan P Sanchez-Peña
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Laura P Bartel
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Antigona Martinez
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY 10962, USA
| | - Rebecca A Berman
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Kevin N Ochsner
- Department of Psychology, Columbia University, New York, NY 10027, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Daniel C Javitt
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA.,Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.,Schizophrenia Research Division, Nathan Kline Institute, Orangeburg, NY 10962, USA
| |
Collapse
|
15
|
Das M, Singh V, Uddin LQ, Banerjee A, Roy D. Reconfiguration of Directed Functional Connectivity Among Neurocognitive Networks with Aging: Considering the Role of Thalamo-Cortical Interactions. Cereb Cortex 2021; 31:1970-1986. [PMID: 33253367 DOI: 10.1093/cercor/bhaa334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
A complete picture of how subcortical nodes, such as the thalamus, exert directional influence on large-scale brain network interactions across age remains elusive. Using directed functional connectivity and weighted net causal outflow on resting-state fMRI data, we provide evidence of a comprehensive reorganization within and between neurocognitive networks (default mode: DMN, salience: SN, and central executive: CEN) associated with age and thalamocortical interactions. We hypothesize that thalamus subserves both modality-specific and integrative hub role in organizing causal weighted outflow among large-scale neurocognitive networks. To this end, we observe that within-network directed functional connectivity is driven by thalamus and progressively weakens with age. Secondly, we find that age-associated increase in between CEN- and DMN-directed functional connectivity is driven by both the SN and the thalamus. Furthermore, left and right thalami act as a causal integrative hub exhibiting substantial interactions with neurocognitive networks with aging and play a crucial role in reconfiguring network outflow. Notably, these results were largely replicated on an independent dataset of matched young and old individuals. Our findings strengthen the hypothesis that the thalamus is a key causal hub balancing both within- and between-network connectivity associated with age and maintenance of cognitive functioning with aging.
Collapse
Affiliation(s)
- Moumita Das
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Vanshika Singh
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| |
Collapse
|
16
|
Beishon L, Clough RH, Kadicheeni M, Chithiramohan T, Panerai RB, Haunton VJ, Minhas JS, Robinson TG. Vascular and haemodynamic issues of brain ageing. Pflugers Arch 2021; 473:735-751. [PMID: 33439324 PMCID: PMC8076154 DOI: 10.1007/s00424-020-02508-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process by which CBF is matched to cerebral metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic strategies to promote healthy brain ageing.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Tamara Chithiramohan
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
17
|
Delli Pizzi S, Granzotto A, Bomba M, Frazzini V, Onofrj M, Sensi SL. Acting Before; A Combined Strategy to Counteract the Onset and Progression of Dementia. Curr Alzheimer Res 2020; 17:790-804. [PMID: 33272186 DOI: 10.2174/1567205017666201203085524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Brain aging and aging-related neurodegenerative disorders are posing a significant challenge for health systems worldwide. To date, most of the therapeutic efforts aimed at counteracting dementiarelated behavioral and cognitive impairment have been focused on addressing putative determinants of the disease, such as β-amyloid or tau. In contrast, relatively little attention has been paid to pharmacological interventions aimed at restoring or promoting the synaptic plasticity of the aging brain. The review will explore and discuss the most recent molecular, structural/functional, and behavioral evidence that supports the use of non-pharmacological approaches as well as cognitive-enhancing drugs to counteract brain aging and early-stage dementia.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Alberto Granzotto
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Manuela Bomba
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Valerio Frazzini
- AP-HP, Epilepsy Unit, Pitie-Salpetriere Hospital and Brain and Spine Institute (INSERM UMRS1127, CNRS UMR7225, Sorbonne Universite), Pitie-Salpetriere Hospital, Paris, France
| | - Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Pescara, Italy
| |
Collapse
|
18
|
Full-field flicker evoked changes in parafoveal retinal blood flow. Sci Rep 2020; 10:16051. [PMID: 32994535 PMCID: PMC7524838 DOI: 10.1038/s41598-020-73032-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
When retinal activity is increased by exposure to dynamic visual stimuli, blood vessels dilate and the flow of blood within vessels increases to meet the oxygen and glucose demands of the neurons. This relationship is termed ‘neurovascular coupling’ and it is critical for regulating control of the human retinal vasculature. In this study, we used a recently developed technique based on a dual-beam adaptive optics scanning laser ophthalmoscope to measure changes in red blood cell velocities, vessel diameter, and flow in interconnected small parafoveal retinal vessels (< 50 µm) of nine healthy participants. A full-field flicker stimulus was presented onto the retina to induce a vascular response to neural activity. Flicker stimulation increased blood velocity, vessel diameter, and therefore flow in arterioles, capillaries, and venules in all nine subjects. ANOVA and post hoc t-test showed significant increases in velocity and flow in arterioles and venules. These measurements indicate that the mechanism of neurovascular coupling systematically affects the vascular response in small retinal vessels in order to maintain hemodynamic regulation in the retina when exposed to visual stimulation, in our case flicker. Our findings may provide insight into future investigations on the impairments of neurovascular coupling from vascular diseases such as diabetic mellitus.
Collapse
|
19
|
Gupta A, Gambhir A. PET CT Brain for the Differential Diagnosis of Dementia -Indian Case Reports. Open Neurol J 2020. [DOI: 10.2174/1874205x02014010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
India has been termed as Diabetic hub of the globe. Along with other complications, one of the underestimated complication is cognitive decline and memory loss associated with poor diabetes control. In the Indian context, structural imaging like MRI-Magnetic Resonance imaging is more commonly used in Neurological disorders such as stroke, head injury, Functional imaging of the human brain has been underutilized in the Indian scenario. One such technique is PET CT which has been typically used as a cancer biomarker in India. By virtue of current case study, we propose i) association between poor control of Diabetes and poor cognition ii) role of PET CT brain in differential diagnosis of Dementia. We present two case reports providing strong findings for utilization of PET CT brain in Dementia protocols.
Collapse
|
20
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
21
|
Bogorad MI, DeStefano JG, Linville RM, Wong AD, Searson PC. Cerebrovascular plasticity: Processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39:1413-1432. [PMID: 31208241 PMCID: PMC6681538 DOI: 10.1177/0271678x19855875] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.
Collapse
Affiliation(s)
- Max I Bogorad
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- 1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Fertuck EA, Grinband J, Mann JJ, Hirsch J, Ochsner K, Pilkonis P, Erbe J, Stanley B. Trustworthiness appraisal deficits in borderline personality disorder are associated with prefrontal cortex, not amygdala, impairment. Neuroimage Clin 2018; 21:101616. [PMID: 30639176 PMCID: PMC6411618 DOI: 10.1016/j.nicl.2018.101616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/05/2018] [Accepted: 11/25/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Borderline Personality Disorder (BPD) is associated with sensitivity to signals of interpersonal threats and misplaced trust in others. The amygdala, an integral part of the threat evaluation and response network, responds to both fear- and trust-related stimuli in non-clinical samples, and is more sensitive to emotional stimuli in BPD compared to controls. However, it is unknown whether the amygdalar response can account for deficits of trust and elevated sensitivity to interpersonal threat in BPD. METHODS Facial stimuli were presented to 16 medication-free women with BPD and 17 demographically-matched healthy controls (total n = 33). Participants appraised fearfulness or trustworthiness of the stimuli while BOLD fMRI was obtained. RESULTS Though BPD participants judged stimuli as less trustworthy compared to controls, trustworthiness did not correlate with amygdalar activity in either group. Trustworthiness correlated with prefrontal regional activity in the insula and lateral prefrontal cortex. Prefrontal BOLD activity while appraising trustworthiness was smaller in BPD compared to controls, and the size of the reduction was proportional to each participant's response bias. CONCLUSIONS Neural substrates of trustworthiness appraisal are associated with the lateral prefrontal cortex and insula, not amygdala, suggesting that untrustworthy stimuli do not elicit a subcortical threat response. Current models of BPD and its treatment may need to include a focus on improving impairments in frontally mediated trustworthiness appraisal in addition to amygdala- driven emotional hyper-reactivity.
Collapse
Affiliation(s)
- Eric A Fertuck
- The City College of the City University of New York, Department of Psychology, NY, USA; Department of Psychiatry, Columbia University, New York, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Jack Grinband
- Department of Psychiatry, Columbia University, New York, USA; New York State Psychiatric Institute, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA.
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Joy Hirsch
- Department of Radiology, Columbia University, New York, NY, USA; Department of Psychiatry and of Neurobiology, Yale School of Medicine, CT, USA
| | - Kevin Ochsner
- Department of Psychology, Columbia University, New York, NY, USA
| | - Paul Pilkonis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeff Erbe
- The City College of the City University of New York, Department of Psychology, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Barbara Stanley
- Department of Psychiatry, Columbia University, New York, USA; New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
23
|
Nowak-Flück D, Ainslie PN, Bain AR, Ahmed A, Wildfong KW, Morris LE, Phillips AA, Fisher JP. Effect of healthy aging on cerebral blood flow, CO2 reactivity, and neurovascular coupling during exercise. J Appl Physiol (1985) 2018; 125:1917-1930. [DOI: 10.1152/japplphysiol.00050.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We sought to make the first comparisons of duplex Doppler ultrasonography-derived measures of cerebral blood flow during exercise in young and older individuals and to assess whether healthy aging influences the effect of exercise on neurovascular coupling (NVC) and cerebral vascular reactivity to changes in carbon dioxide (CVRco2). In 10 healthy young (23 ± 2 yr; mean ± SD) and 9 healthy older (66 ± 3 yr) individuals, internal carotid artery (ICA) and vertebral artery (VA) blood flows were concurrently measured, along with middle and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean). Measures were made at rest and during leg cycling (75 W and 35% maximum aerobic workload). ICA and VA blood flow during dynamic exercise, undertaken at matched absolute (ICA: young 336 ± 95, older 352 ± 155; VA: young 95 ± 43, older 100 ± 30 ml/min) and relative (ICA: young 355 ± 125, older 323 ± 153; VA: young 115 ± 48, older 110 ± 32 ml/min) intensities, were not different between groups ( P > 0.670). The PCAvmean responses to visual stimulation (NVC) were blunted in older versus younger group at rest (16 ± 6% vs. 23 ± 7%, P < 0.026) and exercise; however, these responses were not changed from rest to exercise in either group. The ICA and VA CVRco2 were comparable in both groups and unaltered during exercise. Collectively, our findings suggest that 1) ICA and VA blood flow responses to dynamic exercise are similar in healthy young and older individuals, 2) NVC is blunted in healthy older individuals at rest and exercise but is not different between rest to exercise in either group, and 3) CVRco2 is similar during exercise in healthy young and older groups. NEW & NOTEWORTHY Internal carotid artery and vertebral artery blood flow responses to dynamic exercise are similar in healthy young and older individuals. Neurovascular coupling and cerebrovascular carbon dioxide reactivity, two key mechanisms mediating the cerebral blood flow responses to exercise, are generally unaffected by exercise in both healthy young and older individuals.
Collapse
Affiliation(s)
- Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Anthony R. Bain
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Amar Ahmed
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kevin W. Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Laura E. Morris
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Aaron A. Phillips
- Departments of Physiology and Pharmacology and Clinical Neurosciences, Libin Cardiovascular Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James P. Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
24
|
Ward LM, Morison G, Simmers AJ, Shahani U. Age-Related Changes in Global Motion Coherence: Conflicting Haemodynamic and Perceptual Responses. Sci Rep 2018; 8:10013. [PMID: 29968729 PMCID: PMC6030110 DOI: 10.1038/s41598-018-27803-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/08/2018] [Indexed: 11/22/2022] Open
Abstract
Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response.
Collapse
Affiliation(s)
- Laura McKernan Ward
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom.
| | - Gordon Morison
- Department of Engineering, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Anita Jane Simmers
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| | - Uma Shahani
- Department of Vision Science, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, United Kingdom
| |
Collapse
|
25
|
Li L, Babawale O, Yennu A, Trowbridge C, Hulla R, Gatchel RJ, Liu H. Whole-cortical graphical networks at wakeful rest in young and older adults revealed by functional near-infrared spectroscopy. NEUROPHOTONICS 2018; 5:035004. [PMID: 30137882 PMCID: PMC6063133 DOI: 10.1117/1.nph.5.3.035004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 05/17/2023]
Abstract
A good understanding of age-dependent changes and modifications in brain networks is crucial for fully exploring the effects of aging on the human brain. Few reports have been found in studies of functional brain networks using functional near-infrared spectroscopy (fNIRS). Moreover, little is known about the feasibility of using fNIRS to assess age-related changes in brain connectomes. This study applied whole brain fNIRS measurement, combined with graph theory analysis, to assess the age-dependent changes in resting-state brain networks. Five to eight minutes of resting-state brain hemodynamic signals were recorded from 48 participants (18 young adults and 30 older adults) with 133 optical channels covering the majority of the cortical regions. Both local and global graph metrics were computed to identify the age-related changes of topographical brain networks. Older adults showed an overall decline of both global and local efficiency compared to young adults, as well as the decline of small-worldness. In addition, young adults showed the abundance of hubs in the prefrontal cortex, whereas older adults revealed the hub shifts to the sensorimotor cortex. These obvious shifts of hubs may potentially indicate decreases of the decision-making, memory, and other high-order functions as people age. Our results showed consistent findings with published literature and also demonstrated the feasibility of whole-head fNIRS measurements to assess age-dependent changes in resting-state brain networks.
Collapse
Affiliation(s)
- Lin Li
- University of Texas at Arlington, Department of Bioengineering and Joint Graduate Program Between University of Texas at Arlington and University of Texas Southwestern Medical Center, Arlington, Texas, United States
- University of California at Los Angeles, David Geffen School of Medicine, Department of Neurology, Los Angeles, California, United States
| | - Olajide Babawale
- University of Texas at Arlington, Department of Bioengineering and Joint Graduate Program Between University of Texas at Arlington and University of Texas Southwestern Medical Center, Arlington, Texas, United States
| | - Amarnath Yennu
- University of Texas at Arlington, Department of Bioengineering and Joint Graduate Program Between University of Texas at Arlington and University of Texas Southwestern Medical Center, Arlington, Texas, United States
- Stanford University School of Medicine, Department of Neurology, Stanford, California, United States
| | - Cynthia Trowbridge
- University of Texas at Arlington, Department of Kinesiology, Arlington, Texas, United States
| | - Ryan Hulla
- University of Texas at Arlington, College of Science, Department of Psychology, Arlington, Texas, United States
| | - Robert J. Gatchel
- University of Texas at Arlington, College of Science, Department of Psychology, Arlington, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering and Joint Graduate Program Between University of Texas at Arlington and University of Texas Southwestern Medical Center, Arlington, Texas, United States
- Address all correspondence to: Hanli Liu, E-mail:
| |
Collapse
|
26
|
Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan. J Neurosci 2017; 37:5539-5548. [PMID: 28473644 DOI: 10.1523/jneurosci.3408-16.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation.SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan.
Collapse
|