1
|
Chen Y, Tang JH, De Stefano LA, Wenger MJ, Ding L, Craft MA, Carlson BW, Yuan H. Electrophysiological resting state brain network and episodic memory in healthy aging adults. Neuroimage 2022; 253:118926. [PMID: 35066158 DOI: 10.1016/j.neuroimage.2022.118926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023] Open
Abstract
Recent studies have emphasized the changes in large-scale brain networks related to healthy aging, with the ultimate purpose to aid in differentiating normal neurocognitive aging from neurodegenerative disorders that also arise with age. Emerging evidence from functional Magnetic Resonance Imaging (fMRI) indicates that connectivity patterns within specific brain networks, especially the Default Mode Network (DMN), distinguish those with Alzheimer's disease from healthy individuals. In addition, disruptive alterations in the large-scale brain systems that support high-level cognition are shown to accompany cognitive decline at the behavioral level, which is commonly observed in the aging populations, even in the absence of disease. Although fMRI is useful for assessing functional changes in brain networks, its high costs and limited accessibility discourage studies that need large populations. In this study, we investigated the aging-effect on large-scale networks of the human brain using high-density electroencephalography and electrophysiological source imaging, which is a less costly and more accessible alternative to fMRI. In particular, our study examined a group of healthy subjects in the age range from middle- to older-aged adults, which is an under-studied range in the literature. Employing a high-resolution computation model, our results revealed age associations in the connectivity pattern of DMN in a consistent manner with previous fMRI findings. Particularly, in combination with a standard battery of cognitive tests, our data showed that in the posterior cingulate / precuneus area of DMN higher brain connectivity was associated with lower performance on an episodic memory task. The findings demonstrate the feasibility of using electrophysiological imaging to characterize large-scale brain networks and suggest that changes in network connectivity are associated with normal aging.
Collapse
Affiliation(s)
- Yuxuan Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, United States
| | - Julia H Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Lisa A De Stefano
- Department of Psychology, University of Oklahoma, Norman, OK, United States; Graduate Program in Cellular and Behavioral Neurobiology, University of Oklahoma, Norman, OK, United States
| | - Michael J Wenger
- Department of Psychology, University of Oklahoma, Norman, OK, United States; Graduate Program in Cellular and Behavioral Neurobiology, University of Oklahoma, Norman, OK, United States
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States
| | - Melissa A Craft
- Fran and Earl Ziegler College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Barbara W Carlson
- Fran and Earl Ziegler College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
2
|
Parkes L, Moore TM, Calkins ME, Cook PA, Cieslak M, Roalf DR, Wolf DH, Gur RC, Gur RE, Satterthwaite TD, Bassett DS. Transdiagnostic dimensions of psychopathology explain individuals' unique deviations from normative neurodevelopment in brain structure. Transl Psychiatry 2021; 11:232. [PMID: 33879764 PMCID: PMC8058055 DOI: 10.1038/s41398-021-01342-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Psychopathology is rooted in neurodevelopment. However, clinical and biological heterogeneity, together with a focus on case-control approaches, have made it difficult to link dimensions of psychopathology to abnormalities of neurodevelopment. Here, using the Philadelphia Neurodevelopmental Cohort, we built normative models of cortical volume and tested whether deviations from these models better predicted psychiatric symptoms compared to raw cortical volume. Specifically, drawing on the p-factor hypothesis, we distilled 117 clinical symptom measures into six orthogonal psychopathology dimensions: overall psychopathology, anxious-misery, externalizing disorders, fear, positive psychosis symptoms, and negative psychosis symptoms. We found that multivariate patterns of deviations yielded improved out-of-sample prediction of psychopathology dimensions compared to multivariate patterns of raw cortical volume. We also found that correlations between overall psychopathology and deviations in ventromedial prefrontal, inferior temporal, and dorsal anterior cingulate cortices were stronger than those observed for specific dimensions of psychopathology (e.g., anxious-misery). Notably, these same regions are consistently implicated in a range of putatively distinct disorders. Finally, we performed conventional case-control comparisons of deviations in a group of individuals with depression and a group with attention-deficit hyperactivity disorder (ADHD). We observed spatially overlapping effects between these groups that diminished when controlling for overall psychopathology. Together, our results suggest that modeling cortical brain features as deviations from normative neurodevelopment improves prediction of psychiatric symptoms in out-of-sample testing, and that p-factor models of psychopathology may assist in separating biomarkers that are disorder-general from those that are disorder-specific.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Philip A Cook
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
3
|
Pua EPK, Thomson P, Yang JYM, Craig JM, Ball G, Seal M. Individual Differences in Intrinsic Brain Networks Predict Symptom Severity in Autism Spectrum Disorders. Cereb Cortex 2021; 31:681-693. [PMID: 32959054 DOI: 10.1093/cercor/bhaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
The neurobiology of heterogeneous neurodevelopmental disorders such as Autism Spectrum Disorders (ASD) is still unknown. We hypothesized that differences in subject-level properties of intrinsic brain networks were important features that could predict individual variation in ASD symptom severity. We matched cases and controls from a large multicohort ASD dataset (ABIDE-II) on age, sex, IQ, and image acquisition site. Subjects were matched at the individual level (rather than at group level) to improve homogeneity within matched case-control pairs (ASD: n = 100, mean age = 11.43 years, IQ = 110.58; controls: n = 100, mean age = 11.43 years, IQ = 110.70). Using task-free functional magnetic resonance imaging, we extracted intrinsic functional brain networks using projective non-negative matrix factorization. Intrapair differences in strength in subnetworks related to the salience network (SN) and the occipital-temporal face perception network were robustly associated with individual differences in social impairment severity (T = 2.206, P = 0.0301). Findings were further replicated and validated in an independent validation cohort of monozygotic twins (n = 12; 3 pairs concordant and 3 pairs discordant for ASD). Individual differences in the SN and face-perception network are centrally implicated in the neural mechanisms of social deficits related to ASD.
Collapse
Affiliation(s)
- Emmanuel Peng Kiat Pua
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville VIC 3010, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Medicine, Austin Health, University of Melbourne, Parkville VIC 3010, Australia
| | - Phoebe Thomson
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Suite (NACIS), The Royal Children's Hospital, Parkville VIC 3052, Australia
| | - Jeffrey M Craig
- Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia.,Molecular Epidemiology, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong VIC 3220, Australia
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| | - Marc Seal
- Developmental Imaging, Murdoch Children's Research Institute, Parkville VIC 3052, Australia.,Department of Paediatrics, University of Melbourne, Parkville VIC 3010, Australia
| |
Collapse
|
4
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Stability-driven non-negative matrix factorization-based approach for extracting dynamic network from resting-state EEG. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ball G, Beare R, Seal ML. Charting shared developmental trajectories of cortical thickness and structural connectivity in childhood and adolescence. Hum Brain Mapp 2019; 40:4630-4644. [PMID: 31313446 PMCID: PMC6865644 DOI: 10.1002/hbm.24726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/05/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
The cortex is organised into broadly hierarchical functional systems with distinct neuroanatomical characteristics reflected by macroscopic measures of cortical morphology. Diffusion-weighted magnetic resonance imaging allows the delineation of areal connectivity, changes to which reflect the ongoing maturation of white matter tracts. These developmental processes are intrinsically linked with timing coincident with the development of cognitive function. In this study, we use a data-driven multivariate approach, nonnegative matrix factorisation, to define cortical regions that co-vary together across a large paediatric cohort (n = 456) and are associated with specific subnetworks of cortical connectivity. We find that age between 3 and 21 years is associated with accelerated cortical thinning in frontoparietal regions, whereas relative thinning of primary motor and sensory regions is slower. Together, the subject-specific weights of the derived set of cortical components can be combined to predict chronological age. Structural connectivity networks reveal a relative increase in strength in connection within, as opposed to between hemispheres that vary in line with cortical changes. We confirm our findings in an independent sample.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Richard Beare
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| | - Marc L. Seal
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Ye C, Mori S, Chan P, Ma T. Connectome-wide network analysis of white matter connectivity in Alzheimer's disease. Neuroimage Clin 2019; 22:101690. [PMID: 30825712 PMCID: PMC6396432 DOI: 10.1016/j.nicl.2019.101690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
Abstract
A multivariate analytical strategy may pinpoint the structural connectivity patterns associated with Alzheimer's disease (AD) pathology in connectome-wide association studies. Diffusion magnetic resonance imaging data from 161 participants including subjects with healthy controls, AD, stable and converting mild cognitive impairment, were selected for group-wise comparisons. A multivariate distance matrix regression (MDMR) analysis was performed to detect abnormality in brain structural network along with disease progression. Based on the seed regions returned by the MDMR analysis, supervised learning was applied to evaluate the disease predictive performance. Nine brain regions, including the left orbital part of superior and middle frontal gyrus, the bilateral supplementary motor area, the bilateral insula, the left hippocampus, the left putamen, and the left thalamus demonstrated extremely significant structural pattern changes along with the progression of AD. The disease classification was more efficient when based on the key connectivity related to these seed regions than when based on whole-brain structural connectivity. MDMR analysis reveals brain network reorganization caused by AD pathology. The key structural connectivity detected in this study exhibits promising distinguishing capability to predict prodromal AD patients.
Collapse
Affiliation(s)
- Chenfei Ye
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China; Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China; Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| | - Ting Ma
- Department of Electronic and Information Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen, Guangdong Province, China; Peng Cheng Laboratory, Shenzhen, Guangdong, China; National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Morgan SE, White SR, Bullmore ET, Vértes PE. A Network Neuroscience Approach to Typical and Atypical Brain Development. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:754-766. [PMID: 29703679 PMCID: PMC6986924 DOI: 10.1016/j.bpsc.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Human brain networks based on neuroimaging data have already proven useful in characterizing both normal and abnormal brain structure and function. However, many brain disorders are neurodevelopmental in origin, highlighting the need to go beyond characterizing brain organization in terms of static networks. Here, we review the fast-growing literature shedding light on developmental changes in network phenotypes. We begin with an overview of recent large-scale efforts to map healthy brain development, and we describe the key role played by longitudinal data including repeated measurements over a long period of follow-up. We also discuss the subtle ways in which healthy brain network development can inform our understanding of disorders, including work bridging the gap between macroscopic neuroimaging results and the microscopic level. Finally, we turn to studies of three specific neurodevelopmental disorders that first manifest primarily in childhood and adolescence/early adulthood, namely psychotic disorders, attention-deficit/hyperactivity disorder, and autism spectrum disorder. In each case we discuss recent progress in understanding the atypical features of brain network development associated with the disorder, and we conclude the review with some suggestions for future directions.
Collapse
Affiliation(s)
- Sarah E Morgan
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Simon R White
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Edward T Bullmore
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Huntingdon, United Kingdom; ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Petra E Vértes
- Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|