1
|
Nikolova YS, Ruocco AC, Felsky D, Lange S, Prevot TD, Vieira E, Voineskos D, Wardell JD, Blumberger DM, Clifford K, Dharavath RN, Gerretsen P, Hassan AN, Jennings SK, Le Foll B, Melamed O, Orson J, Pangarov P, Quigley L, Russell C, Shield K, Sloan ME, Smoke A, Tang V, Cabrera DV, Wang W, Wells S, Wickramatunga R, Sibille EM, Quilty LC. Cognitive Dysfunction in the Addictions (CDiA): A Neuron to Neighbourhood Collaborative Research Program on Executive Dysfunction and Functional Outcomes in Outpatients Seeking Treatment for Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312806. [PMID: 39252904 PMCID: PMC11383479 DOI: 10.1101/2024.08.30.24312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Substance use disorders (SUDs) are pressing global public health problems. Executive functions (EFs) are prominently featured in mechanistic models of addiction. However, there remain significant gaps in our understanding of EFs in SUDs, including the dimensional relationships of EFs to underlying neural circuits, molecular biomarkers, disorder heterogeneity, and functional ability. To improve health outcomes for people with SUDs, interdisciplinary clinical, preclinical and health services research is needed to inform policies and interventions aligned with biopsychosocial models of addiction. Here, we introduce Cognitive Dysfunction in the Addictions (CDiA), an integrative team-science and translational research program, which aims to fill these knowledge gaps and facilitate research discoveries to enhance treatments for people living with SUDs. METHODS The CDiA Program comprises seven complementary interdisciplinary projects that aim to progress understanding of EF in SUDs and investigate new biological treatment approaches. The projects draw on a diverse sample of adults aged 18-60 (target N=400) seeking treatment for addiction, who are followed prospectively over one year to identify EF domains crucial to recovery. Projects 1-3 investigate SUD symptoms, brain circuits, and blood biomarkers and their associations with both EF domains (inhibition, working memory, and set-shifting) and functional outcomes (disability, quality of life). Projects 4 and 5 evaluate interventions for addiction and their impacts on EF: a clinical trial of repetitive transcranial magnetic stimulation and a preclinical study of potential new pharmacological treatments in rodents. Project 6 links EF to healthcare utilization and is supplemented with a qualitative investigation of EF-related barriers to treatment engagement for those with substance use concerns. Project 7 uses innovative whole-person modeling to integrate the multi-modal data generated across projects, applying clustering and deep learning methods to identify patient subtypes and drive future cross-disciplinary initiatives. DISCUSSION The CDiA program has promise to bring scientific domains together to uncover the diverse ways in which EFs are linked to SUD severity and functional recovery. These findings, supported by emerging clinical, preclinical, health service, and whole-person modeling investigations, will facilitate future discoveries about cognitive dysfunction in addiction and could enhance the future clinical care of individuals seeking treatment for SUDs.
Collapse
|
2
|
Yang Y, Wang C, Shi J, Zou Z. Joyful growth vs. compulsive hedonism: A meta-analysis of brain activation on romantic love and addictive disorders. Neuropsychologia 2024; 204:109003. [PMID: 39293637 DOI: 10.1016/j.neuropsychologia.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to the similarities in behavioral characteristics between romantic love and addictive disorders, the concept of being "addicted to someone" transcends mere literary metaphor, expanding perspectives on the study of romantic love and inspiring interventions for addiction. However, there has been a lack of studies systematically exploring the similarities and differences between romantic love and addiction at the neural level. In this study, we conducted an extensive literature search, incorporating 21 studies on romantic love and 28 on addictive disorders, focusing on fMRI research utilizing the cue reactivity paradigm. Using Activation Likelihood Estimation, we examined the similarities and differences in the neural mechanisms underlying love and addiction. The results showed that the anterior cingulate cortex (ACC) exhibited both shared and distinct activation clusters between romantic love and addictive disorders. Furthermore, ventromedial prefrontal cortex (VMPFC) was more frequently activated in romantic love than in addictive disorders, while greater activation within the posterior cingulate cortex (PCC) was found in addictive disorder compared with romantic love. We discussed that the activation of ACC and VMPFC may symbolize self-expansion, a process that characterizes the development of romantic love, contributing to a more enriched self. Our study suggests that while romantic love and addictive disorders share a common neural foundation, the discernible differences in their neural representations distinguish them as joyful growth versus compulsive hedonism.
Collapse
Affiliation(s)
- Yuhang Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China
| | - Chuan Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiling Zou
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China.
| |
Collapse
|
3
|
He J, Bore MC, Jiang H, Gan X, Wang J, Li J, Xu X, Wang L, Fu K, Li L, Zhou B, Kendrick K, Becker B. Neural Basis of Pain Empathy Dysregulations in Mental Disorders - A Pre-registered Neuroimaging Meta-Analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00267-2. [PMID: 39260566 DOI: 10.1016/j.bpsc.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Pain empathy represents a fundamental building block of several social functions, which have been demonstrated to be impaired across various mental disorders by accumulating evidence from case-control functional magnetic resonance imaging (fMRI) studies. However, it remains unclear whether the dysregulations are underpinned by robust neural alterations across mental disorders. METHODS This study utilized coordinate-based meta-analyses to quantitatively determine robust markers of altered pain empathy across mental disorders. To support the interpretation of the findings exploratory network-level and behavioral meta-analyses were conducted. RESULTS Quantitative analysis of eleven case-control fMRI studies with data from 296 patients and 229 controls revealed patients with mental disorders exhibited increased pain empathic reactivity in the left anterior cingulate gyrus, adjacent medial prefrontal cortex, and right middle temporal gyrus, yet decreased activity in the left cerebellum IV/V and left middle occipital gyrus compared to controls. The hyperactive regions showed network-level interactions with the core default mode network (DMN) and were associated with affective and social cognitive domains. CONCLUSIONS The findings suggest that pain-empathic alterations across mental disorders are underpinned by excessive empathic reactivity in brain systems involved in empathic distress and social processes, highlighting a shared therapeutic target to normalize basal social dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Jingxian He
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Jiang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Xiaolei Xu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Weng Y, Kruschwitz J, Rueda-Delgado LM, Ruddy KL, Boyle R, Franzen L, Serin E, Nweze T, Hanson J, Smyth A, Farnan T, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, McGrath J, Nees F, Papadopoulos Orfanos D, Paus T, Poustka L, Holz N, Fröhner J, Smolka MN, Vaidya N, Schumann G, Walter H, Whelan R. A robust brain network for sustained attention from adolescence to adulthood that predicts later substance use. eLife 2024; 13:RP97150. [PMID: 39235858 PMCID: PMC11377036 DOI: 10.7554/elife.97150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance use or a marker of the inclination to engage in such behavior. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1000 participants. Behaviors and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.
Collapse
Affiliation(s)
- Yihe Weng
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Johann Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) 'Volition and Cognitive Control', Technische Universität Dresden, Dresden, Germany
| | - Laura M Rueda-Delgado
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Kathy L Ruddy
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Queens University Belfast, Belfast, United Kingdom
| | - Rory Boyle
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Luisa Franzen
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Emin Serin
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Tochukwu Nweze
- Department of Psychology, University of Utah, Salt Lake City, United States
| | - Jamie Hanson
- Department of Psychology, Learning Research & Development Center, University of Pittsburgh, Pittsburgh, United States
| | - Alannah Smyth
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Tom Farnan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology, & Neuroscience, SGDP Centre, King's College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, United States
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 'Trajectoires développementales & psychiatrie', University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Jane McGrath
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Ekhtiari H, Sangchooli A, Carmichael O, Moeller FG, O'Donnell P, Oquendo M, Paulus MP, Pizzagalli DA, Ramey T, Schacht J, Zare-Bidoky M, Childress AR, Brady K. Neuroimaging Biomarkers in Addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.02.24312084. [PMID: 39281741 PMCID: PMC11398440 DOI: 10.1101/2024.09.02.24312084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
As a neurobiological process, addiction involves pathological patterns of engagement with substances and a range of behaviors with a chronic and relapsing course. Neuroimaging technologies assess brain activity, structure, physiology, and metabolism at scales ranging from neurotransmitter receptors to large-scale brain networks, providing unique windows into the core neural processes implicated in substance use disorders. Identified aberrations in the neural substrates of reward and salience processing, response inhibition, interoception, and executive functions with neuroimaging can inform the development of pharmacological, neuromodulatory, and psychotherapeutic interventions to modulate the disordered neurobiology. Based on our systematic search, 409 protocols registered on ClinicalTrials.gov include the use of one or more neuroimaging paradigms as an outcome measure in addiction, with the majority (N=268) employing functional magnetic resonance imaging (fMRI), followed by positron emission tomography (PET) (N=71), electroencephalography (EEG) (N=50), structural magnetic resonance imaging (MRI) (N=35) and magnetic resonance spectroscopy (MRS) (N=35). Furthermore, in a PubMed systematic review, we identified 61 meta-analyses including 30 fMRI, 22 structural MRI, 8 EEG, 7 PET, and 3 MRS meta-analyses suggesting potential biomarkers in addictions. These studies can facilitate the development of a range of biomarkers that may prove useful in the arsenal of addiction treatments in the coming years. There is evidence that these markers of large-scale brain structure and activity may indicate vulnerability or separate disease subtypes, predict response to treatment, or provide objective measures of treatment response or recovery. Neuroimaging biomarkers can also suggest novel targets for interventions. Closed or open loop interventions can integrate these biomarkers with neuromodulation in real-time or offline to personalize stimulation parameters and deliver the precise intervention. This review provides an overview of neuroimaging modalities in addiction, potential neuroimaging biomarkers, and their physiologic and clinical relevance. Future directions and challenges in bringing these putative biomarkers from the bench to the bedside are also discussed.
Collapse
Affiliation(s)
- Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Arshiya Sangchooli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Owen Carmichael
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - F Gerard Moeller
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Patricio O'Donnell
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Maria Oquendo
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Martin P Paulus
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Diego A Pizzagalli
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Tatiana Ramey
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Joseph Schacht
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Mehran Zare-Bidoky
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Anna Rose Childress
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| | - Kathleen Brady
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA (Ekhtiari); Laureate Institute for Brain Research (LIBR), Tulsa, OK, USA (Ekhtiari, Paulus); School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia (Sangchooli); Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA (Carmichael); Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Oquendo, Childress); Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA (Moeller); Translational Medicine, Sage Therapeutics, Cambridge, MA, USA and McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA (O'Donnell); Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA (Pizzaggali); National Institute on Drug Abuse, Bethesda, MD, USA (Ramey); Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA (Schacht); Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran (Zare-Bidoky); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA (Brady)
| |
Collapse
|
6
|
Bore MC, Liu X, Huang X, Kendrick KM, Zhou B, Zhang J, Klugah-Brown B, Becker B. Common and separable neural alterations in adult and adolescent depression - Evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2024; 164:105835. [PMID: 39084585 DOI: 10.1016/j.neubiorev.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Tag-Eldeen ES, Fahmy M, Anwar K, Ibrahim O. Assessment of frontal lobe functions in a sample of male cannabis users currently in abstinence: correlations with duration of use and their functional outcomes. J Cannabis Res 2024; 6:34. [PMID: 39164716 PMCID: PMC11337584 DOI: 10.1186/s42238-024-00244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Previous research literature reported different results regarding the long-term effects that cannabis use can exert on the frontal lobe neurocognitive functions of its users. Another body of research suggested that cannabis use negatively affects the person's general level of occupational and psychosocial functioning consequently to these alterations. Some other research results did not support these findings. To date, it is still debatable whether chronic cannabis use triggers negative neurocognitive effects in chronic users even after a period of abstinence. Research data exploring consequent adverse outcomes on the general individual occupational and psychosocial functioning is not yet conclusive. RESULTS We conducted this study to examine the residual neurocognitive effects of cannabis use, whether it is affected by duration of cannabis use before abstinence, and its relation to individual's global assessment of functioning exhibited in the person's occupational and social life whether it's family or friends. Our sample comprised 80 male participants (18-45 years old) who were grouped into 4 groups (3 groups with different durations of use and a control group), with no significant difference between the four studied groups regarding age, education, and socioeconomic level. The Kruskal Wallis test was used to test the significance of differences in the distribution of total frontal lobe battery results and the general assessment of function scores using GAF scores between study groups. Post hoc testing was performed to adjust for multiple comparisons using Bonferroni method. CONCLUSION Data analysis showed that cannabis users experienced general functional disturbances that encompass impairments in social and occupational life aspects. These impairments in function are correlated with the presence of neurocognitive deficits even after a period of abstinence. Both having significant positive correlation with longer duration of cannabis use.
Collapse
Affiliation(s)
| | - Magda Fahmy
- Department of Psychiatry and Neurology, Suez Canal University, Ismailia, Egypt
| | - Khaled Anwar
- Department of Psychiatry and Neurology, Suez Canal University, Ismailia, Egypt
| | - Omneya Ibrahim
- Department of Psychiatry and Neurology, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
8
|
Schaub AC, Meyer M, Tschopp A, Wagner A, Lang UE, Walter M, Colledge F, Schmidt A. Brain alterations in individuals with exercise dependence: A multimodal neuroimaging investigation. J Behav Addict 2024; 13:565-575. [PMID: 38842943 PMCID: PMC11220813 DOI: 10.1556/2006.2024.00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
Background Exercise dependence (ED) is characterised by behavioural and psychological symptoms that resemble those of substance use disorders. However, it remains inconclusive whether ED is accompanied by similar brain alterations as seen in substance use disorders. Therefore, we investigated brain alterations in individuals with ED and inactive control participants. Methods In this cross-sectional neuroimaging investigation, 29 individuals with ED as assessed with the Exercise Dependence Scale (EDS) and 28 inactive control participants (max one hour exercising per week) underwent structural and functional resting-state magnetic resonance imaging (MRI). Group differences were explored using voxel-based morphometry and functional connectivity analyses. Analyses were restricted to the striatum, amygdala, and inferior frontal gyrus (IFG). Exploratory analyses tested whether relationships between brain structure and function were differently related to EDS subscales among groups. Results No structural differences were found between the two groups. However, right IFG and bilateral putamen volumes were differently related to the EDS subscales "time" and "tolerance", respectively, between the two groups. Resting-state functional connectivity was increased from right IFG to right superior parietal lobule in individuals with ED compared to inactive control participants. Furthermore, functional connectivity of the angular gyrus to the left IFG and bilateral caudate showed divergent relationships to the EDS subscale "tolerance" among groups. Discussion The findings suggest that ED may be accompanied by alterations in cognition-related brain structures, but also functional changes that may drive compulsive habitual behaviour. Further prospective studies are needed to disentangle beneficial and detrimental brain effects of ED.
Collapse
Affiliation(s)
| | - Maximilian Meyer
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Amos Tschopp
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Aline Wagner
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Undine E. Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Marc Walter
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Psychiatric Services Aargau, Windisch, Switzerland
| | - Flora Colledge
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| |
Collapse
|
9
|
Weng Y, Kruschwitz J, Rueda-Delgado LM, Ruddy K, Boyle R, Franzen L, Serin E, Nweze T, Hanson J, Smyth A, Farnan T, Banaschewski T, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, McGrath J, Nees F, Orfanos DP, Paus T, Poustka L, Holz N, Fröhner JH, Smolka MN, Vaidya N, Schumann G, Walter H, Whelan R. A robust brain network for sustained attention from adolescence to adulthood that predicts later substance use. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587900. [PMID: 38617224 PMCID: PMC11014614 DOI: 10.1101/2024.04.03.587900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a predictor of substance-use or a marker of the inclination to engage in such behaviour. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1,000 participants. Behaviours and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.
Collapse
Affiliation(s)
- Yihe Weng
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Johann Kruschwitz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Collaborative Research Centre (SFB 940) "Volition and Cognitive Control", Technische Universität Dresden, 01069, Dresden, Germany
| | - Laura M Rueda-Delgado
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Kathy Ruddy
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- School of Psychology, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Rory Boyle
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Luisa Franzen
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Emin Serin
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Charité -Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
| | | | - Jamie Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Learning Research & Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alannah Smyth
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tom Farnan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and AP-HP. Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS; Ecole Normale Supérieure Paris-Saclay, Centre Borelli; Gif-sur-Yvette; and Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Jane McGrath
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Bore MC, Liu X, Gan X, Wang L, Xu T, Ferraro S, Li L, Zhou B, Zhang J, Vatansever D, Biswal B, Klugah-Brown B, Becker B. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression - a neuroimaging meta-analysis. Psychol Med 2024; 54:639-651. [PMID: 37997708 DOI: 10.1017/s0033291723003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
McCurdy LY, Yip SW, Worhunsky PD, Zhai ZW, Kim S, Strathearn L, Potenza MN, Mayes LC, Rutherford HJV. Neural correlates of altered emotional responsivity to infant stimuli in mothers who use substances. J Psychiatr Res 2024; 171:126-133. [PMID: 38277872 PMCID: PMC10922955 DOI: 10.1016/j.jpsychires.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/01/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Mothers who use substances during pregnancy and postpartum may have altered maternal behavior towards their infants, which can have negative consequences on infant social-emotional development. Since maternal substance use has been associated with difficulties in recognizing and responding to infant emotional expressions, investigating mothers' subjective responses to emotional infant stimuli may provide insight into the neural and psychological processes underlying these differences in maternal behavior. In this study, 39 mothers who used substances during the perinatal period and 42 mothers who did not underwent functional magnetic resonance imaging while viewing infant faces and hearing infant cries. Afterwards, they rated the emotional intensity they thought each infant felt ('think'-rating), and how intensely they felt in response to each infant stimulus ('feel'-rating). Mothers who used substances had lower 'feel'-ratings of infant stimuli compared to mothers who did not. Brain regions implicated in affective processing (e.g., insula, inferior frontal gyrus) were less active in response to infant stimuli, and activity in these brain regions statistically predicted maternal substance-use status. Interestingly, 'think'-ratings and activation in brain regions related to cognitive processing (e.g., medial prefrontal cortex) were comparable between the two groups of mothers. Taken together, these results suggest specific neural and psychological processes related to emotional responsivity to infant stimuli may reflect differences in maternal affective processing and may contribute to differences in maternal behavior in mothers who use substances compared to mothers who do not. The findings suggest potential neural targets for increasing maternal emotional responsivity and improving child outcomes.
Collapse
Affiliation(s)
- Li Yan McCurdy
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA; Division of Prevention and Community Research, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Zu Wei Zhai
- Department of Neuroscience, Middlebury College, Middlebury, VT, 05753, USA
| | - Sohye Kim
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Departments of Psychiatry, Pediatrics, and Obstetrics and Gynecology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lane Strathearn
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA, 52242, USA; Hawkeye Intellectual and Developmental Disabilities Research Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA; Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA; The Connecticut Council on Problem Gambling, Wethersfield, CT, 06109, USA; The Connecticut Mental Health Center, New Haven, CT, 06519, USA
| | - Linda C Mayes
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | | |
Collapse
|
12
|
Scala SG, Kang MS, Cox SML, Rosa‐Neto P, Massarweh G, Leyton M. Mesocorticolimbic function in cocaine polydrug users: A multimodal study of drug cue reactivity and cognitive regulation. Addict Biol 2024; 29:e13358. [PMID: 38221806 PMCID: PMC10898841 DOI: 10.1111/adb.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Addictions are thought to be fostered by the emergence of poorly regulated mesocorticolimbic responses to drug-related cues. The development and persistence of these responses might be promoted by altered glutamate transmission, including changes to type 5 metabotropic glutamate receptors (mGluR5s). Unknown, however, is when these changes arise and whether the mGluR5 and mesocorticolimbic alterations are related. To investigate, non-dependent cocaine polydrug users and cocaine-naïve healthy controls underwent a positron emission tomography scan (15 cocaine users and 14 healthy controls) with [11 C]ABP688, and a functional magnetic resonance imaging scan (15/group) while watching videos depicting activities with and without cocaine use. For some drug videos, participants were instructed to use a cognitive strategy to lower craving. Both groups exhibited drug cue-induced mesocorticolimbic activations and these were larger in the cocaine polydrug users than healthy controls during the session's second half. During the cognitive regulation trials, the cocaine users' corticostriatal responses were reduced. [11 C]ABP688 binding was unaltered in cocaine users, relative to healthy controls, but post hoc analyses found reductions in those with 75 or more lifetime cocaine use sessions. Finally, among cocaine users (n = 12), individual differences in prefrontal [11 C]ABP688 binding were associated with midbrain and limbic region activations during the regulation trials. Together, these preliminary findings raise the possibility that (i) recreational polydrug cocaine users show biased brain processes towards cocaine-related cues and (ii) repeated cocaine use can lower cortical mGluR5 levels, diminishing the ability to regulate drug cue responses. These alterations might promote susceptibility to addiction and identify early intervention targets.
Collapse
Affiliation(s)
| | - Min Su Kang
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Sunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | | | - Pedro Rosa‐Neto
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
| | - Gassan Massarweh
- McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealQuebecCanada
| | - Marco Leyton
- Integrated Program in NeuroscienceMcGill UniversityMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Neurology & Neurosurgery, Montreal Neurological InstituteMcGill UniversityMontrealQuebecCanada
- McConnell Brain Imaging CentreMontreal Neurological InstituteMontrealQuebecCanada
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
- Center for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
13
|
Zhao Y, Potenza MN, Tapert SF, Paulus MP. Neural correlates of negative life events and their relationships with alcohol and cannabis use initiation. DIALOGUES IN CLINICAL NEUROSCIENCE 2023; 25:112-121. [PMID: 37916739 PMCID: PMC10623894 DOI: 10.1080/19585969.2023.2252437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Negative life events (NLEs), e.g., poor academic performance (controllable) or being the victim of a crime (uncontrollable), can profoundly affect the trajectory of one's life. Yet, their impact on how the brain develops is still not well understood. This investigation examined the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) dataset for the impact of NLEs on the initiation of alcohol and cannabis use, as well as underlying neural mechanisms. METHODS This study evaluated the impact of controllable and uncontrollable NLEs on substance use initiation in 207 youth who initiated alcohol use, 168 who initiated cannabis use, and compared it to 128 youth who remained substance-naïve, using generalised linear regression models. Mediation analyses were conducted to determine neural pathways of NLE impacting substance use trajectories. RESULTS Dose-response relationships between controllable NLEs and substance use initiation were observed. Having one controllable NLE increased the odds of alcohol initiation by 50% (95%CI [1.18, 1.93]) and cannabis initiation by 73% (95%CI [1.36, 2.24]), respectively. Greater cortical thickness in left banks of the superior temporal sulcus mediated effects of controllable NLEs on alcohol and cannabis initiations. Greater left caudate gray-matter volumes mediated effects of controllable NLEs on cannabis initiation. CONCLUSIONS Controllable but not uncontrollable NLEs increased the odds of alcohol and cannabis initiation. Moreover, those individuals with less mature brain structures at the time of the NLEs experienced a greater impact of NLEs on subsequent initiation of alcohol or cannabis use. Targeting youth experiencing controllable NLEs may help mitigate alcohol and cannabis initiation.
Collapse
Affiliation(s)
- Yihong Zhao
- Columbia University School of Nursing, New York, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Susan F. Tapert
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Martin P. Paulus
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| |
Collapse
|
14
|
Baker TE, Robles D. Theta Burst Stimulation of the Hyperdirect Pathway Boosts Inhibitory Control and Reduces Craving and Smoking in Nicotine-Dependent Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1072-1074. [PMID: 37940226 DOI: 10.1016/j.bpsc.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey.
| | - Daniel Robles
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
15
|
Zhuang Q, Qiao L, Xu L, Yao S, Chen S, Zheng X, Li J, Fu M, Li K, Vatansever D, Ferraro S, Kendrick KM, Becker B. The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit. PSYCHORADIOLOGY 2023; 3:kkad016. [PMID: 38666118 PMCID: PMC10917375 DOI: 10.1093/psyrad/kkad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 04/28/2024]
Abstract
Background The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.
Collapse
Affiliation(s)
- Qian Zhuang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lei Qiao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
16
|
Morawetz C, Berboth S, Chirokoff V, Chanraud S, Misdrahi D, Serre F, Auriacombe M, Fatseas M, Swendsen J. Mood Variability, Craving, and Substance Use Disorders: From Intrinsic Brain Network Connectivity to Daily Life Experience. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:940-955. [PMID: 36775712 DOI: 10.1016/j.bpsc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Substance use disorders (SUDs) are major contributors to morbidity and mortality rates worldwide, and this global burden is attributable in large part to the chronic nature of these conditions. Increased mood variability might represent a form of emotional dysregulation that may have particular significance for the risk of relapse in SUD, independent of mood severity or diagnostic status. However, the neural biomarkers that underlie mood variability remain poorly understood. METHODS Ecological momentary assessment was used to assess mood variability, craving, and substance use in real time in 54 patients treated for addiction to alcohol, cannabis, or nicotine and 30 healthy control subjects. Such data were jointly examined relative to spectral dynamic causal modeling of effective brain connectivity within 4 networks involved in emotion generation and regulation. RESULTS Differences in effective connectivity were related to daily life variability of emotional states experienced by persons with SUD, and mood variability was associated with craving intensity. Relative to the control participants, effective connectivity was decreased for patients in the prefrontal control networks and increased in the emotion generation networks. Findings revealed that effective connectivity within the patient group was modulated by mood variability. CONCLUSIONS The intrinsic causal dynamics in large-scale neural networks underlying emotion regulation play a predictive role in a patient's susceptibility to experiencing mood variability (and, subsequently, craving) in daily life. The findings represent an important step toward informing interventional research through biomarkers of factors that increase the risk of relapse in persons with SUD.
Collapse
Affiliation(s)
- Carmen Morawetz
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria.
| | - Stella Berboth
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Valentine Chirokoff
- National Centre for Scientific Research UMR 5287 - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, France; École pratique des hautes études, Paris Sciences et Lettres Research University, Paris, France
| | - Sandra Chanraud
- National Centre for Scientific Research UMR 5287 - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, France; École pratique des hautes études, Paris Sciences et Lettres Research University, Paris, France
| | - David Misdrahi
- National Centre for Scientific Research UMR 5287 - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, France; Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Fuschia Serre
- Centre National de la Recherche Scientifique UMR 6033 - Sleep, Addiction and Neuropsychiatry, University of Bordeaux, Bordeaux, France
| | - Marc Auriacombe
- Centre National de la Recherche Scientifique UMR 6033 - Sleep, Addiction and Neuropsychiatry, University of Bordeaux, Bordeaux, France; Centre Hospitalier Charles Perrens, Bordeaux, France; Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Melina Fatseas
- National Centre for Scientific Research UMR 5287 - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, France; Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Joel Swendsen
- National Centre for Scientific Research UMR 5287 - Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, University of Bordeaux, Bordeaux, France; École pratique des hautes études, Paris Sciences et Lettres Research University, Paris, France
| |
Collapse
|
17
|
van Ruitenbeek P, Franzen L, Mason NL, Stiers P, Ramaekers JG. Methylphenidate as a treatment option for substance use disorder: a transdiagnostic perspective. Front Psychiatry 2023; 14:1208120. [PMID: 37599874 PMCID: PMC10435872 DOI: 10.3389/fpsyt.2023.1208120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
A transition in viewing mental disorders from conditions defined as a set of unique characteristics to one of the quantitative variations on a collection of dimensions allows overlap between disorders. The overlap can be utilized to extend to treatment approaches. Here, we consider the overlap between attention-deficit/hyperactivity disorder and substance use disorder to probe the suitability to use methylphenidate as a treatment for substance use disorder. Both disorders are characterized by maladaptive goal-directed behavior, impaired cognitive control, hyperactive phasic dopaminergic neurotransmission in the striatum, prefrontal hypoactivation, and reduced frontal cortex gray matter volume/density. In addition, methylphenidate has been shown to improve cognitive control and normalize associated brain activation in substance use disorder patients and clinical trials have found methylphenidate to improve clinical outcomes. Despite the theoretical basis and promising, but preliminary, outcomes, many questions remain unanswered. Most prominent is whether all patients who are addicted to different substances may equally profit from methylphenidate treatment.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
18
|
Zeng J, You L, Sheng H, Luo Y, Yang X. The differential neural substrates for reward choice under gain-loss contexts and risk in alcohol use disorder: Evidence from a voxel-based meta-analysis. Drug Alcohol Depend 2023; 248:109912. [PMID: 37182355 DOI: 10.1016/j.drugalcdep.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Making a risky decision is a complex process that involves the evaluation of both the values of the options and the associated risk level; this process is distinct from reward processing in gain versus loss contexts. Although disrupted reward processing in mesolimbic dopamine circuitry is suggested to underlie pathological incentive processing in patients with alcohol use disorder (AUD), the differential neural processes subserving these motivational tendencies for risk situations or gain/loss choices in decision-making have not been identified. METHODS To examine the common or distinct neural mechanisms in the evaluation of risk versus outcomes for AUD, we conducted two separate coordinate-based meta-analyses of functional neuroimaging studies by using Seed-Based d Mapping software to evaluate 13 studies investigating gain and loss processing and 10 studies investigating risky decision-making. RESULTS During gain and loss processing, relative to healthy controls, AUD patients showed reduced activation in the mesocortical-limbic circuit, including the orbital prefrontal cortex (OFC), dorsal striatum, insula, hippocampus, cerebellum, cuneus cortex and superior temporal gyrus, but hyperactivation in the inferior temporal gyrus and paracentral lobule (extending to the middle cingulate cortex (MCC) and precuneus). During decision-making under risk, AUD patients exhibited hypoactivity of the prefrontal and cingulate cortices, including the posterior cingulate cortex (extending to the MCC), middle frontal gyrus, medial prefrontal cortex, dorsolateral prefrontal cortex, OFC and anterior cingulate cortex. CONCLUSIONS Our results extend existing neurological evidence by showing that a reduced response in the mesocortical-limbic circuit is found in gain versus loss processing, with decreased responsivity in cortical regions in risk decision-making. Our results implicate dissociable neural circuit responses for gain-loss processing and risk decision-making, which contribute to a better understanding of the pathophysiological mechanism underlying nondrug incentive and risk processing in individuals with AUD.
Collapse
Affiliation(s)
- Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, China
| | - Lantao You
- School of Economics and Business Administration, Chongqing University, Chongqing, China
| | - Haoxuan Sheng
- School of Public Policy and Administration, Chongqing University, Chongqing, China
| | - Ya Luo
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Policy and Administration, Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
Marceau EM, Berry J, Grenyer BFS. Neurocognition of females with substance use disorder and comorbid personality disorder: Divergence in subjective and objective cognition. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:368-378. [PMID: 34251923 DOI: 10.1080/23279095.2021.1948413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
At least one in four patients with substance use disorder (SUD) meet criteria for personality disorder and overlapping neurocognitive deficits may reflect shared neurobiological mechanisms. We studied neurocognition in females attending residential SUD treatment by comparing SUD with (n = 20) or without (n = 30) comorbid personality disorder. Neuropsychological testing included working memory, inhibition, shifting, verbal fluency, design fluency, psychomotor speed, immediate and delayed verbal memory, processing speed, premorbid functioning, cognitive screening, and self-reported executive function. As expected, whole-sample deficits included working memory (d = -.91), self-reported executive function (d = -.87), processing speed (d = -.40), delayed verbal memory recall (d = -.39), premorbid functioning (d = -.51), and cognitive screening performance (d = -.61). Importantly, the comorbid personality disorder group showed greater self-reported executive dysfunction (d = -.67) and poorer shifting performance (d = -.65). However, they also evidenced better working memory (d = .84), immediate (d = .95) and delayed (d = .83) verbal memory, premorbid functioning (d = .90), and cognitive screening performance (d = .77). Overall executive dysfunction deficits were concordant with those observed in previous SUD studies. Surprisingly, comorbid personality disorder was associated with a pattern indicating poorer subjective (self-report) but better objective performance on a number of tasks, apart from shifting deficits that may relate to emotion dysregulation. Subjective emotional dysfunction may influence the cognitive deficits observed in the personality disorder group.
Collapse
Affiliation(s)
- Ely M Marceau
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jamie Berry
- Advanced Neuropsychological Treatment Services, Strathfield South, Australia
- Department of Psychology, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Australia
| | - Brin F S Grenyer
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
20
|
Zeng J, You L, Yang F, Luo Y, Yu S, Yan J, Liu M, Yang X. A meta-analysis of the neural substrates of monetary reward anticipation and outcome in alcohol use disorder. Hum Brain Mapp 2023; 44:2841-2861. [PMID: 36852619 PMCID: PMC10089105 DOI: 10.1002/hbm.26249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
The capacity to anticipate and detect rewarding outcomes is fundamental for the development of adaptive decision-making and goal-oriented behavior. Delineating the neural correlates of different stages of reward processing is imperative for understanding the neurobiological mechanism underlying alcohol use disorder (AUD). To examine the neural correlates of monetary anticipation and outcome in AUD patients, we performed two separate voxel-wise meta-analyses of functional neuroimaging studies, including 12 studies investigating reward anticipation and 7 studies investigating reward outcome using the monetary incentive delay task. During the anticipation stage, AUD patients displayed decreased activation in response to monetary cues in mesocortical-limbic circuits and sensory areas, including the ventral striatum (VS), insula, hippocampus, inferior occipital gyrus, supramarginal gyrus, lingual gyrus and fusiform gyrus. During the outcome stage, AUD patients exhibited reduced activation in the dorsal striatum, VS and insula, and increased activation in the orbital frontal cortex and medial temporal area. Our findings suggest that different activation patterns are associated with nondrug rewards during different reward processing stages, potentially reflecting a changed sensitivity to monetary reward in AUD.
Collapse
Affiliation(s)
- Jianguang Zeng
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Lantao You
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Fan Yang
- Department of Ultrasonography, West China Second University HospitalSichuan UniversityChengduChina
- Chengdu Chenghua District Maternal and Child Health HospitalSichuan UniversityChengduChina
| | - Ya Luo
- Department of Psychiatry, State Key Lab of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Shuxian Yu
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Jiangnan Yan
- School of Economics and Business AdministrationChongqing UniversityChongqingChina
| | - Mengqi Liu
- Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xun Yang
- School of Public AffairsChongqing UniversityChongqingChina
| |
Collapse
|
21
|
Yan H, Xiao S, Fu S, Gong J, Qi Z, Chen G, Chen P, Tang G, Su T, Yang Z, Wang Y. Functional and structural brain abnormalities in substance use disorder: A multimodal meta-analysis of neuroimaging studies. Acta Psychiatr Scand 2023; 147:345-359. [PMID: 36807120 DOI: 10.1111/acps.13539] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed that patients with substance use disorder (SUD) may present brain abnormalities, but their results were inconsistent. This multimodal neuroimaging meta-analysis aimed to estimate common and specific alterations in SUD patients by combining information from all available studies of spontaneous functional activity and gray matter volume (GMV). METHODS A whole-brain meta-analysis on resting-state functional imaging and VBM studies was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, followed by multimodal overlapping to comprehensively investigate function and structure of the brain in SUD. RESULTS In this meta-analysis, 39 independent studies with 47 datasets related to resting-state functional brain activity (1444 SUD patients; 1446 healthy controls [HCs]) were included, as well as 77 studies with 89 datasets for GMV (3457 SUD patients; 3774 HCs). Patients with SUD showed the decreased resting-state functional brain activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC). For the VBM meta-analysis, patients with SUD showed the reduced GMV in the bilateral ACC/mPFC, insula, thalamus extending to striatum, and left sensorimotor cortex. CONCLUSIONS This multimodal meta-analysis exhibited that SUD shows common impairment in both function and structure in the ACC/mPFC, suggesting that the deficits in functional and structural domains could be correlated together. In addition, a few regions exhibited only structural impairment in SUD, including the insula, thalamus, striatum, and sensorimotor areas.
Collapse
Affiliation(s)
- Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
22
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
23
|
The Angiotensin Antagonist Losartan Modulates Social Reward Motivation and Punishment Sensitivity via Modulating Midbrain-Striato-Frontal Circuits. J Neurosci 2023; 43:472-483. [PMID: 36639890 PMCID: PMC9864573 DOI: 10.1523/jneurosci.1114-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.
Collapse
|
24
|
Dugré JR, Orban P, Potvin S. Disrupted functional connectivity of the brain reward system in substance use problems: A meta-analysis of functional neuroimaging studies. Addict Biol 2023; 28:e13257. [PMID: 36577728 DOI: 10.1111/adb.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Extensive literature suggests that the brain reward system is crucial in understanding the neurobiology of substance use disorders. However, evidence of reliable deficits in functional connectivity across studies on substance use problems remains limited. Therefore, a voxel-wise seed-based meta-analysis using brain regions of the reward system as seeds of interest was conducted on 96 studies representing 5757 subjects with substance use problems. The ventromedial prefrontal cortex exhibited hyperconnectivity with the ventral striatum and hypoconnectivity with the amygdala and hippocampus. The executive striatum showed hyperconnectivity with the motor thalamus and dorsolateral prefrontal cortex and hypoconnectivity with the anterior cingulate cortex and anterior insula. Finally, the limbic striatum was found to be hyperconnected to the orbitofrontal cortex and hypoconnected to the precuneus compared with healthy subjects. The current study provided meta-analytical evidence of deficient functional connectivity between brain regions of the reward system and cortico-striato-thalamocortical loops in addiction. These results are consistent with deficits in motivation and habit formation occurring in addiction, and they highlight alterations in brain regions involved in socio-emotional processing and attention salience.
Collapse
Affiliation(s)
- Jules R Dugré
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Pierre Orban
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
25
|
Klugah-Brown B, Zhou X, Wang L, Gan X, Zhang R, Liu X, Song X, Zhao W, Biswal BB, Yu F, Montag C, Becker B. Associations between levels of Internet Gaming Disorder symptoms and striatal morphology-replication and associations with social anxiety. PSYCHORADIOLOGY 2022; 2:207-215. [PMID: 38665272 PMCID: PMC10917202 DOI: 10.1093/psyrad/kkac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 04/28/2024]
Abstract
Background Brain structural alterations of the striatum have been frequently observed in internet gaming disorder (IGD); however, the replicability of the results and the associations with social-affective dysregulations such as social anxiety remain to be determined. Methods The present study combined a dimensional neuroimaging approach with both voxel-wise and data-driven multivariate approaches to (i) replicate our previous results on a negative association between IGD symptom load (assessed by the Internet Gaming Disorder Scale-Short Form) and striatal volume, (ii) extend these findings to female individuals, and (iii) employ multivariate and mediation models to determine common brain structural representations of IGD and social anxiety (assessed by the Liebowitz Social Anxiety Scale). Results In line with the original study, the voxel-wise analyses revealed a negative association between IGD and volumes of the bilateral caudate. Going beyond the earlier study investigating only male participants, the present study demonstrates that the association in the right caudate was comparable in both the male and the female subsamples. Further examination using the multivariate approach revealed regionally different associations between IGD and social anxiety with striatal density representations in the dorsal striatum (caudate) and ventral striatum (nucleus accumbens). Higher levels of IGD were associated with higher social anxiety and the association was critically mediated by the multivariate neurostructural density variations of the striatum. Conclusions Altered striatal volumes may represent a replicable and generalizable marker of IGD symptoms. However, exploratory multivariate analyses revealed more complex and regional specific associations between striatal density and IGD as well as social anxiety symptoms. Variations in both tendencies may share common structural brain representations, which mediate the association between increased IGD and social anxiety.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinqi Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, 89069 Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, Sichuan, P.R. China
| |
Collapse
|
26
|
Yu F, Li J, Xu L, Zheng X, Fu M, Li K, Yao S, Kendrick KM, Montag C, Becker B. Opposing associations of Internet Use Disorder symptom domains with structural and functional organization of the striatum: A dimensional neuroimaging approach. J Behav Addict 2022; 11:1068-1079. [PMID: 36422683 PMCID: PMC9881660 DOI: 10.1556/2006.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 10/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests brain structural and functional alterations in Internet Use Disorder (IUD). However, conclusions are strongly limited due to the retrospective case-control design of the studies, small samples, and the focus on general rather than symptom-specific approaches. METHODS We here employed a dimensional multi-methodical MRI-neuroimaging design in a final sample of n = 203 subjects to examine associations between levels of IUD and its symptom-dimensions (loss of control/time management, craving/social problems) with brain structure, resting state and task-based (pain empathy, affective go/no-go) brain function. RESULTS Although the present sample covered the entire range of IUD, including normal, problematic as well as pathological levels, general IUD symptom load was not associated with brain structural or functional alterations. However, the symptom-dimensions exhibited opposing associations with the intrinsic and structural organization of the brain, such that loss of control/time management exhibited negative associations with intrinsic striatal networks and hippocampal volume, while craving/social problems exhibited a positive association with intrinsic striatal networks and caudate volume. CONCLUSIONS Our findings provided the first evidence for IUD symptom-domain specific associations with progressive alterations in the intrinsic structural and functional organization of the brain, particularly of striatal systems involved in reward, habitual and cognitive control processes.
Collapse
Affiliation(s)
- Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Corresponding author. E-mail:
| |
Collapse
|
27
|
Long Y, Pan N, Ji S, Qin K, Chen Y, Zhang X, He M, Suo X, Yu Y, Wang S, Gong Q. Distinct brain structural abnormalities in attention-deficit/hyperactivity disorder and substance use disorders: A comparative meta-analysis. Transl Psychiatry 2022; 12:368. [PMID: 36068207 PMCID: PMC9448791 DOI: 10.1038/s41398-022-02130-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
As two common mental disorders during the period of adolescence that extend to early adulthood, attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUDs) have considerable diagnostic co-occurrence and shared neuropsychological impairments. Our study aimed to identify overlapping and distinct brain structural abnormalities associated with ADHD and SUDs among adolescents and young adults. A systematic literature search on voxel-based morphometry (VBM) studies of ADHD and SUDs was conducted in PubMed and Web of Science. Data were extracted and analyzed to identify brain abnormalities using Seed-based d-Mapping software. Data-driven functional decoding was conducted to identify the psychophysiological functioning associated with brain alterations. 13 and 14 VBM studies for ADHD (619 patients and 483 controls) and SUDs (516 patients and 413 controls), respectively, were included. Patterns of decreased gray matter volume (GMV) were found in the left precentral gyrus, bilateral superior frontal gyri, and left inferior frontal gyrus in the ADHD group compared to the control group. In contrast, individuals with SUDs, relative to controls, were characterized by increased GMV in the left putamen and insula. Comparative analysis indicated larger regional GMV in the right inferior parietal lobule and smaller volumes in the left putamen and left precentral gyrus in the ADHD group than in the SUDs group. Dissociable brain structural abnormalities in adolescents and young adults with ADHD and SUDs potentially implicate different pathogeneses and provide a reference for differential diagnosis and early detection for shared symptomology and comorbidity.
Collapse
Affiliation(s)
- Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Ji
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
28
|
Yang Y, Shields GS, Zhang Y, Wu H, Chen H, Romer AL. Child executive function and future externalizing and internalizing problems: A meta-analysis of prospective longitudinal studies. Clin Psychol Rev 2022; 97:102194. [PMID: 35964337 DOI: 10.1016/j.cpr.2022.102194] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022]
Abstract
To determine the association between executive function and later externalizing and internalizing problems, we conducted a meta-analysis of 167 studies (1098 effect sizes, total N = 66,119) that explored the longitudinal associations between executive functions in children and subsequent externalizing and internalizing problems. The results indicated that greater child executive function was prospectively associated with fewer attention-deficit/hyperactivity disorder (ADHD) symptoms, fewer conduct problems, fewer oppositional defiant disorder symptoms, less substance use, fewer broad externalizing problems, fewer depression symptoms, and fewer broad internalizing problems, but not with subsequent anxiety symptoms. Moderator analyses revealed that the sample type moderated the associations of executive function with both ADHD symptoms and conduct problems. Age of assessment moderated the association with broad externalizing problems, and executive function context moderated associations with both substance use and broad internalizing problems. These findings suggest that executive function in children prospectively predicts numerous externalizing and internalizing behaviors, suggesting that executive function may be an important target for psychopathology prevention programs and interventions.
Collapse
Affiliation(s)
- Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Yaoyao Zhang
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Huimin Wu
- The Lab of Mental Health and Social Adaptation, Faculty of Psychology, Research Center of Mental Health Education, Southwest University, Chongqing, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China.
| | - Adrienne L Romer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA.; Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
29
|
Taebi A, Becker B, Klugah-Brown B, Roecher E, Biswal B, Zweerings J, Mathiak K. Shared network-level functional alterations across substance use disorders: A multi-level kernel density meta-analysis of resting-state functional connectivity studies. Addict Biol 2022; 27:e13200. [PMID: 35754101 DOI: 10.1111/adb.13200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
An increasing number of neuroimaging studies indicate functional alterations in cortico-striatal loops in individuals with substance use disorders (SUD). Dysregulations in these circuits may contribute to drug-seeking and drug-consuming behaviour by impeding inhibitory control, habit formation, and reward processing. Despite evidence of network-level changes in SUD, a shared pattern of functional alterations within and between spatially distributed brain networks has not been systematically investigated. The present meta-analytic investigation aims at identifying common alterations in resting-state functional connectivity patterns across different SUD, including stimulant, heroin, alcohol, cannabis, and nicotine use. To this aim, seed-based whole-brain connectivity maps for different functional networks were extracted and subjected to multi-level kernel density analysis to identify dysfunctional networks in individuals with SUD compared with healthy controls. In addition, an exploratory analysis examined substance-specific effects as well as the influence of drug use status on the main findings. Our findings indicate a hypoconnectivity pattern for the limbic, salience, and frontoparietal networks in individuals with SUD as compared with healthy controls. The default mode network additionally exhibited a complex pattern of hypo- and hyperconnectivity across the studies. The observed disrupted connectivity between networks in SUD may associate with deficient inhibitory control mechanisms that are thought to contribute to excessive craving and automatic drug-related behaviour as well as failure in substance use cessation. The identified network-based alterations in SUD represent potential treatment targets for neuromodulation, for example, network-based real-time functional magnetic resonance imaging (fMRI) neurofeedback. Such interventions can evaluate the behavioural relevance of the identified neural circuits.
Collapse
Affiliation(s)
- Arezoo Taebi
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Erik Roecher
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| |
Collapse
|
30
|
Gan X, Zhou X, Li J, Jiao G, Jiang X, Biswal B, Yao S, Klugah-Brown B, Becker B. Common and distinct neurofunctional representations of core and social disgust in the brain: Coordinate-based and network meta-analyses. Neurosci Biobehav Rev 2022; 135:104553. [PMID: 35122784 DOI: 10.1016/j.neubiorev.2022.104553] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
Abstract
Disgust represents a multifaceted defensive-avoidance response. On the behavioral level, the response includes withdrawal and a disgust-specific facial expression. While both serve the avoidance of pathogens, the latter additionally transmits social-communicative information. Given that common and distinct brain representation of the primary defensive-avoidance response (core disgust) and encoding of the social-communicative signal (social disgust) remain debated, we employed neuroimaging meta-analyses to (1) determine brain systems generally engaged in disgust processing, and (2) segregate common and distinct brain systems for core and social disgust. Disgust processing, in general, engaged a bilateral network encompassing the insula, amygdala, occipital and prefrontal regions. Core disgust evoked stronger reactivity in left-lateralized threat detection and defensive response network including amygdala, occipital and frontal regions, while social disgust engaged a right-lateralized superior temporal-frontal network engaged in social cognition. Anterior insula, inferior frontal and fusiform regions were commonly engaged during core and social disgust, suggesting a shared neurofunctional basis. We demonstrate a common and distinct neural basis of primary disgust responses and encoding of associated social-communicative signals.
Collapse
Affiliation(s)
- Xianyang Gan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Max Planck School of Cognition, Leipzig 04103, Germany
| | - Guojuan Jiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Department of Biomedical Engineering, New Jersey Institute of Technology, NJ 7102, United States
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
31
|
Wiśniewski P, Maurage P, Jakubczyk A, Trucco EM, Suszek H, Kopera M. Alcohol use and interoception - A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110397. [PMID: 34224795 PMCID: PMC8380667 DOI: 10.1016/j.pnpbp.2021.110397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 01/29/2023]
Abstract
Interoception, defined as the ability to perceive and interpret body signals, may play an important role in alcohol use disorder (AUD). Earlier studies suggested an association between interoception impairment and known risk factors for AUD (e.g., alexithymia, emotion dysregulation, impulsivity, pain). Neurobiological studies show that the neurotoxicity of alcohol affects various elements of the interoceptive system (especially the insula) at structural and functional levels, with differential short/long term impacts. Conversely, primary interoceptive impairments may promote alcohol consumption and foster the evolution towards addiction. Despite convincing evidence demonstrating that interoception impairment may be an important contributor to the development and course of AUD, only a few studies directly evaluated interoceptive abilities in AUD. The research shows that interoceptive accuracy, the objective component of interoception, is lower in AUD individuals, and is correlated with craving and emotion dysregulation. Interoceptive sensibility is in turn higher in AUD individuals compared to healthy controls. Moreover, there is evidence that therapy focused on improving the ability to sense signals from the body in addiction treatment is effective. However, important methodological limitations in interoceptive measures persist, and it is therefore necessary to further investigate the associations between interoception and AUD.
Collapse
Affiliation(s)
- Paweł Wiśniewski
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland.
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Elisa M Trucco
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, USA; Department of Psychiatry, Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Hubert Suszek
- Department of Psychology, University of Warsaw, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Ferraro S, Klugah-Brown B, Tench CR, Yao S, Nigri A, Demichelis G, Pinardi C, Bruzzone MG, Becker B. Dysregulated anterior insula reactivity as robust functional biomarker for chronic pain-Meta-analytic evidence from neuroimaging studies. Hum Brain Mapp 2021; 43:998-1010. [PMID: 34734458 PMCID: PMC8764475 DOI: 10.1002/hbm.25702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Neurobiological pain models propose that chronic pain is accompanied by neurofunctional changes that mediate pain processing dysfunctions. In contrast, meta‐analyses of neuroimaging studies in chronic pain conditions have not revealed convergent evidence for robust alterations during experimental pain induction. Against this background, the present neuroimaging meta‐analysis combined three different meta‐analytic approaches with stringent study selection criteria for case–control functional magnetic resonance imaging experiments during acute pain processing with a focus on chronic pain disorders. Convergent neurofunctional dysregulations in chronic pain patients were observed in the left anterior insula cortex. Seed‐based resting‐state functional connectivity based on a large publicly available dataset combined with a meta‐analytic task‐based approach identified the anterior insular region as a key node of an extended bilateral insula‐fronto‐cingular network, resembling the salience network. Moreover, the meta‐analytic decoding showed that this region presents a high probability to be specifically activated during pain‐related processes, although we cannot exclude an involvement in autonomic processes. Together, the present findings indicate that dysregulated left anterior insular activity represents a robust neurofunctional maladaptation and potential treatment target in chronic pain disorders.
Collapse
Affiliation(s)
- Stefania Ferraro
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.,Neuroradiology Department, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benjamin Klugah-Brown
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Christopher R Tench
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Shuxia Yao
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Anna Nigri
- Neuroradiology Department, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Greta Demichelis
- Neuroradiology Department, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Department, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Benjamin Becker
- The Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
33
|
Addiction as a brain disease revised: why it still matters, and the need for consilience. Neuropsychopharmacology 2021; 46:1715-1723. [PMID: 33619327 PMCID: PMC8357831 DOI: 10.1038/s41386-020-00950-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The view that substance addiction is a brain disease, although widely accepted in the neuroscience community, has become subject to acerbic criticism in recent years. These criticisms state that the brain disease view is deterministic, fails to account for heterogeneity in remission and recovery, places too much emphasis on a compulsive dimension of addiction, and that a specific neural signature of addiction has not been identified. We acknowledge that some of these criticisms have merit, but assert that the foundational premise that addiction has a neurobiological basis is fundamentally sound. We also emphasize that denying that addiction is a brain disease is a harmful standpoint since it contributes to reducing access to healthcare and treatment, the consequences of which are catastrophic. Here, we therefore address these criticisms, and in doing so provide a contemporary update of the brain disease view of addiction. We provide arguments to support this view, discuss why apparently spontaneous remission does not negate it, and how seemingly compulsive behaviors can co-exist with the sensitivity to alternative reinforcement in addiction. Most importantly, we argue that the brain is the biological substrate from which both addiction and the capacity for behavior change arise, arguing for an intensified neuroscientific study of recovery. More broadly, we propose that these disagreements reveal the need for multidisciplinary research that integrates neuroscientific, behavioral, clinical, and sociocultural perspectives.
Collapse
|
34
|
Klugah‐Brown B, Zhou X, Pradhan BK, Zweerings J, Mathiak K, Biswal B, Becker B. Common neurofunctional dysregulations characterize obsessive-compulsive, substance use, and gaming disorders-An activation likelihood meta-analysis of functional imaging studies. Addict Biol 2021; 26:e12997. [PMID: 33432718 DOI: 10.1111/adb.12997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
Compulsivity and loss of behavioral control represent core symptoms in obsessive-compulsive disorder (OCD), substance use disorder (SUD), and internet gaming disorder (IGD). Despite elaborated animal models suggesting that compulsivity is mediated by cortico-striatal circuits and a growing number of neuroimaging case-control studies, common neurofunctional alterations in these disorders have not been systematically examined. The present activation likelihood estimation (ALE) meta-analysis capitalized on previous functional magnetic resonance imaging (fMRI) studies to determine shared neurofunctional alterations among the three disorders. Task-based fMRI studies of individuals with SUD, OCD, or IGD were obtained. ALE was performed within each disorder. Next, contrast and conjunction meta-analyses were performed to determine differential and common alterations. Task-paradigm classes were group according to Research Domain Criteria (RDoC) domains to determine contributions of underlying behavioral domains. One hundred forty-four articles were included representing data from n = 6897 individuals (SUD = 2418, controls = 2332; IGD = 361, controls = 360; OCD = 715, controls = 711) from case-control studies. Conjunction meta-analyses revealed shared alterations in the anterior insular cortex between OCD and SUDs. SUD exhibited additionally pronounced dorsal-striatal alterations compared with both, OCD and IGD. IGD shared frontal, particularly cingulate alterations with all SUDs, while IGD demonstrated pronounced temporal alterations compared with both, SUD and OCD. No robust overlap between IGD and OCD was observed. Across the disorders, neurofunctional alterations were mainly contributed by cognitive systems and positive valence RDoC domains. The present findings indicate that neurofunctional dysregulations in prefrontal regions engaged in regulatory-control represent shared neurofunctional alterations across substance and behavioral addictions, while shared neurofunctional dysregulations in the anterior insula may mediate compulsivity in substance addiction and OCD.
Collapse
Affiliation(s)
- Benjamin Klugah‐Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan China
| | - Basant K. Pradhan
- Department of Psychiatry and Pediatrics Cooper University Hospital and Cooper Medical School of Rowan University Camden New Jersey USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine RWTH Aachen Aachen Germany
- JARA Translational Brain Medicine RWTH Aachen Aachen Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine RWTH Aachen Aachen Germany
- JARA Translational Brain Medicine RWTH Aachen Aachen Germany
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan China
- Department of Biomedical Engineering New Jersey Institute of Technology Newark New Jersey USA
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology University of Electronic Science and Technology of China Chengdu Sichuan China
| |
Collapse
|
35
|
Klugah-Brown B, Jiang C, Agoalikum E, Zhou X, Zou L, Yu Q, Becker B, Biswal B. Common abnormality of gray matter integrity in substance use disorder and obsessive-compulsive disorder: A comparative voxel-based meta-analysis. Hum Brain Mapp 2021; 42:3871-3886. [PMID: 34105832 PMCID: PMC8288096 DOI: 10.1002/hbm.25471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenyang Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liye Zou
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Qian Yu
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
36
|
Becker B. Neurocognition in stimulant addiction: reply to Robbins (2021). PSYCHORADIOLOGY 2021; 1:91-93. [PMID: 38665360 PMCID: PMC10917236 DOI: 10.1093/psyrad/kkab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 04/28/2024]
Affiliation(s)
- Benjamin Becker
- University of Electronic Science and Technology of China, School of Life Science and Technology, China
| |
Collapse
|
37
|
Kendrick KM, Daumann J, Wagner D, Koester P, Tittgemeyer M, Luo Q, Gouzoulis-Mayfrank E, Becker B. A prospective longitudinal study shows putamen volume is associated with moderate amphetamine use and resultant cognitive impairments. PSYCHORADIOLOGY 2021; 1:3-12. [PMID: 38665308 PMCID: PMC10917237 DOI: 10.1093/psyrad/kkab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/19/2020] [Accepted: 01/12/2021] [Indexed: 04/28/2024]
Abstract
Background Amphetamine-type stimulants (ATS) have become a critical public health issue. Animal models have indicated a clear neurotoxic potential of ATSs. In humans, chronic use has been associated with cognitive deficits and structural brain abnormalities. However, cross-sectional retrospective designs in chronic users cannot truly determine the causal direction of the effects. Objective To prospectively determine effects of occasional ATS use on cognitive functioning and brain structure. Methods In a prospective longitudinal study design, cognitive functioning and brain structure were assessed at baseline and at 12-month follow-up in occasional ATS users (cumulative lifetime use <10 units at baseline). Results Examination of change scores between the initial examination and follow-up revealed declined verbal memory performance and putamen volume in users with high relative to low interim ATS exposure. In the entire sample, interim ATS use, memory decline, and putamen volume reductions were strongly associated. Conclusions The present findings support the hypothesis that ATS use is associated with deficient dorsal striatal morphology that might reflect alterations in dopaminergic pathways. More importantly, these findings strongly suggest that even occasional, low-dose ATS use disrupts striatal integrity and cognitive functioning.
Collapse
Affiliation(s)
- Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Joerg Daumann
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Daniel Wagner
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Philip Koester
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck Institute for Neurological Research, Cologne, Germany
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | | | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B. Common and separable neural alterations in substance use disorders: A coordinate-based meta-analyses of functional neuroimaging studies in humans. Hum Brain Mapp 2020; 41:4459-4477. [PMID: 32964613 PMCID: PMC7555084 DOI: 10.1002/hbm.25085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Delineating common and separable neural alterations in substance use disorders (SUD) is imperative to understand the neurobiological basis of the addictive process and to inform substance‐specific treatment strategies. Given numerous functional MRI (fMRI) studies in different SUDs, a meta‐analysis could provide an opportunity to determine robust shared and substance‐specific alterations. The present study employed a coordinate‐based meta‐analysis covering fMRI studies in individuals with addictive cocaine, cannabis, alcohol, and nicotine use. The primary meta‐analysis demonstrated common alterations in primary dorsal striatal, and frontal circuits engaged in reward/salience processing, habit formation, and executive control across different substances and task‐paradigms. Subsequent sub‐analyses revealed substance‐specific alterations in frontal and limbic regions, with marked frontal and insula‐thalamic alterations in alcohol and nicotine use disorders respectively. Examining task‐specific alterations across substances revealed pronounced frontal alterations during cognitive processes yet stronger striatal alterations during reward‐related processes. Finally, an exploratory meta‐analysis revealed that neurofunctional alterations in striatal and frontal reward processing regions can already be determined with a high probability in studies with subjects with comparably short durations of use. Together the findings emphasize the role of dysregulations in frontostriatal circuits and dissociable contributions of these systems in the domains of reward‐related and cognitive processes which may contribute to substance‐specific behavioral alterations.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|