1
|
Chen C, Sun S, Chen R, Guo Z, Tang X, Chen G, Chen P, Tang G, Huang L, Wang Y. A multimodal neuroimaging meta-analysis of functional and structural brain abnormalities in attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111199. [PMID: 39615871 DOI: 10.1016/j.pnpbp.2024.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND Numerous neuroimaging studies utilizing resting-state functional imaging and voxel-based morphometry (VBM) have identified variations in distinct brain regions among individuals with attention-deficit/hyperactivity disorder (ADHD). However, the results have been inconsistent. METHODS A comprehensive voxel-wise meta-analysis was performed on studies employing resting-state functional imaging and gray matter volume (GMV), examining discrepancies between individuals with ADHD and neurotypical controls (NCs). The analysis utilized the Seed-based d Mapping software. RESULTS A systematic review of the literature identified 21 functional imaging studies (595 ADHD and 564 controls) and 50 GMV studies (1907 ADHD and 1611 controls). In general, individuals with ADHD exhibited increased resting-state functional activity in the right parahippocampal gyrus and bilateral orbitofrontal cortex (OFC), as well as decreased resting-state functional activity in the bilateral cingulate cortex (including the posterior cingulate cortex [PCC], median cingulate cortex [MCC], and anterior cingulate cortex [ACC]). The VBM meta-analysis revealed decreased GMV in the bilateral OFC, right putamen (extending to right superior temporal gyrus [STG]), left inferior frontal gyrus (IFG), right superior frontal gyrus (SFG), ACC, and precentral gyrus among individuals with ADHD. CONCLUSIONS The multimodal meta-analyses indicated that individuals with ADHD exhibit abnormalities in both function and structure in the bilateral OFC. In addition, a few regions exhibited only functional or only structural abnormalities in ADHD, such as in the limbic, prefrontal, primary sensorimotor regions.
Collapse
Affiliation(s)
- Chao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ruoyi Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
2
|
Fortea L, Ortuño M, De Prisco M, Oliva V, Albajes-Eizagirre A, Fortea A, Madero S, Solanes A, Vilajosana E, Yao Y, Del Fabro L, Galindo ES, Verdolini N, Farré-Colomés A, Serra-Blasco M, Picó-Pérez M, Lukito S, Wise T, Carlisi C, Arnone D, Kempton M, Hauson AO, Wollman S, Soriano-Mas C, Rubia K, Norman L, Fusar-Poli P, Mataix-Cols D, Valentí M, Via E, Cardoner N, Solmi M, Zhang J, Pan P, Shin JI, Fullana MÀ, Vieta E, Radua J. Atlas of gray matter volume differences across psychiatric conditions: A systematic review with a novel meta-analysis that considers co-occurring disorders. Biol Psychiatry 2024:S0006-3223(24)01729-3. [PMID: 39491638 DOI: 10.1016/j.biopsych.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Regional gray matter volume (GMV) differences between individuals with mental disorders and comparison subjects may be confounded by co-occurring disorders. To disentangle the disorder-specific GMV correlates, we conducted a large-scale multi-disorder meta-analysis using a novel approach that explicitly models co-occurring disorders. METHODS We systematically reviewed voxel-based morphometry studies indexed in PubMed and Scopus up to January 2023 comparing adults with major mental disorders (anorexia nervosa, schizophrenia-spectrum, anxiety, bipolar, major depressive, obsessive-compulsive, and post-traumatic stress disorders, plus attention-deficit/hyperactivity, autism spectrum, and borderline personality disorders) to comparison subjects. Two authors independently extracted data and assessed quality using the Newcastle-Ottawa Scale. We derived GMV correlates for each disorder using: a) a multi-disorder meta-analysis accounting for all co-occurring mental disorders simultaneously; b) separate standard meta-analyses for each disorder ignoring co-occurring disorders. We assessed the alterations' extent, intensity (effect size), and specificity (inter-disorder correlations and transdiagnostic alterations) for both approaches. RESULTS We included 433 studies (499 datasets) involving 19,718 patients and 16,441 comparison subjects (51% females, aged 20-67 years). We provide GMV correlate maps for each disorder using both approaches. The novel approach, which accounted for co-occurring disorders, produced GMV correlates that were more focal and disorder-specific (less correlated across disorders and fewer transdiagnostic abnormalities). CONCLUSIONS This work offers the most comprehensive atlas of GMV correlates across major mental disorders. Modeling co-occurring disorders yielded more specific correlates, supporting this approach's validity. The atlas NIfTI maps are available online.
Collapse
Affiliation(s)
- Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain.
| | - Maria Ortuño
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain
| | - Michele De Prisco
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
| | - Vincenzo Oliva
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Adriana Fortea
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric and Psychology Service, Hospital Clinic, Barcelona, Spain
| | - Santiago Madero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Schizophrenia Unit, Hospital Clinic, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Enric Vilajosana
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Yuanwei Yao
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenzo Del Fabro
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | | - Norma Verdolini
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain; Local Health Unit Umbria 1, Department of Mental Health, Mental Health Center of Perugia, Perugia, Italy
| | - Alvar Farré-Colomés
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; eHealth ICOnnecta't Program and Psycho-Oncology Service, Institut Català d'Oncologia, 08908 L'Hospitalet de Llobregat, Spain; Psycho-oncology and Digital Health Group, Health Services Research in Cancer, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet del Llobregat, Spain
| | - Maria Picó-Pérez
- Live and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Steve Lukito
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Toby Wise
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Division of the Humanities and Social Sciences, California Institute of Technology, California, CA, USA; Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Christina Carlisi
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK; Division of Psychology and Language Sciences, University College London, London, UK
| | - Danilo Arnone
- Centre for Affective Disorders, Psychological Medicine, King's College London, London, UK; Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
| | - Matthew Kempton
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neurosciences, King's College London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alexander Omar Hauson
- California School of Professional Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott Wollman
- California School of Professional Psychology, San Diego, CA, USA
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona, Barcelona, Spain
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Luke Norman
- Department of Child and Adolescent Psychiatry Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA; The Social and Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, BetheSDa, Maryland, USA
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - David Mataix-Cols
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Marc Valentí
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
| | - Esther Via
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Narcis Cardoner
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Sant Pau Mental Health Group, Institut d'Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada; Regional Centre for the Treatment of Eating Disorders and On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Jintao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Pinglei Pan
- Department of Neurology, Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Affiliated Yancheng Hospital of Southeast University, Yancheng, China
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Severance Underwood Meta-research Center, Institute of Convergence Science, Yonsei University, Seoul 03722, South Korea
| | - Miquel Àngel Fullana
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric and Psychology Service, Hospital Clinic, Barcelona, Spain
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain; Psychiatric and Psychology Service, Hospital Clinic, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain; Department of Medicine, University of Barcelona, Institute of Neuroscience, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Huang J, Qi X, Cheng X, Wang M, Ju H, Ding W, Zhang D. MMF-NNs: Multi-modal Multi-granularity Fusion Neural Networks for brain networks and its application to epilepsy identification. Artif Intell Med 2024; 157:102990. [PMID: 39369635 DOI: 10.1016/j.artmed.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Structural and functional brain networks are generated from two scan sequences of magnetic resonance imaging data, which can provide different perspectives for describing pathological changes caused by brain diseases. Recent studies found that fusing these two types of brain networks improves performance in brain disease identification. However, traditional fusion models combine these brain networks at a single granularity, ignoring the natural multi-granularity structure of brain networks that can be divided into the edge, node, and graph levels. To this end, this paper proposes a Multi-modal Multi-granularity Fusion Neural Networks (MMF-NNs) framework for brain networks, which integrates the features of the multi-modal brain network from global (i.e., graph-level) and local (i.e., edge-level and node-level) granularities to take full advantage of the topological information. Specifically, we design an interactive feature learning module at the local granularity to learn feature maps of structural and functional brain networks at the edge-level and the node-level, respectively. In that way, these two types of brain networks are fused during the feature learning process. At the global granularity, a multi-modal decomposition bilinear pooling module is designed to learn the graph-level joint representation of these brain networks. Experiments on real epilepsy datasets demonstrate that MMF-NNs are superior to several state-of-the-art methods in epilepsy identification.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xiaoyu Qi
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xueyun Cheng
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hengrong Ju
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Weiping Ding
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Daoqiang Zhang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
4
|
Boehm I, Mennigen E, Geisler D, Poller NW, Gramatke K, Calhoun VD, Roessner V, King JA, Ehrlich S. Dynamic functional connectivity in anorexia nervosa: alterations in states of low connectivity and state transitions. J Child Psychol Psychiatry 2024; 65:1299-1310. [PMID: 38480007 DOI: 10.1111/jcpp.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The onset of anorexia nervosa (AN) frequently occurs during adolescence and is associated with preoccupation with body weight and shape and extreme underweight. Altered resting state functional connectivity in the brain has been described in individuals with AN, but only from a static perspective. The current study investigated the temporal dynamics of functional connectivity in adolescents with AN and how it relates to clinical features. METHOD 99 female patients acutely ill with AN and 99 pairwise age-matched female healthy control (HC) participants were included in the study. Using resting-state functional MRI data and an established sliding-window analytic approach, we identified dynamic resting-state functional connectivity states and extracted dynamic indices such as dwell time (the duration spent in a state), fraction time (the proportion of the total time occupied by a state), and number of transitions (number of switches) from one state to another, to test for group differences. RESULTS Individuals with AN had relatively reduced fraction time in a mildly connected state with pronounced connectivity within the default mode network (DMN) and an overall reduced number of transitions between states. CONCLUSIONS These findings revealed by a dynamic, but not static analytic approach might hint towards a more "rigid" connectivity, a phenomenon commonly observed in internalizing mental disorders, and in AN possibly related to a reduction in energetic costs as a result of nutritional deprivation.
Collapse
Affiliation(s)
- Ilka Boehm
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Eva Mennigen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Nico W Poller
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Katrin Gramatke
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Joseph A King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Xiao S, Yang Z, Lin Z, Chen L, Liao W, Wang J, Gao C, Lu J, Song Y, Su S, Jiang G. Spontaneous Brain Activity Abnormalities in Patients With Temporal Lobe Epilepsy: A Meta-Analysis of 1474 Patients. J Magn Reson Imaging 2024. [PMID: 39215606 DOI: 10.1002/jmri.29568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE Meta-analysis. SUBJECTS Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE Stage 2.
Collapse
Affiliation(s)
- Shu Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zibin Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zitao Lin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Liqing Chen
- Department of Catheter Intervention, Maoming Maonan District People's Hospital, Maoming, China
| | - Weiming Liao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Cuihua Gao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianjun Lu
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yang Song
- Siemens Healthineers Ltd, Shanghai, China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
6
|
Sudo Y, Ota J, Takamura T, Kamashita R, Hamatani S, Numata N, Chhatkuli RB, Yoshida T, Takahashi J, Kitagawa H, Matsumoto K, Masuda Y, Nakazato M, Sato Y, Hamamoto Y, Shoji T, Muratsubaki T, Sugiura M, Fukudo S, Kawabata M, Sunada M, Noda T, Tose K, Isobe M, Kodama N, Kakeda S, Takahashi M, Takakura S, Gondo M, Yoshihara K, Moriguchi Y, Shimizu E, Sekiguchi A, Hirano Y. Comprehensive elucidation of resting-state functional connectivity in anorexia nervosa by a multicenter cross-sectional study. Psychol Med 2024; 54:2347-2360. [PMID: 38500410 DOI: 10.1017/s0033291724000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
BACKGROUND Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.
Collapse
Affiliation(s)
- Yusuke Sudo
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- Department of Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Junko Ota
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tsunehiko Takamura
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Rio Kamashita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Sayo Hamatani
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Center for Child Mental Development, Fukui University, Eiheizi, Japan
| | - Noriko Numata
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Ritu Bhusal Chhatkuli
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Jumpei Takahashi
- Department of Psychiatry, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Hitomi Kitagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Yoshitada Masuda
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Michiko Nakazato
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Yasuhiro Sato
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yumi Hamamoto
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, UK
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomotaka Shoji
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Internal Medicine, Nagamachi Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomohiko Muratsubaki
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Cognitive Sciences Lab, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Shin Fukudo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Momo Sunada
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Kodama
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masatoshi Takahashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Sleep-Wake Disorders, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
- Center for Eating Disorder Research and Information, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| |
Collapse
|
7
|
Muratore AF, Foerde K, Lloyd EC, Touzeau C, Uniacke B, Aw N, Semanek D, Wang Y, Walsh BT, Attia E, Posner J, Steinglass JE. Reduced dorsal fronto-striatal connectivity at rest in anorexia nervosa. Psychol Med 2024; 54:2200-2209. [PMID: 38497102 DOI: 10.1017/s003329172400031x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Anorexia nervosa (AN) is a serious psychiatric illness that remains difficult to treat. Elucidating the neural mechanisms of AN is necessary to identify novel treatment targets and improve outcomes. A growing body of literature points to a role for dorsal fronto-striatal circuitry in the pathophysiology of AN, with increasing evidence of abnormal task-based fMRI activation within this network among patients with AN. Whether these abnormalities are present at rest and reflect fundamental differences in brain organization is unclear. METHODS The current study combined resting-state fMRI data from patients with AN (n = 89) and healthy controls (HC; n = 92) across four studies, removing site effects using ComBat harmonization. First, the a priori hypothesis that dorsal fronto-striatal connectivity strength - specifically between the anterior caudate and dlPFC - differed between patients and HC was tested using seed-based functional connectivity analysis with small-volume correction. To assess specificity of effects, exploratory analyses examined anterior caudate whole-brain connectivity, amplitude of low-frequency fluctuations (ALFF), and node centrality. RESULTS Compared to HC, patients showed significantly reduced right, but not left, anterior caudate-dlPFC connectivity (p = 0.002) in small-volume corrected analyses. Whole-brain analyses also identified reduced connectivity between the right anterior caudate and left superior frontal and middle frontal gyri (p = 0.028) and increased connectivity between the right anterior caudate and right occipital cortex (p = 0.038). No group differences were found in analyses of anterior caudate ALFF and node centrality. CONCLUSIONS Decreased coupling of dorsal fronto-striatal regions indicates that circuit-based abnormalities persist at rest and suggests this network may be a potential treatment target.
Collapse
Affiliation(s)
- Alexandra F Muratore
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Karin Foerde
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - E Caitlin Lloyd
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Caroline Touzeau
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Blair Uniacke
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Natalie Aw
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - David Semanek
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Yun Wang
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - B Timothy Walsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Evelyn Attia
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Duke University, Durham, NC, USA
| | - Joanna E Steinglass
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
8
|
Datta N, Hossepian K, Xie I, Gurcan HY, Behr S, Pouliadi M, Miranda C. Anorexia Nervosa Across the Lifespan: A Review of Recent Literature. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:269-277. [PMID: 38988469 PMCID: PMC11231474 DOI: 10.1176/appi.focus.20230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this review, the authors provide an update on the understanding of anorexia nervosa (AN) across the lifespan. Focusing on key pieces of literature from the past 5 years, this review summarizes recent updates to DSM-5 within the domain of AN, including the addition of a new AN diagnosis: atypical anorexia. Additional sections covered in this review include improvements in the epidemiological understanding of AN across the developmental spectrum, treatment approaches that have been established as gold standard as well as new directions recently explored in treatment, and recent advancements in the biopsychosocial underpinnings of AN. Altogether, although this review captures several advancements in the field's overall conceptualization of AN, several key areas of treatment and diagnostic capacity continue to require additional focus and research.
Collapse
Affiliation(s)
- Nandini Datta
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Kristene Hossepian
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Isabella Xie
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Hazal Yagmur Gurcan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Solveig Behr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Marina Pouliadi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| | - Christina Miranda
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California (Datta, Hossepian, Gurcan, Behr, Pouliadi, Miranda); Department of Psychiatry and Behavioral Sciences, Palo Alto University, Palo Alto, California (Xie); Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany (Behr)
| |
Collapse
|
9
|
Chastan N, Achamrah N, Etard O, Nathou C, Piquet M, Guillaume S, Attal J, Gillibert A, Dechelotte P, Guillin O, Welter M. Effects of repetitive transcranial magnetic stimulation of the right inferior parietal lobe on the body image perception in anorexia nervosa: A pilot randomized controlled study. Brain Behav 2024; 14:e3617. [PMID: 38970216 PMCID: PMC11226536 DOI: 10.1002/brb3.3617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Restrictive anorexia nervosa (AN) is associated with distorted perception of body shape, previously linked to hypoactivity and reduced excitability of the right inferior parietal lobe (rIPL). Here, we investigated the impact of high-frequency repetitive transcranial magnetic stimulation (HF rTMS) of the rIPL on body shape perception in patients with AN. METHODS Seventeen patients with AN (median [Q1_Q3] age, 35 [27_39] years; disease duration, 12 [6_18] years) were randomly assigned to receive real or sham HF (10 Hz) rTMS of the rIPL over a period of 2 weeks, comprising 10 sessions. The primary outcome measure was the Body Shape Questionnaire (BSQ). Secondary outcomes included eating disorder symptoms, body mass index, mood, anxiety, and safety. Data collection were done at baseline, post-rTMS, and at 2 weeks and 3 months post-rTMS. RESULTS Following both real and sham rTMS of the rIPL, no significant differences were observed in body shape perception or other parameters. Both real and sham rTMS interventions were deemed safe and well tolerated. Notably, serious adverse events were associated with the underlying eating and mood disorders, resulting in hospitalization for undernutrition (five patients) or suicidal attempts (two patients). CONCLUSION This pilot study does not support the use of rTMS of the rIPL as an effective method for improving body shape perception in individuals with the restrictive form of AN. Further research is warranted to comprehensively explore both the clinical and neurophysiological effects of HF rTMS in this population.
Collapse
Affiliation(s)
- Nathalie Chastan
- Department of NeurophysiologyNormandie University, UNIROUEN, Rouen University HospitalRouenFrance
| | - Najate Achamrah
- Department of NutritionNormandie University, UNIROUEN, INSERM UMR1073, Rouen University HospitalRouenFrance
| | - Olivier Etard
- Department of NeurophysiologyNormandie University, UNICAEN, INSERM, COMETE, CYCERON, CHU CaenCaenFrance
| | - Clément Nathou
- Department of NeurophysiologyNormandie University, UNICAEN, INSERM, COMETE, CYCERON, CHU CaenCaenFrance
- Department of PsychiatryCHU CaenCaenFrance
| | | | - Sébastien Guillaume
- Department of Emergency Psychiatry and Acute CareLapeyronie Hospital, CHU Montpellier, Institute of Functional Genomics, University of Montpellier, CNRS, INSERMMontpellierFrance
| | - Jérôme Attal
- Department of Emergency Psychiatry and Acute CareLapeyronie Hospital, CHU Montpellier, Institute of Functional Genomics, University of Montpellier, CNRS, INSERMMontpellierFrance
| | | | - Pierre Dechelotte
- Department of NutritionNormandie University, UNIROUEN, INSERM UMR1073, Rouen University HospitalRouenFrance
| | - Olivier Guillin
- Department of PsychiatryNormandie University, UNIROUEN, Rouen University HospitalRouenFrance
| | - Marie‐Laure Welter
- Department of NeurophysiologyNormandie University, UNIROUEN, Rouen University HospitalRouenFrance
| |
Collapse
|
10
|
Li J, Kuang S, Liu Y, Wu Y, Li H. Structural and functional brain alterations in subthreshold depression: A multimodal coordinate-based meta-analysis. Hum Brain Mapp 2024; 45:e26702. [PMID: 38726998 PMCID: PMC11083971 DOI: 10.1002/hbm.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Imaging studies of subthreshold depression (StD) have reported structural and functional abnormalities in a variety of spatially diverse brain regions. However, there is no consensus among different studies. In the present study, we applied a multimodal meta-analytic approach, the Activation Likelihood Estimation (ALE), to test the hypothesis that StD exhibits spatially convergent structural and functional brain abnormalities compared to healthy controls. A total of 31 articles with 25 experiments were included, collectively representing 1001 subjects with StD. We found consistent differences between StD and healthy controls mainly in the left insula across studies with various neuroimaging methods. Further exploratory analyses found structural atrophy and decreased functional activities in the right pallidum and thalamus in StD, and abnormal spontaneous activity converged to the middle frontal gyrus. Coordinate-based meta-analysis found spatially convergent structural and functional impairments in StD. These findings provide novel insights for understanding the neural underpinnings of subthreshold depression and enlighten the potential targets for its early screening and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Jingyu Li
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Shunrong Kuang
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Yang Liu
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
| | - Yuedong Wu
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
| | - Haijiang Li
- School of PsychologyShanghai Normal UniversityShanghaiChina
- Lab for Educational Big Data and Policymaking, Ministry of EducationShanghai Normal UniversityShanghaiChina
- The Research Base of Online Education for Shanghai Middle and Primary SchoolsShanghaiChina
| |
Collapse
|
11
|
Guo Z, Tang X, Xiao S, Yan H, Sun S, Yang Z, Huang L, Chen Z, Wang Y. Systematic review and meta-analysis: multimodal functional and anatomical neural alterations in autism spectrum disorder. Mol Autism 2024; 15:16. [PMID: 38576034 PMCID: PMC10996269 DOI: 10.1186/s13229-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.
Collapse
Affiliation(s)
- Zixuan Guo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinyue Tang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hong Yan
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shilin Sun
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Li Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhuoming Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Brooks SJ, Dahl K, Dudley-Jones R, Schiöth HB. A neuroinflammatory compulsivity model of anorexia nervosa (NICAN). Neurosci Biobehav Rev 2024; 159:105580. [PMID: 38417395 DOI: 10.1016/j.neubiorev.2024.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Affiliation(s)
- S J Brooks
- Department of Surgical Sciences, Uppsala University, Sweden; School of Psychology, Liverpool John Moores University, UK; Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa.
| | - K Dahl
- Department of Surgical Sciences, Uppsala University, Sweden
| | - R Dudley-Jones
- School of Psychology, Liverpool John Moores University, UK
| | - H B Schiöth
- Department of Surgical Sciences, Uppsala University, Sweden
| |
Collapse
|
13
|
Berner LA, Shevlin BRK. Restoring Weight and Brain Function: Intrinsic Neural Activity and Connectivity Alterations as State Markers of Adolescent Anorexia Nervosa. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:375-376. [PMID: 38583931 PMCID: PMC11561888 DOI: 10.1016/j.bpsc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Laura A Berner
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Blair R K Shevlin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Stonawski V, Mai-Lippold SA, Graap H, Moll GH, Kratz O, Van Doren J, Horndasch S. Processing of food stimuli in anorexia nervosa: An ERP-study comparing adolescents and adults. EUROPEAN EATING DISORDERS REVIEW 2024; 32:281-297. [PMID: 37850962 DOI: 10.1002/erv.3040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/09/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is associated with altered processing of disorder-relevant stimuli. Event-related potentials (ERP) - such as the Late Positive Potential (LPP) - give information about the underlying mechanisms of central nervous stimulus processing. METHODS Patients with AN (22 adolescents, 23 adults) and healthy controls (HCs; 17 adolescents, 24 adults) were included. Neutral, low, and high calorie food-images were rated for valence and arousal; EEG activity was recorded and LPPs (early: 350-700 ms; late: 800-1200 ms) were extracted. Effects of patient status, age group, and stimulus category were analyzed via mixed 2 × 2 × 3-AN(C)OVAs. RESULTS Patients with AN rated high calorie stimuli lower in valence and higher in arousal than HCs. Controlling for hunger, food stimuli elicited higher early LPPs than neutral ones in patients and HCs. For the late LPP, patients with AN showed larger amplitudes. CONCLUSION Results suggest a highly automatic attentional bias towards low-calorie foods. Patients with AN seem to have more intense cognitive processing independent of stimulus material. More research is needed to validate and clarify differences between early and late LPP measures as well as the operationalization and relevance of hunger status.
Collapse
Affiliation(s)
- Valeska Stonawski
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sandra A Mai-Lippold
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Holmer Graap
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gunther H Moll
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Kratz
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jessica Van Doren
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Horndasch
- Department of Child and Adolescent Mental Health, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
15
|
Bahnsen K, Wronski M, Keeler JL, King JA, Preusker Q, Kolb T, Weidner K, Roessner V, Bernardoni F, Ehrlich S. Differential longitudinal changes of hippocampal subfields in patients with anorexia nervosa. Psychiatry Clin Neurosci 2024; 78:186-196. [PMID: 38018338 PMCID: PMC11488614 DOI: 10.1111/pcn.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/26/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a mental disorder characterized by dietary restriction, fear of gaining weight, and distorted body image. Recent studies indicate that the hippocampus, crucial for learning and memory, may be affected in AN, yet subfield-specific effects remain unclear. We investigated hippocampal subfield alterations in acute AN, changes following weight restoration, and their associations with leptin levels. METHODS T1-weighted magnetic resonance imaging scans were processed using FreeSurfer. We compared 22 left and right hemispheric hippocampal subfield volumes cross-sectionally and longitudinally in females with acute AN (n = 165 at baseline, n = 110 after partial weight restoration), healthy female controls (HCs; n = 271), and females after long-term recovery from AN (n = 79) using linear models. RESULTS We found that most hippocampal subfield volumes were significantly reduced in patients with AN compared with HCs (~-3.9%). Certain areas such as the subiculum exhibited no significant reduction in the acute state of AN, while other areas, such as the hippocampal tail, showed strong decreases (~-9%). Following short-term weight recovery, most subfields increased in volume. Comparisons between participants after long-term weight-recovery and HC yielded no differences. The hippocampal tail volume was positively associated with leptin levels in AN independent of body mass index. CONCLUSIONS Our study provides evidence of differential volumetric differences in hippocampal subfields between individuals with AN and HC and almost complete normalization after weight rehabilitation. These alterations are spatially inhomogeneous and more pronounced compared with other major mental disorders (e.g. major depressive disorder and schizophrenia). We provide novel insights linking hypoleptinemia to hippocampal subfield alterations hinting towards clinical relevance of leptin normalization in AN recovery.
Collapse
Affiliation(s)
- Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marie‐Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Neuroendocrine Unit, Department of MedicineMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Johanna Louise Keeler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Quirina Preusker
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Theresa Kolb
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| |
Collapse
|
16
|
Alzaid H, Simon JJ, Brugnara G, Vollmuth P, Bendszus M, Friederich HC. Hypothalamic subregion alterations in anorexia nervosa and obesity: Association with appetite-regulating hormone levels. Int J Eat Disord 2024; 57:581-592. [PMID: 38243035 DOI: 10.1002/eat.24137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) and obesity are weight-related disorders with imbalances in energy homeostasis that may be due to hormonal dysregulation. Given the importance of the hypothalamus in hormonal regulation, we aimed to identify morphometric alterations to hypothalamic subregions linked to these conditions and their connection to appetite-regulating hormones. METHODS Structural magnetic resonance imaging (MRI) was obtained from 78 patients with AN, 27 individuals with obesity and 100 normal-weight healthy controls. Leptin, ghrelin, and insulin blood levels were measured in a subsample of each group. An automated segmentation method was used to segment the hypothalamus and its subregions. Volumes of the hypothalamus and its subregions were compared between groups, and correlational analysis was employed to assess the relationship between morphometric measurements and appetite-regulating hormone levels. RESULTS While accounting for total brain volume, patients with AN displayed a smaller volume in the inferior-tubular subregion (ITS). Conversely, obesity was associated with a larger volume in the anterior-superior, ITS, posterior subregions (PS), and entire hypothalamus. There were no significant volumetric differences between AN subtypes. Leptin correlated positively with PS volume, whereas ghrelin correlated negatively with the whole hypothalamus volume in the entire cohort. However, appetite-regulating hormone levels did not mediate the effects of body mass index on volumetric measures. CONCLUSION Our results indicate the importance of regional structural hypothalamic alterations in AN and obesity, extending beyond global changes to brain volume. Furthermore, these alterations may be linked to changes in hormonal appetite regulation. However, given the small sample size in our correlation analysis, further analyses in a larger sample size are warranted. PUBLIC SIGNIFICANCE Using an automated segmentation method to investigate morphometric alterations of hypothalamic subregions in AN and obesity, this study provides valuable insights into the complex interplay between hypothalamic alterations, hormonal appetite regulation, and body weight, highlighting the need for further research to uncover underlying mechanisms.
Collapse
Affiliation(s)
- Haidar Alzaid
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Tang X, Guo Z, Chen G, Sun S, Xiao S, Chen P, Tang G, Huang L, Wang Y. A Multimodal Meta-Analytical Evidence of Functional and Structural Brain Abnormalities Across Alzheimer's Disease Spectrum. Ageing Res Rev 2024; 95:102240. [PMID: 38395200 DOI: 10.1016/j.arr.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Numerous neuroimaging studies have reported that Alzheimer's disease (AD) spectrum have been linked to alterations in intrinsic functional activity and cortical thickness (CT) of some brain areas. However, the findings have been inconsistent and the correlation with the transcriptional profile and neurotransmitter systems remain largely unknown. METHODS We conducted a meta-analysis to identify multimodal differences in the amplitude of low-frequency fluctuation (ALFF)/fractional ALFF (fALFF) and CT in patients with AD and preclinical AD compared to healthy controls (HCs), using the Seed-based d Mapping with Permutation of Subject Images software. Transcriptional data were retrieved from the Allen Human Brain Atlas. The atlas-based nuclear imaging-derived neurotransmitter maps were investigated by JuSpace toolbox. RESULTS We included 26 ALFF/fALFF studies comprising 884 patients with AD and 1,020 controls, along with 52 studies comprising 2,046 patients with preclinical AD and 2,336 controls. For CT, we included 11 studies comprising 353 patients with AD and 330 controls. Overall, compared to HCs, patients with AD showed decreased ALFF/fALFF in the bilateral posterior cingulate gyrus (PCC)/precuneus and right angular gyrus, as well as increased ALFF/fALFF in the bilateral parahippocampal gyrus (PHG). Patients with peclinical AD showed decreased ALFF/fALFF in the left precuneus. Additionally, patients with AD displayed decreased CT in the bilateral PHG, left PCC, bilateral orbitofrontal cortex, sensorimotor areas and temporal lobe. Furthermore, gene sets related to brain structural and functional changes in AD and preclincal AD were enriched for G protein-coupled receptor signaling pathway, ion gated channel activity, and components of biological membrane. Functional and structural alterations in AD and preclinical AD were spatially associated with dopaminergic, serotonergic, and GABAergic neurotransmitter systems. CONCLUSIONS The multimodal meta-analysis demonstrated that patients with AD exhibited convergent functional and structural alterations in the PCC/precuneus and PHG, as well as cortical thinning in the primary sensory and motor areas. Furthermore, patients with preclinical AD showed reduced functional activity in the precuneus. AD and preclinical AD showed genetic modulations/neurotransmitter deficits of brain functional and structural impairments. These findings may provide new insights into the pathophysiology of the AD spectrum.
Collapse
Affiliation(s)
- Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
18
|
Naghibi N, Jahangiri N, Khosrowabadi R, Eickhoff CR, Eickhoff SB, Coull JT, Tahmasian M. Embodying Time in the Brain: A Multi-Dimensional Neuroimaging Meta-Analysis of 95 Duration Processing Studies. Neuropsychol Rev 2024; 34:277-298. [PMID: 36857010 PMCID: PMC10920454 DOI: 10.1007/s11065-023-09588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/05/2022] [Indexed: 03/02/2023]
Abstract
Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.
Collapse
Affiliation(s)
- Narges Naghibi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Nadia Jahangiri
- Faculty of Psychology & Education, Allameh Tabataba'i University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine Research, Structural and functional organisation of the brain (INM-1), Jülich Research Center, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jennifer T Coull
- Laboratoire de Neurosciences Cognitives (UMR 7291), Aix-Marseille Université & CNRS, Marseille, France
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Research, Brain and Behaviour (INM-7), Jülich Research Center, Wilhelm-Johnen-Straße, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
19
|
Yu T, Zou Y, Nie H, Li Y, Chen J, Du Y, Peng H, Luo Q. The role of the thalamic subregions in major depressive disorder with childhood maltreatment: Evidences from dynamic and static functional connectivity. J Affect Disord 2024; 347:237-248. [PMID: 38000476 DOI: 10.1016/j.jad.2023.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) with a history of childhood maltreatment represents a highly prevalent clinical phenotype. Previous studies have demonstrated functional alterations of the thalamus among MDD. However, no study has investigated the static and dynamic changes in functional connectivity (FC) within thalamic subregions among MDD with childhood maltreatment. METHODS This study included four groups: MDD with childhood maltreatment (n = 48), MDD without childhood maltreatment (n = 30), healthy controls with childhood maltreatment (n = 57), and healthy controls without childhood maltreatment (n = 46). Sixteen thalamic subregions were selected as seed to investigate group-differences in dynamic FC (dFC) and static FC (sFC). Correlation analyses were performed to assess the associations between abnormal FC and maltreatment severity. Eventually, moderation analyses were employed to explore the moderating role of abnormal FC in the relationship between maltreatment and depressive severity. RESULTS MDD with childhood maltreatment exhibit abnormal thalamic subregions FC compared to MDD without childhood maltreatment, characterized by abnormalities with the sFC of the rostral anterior cingulate cortex, with the dFC of the calcarine, middle cingulate cortex, precuneus cortex and superior temporal gyrus. Furthermore, sFC with the rostral anterior cingulate cortex and dFC with the middle cingulate cortex were correlated with the severity of maltreatment. Additionally, dFC with the superior temporal gyrus moderates the relationship between maltreatment and depression severity. LIMITATIONS The cross-sectional designs fail to infer causality. CONCLUSIONS Our findings support thalamic dysfunction as neurobiological features of childhood maltreatment as well as vulnerability to MDD.
Collapse
Affiliation(s)
- Tong Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Department of Psychiatry, Guangzhou Medical University, Guangzhou 511436, China
| | - Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiqin Nie
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Publicity and Health Education, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Juran Chen
- The Zhongshan Torch Hi-tech Industrial Development Zone Community Health Service, Zhongshan 528437, China
| | - Yingying Du
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| |
Collapse
|
20
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
21
|
Yang Z, Xiao S, Su T, Gong J, Qi Z, Chen G, Chen P, Tang G, Fu S, Yan H, Huang L, Wang Y. A multimodal meta-analysis of regional functional and structural brain abnormalities in obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:165-180. [PMID: 37000246 DOI: 10.1007/s00406-023-01594-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed abnormalities in specific brain regions in obsessive-compulsive disorder (OCD), but results have been inconsistent. We conducted a whole-brain voxel-wise meta-analysis on resting-state functional imaging and VBM studies that investigated differences of functional activity and gray matter volume (GMV) between patients with OCD and healthy controls (HCs) using seed-based d mapping (SDM) software. A total of 41 independent studies (51 datasets) for resting-state functional imaging and 42 studies (46 datasets) for VBM were included by a systematic literature search. Overall, patients with OCD displayed increased spontaneous functional activity in the bilateral inferior frontal gyrus (IFG) (extending to the bilateral insula) and bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), as well as decreased spontaneous functional activity in the bilateral paracentral lobule, bilateral cerebellum, left caudate nucleus, left inferior parietal gyri, and right precuneus cortex. For the VBM meta-analysis, patients with OCD displayed increased GMV in the bilateral thalamus (extending to the bilateral cerebellum), right striatum, and decreased GMV in the bilateral mPFC/ACC and left IFG (extending to the left insula). The conjunction analyses found that the bilateral mPFC/ACC, left IFG (extending to the left insula) showed decreased GMV with increased intrinsic function in OCD patients compared to HCs. This meta-analysis demonstrated that OCD exhibits abnormalities in both function and structure in the bilateral mPFC/ACC, insula, and IFG. A few regions exhibited only functional or only structural abnormalities in OCD, such as the default mode network, striatum, sensorimotor areas, and cerebellum. It may provide useful insights for understanding the underlying pathophysiology of OCD and developing more targeted and efficacious treatment and intervention strategies.
Collapse
Affiliation(s)
- Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Jiayin Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - SiYing Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Chmiel J, Gladka A, Leszek J. The Effect of Transcranial Direct Current Stimulation (tDCS) on Anorexia Nervosa: A Narrative Review. Nutrients 2023; 15:4455. [PMID: 37892530 PMCID: PMC10610104 DOI: 10.3390/nu15204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Introduction: Anorexia nervosa (AN) is a severe, debilitating disease with high incidence and high mortality. The methods of treatment used so far are moderately effective. Evidence from neuroimaging studies helps to design modern methods of therapy. One of them is transcranial direct current stimulation (tDCS), a non-invasive brain neuromodulation technique. (2) Methods: The purpose of this narrative review is to bring together all studies investigating the use of tDCS in the treatment of AN and to evaluate its effect and efficiency. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. (3) Results: The literature search resulted in five articles. These studies provide preliminary evidence that tDCS has the potential to alter eating behaviour, body weight, and food intake. Additionally, tDCS reduced symptoms of depression. Throughout all trials, stimulation targeted the left dorsolateral prefrontal cortex (DLPFC). Although the number of studies included is limited, attempts were made to elucidate the potential mechanisms underlying tDCS action in individuals with AN. Recommendations for future tDCS research in AN were issued. (4) Conclusions: The included studies have shown that tDCS stimulation of the left DLPFC has a positive effect on AN clinical symptoms and may improve them, as measured by various assessment measures. It is important to conduct more in-depth research on the potential benefits of using tDCS for treating AN. This should entail well-designed studies incorporating advanced neuroimaging techniques, such as fMRI. The aim is to gain a better understanding of how tDCS works in AN.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Anna Gladka
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
23
|
Wronski ML, Geisler D, Bernardoni F, Seidel M, Bahnsen K, Doose A, Steinhäuser JL, Gronow F, Böldt LV, Plessow F, Lawson EA, King JA, Roessner V, Ehrlich S. Differential alterations of amygdala nuclei volumes in acutely ill patients with anorexia nervosa and their associations with leptin levels. Psychol Med 2023; 53:6288-6303. [PMID: 36464660 PMCID: PMC10358440 DOI: 10.1017/s0033291722003609] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The amygdala is a subcortical limbic structure consisting of histologically and functionally distinct subregions. New automated structural magnetic resonance imaging (MRI) segmentation tools facilitate the in vivo study of individual amygdala nuclei in clinical populations such as patients with anorexia nervosa (AN) who show symptoms indicative of limbic dysregulation. This study is the first to investigate amygdala nuclei volumes in AN, their relationships with leptin, a key indicator of AN-related neuroendocrine alterations, and further clinical measures. METHODS T1-weighted MRI scans were subsegmented and multi-stage quality controlled using FreeSurfer. Left/right hemispheric amygdala nuclei volumes were cross-sectionally compared between females with AN (n = 168, 12-29 years) and age-matched healthy females (n = 168) applying general linear models. Associations with plasma leptin, body mass index (BMI), illness duration, and psychiatric symptoms were analyzed via robust linear regression. RESULTS Globally, most amygdala nuclei volumes in both hemispheres were reduced in AN v. healthy control participants. Importantly, four specific nuclei (accessory basal, cortical, medial nuclei, corticoamygdaloid transition in the rostral-medial amygdala) showed greater volumetric reduction even relative to reductions of whole amygdala and total subcortical gray matter volumes, whereas basal, lateral, and paralaminar nuclei were less reduced. All rostral-medially clustered nuclei were positively associated with leptin in AN independent of BMI. Amygdala nuclei volumes were not associated with illness duration or psychiatric symptom severity in AN. CONCLUSIONS In AN, amygdala nuclei are altered to different degrees. Severe volume loss in rostral-medially clustered nuclei, collectively involved in olfactory/food-related reward processing, may represent a structural correlate of AN-related symptoms. Hypoleptinemia might be linked to rostral-medial amygdala alterations.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas L. Steinhäuser
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Gronow
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - Luisa V. Böldt
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
Mitchell JS, Anijärv TE, Levenstein JL, Hermens DF, Lagopoulos J. Excitatory and inhibitory neurometabolites in anorexia nervosa: A systematic review of proton magnetic resonance spectroscopy studies. Neurosci Biobehav Rev 2023; 152:105279. [PMID: 37307945 DOI: 10.1016/j.neubiorev.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The dysregulation of excitatory and inhibitory neurotransmission is considered a pathological marker of Anorexia Nervosa (AN), however, no systematic evaluation of the proton Magnetic Resonance Spectroscopy (1H-MRS) literature has been conducted to date. Accordingly, we conducted a systematic review of neurometabolite differences between individuals with AN and healthy controls (HC). A comprehensive database search (until June 2023) identified seven studies meeting inclusion criteria. Samples included adolescents and adults with similar mean age (AN: 22.20 HC: 22.60), and female percentages (AN: 98%; HC: 94%). The review found a considerable need for improving study design and the reporting of MRS sequence parameters and analysis. Reduced glutamate concentrations in the ACC and OCC, and reduced Glx concentrations in the ACC were reported by one and two studies, respectively. Lastly, only one study to date has quantified GABA concentrations, with no significant differences found. In conclusion, there is currently insufficient evidence of excitatory and inhibitory neurometabolites changes in AN. As the 1H-MRS literature in AN increases, the key questions herein proposed must be revisited.
Collapse
Affiliation(s)
- Jules S Mitchell
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia.
| | - Toomas E Anijärv
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Jacob L Levenstein
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of Sunshine Coast, 12 Innovation Parkway, Birtinya, 4575 Sunshine Coast, Queensland, Australia
| |
Collapse
|
25
|
Zhong S, Su T, Gong J, Huang L, Wang Y. Brain functional alterations in patients with anorexia nervosa: A meta-analysis of task-based functional MRI studies. Psychiatry Res 2023; 327:115358. [PMID: 37544086 DOI: 10.1016/j.psychres.2023.115358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
The goal of this study was to discern the neural activation patterns associated with anorexia nervosa (AN) in response to tasks related to body-, food-, emotional-, cognitive-, and reward- processing. A meta-analysis was performed on task-based fMRI studies, revealing that patients with AN showed increased activity in the left superior temporal gyrus and bilaterally in the ACC during a reward-related task. During cognitive-related tasks, patients with AN also showed increased activity in the left superior parietal gyrus, right middle temporal gyrus, but decreased activity in the MCC. Additionally, patients with AN showed increased activity bilaterally in the cerebellum, MCC, and decreased activity bilaterally in the bilateral precuneus/PCC, right middle temporal gyrus, left ACC when they viewed food images. During emotion-related tasks, patients with AN showed increased activity in the left cerebellum, but decreased activity bilaterally in the striatum, right mPFC, and right superior parietal gyrus. Patients with AN also showed increased activity in the right striatum and decreased activity in the right inferior temporal gyrus and bilaterally in the mPFC during body-related tasks. The present meta-analysis provides a comprehensive overview of the patterns of brain activity evoked by task stimuli, thereby augmenting the current comprehension of the pathophysiology in AN.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China; Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
26
|
Ursumando L, Ponzo V, Monteleone AM, Menghini D, Fucà E, Lazzaro G, Esposito R, Picazio S, Koch G, Zanna V, Vicari S, Costanzo F. The efficacy of non-invasive brain stimulation in the treatment of children and adolescents with Anorexia Nervosa: study protocol of a randomized, double blind, placebo-controlled trial. J Eat Disord 2023; 11:127. [PMID: 37533058 PMCID: PMC10394844 DOI: 10.1186/s40337-023-00852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Current psychological and pharmacological treatments for Anorexia Nervosa (AN) provide only moderate effective support, and there is an urgent need for research to improve therapies, especially in developing age. Non-invasive brain stimulation has suggested to have the potential to reducing AN symptomatology, via targeting brain alterations, such as hyperactivity of right prefrontal cortex (PFC). We suppose that transcranial direct current stimulation (tDCS) to the PFC may be effective in children and adolescents with AN. METHODS We will conduct a randomized, double blind, add-on, placebo-controlled trial to investigate the efficacy of tDCS treatment on clinical improvement. We will also investigate brain mechanisms and biomarkers changes acting in AN after tDCS treatment. Eighty children or adolescent with AN (age range 10-18 years) will undergo treatment-as-usual including psychiatric, nutritional and psychological support, plus tDCS treatment (active or sham) to PFC (F3 anode/F4 cathode), for six weeks, delivered three times a week. Psychological, neurophysiological and physiological measures will be collected at baseline and at the end of treatment. Participants will be followed-up one, three, six months and one year after the end of treatment. Psychological measures will include parent- and self-report questionnaires on AN symptomatology and other psychopathological symptoms. Neurophysiological measures will include transcranial magnetic stimulation (TMS) with electroencephalography and paired pulse TMS and repetitive TMS to investigate changes in PFC connectivity, reactivity and plasticity after treatment. Physiological measures will include changes in the functioning of the endogenous stress response system, body mass index (BMI) and nutritional state. DISCUSSION We expect that tDCS treatment to improve clinical outcome by reducing the symptoms of AN assessed as changes in Eating Disorder Risk composite score of the Eating Disorder Inventory-3. We also expect that at baseline there will be differences between the right and left hemisphere in some electrophysiological measures and that such differences will be reduced after tDCS treatment. Finally, we expect a reduction of endogenous stress response and an improvement in BMI and nutritional status after tDCS treatment. This project would provide scientific foundation for new treatment perspectives in AN in developmental age, as well as insight into brain mechanisms acting in AN and its recovery. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT05674266) and ethical approval for the study was granted by the local research ethics committee (process number 763_OPBG_2014).
Collapse
Affiliation(s)
- Luciana Ursumando
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Viviana Ponzo
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
| | - Silvia Picazio
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Department of Psychology, University "Sapienza" of Rome, Rome, Italy
| | - Giacomo Koch
- Experimental Neuropsychophysiology Lab, IRCCS S. Lucia Foundation, Rome, Italy
- Section of Human Phisiology, University of Ferrara, Ferrara, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.
| |
Collapse
|
27
|
Shen Y, Cai H, Mo F, Yao S, Yu Y, Zhu J. Functional connectivity gradients of the cingulate cortex. Commun Biol 2023; 6:650. [PMID: 37337086 PMCID: PMC10279697 DOI: 10.1038/s42003-023-05029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Heterogeneity of the cingulate cortex is evident in multiple dimensions including anatomy, function, connectivity, and involvement in networks and diseases. Using the recently developed functional connectivity gradient approach and resting-state functional MRI data, we found three functional connectivity gradients that captured distinct dimensions of cingulate hierarchical organization. The principal gradient exhibited a radiating organization with transitions from the middle toward both anterior and posterior parts of the cingulate cortex and was related to canonical functional networks and corresponding behavioral domains. The second gradient showed an anterior-posterior axis across the cingulate cortex and had prominent geometric distance dependence. The third gradient displayed a marked differentiation of subgenual and caudal middle with other parts of the cingulate cortex and was associated with cortical morphology. Aside from providing an updated framework for understanding the multifaceted nature of cingulate heterogeneity, the observed hierarchical organization of the cingulate cortex may constitute a novel research agenda with potential applications in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Shanwen Yao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
28
|
Yang C, Gao X, Liu N, Sun H, Gong Q, Yao L, Lui S. Convergent and distinct neural structural and functional patterns of mild cognitive impairment: a multimodal meta-analysis. Cereb Cortex 2023:7169132. [PMID: 37197764 DOI: 10.1093/cercor/bhad167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease. Numerous voxel-based morphometry (VBM) and resting-state fMRI (rs-fMRI) studies have provided strong evidence of abnormalities in the structure and intrinsic function of brain regions in MCI. Studies have recently begun to explore their association but have not employed systematic information in this pursuit. Herein, a multimodal meta-analysis was performed, which included 43 VBM datasets (1,247 patients and 1,352 controls) of gray matter volume (GMV) and 42 rs-fMRI datasets (1,468 patients and 1,605 controls) that combined 3 metrics: amplitude of low-frequency fluctuation, the fractional amplitude of low-frequency fluctuation, and regional homogeneity. Compared to controls, patients with MCI displayed convergent reduced regional GMV and altered intrinsic activity, mainly in the default mode network and salience network. Decreased GMV alone in ventral medial prefrontal cortex and altered intrinsic function alone in bilateral dorsal anterior cingulate/paracingulate gyri, right lingual gyrus, and cerebellum were identified, respectively. This meta-analysis investigated complex patterns of convergent and distinct brain alterations impacting different neural networks in MCI patients, which contributes to a further understanding of the pathophysiology of MCI.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Xin Gao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Naici Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Hui Sun
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Li Yao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
29
|
Kaufmann LK, Hänggi J, Jäncke L, Baur V, Piccirelli M, Kollias S, Schnyder U, Martin-Soelch C, Milos G. Disrupted longitudinal restoration of brain connectivity during weight normalization in severe anorexia nervosa. Transl Psychiatry 2023; 13:136. [PMID: 37117179 PMCID: PMC10147636 DOI: 10.1038/s41398-023-02428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Altered intrinsic brain connectivity of patients with anorexia nervosa has been observed in the acute phase of the disorder, but it remains unclear to what extent these alterations recover during weight normalization. In this study, we used functional imaging data from three time points to probe longitudinal changes in intrinsic connectivity patterns in patients with severe anorexia nervosa (BMI ≤ 15.5 kg/m2) over the course of weight normalization. At three distinct stages of inpatient treatment, we examined resting-state functional connectivity in 27 women with severe anorexia nervosa and 40 closely matched healthy controls. Using network-based statistics and graph-theoretic measures, we examined differences in global network strength, subnetworks with altered intrinsic connectivity, and global network topology. Patients with severe anorexia nervosa showed weakened intrinsic connectivity and altered network topology which did not recover during treatment. The persistent disruption of brain networks suggests sustained alterations of information processing in weight-recovered severe anorexia nervosa.
Collapse
Affiliation(s)
- Lisa-Katrin Kaufmann
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.
| | - Jürgen Hänggi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Volker Baur
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Chantal Martin-Soelch
- Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Milos
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Li Q, Xu X, Qian Y, Cai H, Zhao W, Zhu J, Yu Y. Resting-state brain functional alterations and their genetic mechanisms in drug-naive first-episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:13. [PMID: 36841861 PMCID: PMC9968350 DOI: 10.1038/s41537-023-00338-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Extensive research has established the presence of resting-state brain functional damage in psychosis. However, the genetic mechanisms of such disease phenotype are yet to be unveiled. We investigated resting-state brain functional alterations in patients with drug-naive first-episode psychosis (DFP) by performing a neuroimaging meta-analysis of 8 original studies comprising 500 patients and 469 controls. Combined with the Allen Human Brain Atlas, we further conducted transcriptome-neuroimaging spatial correlations to identify genes whose expression levels were linked to brain functional alterations in DFP, followed by a range of gene functional characteristic analyses. Meta-analysis revealed a mixture of increased and decreased brain function in widespread areas including the default-mode, visual, motor, striatal, and cerebellar systems in DFP. Moreover, these brain functional alterations were spatially associated with the expression of 1662 genes, which were enriched for molecular functions, cellular components, and biological processes of the cerebral cortex, as well as psychiatric disorders including schizophrenia. Specific expression analyses demonstrated that these genes were specifically expressed in the brain tissue, in cortical neurons and immune cells, and during nearly all developmental periods. Concurrently, the genes could construct a protein-protein interaction network supported by hub genes and were linked to multiple behavioral domains including emotion, attention, perception, and motor. Our findings provide empirical evidence for the notion that brain functional damage in DFP involves a complex interaction of polygenes with various functional characteristics.
Collapse
Affiliation(s)
- Qian Li
- grid.459419.4Department of Radiology, Chaohu Hospital of Anhui Medical University, 238000 Hefei, China ,grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Xiaotao Xu
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Yinfeng Qian
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Huanhuan Cai
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Wenming Zhao
- grid.412679.f0000 0004 1771 3402Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, China ,Research Center of Clinical Medical Imaging, Anhui Province, 230032 Hefei, China ,Anhui Provincial Institute of Translational Medicine, 230032 Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China. .,Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China. .,Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
31
|
Abstract
Anorexia nervosa is a disorder associated with serious adverse health outcomes, for which there is currently considerable treatment ineffectiveness. Characterised by restrictive eating behaviours, distorted body image perceptions and excessive physical activity, there is growing recognition anorexia nervosa is associated with underlying dysfunction in excitatory and inhibitory neurometabolite metabolism and signalling. This narrative review critically explores the role of N-methyl-D-aspartate receptor-mediated excitatory and inhibitory neurometabolite dysfunction in anorexia nervosa and its associated biomarkers. The existing magnetic resonance spectroscopy literature in anorexia nervosa is reviewed and we outline the brain region-specific neurometabolite changes that have been reported and their connection to anorexia nervosa psychopathology. Considering the proposed role of dysfunctional neurotransmission in anorexia nervosa, the potential utility of zinc supplementation and sub-anaesthetic doses of ketamine in normalising this is discussed with reference to previous research in anorexia nervosa and other neuropsychiatric conditions. The rationale for future research to investigate the combined use of low-dose ketamine and zinc supplementation to potentially extend the therapeutic benefits in anorexia nervosa is subsequently explored and promising biological markers for assessing and potentially predicting treatment response are outlined.
Collapse
|
32
|
Wang Y, Dong D, Chen X, Gao X, Liu Y, Xiao M, Guo C, Chen H. Individualized morphometric similarity predicts body mass index and food approach behavior in school-age children. Cereb Cortex 2022; 33:4794-4805. [PMID: 36300597 DOI: 10.1093/cercor/bhac380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children’s BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children’s food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.
Collapse
Affiliation(s)
- Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University , Chongqing, 400715, China
- Key Laboratory of Cognition and Personality of Ministry of Education , Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality of Ministry of Education , Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) , Research Centre Jülich, Jülich, Germany
| | - Ximei Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology , Southwest University, Chongqing, 400715, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University , Chongqing, 400715, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University , Chongqing, 400715, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University , Chongqing, 400715, China
| | - Cheng Guo
- Research Center of Mental Health Education, Faculty of Psychology, Southwest University , Chongqing, 400715, Germany
| | - Hong Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology , Southwest University, Chongqing, 400715, China
| |
Collapse
|
33
|
Elam HB, Donegan JJ, Hsieh J, Lodge DJ. Gestational buprenorphine exposure disrupts dopamine neuron activity and related behaviors in adulthood. eNeuro 2022; 9:ENEURO.0499-21.2022. [PMID: 35851301 PMCID: PMC9337603 DOI: 10.1523/eneuro.0499-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Opioid misuse among pregnant women is rapidly increasing in the United States. The number of maternal opioid-related diagnoses increased by 131% in the last ten years, resulting in an increased number of infants exposed to opioids in utero and a subsequent increase in infants developing neonatal abstinence syndrome (NAS). The most prescribed treatment to combat maternal opioid use disorder is buprenorphine, a partial μ-opioid receptor agonist and κ-opioid receptor antagonist. Buprenorphine treatment effectively reduces NAS but has been associated with disrupted cortical development and neurodevelopmental consequences in childhood. Less is known about the long-term neurodevelopmental consequences following buprenorphine exposure in utero Previous research has shown that gestational buprenorphine exposure can induce anxiety- and depressive-like phenotypes in adult rats, suggesting that exposure to buprenorphine in utero may render individuals more susceptible to psychiatric illness in adulthood. A common pathology observed across multiple psychiatric illnesses is dopamine system dysfunction. Here, we administered the highly-abused opioid, oxycodone (10 mg/kg, i.p.) or a therapeutic used to treat opioid use disorder, buprenorphine (1 mg/kg, i.p) to pregnant Sprague Dawley rats from gestational day 11 through 21, then examined neurophysiological alterations in the mesolimbic dopamine system and dopamine-dependent behaviors in adult offspring. We found that gestational exposure to buprenorphine or oxycodone increases dopamine neuron activity in adulthood. Moreover, prenatal buprenorphine exposure disrupts the afferent regulation of dopamine neuron activity in the ventral tegmental area (VTA). Taken together, we posit that gestational buprenorphine or oxycodone exposure can have profound effects on the mesolimbic dopamine system in adulthood.Significance StatementThe opioid epidemic in the United States is a growing problem that affects people from all demographics, including pregnant women. In 2017, nearly 21,000 pregnant women reported misusing opioids during pregnancy, which can lead to many physiological and neurodevelopmental complications in infants. To combat illicit opioid use during pregnancy, buprenorphine is the priority treatment option, as it reduces illicit opioid use and alleviates symptoms of neonatal abstinence syndrome in infants. However, less is known about the long-term neurophysiological consequences of in utero opioid or buprenorphine exposure. Here, we demonstrate that both oxycodone and buprenorphine exposure, in utero, can result in aberrant dopamine system function in adult rats. These results provide evidence of potential long-lasting effects of opioid exposure during development.
Collapse
Affiliation(s)
- Hannah B Elam
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Department of Psychiatry and Behavioral Sciences, Dell Medical School at UT Austin, Austin, TX, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
- Brain Health Consortium, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, San Antonio, USA
| |
Collapse
|
34
|
Kamalian A, Khodadadifar T, Saberi A, Masoudi M, Camilleri JA, Eickhoff CR, Zarei M, Pasquini L, Laird AR, Fox PT, Eickhoff SB, Tahmasian M. Convergent regional brain abnormalities in behavioral variant frontotemporal dementia: A neuroimaging meta-analysis of 73 studies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12318. [PMID: 35664889 PMCID: PMC9148620 DOI: 10.1002/dad2.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 12/19/2022]
Abstract
Introduction Numerous studies have reported brain alterations in behavioral variant frontotemporal dementia (bvFTD). However, they pointed to inconsistent findings. Methods We used a meta‐analytic approach to identify the convergent structural and functional brain abnormalities in bvFTD. Following current best‐practice neuroimaging meta‐analysis guidelines, we searched PubMed and Embase databases and performed reference tracking. Then, the coordinates of group comparisons between bvFTD and controls from 73 studies were extracted and tested for convergence using activation likelihood estimation. Results We identified convergent abnormalities in the anterior cingulate cortices, anterior insula, amygdala, paracingulate, striatum, and hippocampus. Task‐based and resting‐state functional connectivity pointed to the networks that are connected to the obtained consistent regions. Functional decoding analyses suggested associated dysfunction of emotional processing, interoception, reward processing, higher‐order cognitive functions, and olfactory and gustatory perceptions in bvFTD. Discussion Our findings highlighted the key role of the salience network and subcortical regions in the pathophysiology of bvFTD.
Collapse
Affiliation(s)
- Aida Kamalian
- School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Tina Khodadadifar
- School of Cognitive Sciences Institute for Research in Fundamental Sciences Tehran Iran
| | - Amin Saberi
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Maryam Masoudi
- School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Claudia R Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology Heinrich Heine University Düsseldorf Düsseldorf Germany.,Institute of Neuroscience and Medicine Research Center Jülich Structural and Functional Organisation of the Brain (INM-1) Jülich Germany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology Shahid Beheshti University Tehran Iran
| | - Lorenzo Pasquini
- Department of Neurology Memory and Aging Center University of California-San Francisco San Francisco California USA
| | - Angela R Laird
- Department of Physics Florida International University Miami Florida USA
| | - Peter T Fox
- Research Imaging Institute University of Texas Health Science Center San Antonio Texas USA.,South Texas Veterans Health Care System San Antonio Texas USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| | - Masoud Tahmasian
- Institute of Neuroscience and Medicine Brain and Behavior (INM-7) Research Center Jülich Jülich Germany.,Institute for Systems Neuroscience Medical Faculty Heinrich-Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
35
|
Göller S, Nickel K, Horster I, Endres D, Zeeck A, Domschke K, Lahmann C, Tebartz van Elst L, Maier S, Joos AAB. State or trait: the neurobiology of anorexia nervosa - contributions of a functional magnetic resonance imaging study. J Eat Disord 2022; 10:77. [PMID: 35641995 PMCID: PMC9158182 DOI: 10.1186/s40337-022-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The understanding of the cerebral neurobiology of anorexia nervosa (AN) with respect to state- versus trait-related abnormalities is limited. There is evidence of restitution of structural brain alterations with clinical remission. However, with regard to functional brain abnormalities, this issue has not yet been clarified. METHODS We compared women with AN (n = 31), well-recovered female participants (REC) (n = 18) and non-patients (NP) (n = 27) cross-sectionally. Functional magnetic resonance imaging was performed to compare neural responses to food versus non-food images. Additionally, affective ratings were assessed. RESULTS Functional responses and affective ratings did not differ between REC and NP, even when applying lenient thresholds for the comparison of neural responses. Comparing REC and AN, the latter showed lower valence and higher arousal ratings for food stimuli, and neural responses differed with lenient thresholds in an occipital region. CONCLUSIONS The data are in line with some previous findings and suggest restitution of cerebral function with clinical recovery. Furthermore, affective ratings did not differ from NP. These results need to be verified in intra-individual longitudinal studies.
Collapse
Affiliation(s)
- Selma Göller
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Isabelle Horster
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas A B Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Ortenau Klinikum, Lahr, Academic Teaching Hospital of the University of Freiburg, Lahr, Germany
| |
Collapse
|
36
|
Yue X, Zhang G, Li X, Shen Y, Wei W, Bai Y, Luo Y, Wei H, Li Z, Zhang X, Wang M. Brain Functional Alterations in Prepubertal Boys With Autism Spectrum Disorders. Front Hum Neurosci 2022; 16:891965. [PMID: 35664346 PMCID: PMC9160196 DOI: 10.3389/fnhum.2022.891965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives Abnormal brain function in ASD patients changes dynamically across developmental stages. However, no one has studied the brain function of prepubertal children with ASD. Prepuberty is an important stage for children’s socialization. This study aimed to investigate alterations in local spontaneous brain activity in prepubertal boys with ASD. Materials and Methods Measures of the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) acquired from resting-state functional magnetic resonance imaging (RS-fMRI) database, including 34 boys with ASD and 49 typically developing (TD) boys aged 7 to 10 years, were used to detect regional brain activity. Pearson correlation analyses were conducted on the relationship between abnormal ALFF and ReHo values and Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) scores. Results In the ASD group, we found decreased ALFF in the left inferior parietal lobule (IPL) and decreased ReHo in the left lingual gyrus (LG), left superior temporal gyrus (STG), left middle occipital gyrus (MOG), and right cuneus (p < 0.05, FDR correction). There were negative correlations between ReHo values in the left LG and left STG and the ADOS social affect score and a negative correlation between ReHo values in the left STG and the calibrated severity total ADOS score. Conclusion Brain regions with functional abnormalities, including the left IPL, left LG, left STG, left MOG, and right cuneus may be crucial in the neuropathology of prepubertal boys with ASD. Furthermore, ReHo abnormalities in the left LG and left STG were correlated with sociality. These results will supplement the study of neural mechanisms in ASD at different developmental stages, and be helpful in exploring the neural mechanisms of prepubertal boys with ASD.
Collapse
Affiliation(s)
- Xipeng Yue
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ge Zhang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xiaochen Li
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Shen
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yu Luo
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wei
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqiang Li
- Henan Provincial People’s Hospital, Xinxiang Medical University, Xinxiang, China
| | | | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Meiyun Wang,
| |
Collapse
|
37
|
Tu Z, Wu F, Jiang X, Kong L, Tang Y. Gender differences in major depressive disorders: A resting state fMRI study. Front Psychiatry 2022; 13:1025531. [PMID: 36440430 PMCID: PMC9685621 DOI: 10.3389/fpsyt.2022.1025531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) has a high disability rate and brings a large disease burden to patients and the country. Significant sex differences exist in both the epidemiological and clinical features in MDD. The effect of sex on brain function in MDD is not clear now. Regional homogeneity (ReHo) and ALFF are widely used research method in the study of brain function. This research aimed to use ReHo and ALFF to explore gender differences in brain function images in MDD. METHODS Eighty first-episode drug-naive patients (47 women and 30 men) with MDD and 85 age, education matched healthy volunteers (47 women and 31 men) were recruited in our study and participated in resting-state functional magnetic resonance imaging scans. ReHo and ALFF were used to assess brain activity, two-way ANOVA and post hoc analysis was conducted to explore the sex difference in MDD. Correlation analysis was used to explore the relationship between abnormal brain functioning and clinical symptoms. RESULTS We observed sex-specific patterns and diagnostic differences in MDD Patients, further post hoc comparisons indicated that women with MDD showed decreased ALFF value in the right superior occipital gyrus and decreased ReHo value in the left calcarine and left dorsolateral superior frontal gyrus compared with HC females and men with MDD. Men with MDD showed decreased ReHo value in the right median cingulate gyrus compared with HC males and increased ReHo value in the left dorsolateral superior frontal gyrus compared with HC males, we also found that HC males showed higher ReHo value in the right median cingulate gyrus than HC females. CONCLUSIONS Men and women do have sex differences in brain function, the occipital lobe, calcarine, DLPFC, and DCG were the main different brain regions found between male and female in MDD, which may be the biomarker brain regions that can help diagnose and treat MDD in men and women.
Collapse
Affiliation(s)
- Zhaoyuan Tu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|