1
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Grydeland H, Leonardsen EH, Iakunchykova O, Pan M, Mowinckel A, Strømstad M, Nawijn L, Milaneschi Y, Andersson M, Pudas S, Bråthen ACS, Kransberg J, Falch ES, Øverbye K, Kievit RA, Ebmeier KP, Lindenberger U, Ghisletta P, Demnitz N, Boraxbekk CJ, Drevon CA, Penninx B, Bertram L, Nyberg L, Walhovd KB, Fjell AM, Wang Y. Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. Nat Commun 2024; 15:10651. [PMID: 39690174 DOI: 10.1038/s41467-024-53548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
Throughout adulthood and ageing our brains undergo structural loss in an average pattern resembling faster atrophy in Alzheimer's disease (AD). Using a longitudinal adult lifespan sample (aged 30-89; 2-7 timepoints) and four polygenic scores for AD, we show that change in AD-sensitive brain features correlates with genetic AD-risk and memory decline in healthy adults. We first show genetic risk links with more brain loss than expected for age in early Braak regions, and find this extends beyond APOE genotype. Next, we run machine learning on AD-control data from the Alzheimer's Disease Neuroimaging Initiative using brain change trajectories conditioned on age, to identify AD-sensitive features and model their change in healthy adults. Genetic AD-risk linked with multivariate change across many AD-sensitive features, and we show most individuals over age ~50 are on an accelerated trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults with elevated brain change showed more memory decline through adulthood, compared to high genetic risk adults with less brain change. Our findings suggest quantitative AD risk factors are detectable in healthy individuals, via a shared pattern of ageing- and AD-related neurodegeneration that occurs along a continuum and tracks memory decline through adulthood.
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Athanasia Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anne Cecilie Sjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie Sogn Falch
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut Øverbye
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus P Ebmeier
- Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Brenda Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Yu L, Hu D, Luo Y, Lin W, Xu H, Xiao X, Xia Z, Dou Z, Zhao G, Yang L, Peng D, Zhang Q, Yu S. Transcriptional signatures of cortical structural changes in chronic insomnia disorder. Psychophysiology 2024; 61:e14671. [PMID: 39160694 DOI: 10.1111/psyp.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/30/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Chronic insomnia disorder (CID) is a multidimensional disease that may influence various levels of brain organization, spanning the macroscopic structural connectome to microscopic gene expression. However, the connection between genomic variations and morphological alterations in CID remains unclear. Here, we investigated brain structural changes in CID patients at the whole-brain level and whether these link to transcriptional characteristics. Brain structural data from 104 CID patients and 102 matched healthy controls (HC) were acquired to examine cortical structural alterations using morphometric similarity (MS) analysis. Partial least squares (PLS) regression and transcriptome data from the Allen Human Brain Atlas were used to extract genomes related to MS changes. Gene-category enrichment analysis (GCEA) was used to identify potential molecular mechanisms behind the observed structural changes. We found that CID patients exhibited MS reductions in the parietal and limbic regions, along with enhancements in the temporal and frontal regions compared to HCs (pFDR < .05). Subsequently, PLS and GCEA revealed that these MS alterations were spatially correlated with a set of genes, especially those significantly correlated with excitatory and inhibitory neurons and chronic neuroinflammation. This neuroimaging-transcriptomic study bridges the gap between cortical structural changes and the molecular mechanisms in CID patients, providing novel insight into the pathophysiology of insomnia and targeted treatments.
Collapse
Affiliation(s)
- Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daijie Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Traditional Chinese Medicine Rehabilitation, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiangwen Xiao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihao Xia
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dezhong Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhang
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Park S, Haak KV, Oldham S, Cho H, Byeon K, Park BY, Thomson P, Chen H, Gao W, Xu T, Valk S, Milham MP, Bernhardt B, Di Martino A, Hong SJ. A shifting role of thalamocortical connectivity in the emergence of cortical functional organization. Nat Neurosci 2024; 27:1609-1619. [PMID: 38858608 DOI: 10.1038/s41593-024-01679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
The cortical patterning principle has been a long-standing question in neuroscience, yet how this translates to macroscale functional specialization in the human brain remains largely unknown. Here we examine age-dependent differences in resting-state thalamocortical connectivity to investigate its role in the emergence of large-scale functional networks during early life, using a primarily cross-sectional but also longitudinal approach. We show that thalamocortical connectivity during infancy reflects an early differentiation of sensorimotor networks and genetically influenced axonal projection. This pattern changes in childhood, when connectivity is established with the salience network, while decoupling externally and internally oriented functional systems. A developmental simulation using generative network models corroborated these findings, demonstrating that thalamic connectivity contributes to developing key features of the mature brain, such as functional segregation and the sensory-association axis, especially across 12-18 years of age. Our study suggests that the thalamus plays an important role in functional specialization during development, with potential implications for studying conditions with compromised internal and external processing.
Collapse
Affiliation(s)
- Shinwon Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Autism Center, Child Mind Institute, New York, NY, USA
| | - Koen V Haak
- Department of Cognitive Science and Artificial Intelligence, Tilburg School of Humanities and Digital Sciences, Tilburg University, Tilburg, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute, Radboud University, Radboud, The Netherlands
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Hanbyul Cho
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Kyoungseob Byeon
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Haitao Chen
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Wei Gao
- Department of Biomedical Sciences and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ting Xu
- Center for Integrative Developing Brain, Child Mind Institute, New York, NY, USA
| | - Sofie Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7), Brain and Behavior, Forschungszentrum, Juelich, Germany
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea.
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
5
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
6
|
Cao Z, Zhan G, Qin J, Cupertino RB, Ottino-Gonzalez J, Murphy A, Pancholi D, Hahn S, Yuan D, Callas P, Mackey S, Garavan H. Unraveling the molecular relevance of brain phenotypes: A comparative analysis of null models and test statistics. Neuroimage 2024; 293:120622. [PMID: 38648869 PMCID: PMC11132826 DOI: 10.1016/j.neuroimage.2024.120622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Correlating transcriptional profiles with imaging-derived phenotypes has the potential to reveal possible molecular architectures associated with cognitive functions, brain development and disorders. Competitive null models built by resampling genes and self-contained null models built by spinning brain regions, along with varying test statistics, have been used to determine the significance of transcriptional associations. However, there has been no systematic evaluation of their performance in imaging transcriptomics analyses. Here, we evaluated the performance of eight different test statistics (mean, mean absolute value, mean squared value, max mean, median, Kolmogorov-Smirnov (KS), Weighted KS and the number of significant correlations) in both competitive null models and self-contained null models. Simulated brain maps (n = 1,000) and gene sets (n = 500) were used to calculate the probability of significance (Psig) for each statistical test. Our results suggested that competitive null models may result in false positive results driven by co-expression within gene sets. Furthermore, we demonstrated that the self-contained null models may fail to account for distribution characteristics (e.g., bimodality) of correlations between all available genes and brain phenotypes, leading to false positives. These two confounding factors interacted differently with test statistics, resulting in varying outcomes. Specifically, the sign-sensitive test statistics (i.e., mean, median, KS, Weighted KS) were influenced by co-expression bias in the competitive null models, while median and sign-insensitive test statistics were sensitive to the bimodality bias in the self-contained null models. Additionally, KS-based statistics produced conservative results in the self-contained null models, which increased the risk of false negatives. Comprehensive supplementary analyses with various configurations, including realistic scenarios, supported the results. These findings suggest utilizing sign-insensitive test statistics such as mean absolute value, max mean in the competitive null models and the mean as the test statistic for the self-contained null models. Additionally, adopting the confounder-matched (e.g., coexpression-matched) null models as an alternative to standard null models can be a viable strategy. Overall, the present study offers insights into the selection of statistical tests for imaging transcriptomics studies, highlighting areas for further investigation and refinement in the evaluation of novel and commonly used tests.
Collapse
Affiliation(s)
- Zhipeng Cao
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China; Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA.
| | - Guilai Zhan
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China
| | - Jinmei Qin
- Shanghai Xuhui Mental Health Center, Shanghai 200232, China
| | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jonatan Ottino-Gonzalez
- Division of Endocrinology, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Alistair Murphy
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Devarshi Pancholi
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Dekang Yuan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Peter Callas
- Department of Mathematics and Statistics, University of Vermont College of Engineering and Mathematical Sciences, Burlington VT, 05401, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington VT, 05401, USA
| |
Collapse
|
7
|
Chen Z, Xu T, Liu X, Becker B, Li W, Xia L, Zhao W, Zhang R, Huo Z, Hu B, Tang Y, Xiao Z, Feng Z, Chen J, Feng T. Cortical gradient perturbation in attention deficit hyperactivity disorder correlates with neurotransmitter-, cell type-specific and chromosome- transcriptomic signatures. Psychiatry Clin Neurosci 2024; 78:309-321. [PMID: 38334172 DOI: 10.1111/pcn.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
AIMS This study aimed to illuminate the neuropathological landscape of attention deficit hyperactivity disorder (ADHD) by a multiscale macro-micro-molecular perspective from in vivo neuroimaging data. METHODS The "ADHD-200 initiative" repository provided multi-site high-quality resting-state functional connectivity (rsfc-) neuroimaging for ADHD children and matched typically developing (TD) cohort. Diffusion mapping embedding model to derive the functional connectome gradient detecting biologically plausible neural pattern was built, and the multivariate partial least square method to uncover the enrichment of neurotransmitomic, cellular and chromosomal gradient-transcriptional signatures of AHBA enrichment and meta-analytic decoding. RESULTS Compared to TD, ADHD children presented connectopic cortical gradient perturbations in almost all the cognition-involved brain macroscale networks (all pBH <0.001), but not in the brain global topology. As an intermediate phenotypic variant, such gradient perturbation was spatially enriched into distributions of GABAA/BZ and 5-HT2A receptors (all pBH <0.01) and co-varied with genetic transcriptional expressions (e.g. DYDC2, ATOH7, all pBH <0.01), associated with phenotypic variants in episodic memory and emotional regulations. Enrichment models demonstrated such gradient-transcriptional variants indicated the risk of both cell-specific and chromosome- dysfunctions, especially in enriched expression of oligodendrocyte precursors and endothelial cells (all pperm <0.05) as well enrichment into chromosome 18, 19 and X (pperm <0.05). CONCLUSIONS Our findings bridged brain macroscale neuropathological patterns to microscale/cellular biological architectures for ADHD children, demonstrating the neurobiologically pathological mechanism of ADHD into the genetic and molecular variants in GABA and 5-HT systems as well brain-derived enrichment of specific cellular/chromosomal expressions.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Liu
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lei Xia
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wenqi Zhao
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhenzhen Huo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Bowen Hu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying amyloid-β and tau pathology are associated with cognitive dysfunction in Alzheimer's disease. Cell Rep 2024; 43:113691. [PMID: 38244198 PMCID: PMC10926093 DOI: 10.1016/j.celrep.2024.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aβ and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. These findings may explain the discordance between regional Aβ and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| | - Shannon L Risacher
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik T Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Qiuting Wen
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian L Oblak
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David G Clark
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sophia Wang
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
9
|
Cao H, Wei P, Huang Y, Wang N, Guo LA, Fan X, Wang Z, Ren L, Piao Y, Lu J, Shan Y, He X, Zhao G. The alteration of cortical microstructure similarity in drug-resistant epilepsy correlated with mTOR pathway genes. EBioMedicine 2023; 97:104847. [PMID: 39492369 PMCID: PMC10628344 DOI: 10.1016/j.ebiom.2023.104847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) is associated with distributed laminar disruptions due to cytoarchitectonic pathologies, which may be characterized by multimodal MRI approaches such as morphometric similarity networks (MSNs). However, the genetic and histological underpinning of MSN alterations in DRE remains poorly understood, hampering its clinical application. METHODS We enrolled 60 patients with DRE and 23 controls, acquiring T1 and diffusion spectrum imaging data with a 3.0T GE SIGNA Premier scanner. Morphometric similarity networks (MSNs) were constructed and analyzed to identify microstructure similarity differences between patients and controls. Subsequently, patient-specific MSN alteration patterns were associated with gene expression using the GAMBA tool, and layer-specific neuronal signature mapping were also applied. During these analyses, sex and age were adjusted as covariates and multiple comparisons corrections were applied when appropriate. FINDINGS We observed widespread MSN changes in patients with DRE and identified five distinct MSN alteration patterns. Major patterns presented pattern-specific associations with expressions of epilepsy-related genes, particularly involving the mTOR pathway. Histological analysis confirmed the presence of cortical microstructure changes in areas with MSN alterations and revealed cellular abnormalities matching the aforementioned genetic risks. INTERPRETATION Our findings highlight the potential of quantifying laminar-related microstructure integrity using MSN to uncover the cytoarchitectonic changes in the pathophysiology of DRE. This approach may facilitate the identification of genetic and histological underpinnings of MSN alterations in DRE, ultimately aiding in the development of targeted therapeutic strategies. FUNDINGS The National Natural Science Foundation of China, the Ministry of Science and Technology of the People's Republic of China, and the Beijing Municipal Health Commission.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China
| | - Yuda Huang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Ningrui Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Lin-Ai Guo
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; National Medical Center for Neurological Diseases, 45 Changchun St, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, 45 Changchun St, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, No 96 Jinzhai Rd, Hefei, 230026, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Clinical Research Center for Epilepsy, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China; Beijing Municipal Geriatric Medical Research Center, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
10
|
Yu M, Risacher SL, Nho KT, Wen Q, Oblak AL, Unverzagt FW, Apostolova LG, Farlow MR, Brosch JR, Clark DG, Wang S, Deardorff R, Wu YC, Gao S, Sporns O, Saykin AJ. Spatial transcriptomic patterns underlying regional vulnerability to amyloid-β and tau pathologies and their relationships to cognitive dysfunction in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.12.23294017. [PMID: 37645867 PMCID: PMC10462206 DOI: 10.1101/2023.08.12.23294017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Amyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We studied the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies leveraging two large independent cohorts (n = 715) of participants along the AD continuum. We identified several AD susceptibility genes and gene modules in a gene co-expression network with expression profiles related to regional vulnerability to Aβ and tau pathologies in AD. In particular, we found that the positive APOE -to-tau association was only seen in the AD cohort, whereas patients with AD and frontotemporal dementia shared similar positive MAPT -to-tau association. Some AD candidate genes showed sex-dependent negative gene-to-Aβ and gene-to-tau associations. In addition, we identified distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. Finally, we proposed a novel analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations. Taken together, our study identified distinct gene expression profiles and biochemical pathways that may explain the discordance between regional Aβ and tau pathologies, and filled the gap between gene-to-pathology associations and cognitive dysfunction in individual AD patients that may ultimately help identify novel personalized pathogenetic biomarkers and therapeutic targets. One Sentence Summary We identified replicable cognition-related associations between regional gene expression profiles and selectively regional vulnerability to amyloid-β and tau pathologies in AD.
Collapse
|
11
|
Kerrebijn I, Wainberg M, Zhukovsky P, Chen Y, Davie M, Felsky D, Tripathy SJ. Case-control virtual histology elucidates cell types associated with cortical thickness differences in Alzheimer's disease. Neuroimage 2023; 276:120177. [PMID: 37211192 DOI: 10.1016/j.neuroimage.2023.120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023] Open
Abstract
Many neuropsychiatric disorders are characterised by altered cortical thickness, but the cell types underlying these changes remain largely unknown. Virtual histology (VH) approaches map regional patterns of gene expression with regional patterns of MRI-derived phenotypes, such as cortical thickness, to identify cell types associated with case-control differences in those MRI measures. However, this method does not incorporate valuable information of case-control differences in cell type abundance. We developed a novel method, termed case-control virtual histology (CCVH), and applied it to Alzheimer's disease (AD) and dementia cohorts. Leveraging a multi-region gene expression dataset of AD cases (n = 40) and controls (n = 20), we quantified AD case-control differential expression of cell type-specific markers across 13 brain regions. We then correlated these expression effects with MRI-derived AD case-control cortical thickness differences across the same regions. Cell types with spatially concordant AD-related effects were identified through resampling marker correlation coefficients. Among regions thinner in AD, gene expression patterns identified by CCVH suggested fewer excitatory and inhibitory neurons, and greater proportions of astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in AD cases vs. controls. In contrast, original VH identified expression patterns suggesting that excitatory but not inhibitory neuron abundance was associated with thinner cortex in AD, despite the fact that both types of neurons are known to be lost in the disorder. Compared to original VH, cell types identified through CCVH are more likely to directly underlie cortical thickness differences in AD. Sensitivity analyses suggest our results are largely robust to specific analysis choices, like numbers of cell type-specific marker genes used and background gene sets used to construct null models. As more multi-region brain expression datasets become available, CCVH will be useful for identifying the cellular correlates of cortical thickness across neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Isabel Kerrebijn
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Zhukovsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuxiao Chen
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melanie Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Rai B, Naylor PE, Siqueiros-Sanchez M, Wintermark M, Raman MM, Jo B, Reiss AL, Green T. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities. Transl Psychiatry 2023; 13:245. [PMID: 37407569 DOI: 10.1038/s41398-023-02504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: (1) How Ras-MAPK activating variants of PTPN11/SOS1 protein-coding genes affect brain anatomy. (2) The relationship between PTPN11 gene expression levels and brain anatomy, and (3) The relevance of subcortical anatomy to attention and memory skills affected in the RASopathies. We collected structural brain MRI and cognitive-behavioral data from 40 pre-pubertal children with Noonan syndrome (NS), caused by PTPN11 (n = 30) or SOS1 (n = 10) variants (age 8.53 ± 2.15, 25 females), and compared them to 40 age- and sex-matched typically developing controls (9.24 ± 1.62, 27 females). We identified widespread effects of NS on cortical and subcortical volumes and on determinants of cortical gray matter volume, surface area (SA), and cortical thickness (CT). In NS, we observed smaller volumes of bilateral striatum, precentral gyri, and primary visual area (d's < -0.8), and extensive effects on SA (d's > |0.8|) and CT (d's > |0.5|) relative to controls. Further, SA effects were associated with increasing PTPN11 gene expression, most prominently in the temporal lobe. Lastly, PTPN11 variants disrupted normative relationships between the striatum and inhibition functioning. We provide evidence for the effects of Ras-MAPK pathogenic variants on striatal and cortical anatomy as well as links between PTPN11 gene expression and cortical SA increases, and striatal volume and inhibition skills. These findings provide essential translational information on the Ras-MAPK pathway's effect on human brain development and function.
Collapse
Affiliation(s)
- Bhavana Rai
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
- Department of Neurology, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Monica Siqueiros-Sanchez
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Center, Houston, TX, USA
| | - Mira M Raman
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Booil Jo
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan L Reiss
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Departments of Radiology and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tamar Green
- Division of Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Han Y, Yang Y, Zhou Z, Jin X, Shi H, Shao M, Song M, Su X, Wang Q, Liu Q, Li W, Lv L. Cortical anatomical variations, gene expression profiles, and clinical phenotypes in patients with schizophrenia. Neuroimage Clin 2023; 39:103451. [PMID: 37315484 PMCID: PMC10509526 DOI: 10.1016/j.nicl.2023.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) patients display significant structural brain abnormalities; nevertheless, the genetic mechanisms regulating cortical anatomical variations and their correlation with the disease phenotype are still ambiguous. STUDY DESIGN We characterized anatomical variation using a surface-based method derived from structural magnetic resonance imaging of patients with SZ and age- and sex-matched healthy controls (HCs). Partial least-squares regression was performed across cortex regions between anatomical variation and average transcriptional profiles of SZ risk genes and all qualified genes from the Allen Human Brain Atlas. The morphological features of each brain region were correlated to symptomology variables in patients with SZ using partial correlation analysis. STUDY RESULTS A total of 203 SZ and 201 HCs were included in the final analysis. We observed significant variation of 55 regions of cortical thickness, 23 regions of volume, 7 regions of area, and 55 regions of local gyrification index (LGI) between SZ and HC groups. Expression profiles of 4 SZ risk genes and 96 genes from all qualified genes showed a correlation to anatomical variability, however, after multiple comparisons, the correlations were no longer significant. LGI variability in multiple frontal subregions was associated with specific symptoms of SZ, whereas cognitive function involving attention/vigilance was linked to LGI variability across nine brain regions. CONCLUSIONS Cortical anatomical variation of patients with schizophrenia is associated with gene transcriptome profiles as well as clinical phenotypes.
Collapse
Affiliation(s)
- Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Zhilu Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xueyan Jin
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
14
|
Arnatkeviciute A, Markello RD, Fulcher BD, Misic B, Fornito A. Toward Best Practices for Imaging Transcriptomics of the Human Brain. Biol Psychiatry 2023; 93:391-404. [PMID: 36725139 DOI: 10.1016/j.biopsych.2022.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Modern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses. Our aim is to facilitate the development of standardized and reproducible approaches for this rapidly growing field. We identify sources of methodological variability, key choices that can affect findings, and considerations for mitigating false positive and/or spurious results. Finally, we provide an overview of freely available open-source toolboxes implementing current best-practice procedures across all 3 analysis phases.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia.
| | - Ross D Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Rai B, Naylor P, Sanchez MS, Wintermark M, Raman M, Jo B, Reiss A, Green T. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities. RESEARCH SQUARE 2023:rs.3.rs-2580911. [PMID: 36865206 PMCID: PMC9980214 DOI: 10.21203/rs.3.rs-2580911/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The RASopathies are genetic syndromes associated with pathogenic variants causing dysregulation of the Ras/mitogen-activated protein kinase (Ras-MAPK) pathway, essential for brain development, and increased risk for neurodevelopmental disorders. Yet, the effects of most pathogenic variants on the human brain are unknown. We examined: 1. How Ras-MAPK activating variants of PTPN11 / SOS1 protein-coding genes affect brain anatomy. 2. The relationship between PTPN11 gene expression levels and brain anatomy, and 3. The relevance of subcortical anatomy to attention and memory skills affected in the RASopathies. We collected structural brain MRI and cognitive-behavioral data from 40 pre-pubertal children with Noonan syndrome (NS), caused by PTPN11 ( n = 30) or SOS1 ( n = 10) variants (age 8.53 ± 2.15, 25 females), and compared them to 40 age- and sex-matched typically developing controls (9.24 ± 1.62, 27 females). We identified widespread effects of NS on cortical and subcortical volumes and on determinants of cortical gray matter volume, surface area (SA) and cortical thickness (CT). In NS, we observed smaller volumes of bilateral striatum, precentral gyri, and primary visual area ( d 's<-0.8), and extensive effects on SA ( d 's>|0.8|) and CT ( d 's>|0.5|) relative to controls. Further, SA effects were associated with increasing PTPN11 gene expression, most prominently in the temporal lobe. Lastly, PTPN11 variants disrupted normative relationships between the striatum and inhibition functioning. We provide evidence for effects of Ras-MAPK pathogenic variants on striatal and cortical anatomy as well as links between PTPN11 gene expression and cortical SA increases, and striatal volume and inhibition skills. These findings provide essential translational information on the Ras-MAPK pathway's effect on human brain development and function.
Collapse
|
16
|
Wang Y, Royer J, Park BY, Vos de Wael R, Larivière S, Tavakol S, Rodriguez-Cruces R, Paquola C, Hong SJ, Margulies DS, Smallwood J, Valk SL, Evans AC, Bernhardt BC. Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cereb Cortex 2023; 33:1782-1798. [PMID: 35596951 PMCID: PMC9977370 DOI: 10.1093/cercor/bhac172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.
Collapse
Affiliation(s)
- Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Bo-Yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Department of Data Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, South Korea
| | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Integrative Neuroscience and Cognition Centre, University of Paris and CRNS, INCC - UMR 8002, Rue des Saint-Pères 75006, Paris
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, 62 Arch Street, Humphrey Hall, Room 232 Kingston, Ontario K7L 3N6, Canada
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A. Leipzig D-04103, Germany.,Institute of Systems Neuroscience, Heinrich Heine University, Moorenstr. 5, Düsseldorf 40225, Germany
| | - Alan C Evans
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery and Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
17
|
Ardesch DJ, Libedinsky I, Scholtens LH, Wei Y, van den Heuvel MP. Convergence of brain transcriptomic and neuroimaging patterns in schizophrenia, bipolar disorder, autism spectrum disorder and major depression disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023. [DOI: 10.1016/j.bpsc.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Hettwer MD, Larivière S, Park BY, van den Heuvel OA, Schmaal L, Andreassen OA, Ching CRK, Hoogman M, Buitelaar J, van Rooij D, Veltman DJ, Stein DJ, Franke B, van Erp TGM, Jahanshad N, Thompson PM, Thomopoulos SI, Bethlehem RAI, Bernhardt BC, Eickhoff SB, Valk SL. Coordinated cortical thickness alterations across six neurodevelopmental and psychiatric disorders. Nat Commun 2022; 13:6851. [PMID: 36369423 PMCID: PMC9652311 DOI: 10.1038/s41467-022-34367-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric disorders are increasingly conceptualized as overlapping spectra sharing multi-level neurobiological alterations. However, whether transdiagnostic cortical alterations covary in a biologically meaningful way is currently unknown. Here, we studied co-alteration networks across six neurodevelopmental and psychiatric disorders, reflecting pathological structural covariance. In 12,024 patients and 18,969 controls from the ENIGMA consortium, we observed that co-alteration patterns followed normative connectome organization and were anchored to prefrontal and temporal disease epicenters. Manifold learning revealed frontal-to-temporal and sensory/limbic-to-occipitoparietal transdiagnostic gradients, differentiating shared illness effects on cortical thickness along these axes. The principal gradient aligned with a normative cortical thickness covariance gradient and established a transcriptomic link to cortico-cerebello-thalamic circuits. Moreover, transdiagnostic gradients segregated functional networks involved in basic sensory, attentional/perceptual, and domain-general cognitive processes, and distinguished between regional cytoarchitectonic profiles. Together, our findings indicate that shared illness effects occur in a synchronized fashion and along multiple levels of hierarchical cortical organization.
Collapse
Affiliation(s)
- M D Hettwer
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - S Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B Y Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - O A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neuroscience and Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - O A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - C R K Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - M Hoogman
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - D J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neuroscience and Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - D J Stein
- South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - B Franke
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine Hall, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - N Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - P M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - S I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - R A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - B C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - S B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | - S L Valk
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
19
|
Xu Z, Xia M, Wang X, Liao X, Zhao T, He Y. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun Biol 2022; 5:1056. [PMID: 36195744 PMCID: PMC9532385 DOI: 10.1038/s42003-022-04028-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Human brain connectomes include sets of densely connected hub regions. However, the consistency and reproducibility of functional connectome hubs have not been established to date and the genetic signatures underlying robust hubs remain unknown. Here, we conduct a worldwide harmonized meta-connectomic analysis by pooling resting-state functional MRI data of 5212 healthy young adults across 61 independent cohorts. We identify highly consistent and reproducible connectome hubs in heteromodal and unimodal regions both across cohorts and across individuals, with the greatest effects observed in lateral parietal cortex. These hubs show heterogeneous connectivity profiles and are critical for both intra- and inter-network communications. Using post-mortem transcriptome datasets, we show that as compared to non-hubs, connectome hubs have a spatiotemporally distinctive transcriptomic pattern dominated by genes involved in the neuropeptide signaling pathway, neurodevelopmental processes, and metabolic processes. These results highlight the robustness of macroscopic connectome hubs and their potential cellular and molecular underpinnings, which markedly furthers our understanding of how connectome hubs emerge in development, support complex cognition in health, and are involved in disease.
Collapse
Affiliation(s)
- Zhilei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
20
|
Larivière S, Royer J, Rodríguez-Cruces R, Paquola C, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Yasuda CL, Bonilha L, Gleichgerrcht E, Focke NK, Domin M, von Podewills F, Langner S, Rummel C, Wiest R, Martin P, Kotikalapudi R, O'Brien TJ, Sinclair B, Vivash L, Desmond PM, Lui E, Vaudano AE, Meletti S, Tondelli M, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Winston GP, Griffin A, Singh A, Tiwari VK, Kreilkamp BAK, Lenge M, Guerrini R, Hamandi K, Foley S, Rüber T, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Tortora D, Kaestner E, Hatton SN, Vos SB, Caciagli L, Duncan JS, Whelan CD, Thompson PM, Sisodiya SM, Bernasconi A, Labate A, McDonald CR, Bernasconi N, Bernhardt BC. Structural network alterations in focal and generalized epilepsy assessed in a worldwide ENIGMA study follow axes of epilepsy risk gene expression. Nat Commun 2022; 13:4320. [PMID: 35896547 PMCID: PMC9329287 DOI: 10.1038/s41467-022-31730-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University of Medicine Göttingen, Göttingen, Germany
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewills
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Melbourne, VIC, Australia
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Patricia M Desmond
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Elaine Lui
- Departments of Medicine and Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Elisabetta Vaudano
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, OCB Hospital, Azienda Ospedaliera-Universitaria, Modena, Italy
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
- Primary Care Department, Azienda Sanitaria Locale di Modena, Modena, Italy
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James' Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Contol and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Cognitive Science Department, Xiamen University, Xiamen, China
| | - Gavin P Winston
- Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Aoife Griffin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, UK
| | | | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Whales, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Theodor Rüber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, US
| | | | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Erik Kaestner
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, US
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Angelo Labate
- Neurology, BIOMORF Dipartment, University of Messina, Messina, Italy
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, US
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
21
|
Abstract
Recent advances in imaging and tracing technology provide increasingly detailed reconstructions of brain connectomes. Concomitant analytic advances enable rigorous identification and quantification of functionally important features of brain network architecture. Null models are a flexible tool to statistically benchmark the presence or magnitude of features of interest, by selectively preserving specific architectural properties of brain networks while systematically randomizing others. Here we describe the logic, implementation and interpretation of null models of connectomes. We introduce randomization and generative approaches to constructing null networks, and outline a taxonomy of network methods for statistical inference. We highlight the spectrum of null models - from liberal models that control few network properties, to conservative models that recapitulate multiple properties of empirical networks - that allow us to operationalize and test detailed hypotheses about the structure and function of brain networks. We review emerging scenarios for the application of null models in network neuroscience, including for spatially embedded networks, annotated networks and correlation-derived networks. Finally, we consider the limits of null models, as well as outstanding questions for the field.
Collapse
|
22
|
Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Imaging Transcriptomics of Brain Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:319-331. [PMID: 36324650 PMCID: PMC9616271 DOI: 10.1016/j.bpsgos.2021.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
- Address correspondence to Aurina Arnatkeviciute, Ph.D
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|