1
|
Khan K, Katarya R. WS-BiTM: Integrating White Shark Optimization with Bi-LSTM for enhanced autism spectrum disorder diagnosis. J Neurosci Methods 2025; 413:110319. [PMID: 39521353 DOI: 10.1016/j.jneumeth.2024.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental condition marked by challenges in social communication, sensory processing, and behavioral regulation. The delayed diagnosis of ASD significantly impedes timely interventions, which can exacerbate symptom severity. With approximately 62 million individuals affected worldwide, the demand for efficient diagnostic tools is critical. This study introduces a novel framework that combines a White Shark Optimization (WSO)-based feature selection method with a Bidirectional Long Short-Term Memory (Bi-LSTM) classifier for enhanced autism classification. Utilizing the WSO technique, we identify key features from autism screening datasets, which markedly improves the model's predictive capabilities. The optimized feature set is then processed by the Bi-LSTM classifier, enhancing its efficiency in handling sequential data. We comprehensively address methodological challenges, including overfitting, generalization, interpretability, and computational efficiency. Furthermore, we conduct a comparative analysis against baseline algorithms such as Neural Networks, Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) networks, while also employing Particle Swarm Optimization (PSO) for feature selection validation. We evaluate performance metrics, including accuracy, F1-score, specificity, precision, and sensitivity across three ASD datasets: Toddlers, Adults, and Children. Our results demonstrate that the WS-BiTM model significantly outperforms baseline methods, achieving accuracies of 97.6 %, 96.2 %, and 96.4 % on the respective datasets. Additionally, we implemented leave-one-dataset cross-validation and confirmed the statistical significance of our findings through a paired t-test, supplemented by an ablation study to detail the contributions of individual model components. These findings highlight the potential of the WS-BiTM model as a robust tool for ASD classification.
Collapse
Affiliation(s)
- Kainat Khan
- Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India
| | - Rahul Katarya
- Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India.
| |
Collapse
|
2
|
Khan K, Katarya R. MCBERT: A multi-modal framework for the diagnosis of autism spectrum disorder. Biol Psychol 2024; 194:108976. [PMID: 39722324 DOI: 10.1016/j.biopsycho.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Within the domain of neurodevelopmental disorders, autism spectrum disorder (ASD) emerges as a distinctive neurological condition characterized by multifaceted challenges. The delayed identification of ASD poses a considerable hurdle in effectively managing its impact and mitigating its severity. Addressing these complexities requires a nuanced understanding of data modalities and the underlying patterns. Existing studies have focused on a single data modality for ASD diagnosis. Recently, there has been a significant shift towards multimodal architectures with deep learning strategies due to their ability to handle and incorporate complex data modalities. In this paper, we developed a novel multimodal ASD diagnosis architecture, referred to as Multi-Head CNN with BERT (MCBERT), which integrates bidirectional encoder representations from transformers (BERT) for meta-features and a multi-head convolutional neural network (MCNN) for the brain image modality. The MCNN incorporates two attention mechanisms to capture spatial (SAC) and channel (CAC) features. The outputs of BERT and MCNN are then fused and processed through a classification module to generate the final diagnosis. We employed the ABIDE-I dataset, a multimodal dataset, and conducted a leave-one-site-out classification to assess the model's effectiveness comprehensively. Experimental simulations demonstrate that the proposed architecture achieves a high accuracy of 93.4 %. Furthermore, the exploration of functional MRI data may provide a deeper understanding of the underlying characteristics of ASD.
Collapse
Affiliation(s)
- Kainat Khan
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India.
| | - Rahul Katarya
- Big Data Analytics and Web Intelligence Laboratory, Department of Computer Science & Engineering, Delhi Technological University, New Delhi, India.
| |
Collapse
|
3
|
Wang S, Tang H, Himeno R, Solé-Casals J, Caiafa CF, Han S, Aoki S, Sun Z. Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108419. [PMID: 39293231 DOI: 10.1016/j.cmpb.2024.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND OBJECTIVE The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions. METHODS This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model's predictions are both accurate and comprehensible. RESULTS The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively. CONCLUSION Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.
Collapse
Affiliation(s)
- Shurun Wang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China; School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| | - Hao Tang
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Industrial Automation Engineering Technology Research Center of Anhui Province, Hefei, 230009, China
| | - Ryutaro Himeno
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Department of Psychiatry, University of Cambridge, Cambridge, CB2 3EB, United Kingdom
| | - Cesar F Caiafa
- Instituto Argentino de Radioastronomía-CONICET CCT La Plata/CIC-PBA/UNLP, V. Elisa, 1894, Argentina
| | - Shuning Han
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic, 08500, Spain; Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN, Wako-Shi, Saitama, 351-0198, Japan
| | - Shigeki Aoki
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan
| | - Zhe Sun
- Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.
| |
Collapse
|
4
|
Yassin W, Loedige KM, Wannan CM, Holton KM, Chevinsky J, Torous J, Hall MH, Ye RR, Kumar P, Chopra S, Kumar K, Khokhar JY, Margolis E, De Nadai AS. Biomarker discovery using machine learning in the psychosis spectrum. Biomark Neuropsychiatry 2024; 11:100107. [PMID: 39687745 PMCID: PMC11649307 DOI: 10.1016/j.bionps.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.
Collapse
Affiliation(s)
- Walid Yassin
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Cassandra M.J. Wannan
- The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Kristina M. Holton
- Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Jonathan Chevinsky
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Torous
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mei-Hua Hall
- Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Rochelle Ruby Ye
- The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Poornima Kumar
- Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Sidhant Chopra
- Yale University, New Haven, CT, USA
- Rutgers University, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
5
|
Lu H, Wang S, Gao L, Xue Z, Liu J, Niu X, Zhou R, Guo X. Links between brain structure and function in children with autism spectrum disorder by parallel independent component analysis. Brain Imaging Behav 2024:10.1007/s11682-024-00957-9. [PMID: 39565558 DOI: 10.1007/s11682-024-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by structural and functional changes in the brain. However, the relationship between brain structure and function in children with ASD remains largely obscure. In the current study, parallel independent component analysis (pICA) was performed to identify inter-modality associations by drawing on information from different modalities. Structural and resting-state functional magnetic resonance imaging data from 105 children with ASD and 102 typically developing children (obtained from the open-access Autism Brain Imaging Data Exchange database) were combined through the pICA framework. Features of structural and functional modalities were represented by the voxel-based morphometry (VBM) and amplitude of low-frequency fluctuations (ALFF), respectively. The relationship between the structural and functional components derived from the pICA was investigated by Pearson's correlation analysis, and between-group differences in these components were analyzed through the two-sample t-test. Finally, multivariate support vector regression analysis was used to analyze the relationship between the structural/functional components and Autism Diagnostic Observation Schedule (ADOS) subscores in the ASD group. This study found a significant association between VBM and ALFF components in ASD. Significant between-group differences were detected in the loading coefficients of the VBM component. Furthermore, the ALFF component loading coefficients predicted the subscores of communication and repetitive stereotypic behaviors of the ADOS. Likewise, the VBM component loading coefficients predicted the ADOS communication subscore in ASD. These findings provide evidence of a link between brain function and structure, yielding new insights into the neural mechanisms of ASD.
Collapse
Affiliation(s)
- Huibin Lu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Sha Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| | - Zaifa Xue
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Jing Liu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Xiaoxia Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
6
|
Natraj S, Kojovic N, Maillart T, Schaer M. Video-audio neural network ensemble for comprehensive screening of autism spectrum disorder in young children. PLoS One 2024; 19:e0308388. [PMID: 39361665 PMCID: PMC11449333 DOI: 10.1371/journal.pone.0308388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 10/05/2024] Open
Abstract
A timely diagnosis of autism is paramount to allow early therapeutic intervention in preschoolers. Deep Learning tools have been increasingly used to identify specific autistic symptoms. But they also offer opportunities for broad automated detection of autism at an early age. Here, we leverage a multi-modal approach by combining two neural networks trained on video and audio features of semi-standardized social interactions in a sample of 160 children aged 1 to 5 years old. Our ensemble model performs with an accuracy of 82.5% (F1 score: 0.816, Precision: 0.775, Recall: 0.861) for screening Autism Spectrum Disorders (ASD). Additional combinations of our model were developed to achieve higher specificity (92.5%, i.e., few false negatives) or sensitivity (90%, i.e. few false positives). Finally, we found a relationship between the neural network modalities and specific audio versus video ASD characteristics, bringing evidence that our neural network implementation was effective in taking into account different features that are currently standardized under the gold standard ASD assessment.
Collapse
Affiliation(s)
- Shreyasvi Natraj
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nada Kojovic
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Maillart
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Sun X, Xia M. Schizophrenia and Neurodevelopment: Insights From Connectome Perspective. Schizophr Bull 2024:sbae148. [PMID: 39209793 DOI: 10.1093/schbul/sbae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Schizophrenia is conceptualized as a brain connectome disorder that can emerge as early as late childhood and adolescence. However, the underlying neurodevelopmental basis remains unclear. Recent interest has grown in children and adolescent patients who experience symptom onset during critical brain development periods. Inspired by advanced methodological theories and large patient cohorts, Chinese researchers have made significant original contributions to understanding altered brain connectome development in early-onset schizophrenia (EOS). STUDY DESIGN We conducted a search of PubMed and Web of Science for studies on brain connectomes in schizophrenia and neurodevelopment. In this selective review, we first address the latest theories of brain structural and functional development. Subsequently, we synthesize Chinese findings regarding mechanisms of brain structural and functional abnormalities in EOS. Finally, we highlight several pivotal challenges and issues in this field. STUDY RESULTS Typical neurodevelopment follows a trajectory characterized by gray matter volume pruning, enhanced structural and functional connectivity, improved structural connectome efficiency, and differentiated modules in the functional connectome during late childhood and adolescence. Conversely, EOS deviates with excessive gray matter volume decline, cortical thinning, reduced information processing efficiency in the structural brain network, and dysregulated maturation of the functional brain network. Additionally, common functional connectome disruptions of default mode regions were found in early- and adult-onset patients. CONCLUSIONS Chinese research on brain connectomes of EOS provides crucial evidence for understanding pathological mechanisms. Further studies, utilizing standardized analyses based on large-sample multicenter datasets, have the potential to offer objective markers for early intervention and disease treatment.
Collapse
Affiliation(s)
- Xiaoyi Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Du Y, Niu J, Xing Y, Li B, Calhoun VD. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr Bull 2024:sbae110. [PMID: 38982882 DOI: 10.1093/schbul/sbae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. STUDY DESIGN The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. STUDY RESULTS Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. CONCLUSIONS We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ju Niu
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Ying Xing
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Bang Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, GA, USA
| |
Collapse
|
9
|
He X, Calhoun VD, Du Y. SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks. Neurosci Bull 2024; 40:905-920. [PMID: 38491231 PMCID: PMC11637147 DOI: 10.1007/s12264-024-01184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/08/2023] [Indexed: 03/18/2024] Open
Abstract
Functional networks (FNs) hold significant promise in understanding brain function. Independent component analysis (ICA) has been applied in estimating FNs from functional magnetic resonance imaging (fMRI). However, determining an optimal model order for ICA remains challenging, leading to criticism about the reliability of FN estimation. Here, we propose a SMART (splitting-merging assisted reliable) ICA method that automatically extracts reliable FNs by clustering independent components (ICs) obtained from multi-model-order ICA using a simplified graph while providing linkages among FNs deduced from different-model orders. We extend SMART ICA to multi-subject fMRI analysis, validating its effectiveness using simulated and real fMRI data. Based on simulated data, the method accurately estimates both group-common and group-unique components and demonstrates robustness to parameters. Using two age-matched cohorts of resting fMRI data comprising 1,950 healthy subjects, the resulting reliable group-level FNs are greatly similar between the two cohorts, and interestingly the subject-specific FNs show progressive changes while age increases. Furthermore, both small-scale and large-scale brain FN templates are provided as benchmarks for future studies. Taken together, SMART ICA can automatically obtain reliable FNs in analyzing multi-subject fMRI data, while also providing linkages between different FNs.
Collapse
Affiliation(s)
- Xingyu He
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, USA
| | - Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China.
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, 30303, USA.
| |
Collapse
|
10
|
Pandya S, Jain S, Verma J. A comprehensive analysis towards exploring the promises of AI-related approaches in autism research. Comput Biol Med 2024; 168:107801. [PMID: 38064848 DOI: 10.1016/j.compbiomed.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that presents challenges in communication, social interaction, repetitive behaviour, and limited interests. Detecting ASD at an early stage is crucial for timely interventions and an improved quality of life. In recent times, Artificial Intelligence (AI) has been increasingly used in ASD research. The rise in ASD diagnoses is due to the growing number of ASD cases and the recognition of the importance of early detection, which leads to better symptom management. This study explores the potential of AI in identifying early indicators of autism, aligning with the United Nations Sustainable Development Goals (SDGs) of Good Health and Well-being (Goal 3) and Peace, Justice, and Strong Institutions (Goal 16). The paper aims to provide a comprehensive overview of the current state-of-the-art AI-based autism classification by reviewing recent publications from the last decade. It covers various modalities such as Eye gaze, Facial Expression, Motor skill, MRI/fMRI, and EEG, and multi-modal approaches primarily grouped into behavioural and biological markers. The paper presents a timeline spanning from the history of ASD to recent developments in the field of AI. Additionally, the paper provides a category-wise detailed analysis of the AI-based application in ASD with a diagrammatic summarization to convey a holistic summary of different modalities. It also reports on the successes and challenges of applying AI for ASD detection while providing publicly available datasets. The paper paves the way for future scope and directions, providing a complete and systematic overview for researchers in the field of ASD.
Collapse
Affiliation(s)
- Shivani Pandya
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| | - Swati Jain
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| | - Jaiprakash Verma
- Department of Computer Science and Engineering, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
11
|
Lakhan A, Mohammed MA, Abdulkareem KH, Hamouda H, Alyahya S. Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM. Comput Biol Med 2023; 166:107539. [PMID: 37804778 DOI: 10.1016/j.compbiomed.2023.107539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The incidence of Autism Spectrum Disorder (ASD) among children, attributed to genetics and environmental factors, has been increasing daily. ASD is a non-curable neurodevelopmental disorder that affects children's communication, behavior, social interaction, and learning skills. While machine learning has been employed for ASD detection in children, existing ASD frameworks offer limited services to monitor and improve the health of ASD patients. This paper presents a complex and efficient ASD framework with comprehensive services to enhance the results of existing ASD frameworks. Our proposed approach is the Federated Learning-enabled CNN-LSTM (FCNN-LSTM) scheme, designed for ASD detection in children using multimodal datasets. The ASD framework is built in a distributed computing environment where different ASD laboratories are connected to the central hospital. The FCNN-LSTM scheme enables local laboratories to train and validate different datasets, including Ages and Stages Questionnaires (ASQ), Facial Communication and Symbolic Behavior Scales (CSBS) Dataset, Parents Evaluate Developmental Status (PEDS), Modified Checklist for Autism in Toddlers (M-CHAT), and Screening Tool for Autism in Toddlers and Children (STAT) datasets, on different computing laboratories. To ensure the security of patient data, we have implemented a security mechanism based on advanced standard encryption (AES) within the federated learning environment. This mechanism allows all laboratories to offload and download data securely. We integrate all trained datasets into the aggregated nodes and make the final decision for ASD patients based on the decision process tree. Additionally, we have designed various Internet of Things (IoT) applications to improve the efficiency of ASD patients and achieve more optimal learning results. Simulation results demonstrate that our proposed framework achieves an ASD detection accuracy of approximately 99% compared to all existing ASD frameworks.
Collapse
Affiliation(s)
- Abdullah Lakhan
- Department of Cybersecurity and Computer Science, Dawood University of Engineering and Technology, Karachi City 74800, Sindh, Pakistan.
| | - Mazin Abed Mohammed
- Department of Artificial Intelligence, College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq.
| | | | - Hassen Hamouda
- College of Science and Humanities at Alghat, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Saleh Alyahya
- Department of Electrical Engineering, College of Engineering and Information Technology, Onaizah Colleges, Onaizah 2053, Saudi Arabia.
| |
Collapse
|
12
|
Wang M, Xu D, Zhang L, Jiang H. Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review. Diagnostics (Basel) 2023; 13:3027. [PMID: 37835770 PMCID: PMC10571992 DOI: 10.3390/diagnostics13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early diagnosis and intervention can remodel the neural structure of the brain and improve quality of life but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature and review the abnormal changes in brain structural-functional networks, perfusion, neuronal metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and precise intervention. Structural MRI revealed morphological differences, abnormal developmental trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along the perivascular space index reflected impaired glymphatic system function in children with ASD. Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Lili Zhang
- Department of Child Health Care, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| |
Collapse
|
13
|
Du Y, Guo Y, Calhoun VD. Aging brain shows joint declines in brain within-network connectivity and between-network connectivity: a large-sample study ( N > 6,000). Front Aging Neurosci 2023; 15:1159054. [PMID: 37273655 PMCID: PMC10233064 DOI: 10.3389/fnagi.2023.1159054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Numerous studies have shown that aging has important effects on specific functional networks of the brain and leads to brain functional connectivity decline. However, no studies have addressed the effect of aging at the whole-brain level by studying both brain functional networks (i.e., within-network connectivity) and their interaction (i.e., between-network connectivity) as well as their joint changes. Methods In this work, based on a large sample size of neuroimaging data including 6300 healthy adults aged between 49 and 73 years from the UK Biobank project, we first use our previously proposed priori-driven independent component analysis (ICA) method, called NeuroMark, to extract the whole-brain functional networks (FNs) and the functional network connectivity (FNC) matrix. Next, we perform a two-level statistical analysis method to identify robust aging-related changes in FNs and FNCs, respectively. Finally, we propose a combined approach to explore the synergistic and paradoxical changes between FNs and FNCs. Results Results showed that the enhanced FNCs mainly occur between different functional domains, involving the default mode and cognitive control networks, while the reduced FNCs come from not only between different domains but also within the same domain, primarily relating to the visual network, cognitive control network, and cerebellum. Aging also greatly affects the connectivity within FNs, and the increased within-network connectivity along with aging are mainly within the sensorimotor network, while the decreased within-network connectivity significantly involves the default mode network. More importantly, many significant joint changes between FNs and FNCs involve default mode and sub-cortical networks. Furthermore, most synergistic changes are present between the FNCs with reduced amplitude and their linked FNs, and most paradoxical changes are present in the FNCs with enhanced amplitude and their linked FNs. Discussion In summary, our study emphasizes the diversity of brain aging and provides new evidence via novel exploratory perspectives for non-pathological aging of the whole brain.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Yating Guo
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|