1
|
AlDehlawi H, Jazzar A. The Power of Licorice ( Radix glycyrrhizae) to Improve Oral Health: A Comprehensive Review of Its Pharmacological Properties and Clinical Implications. Healthcare (Basel) 2023; 11:2887. [PMID: 37958031 PMCID: PMC10648065 DOI: 10.3390/healthcare11212887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Licorice (Radix glycyrrhizae) is a plant root extract widely used in various applications, including cosmetics, food supplements, and traditional medicine. It has a long history of medicinal use in different cultures due to its diverse pharmacological properties. Licorice has traditionally been used for treating gastrointestinal problems, respiratory infections, cough, bronchitis, arthritis, and skin conditions. In recent years, the potential therapeutic benefits of licorice for oral health have gained significant interest. This paper aims to provide a comprehensive review of the effects of licorice extracts and their bioactive components on common oral diseases such as dental caries, periodontitis, halitosis, candidiasis, and recurrent aphthous ulcers. The chemical composition of licorice has shown the presence of several bioactive compounds such as glycyrrhizin, glabridin, isoliquiritigenin (ISL), and licochalcone exhibiting various pharmacological activities, including anti-inflammatory, antimicrobial, antioxidative, and immunomodulatory effects. Interestingly, in certain patients, licorice has shown a promising potential to inhibit the spread of viruses, prevent biofilm formation, reduce inflammation, boost immune responses, alleviate pain, and exert antioxidative effects. In this review, we provide a brief overview of the current understanding of licorice's therapeutic benefits in the treatment of oral ailments, emphasising its potential as an alternative treatment option for oral diseases. Further research is warranted to explore its efficacy, safety, and clinical applications using placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Hebah AlDehlawi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | |
Collapse
|
2
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Shih YH, Chen CC, Kuo YH, Fuh LJ, Lan WC, Wang TH, Chiu KC, Nguyen THV, Hsia SM, Shieh TM. Caffeic Acid Phenethyl Ester and Caffeamide Derivatives Suppress Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2023; 24:9819. [PMID: 37372967 DOI: 10.3390/ijms24129819] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) contains antibiotic and anticancer activities. Therefore, we aimed to investigate the anticancer properties and mechanisms of CAPE and caffeamide derivatives in the oral squamous cell carcinoma cell (OSCC) lines SAS and OECM-1. The anti-OSCC effects of CAPE and the caffeamide derivatives (26G, 36C, 36H, 36K, and 36M) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Cell cycle and total reactive oxygen species (ROS) production were analyzed using flow cytometry. The relative protein expression of malignant phenotypes was determined via Western blot analysis. The results showed that 26G and 36M were more cytotoxic than the other compounds in SAS cells. After 26G or 36M treatment for 48 h, cell cycle S phase or G2/M phase arrest was induced, and cellular ROS increased at 24 h, and then decreased at 48 h in both cell lines. The expression levels of cell cycle regulatory and anti-ROS proteins were downregulated. In addition, 26G or 36M treatment inhibited malignant phenotypes through mTOR-ULK1-P62-LC3 autophagic signaling activated by ROS generation. These results showed that 26G and 36M induce cancer cell death by activating autophagy signaling, which is correlated with altered cellular oxidative stress.
Collapse
Affiliation(s)
- Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Chieh-Chieh Chen
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | | | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
4
|
Chuang YT, Tang JY, Shiau JP, Yen CY, Chang FR, Yang KH, Hou MF, Farooqi AA, Chang HW. Modulating Effects of Cancer-Derived Exosomal miRNAs and Exosomal Processing by Natural Products. Cancers (Basel) 2023; 15:318. [PMID: 36612314 PMCID: PMC9818271 DOI: 10.3390/cancers15010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
5
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
6
|
Lin NC, Shih YH, Chiu KC, Li PJ, Yang HW, Lan WC, Hsia SM, Wang TH, Shieh TM. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14174217. [PMID: 36077753 PMCID: PMC9454803 DOI: 10.3390/cancers14174217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy was performed before surgery. Because the tumor itself and the surrounding vascular bed were not damaged, the chemotherapy we performed could have good drug delivery. After the operation, the volume of the tumor can be reduced to facilitate surgery or radiotherapy. However, neoadjuvant chemotherapy also delays the patient’s time to receive main therapy. The physician must make sure that it has a good response and does not allow disease progression in the patient during neoadjuvant chemotherapy. Therefore, predicting the treatment response of neoadjuvant chemotherapy can shorten the treatment time, reduce the harm of chemotherapy side effects, and avoid the occurrence of drug resistance. The results of this study showed that GALNT14-rs9679162 and mRNA expression were associated with post-treatment survival in head and neck cancer. It can be used as an indicator to predict the treatment response of neoadjuvant chemotherapy. Abstract The polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) rs9679162 and mRNA expression were associated with treatment outcome in various cancers. However, the relation of GALNT14 and head and neck cancer were nuclear. A total of 199 patients with head and neck squamous cell carcinoma (HNSCC) were collected in this study, including oral SCC (OSCC), oropharyngeal SCC (OPSCC), laryngeal SCC (LSCC), and others. The DNA and RNA of cancer tissues were extracted using the TRI Reagent method. The rs9679162 was analyzed using polymerase chain reaction (PCR) and sequencing methods in 199 DNA specimens, and the mRNA expression was analyzed using quantitative reverse transcription PCR (RT-qPCR) methods in 68 paired RNA specimens of non-cancerous matched tissues (NCMT) and tumor tissues. The results showed that the genotype of TT, TG, and GG appeared at 30%, 44%, and 26%, respectively. Non-TT genotype or G alleotype were associated with alcohol, betel nut, and cigarette using among patients with OSCC, and it also affected the treatment and survival of patients with OSCC and LSCC. High GALNT14 mRNA expression levels increased lymphatic metastasis of patients with HNSCC, and treatment and survival in patients with OPSCC. Overall, the GALNT14-rs9679162 genotype and mRNA expression level can be used as indicators of HNSCC treatment prognosis.
Collapse
Affiliation(s)
- Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 500009, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wu Yang
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
7
|
Shi W, Cao X, Liu Q, Zhu Q, Liu K, Deng T, Yu Q, Deng W, Yu J, Wang Q, Xu X. Hybrid Membrane-Derived Nanoparticles for Isoliquiritin Enhanced Glioma Therapy. Pharmaceuticals (Basel) 2022; 15:1059. [PMID: 36145280 PMCID: PMC9506545 DOI: 10.3390/ph15091059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the obstruction and heterogeneity of the blood-brain barrier, the clinical treatment of glioma has been extremely difficult. Isoliquiritigenin (ISL) exhibits antitumor effects, but its low solubility and bioavailability limit its application potential. Herein, we established a nanoscale hybrid membrane-derived system composed of erythrocytes and tumor cells. By encapsulating ISL in hybrid membrane nanoparticles, ISL is expected to be enhanced for the targeting and long-circulation in gliomas therapy. We fused erythrocytes with human glioma cells U251 and extracted the fusion membrane via hypotension, termed as hybrid membrane (HM). HM-camouflaged ISL nanoparticles (ISL@HM NPs) were prepared and featured with FT-IR, SEM, TEM, and DLS particle analysis. As the results concluded, the ISL active pharmaceutical ingredients (APIs) were successfully encapsulated with HM membranes, and the NPs loading efficiency was 38.9 ± 2.99% under maximum entrapment efficiency. By comparing the IC50 of free ISL and NPs, we verified that the solubility and antitumor effect of NPs was markedly enhanced. We also investigated the mechanism of the antitumor effect of ISL@HM NPs, which revealed a marked inhibition of tumor cell proliferation and promotion of senescence and apoptosis of tumor cells of the formulation. In addition, the FSC and WB results examined the effects of different concentrations of ISL@HM NPs on tumor cell disruption and apoptotic protein expression. Finally, it can be concluded that hybridized membrane-derived nanoparticles could prominently increase the solubility of insoluble materials (as ISL), and also enhance its targeting and antitumor effect.
Collapse
Affiliation(s)
- Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Medicinal Function Development of New Food Resources, Jiangsu Provincial Research Center, Zhenjiang 212013, China
| |
Collapse
|
8
|
Li M, Lu G, Ma X, Wang R, Chen X, Yu Y, Jiang C. Anti-inflammation of isoliquiritigenin via the inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells. BMC Vet Res 2022; 18:320. [PMID: 35986317 PMCID: PMC9392288 DOI: 10.1186/s12917-022-03414-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The application of plant extracts has received great interest for the treatment of bovine mastitis. Isoliquiritigenin (ISL) is a rich dietary flavonoid that has significant antioxidative, anti-inflammatory and anticancer activities. This study was conducted to explore the protective efficacy and related mechanism of ISL against lipopolysaccharide (LPS)-stimulated oxidation and inflammation in bovine mammary epithelial cells (MAC-T) by in vitro experiments. Results Real-time PCR and ELISA assays indicated that ISL treatment at 2.5, 5 and 10 μg/mL significantly reduced the mRNA and protein expression of the oxidative indicators cyclooxygenase-2 and inducible nitric oxide synthase (P < 0.01), and of the inflammatory cytokines interleukin-6 (P < 0.05), interleukin-1β (P < 0.01) and tumor necrosis factor-α (P < 0.01) in LPS-stimulated MAC-T cells. Moreover, Western blotting and immunofluorescence tests indicated that the phosphorylation levels of nuclear factor kappa (NF-κB) p65 and the inhibitor of NF-κB were significantly decreased by ISL treatment, thus blocking the nuclear transfer of NF-κB p65. In addition, ISL attenuated the phosphorylation levels of p38, extracellular signal-regulated kinase and c-jun NH2 terminal kinase. Conclusions Our data demonstrated that ISL downregulated the LPS-induced inflammatory response in MAC-T cells. The anti-inflammatory and antioxidative activity of ISL involves the NF-κB and MAPK cascades. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03414-1.
Collapse
|
9
|
Mohamed LA, El Bolok AHM, Elgayar SF, Fahmy AN. miRNA-155 as a Novel Target for Isoliquiritigenin to Induce Autophagy in Oral Squamous Cell Carcinoma. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background and Aim :The most common obstacle facing chemotherapeutic agents is the development of drug resistance to cancer cells by dysregulation of autophagy and apoptosis. Targeting miRNAs by a natural flavonoid such as Isoliquiritigenin (ISL) is a novel strategy to reverse drug resistance. The aim of the present study was to evaluate ISL impacts on apoptosis and autophagy in oral squamous carcinoma cells (OSCC) through the expression levels of related two microRNAs: miRNA-21 and miRNA-155. Materials & Methods: The expression levels of both miRNAs were analysed using quantitative real time PCR and the effect of ISL on apoptosis was evaluated using annexin assay. In addition, the expression of the autophagy marker (ATG7) was measured using immunofluorescence. Results : Our results showed that ISL significantly downregulated both miRNA-21 and miRNA-155 with a fold change of 22.01 and 52.35, respectively. It also induced apoptosis in the cancer cells with high percentage (51.3 %). Moreover, ATG7 was highly expressed after ISL treatment. Conclusion : From this sudy we can conclude that ISL has an apoptotic and autophagic effect on OSCC through the down-regulation of miRNA-21 and miRNA-155, major regulators of PI3K/Akt pathway which can provide novel targets for OSCC therapy.
Collapse
|
10
|
Wu Y, Wang Z, Du Q, Zhu Z, Chen T, Xue Y, Wang Y, Zeng Q, Shen C, Jiang C, Liu L, Zhu H, Liu Q. Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9523071. [PMID: 35082907 PMCID: PMC8786487 DOI: 10.1155/2022/9523071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Glycyrrhizae Radix et Rhizoma is the most frequently prescribed natural medicine in China and has been used for more than 2,000 years. The flavonoids of licorice have garnered considerable attention in recent decades due to their structural diversity and myriad pharmacological effects, especially as novel therapeutic agents against inflammation and cancer. Although many articles have been published to summarize different pharmacological activities of licorice in recent years, the systematic summary for flavonoid components is not comprehensive. Therefore, in this review, we summarized the pharmacological and mechanistic data from recent researches on licorice flavonoids and their bioactive components.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qunqun Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Lin NC, Hsia SM, Wang TH, Li PJ, Tseng YH, Chiu KC, Tu HF, Shih YH, Shieh TM. The relation between NEAT1 expression level and survival rate in patients with oral squamous cell carcinoma. J Dent Sci 2022; 17:361-367. [PMID: 35028059 PMCID: PMC8739734 DOI: 10.1016/j.jds.2021.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background/purpose Numerous studies have shown that long noncoding RNAs (lncRNAs) are involved in cancer progression and chemotherapy resistance. Nuclear enriched abundant transcript 1 (NEAT1) is an lncRNA. It affects tumor cell progression and drug resistance in various tumors. However, the relation of NEAT1 and survival rate in oral squamous cell carcinoma (OSCC) requires further study. Materials and methods One normal gingival epithelium cell line, SG, three oral cancer cell lines (HSC3, OEC-M1, and SAS), 34 paired non-cancerous matched tissues (NCMT), and OSCC tissues were used in this study. Tri-reagent was used for total RNA extraction. NEAT1 expression was assessed by reverse transcription-quantitative PCR (RT-qPCR). Results NEAT1 expression in oral cancer cell lines was lower than that in normal cells and was significantly downregulated in OSCC. NEAT1 upregulation reduced the survival rate of patients with OSCC. NEAT1 upregulation also reduced the survival rate of OSCC patients treated with chemotherapy and radiotherapy. Conclusion These results indicate that NEAT1 expression is a valuable biomarker for the prediction and prognosis of oral cancer.
Collapse
Affiliation(s)
- Nan-Chin Lin
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan.,Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Po-Jung Li
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsi-Feng Tu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Wang M, Chen S, Wei Y, Wei X. DNA-PK inhibition by M3814 enhances chemosensitivity in non-small cell lung cancer. Acta Pharm Sin B 2021; 11:3935-3949. [PMID: 35024317 PMCID: PMC8727896 DOI: 10.1016/j.apsb.2021.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
A significant proportion of non-small cell lung cancer (NSCLC) patients experience accumulating chemotherapy-related adverse events, motivating the design of chemosensitizating strategies. The main cytotoxic damage induced by chemotherapeutic agents is DNA double-strand breaks (DSB). It is thus conceivable that DNA-dependent protein kinase (DNA-PK) inhibitors which attenuate DNA repair would enhance the anti-tumor effect of chemotherapy. The present study aims to systematically evaluate the efficacy and safety of a novel DNA-PK inhibitor M3814 in synergy with chemotherapies on NSCLC. We identified increased expression of DNA-PK in human NSCLC tissues which was associated with poor prognosis. M3814 potentiated the anti-tumor effect of paclitaxel and etoposide in A549, H460 and H1703 NSCLC cell lines. In the four combinations based on two NSCLC xenograft models and two chemotherapy, we also observed tumor regression at tolerated doses in vivo. Moreover, we identified a P53-dependent accelerated senescence response by M3814 following treatment with paclitaxel/etoposide. The present study provides a theoretical basis for the use of M3814 in combination with paclitaxel and etoposide in clinical practice, with hope to aid the optimization of NSCLC treatment.
Collapse
Key Words
- Cell senescence
- Chemosensitization
- DDR, DNA damage response
- DNA repair
- DNA-PK, DNA-dependent protein kinase
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DNA-dependent protein kinase
- DSB, DNA double-strand breaks
- Etoposide
- HR, homologous recombination
- IHC, immunohistochemistry
- LADC, lung adenocarcinoma
- LCLC, large-cell carcinoma
- LSCC, lung squamous cell carcinoma
- M3814
- NHEJ, non homologous end joining
- NSCLC, non-small cell lung cancer
- Non-small cell lung cancer
- Paclitaxel
- dsDNA, double strand DNA
Collapse
|
13
|
Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2021; 13:cancers13174389. [PMID: 34503199 PMCID: PMC8430873 DOI: 10.3390/cancers13174389] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023] Open
Abstract
The role of CDK1 in PDAC onset and development is two-fold. Firstly, since CDK1 activity regulates the G2/M cell cycle checkpoint, overexpression of CDK1 can lead to progression into mitosis even in cells with DNA damage, a potentially tumorigenic process. Secondly, CDK1 overexpression leads to the stimulation of a range of proteins that induce stem cell properties, which can contribute to the development of cancer stem cells (CSCs). CSCs promote tumor-initiation and metastasis and play a crucial role in the development of PDAC. Targeting CDK1 showed promising results for PDAC treatment in different preclinical models, where CDK1 inhibition induced cell cycle arrest in the G2/M phase and led to induction of apoptosis. Next to this, PDAC CSCs are uniquely sensitive to CDK1 inhibition. In addition, targeting of CDK1 has shown potential for combination therapy with both ionizing radiation treatment and conventional chemotherapy, through sensitizing tumor cells and reducing resistance to these treatments. To conclude, CDK1 inhibition induces G2/M cell cycle arrest, stimulates apoptosis, and specifically targets CSCs, which makes it a promising treatment for PDAC. Screening of patients for CDK1 overexpression and further research into combination treatments is essential for optimizing this novel targeted therapy.
Collapse
|
14
|
Zhang Z, Yang L, Hou J, Tian S, Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113635. [PMID: 33246112 DOI: 10.1016/j.jep.2020.113635] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/25/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been commonly used in traditional Chinese medicine for treatment of gastric, liver, and respiratory disease conditions for more than two thousand years. It is a major component of several Chinese patent medicines certificated by National Medical Products Administration that possess great anticancer activities. AIM OF THE STUDY To comprehensively summarize the anticancer activities of licorice flavonoids, explain the underlying molecular mechanisms, and assess their therapeutic potentials and side-effects. METHODS PubMed, Research Gate, Web of Science, Google Scholar, academic journals, and Science Direct were used as information sources, with the key words of "anticancer", "licorice", "flavonoids", and their combinations, mainly from 2000 to 2019. RESULTS Sixteen licorice flavonoids are found to possess anticancer activities. These flavonoids inhibit cancer cells through blocking cell cycle and regulating multiple signaling pathways. The major pathways targeted by licorice flavonoids include: the MAPK pathway, PI3K/AKT pathway, NF-κB pathway, death receptor - dependent extrinsic signaling pathway, and mitochondrial apoptotic pathway. CONCLUSION Licorice flavonoids are a group of versatile molecules that have pleiotropic effects on cell growth, survival and cell signaling. Many of the flavonoids possess inhibitory activities toward cancer cell growth and hence have a great therapeutic potential in cancer treatment. However, additional preclinical studies are still needed to assess their in vivo efficacy and possible toxicities. It is also imperative to evaluate the effects of licorice flavonoids on the metabolism of other drugs and explore the potential synergistic mechanism.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
15
|
Wang KL, Yu YC, Hsia SM. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers (Basel) 2021; 13:E115. [PMID: 33401375 PMCID: PMC7795842 DOI: 10.3390/cancers13010115] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/20/2022] Open
Abstract
Isoliquiritigenin (2',4',4-trihydroxychalcone, ISL), one of the most important bioactive compounds with a chalcone structure, is derived from licorice root. Licorice is commonly known as Glycyrrhiza, including Glycyrrhiza uralensis, Glycyrrhiza radix, and Glycyrrhiza glabra, which are generally available in common foods and Chinese herbal medicines based on a wide variety of biological functions and pharmacological effects, and its derivative (ISL) is utilized as a food additive and adjunct disease treatment. In this review, we summarized the progress over the last 10 years in the targeted pathways and molecular mechanisms of ISL that are involved in the regulation of the onset and progression of different types of cancers.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ying-Chun Yu
- Sex Hormonal Research Center, China Medical University Hospital, Taichung 40403, Taiwan;
- Department of Obstetrics and Gynecology, School of Medicine, China Medical University, Taichung 40403, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Xiang S, Zeng H, Xia F, Ji Q, Xue J, Ren R, Que F, Zhou B. The dietary flavonoid isoliquiritigenin induced apoptosis and suppressed metastasis in melanoma cells: An in vitro and in vivo study. Life Sci 2020; 264:118598. [PMID: 33189818 DOI: 10.1016/j.lfs.2020.118598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
AIMS This study aimed to explore the role of Isoliquiritigenin (ISL) in the proliferation and invasion of melanoma cells and investigate the mechanism of action of this compound. MAIN METHODS The functional roles of ISL in melanoma cells were determined by CCK8 assay, colony formation assay, flow cytometry and wound healing assay. The antitumor activity of ISL was assessed in vivo in a mouse xenograft model using A2058 cells. Quantitative real-time PCR analysis (RT-qPCR) and western blot assays were used to evaluate the gene and protein expression in cell lines or tumor tissue samples. Bioinformatic analysis, luciferase reporter assay, and gene set enrichment analysis (GSEA) were performed to confirm the mechanism of ISL effect on cell growth and metastasis of melanoma. KEY FINDINGS ISL suppressed proliferation and migration of melanoma cells via downregulation of miR-27a expression. The inhibitory effect of ISL on growth and metastasis of melanoma cells was reversed by ectopic expression of miR-27a. Bioinformatic analysis showed that miR-27a targets POU class 2 homeobox 3 (POU2F3); this result was verified by the luciferase reporter assay and by a decrease in the expression of POU2F3 by miR-27a intervention. GSEA demonstrated that POU2F3 is associated with the c-MYC/p53 signaling pathway and metastasis. POU2F3 knockdown reversed the inhibitory effect of ISL on the growth and metastasis of melanoma. Additionally, POU2F3 was found to be downregulated in melanoma tissue samples and was negatively correlated with miR-27a. SIGNIFICANCE ISL inhibits proliferation and metastasis of melanoma via the miR-27a/POU2F3/c-MYC/p53 axis; these results may provide a new thought for the treatment of melanoma.
Collapse
Affiliation(s)
- Shijian Xiang
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Haiyan Zeng
- Clinical Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, 518106 Shenzhen, China
| | - Fan Xia
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Qiufeng Ji
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Jianwen Xue
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Ruxia Ren
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Fuchang Que
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China
| | - Benjie Zhou
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, 518107 Shenzhen, China.
| |
Collapse
|
17
|
Shih YH, Chiu KC, Wang TH, Lan WC, Tsai BH, Wu LJ, Hsia SM, Shieh TM. Effects of melatonin to arecoline-induced reactive oxygen species production and DNA damage in oral squamous cell carcinoma. J Formos Med Assoc 2020; 120:668-678. [PMID: 32800657 DOI: 10.1016/j.jfma.2020.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Arecoline, the major alkaloid of areca nut, is known to induce reactive oxygen species (ROS) and DNA damage during oral cancer progression. This study aim to evaluate whether melatonin, an antioxidant, supported or repressed the arecoline-induced carcinogenesis phenotypes in oral squamous cell carcinoma (OSCC). METHODS The cytotoxicity of arecoline or melatonin treatment alone and their co-treatment in the OSCC cell line OEC-M1 were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle, cell death, and total ROS production were analyzed using flow cytometer. The protein expression was determined using western blot analysis. The genotoxicity and mutation rate were determined using micronucleus assay and hypoxanthine phosphoribosyl transferase (HPRT) forward mutation assay, respectively, in CHO-K1 cells. The ataxia telangiectasia mutated (ATM) promoter activity and DNA repair ability were determined through reporter assay. RESULTS The result showed that both the arecoline and melatonin induced ROS production and antioxidant enzymes expression. Melatonin treatment enhanced arecoline-induced ROS production, cytotoxicity, G2/M phase arrest, and cell apoptosis in OSCC cells. On the other hand, melatonin treatment activated DNA repair activity to reverse arecoline-induced DNA damage and mutation. CONCLUSION These results indicated that melatonin is a potential chemopreventive agent for betel quid chewers to prevent OSCC initiation and progression.
Collapse
Affiliation(s)
- Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, School of Dentistry, National Defense Medical Center, Taipei, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bi-He Tsai
- Department of Oral Hygiene, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Li-Jia Wu
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food and Safety, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan; School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Wang ZF, Liu J, Yang YA, Zhu HL. A Review: The Anti-inflammatory, Anticancer and Antibacterial Properties of Four Kinds of Licorice Flavonoids Isolated from Licorice. Curr Med Chem 2020; 27:1997-2011. [PMID: 30277142 DOI: 10.2174/0929867325666181001104550] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
Plants have always been an important source of medicines for humans, and licorice is a very significant herb in the development of humans. As a traditional herb, it is widely cultivated in China, Japan, Russia, Spain and India. With the development of organic chemistry and biochemistry, various chemical ingredients extracted from licorice have been studied and identified. Among them, many chemical components were considered to have strong pharmacological activities, such as anti-inflammatory, anti-ulcer, antibacterial, anticancer and so on. Based on those reports, licorice has attracted the attention of many researchers in recent years, and they are devoted to discovering the active ingredients and mechanism of action of active compounds. Licorice flavonoids are one of the main extracts of licorice root and stem and have many potential biological properties. This paper aims to summarize the four kinds of licorice flavonoids, including liquiritigenin, isoliquiritigenin, licochalcone (including licochalcone A and licochalcone B) and glabridin, about their biological activities of anti-inflammatory, anticancer, antibacterial.
Collapse
Affiliation(s)
- Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| |
Collapse
|
19
|
Natural Chalcones in Chinese Materia Medica: Licorice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3821248. [PMID: 32256642 PMCID: PMC7102474 DOI: 10.1155/2020/3821248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Licorice is an important Chinese materia medica frequently used in clinical practice, which contains more than 20 triterpenoids and 300 flavonoids. Chalcone, one of the major classes of flavonoid, has a variety of biological activities and is widely distributed in nature. To date, about 42 chalcones have been isolated and identified from licorice. These chalcones play a pivotal role when licorice exerts its pharmacological effects. According to the research reports, these compounds have a wide range of biological activities, containing anticancer, anti-inflammatory, antimicrobial, antioxidative, antiviral, antidiabetic, antidepressive, hepatoprotective activities, and so on. This review aims to summarize structures and biological activities of chalcones from licorice. We hope that this work can provide a theoretical basis for the further studies of chalcones from licorice.
Collapse
|
20
|
Isoliquiritigenin Suppressed Esophageal Squamous Carcinoma Growth by Blocking EGFR Activation and Inducing Cell Cycle Arrest. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9259852. [PMID: 32190688 PMCID: PMC7063883 DOI: 10.1155/2020/9259852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Abstract
Isoliquiritigenin (ILQ) is a natural product isolated from licorice root which has served as traditional Chinese medicine for a long time. Recently, the antitumor effects of ILQ have been widely studied in various cancers, but the role and related mechanisms of ILQ in esophageal squamous carcinoma cells (ESCC) are still poorly understood. In our studies, ILQ showed profound antitumor activities in ESCC cells. In vitro, ILQ substantially inhibited cell proliferation and anchorage-independent growth in a panel of human ESCC cells. Mechanism studies showed that EGFR signaling pathway played an important role for ILQ to exert its antitumor activity in ESCC. Exposure to isoliquiritigenin substantially decreased EGF-induced EGFR activation and its downstream Akt and ERK1/2 signaling pathway. EGFR knockdown with shRNA in ESCC cell significantly reduced the sensitivity of cancer cells to ILQ. Moreover, it was found that ILQ had a significantly inhibitory effect on AP-1 family, the protein of Jun and Fos subfamilies was substantially downregulated, and the transcriptional activity of AP-1 family was dramatically suppressed by ILQ. By reducing the expression of cyclin D1, ESCC cells were induced G0/G1 arrest, and cell division was substantially blocked. Finally, the antitumor potency of ILQ was validated in xenograft models and the tumor growth was prominently restrained by ILQ. Briefly, our study showed that ILQ, or its analogue, appeared to be a promising new therapeutic agent for ESCC management.
Collapse
|
21
|
Gutiérrez-Venegas G, Sánchez-Carballido MA, Delmas Suárez C, Gómez-Mora JA, Bonneau N. Effects of flavonoids on tongue squamous cell carcinoma. Cell Biol Int 2019; 44:686-720. [PMID: 31758641 DOI: 10.1002/cbin.11266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Squamous cell carcinoma (SCC) of the tongue is associated with tobacco use, alcohol abuse, and human papillomavirus (HPV) infections. While clinical outcomes have recently improved for HPV-positive patients in general, 50% of patients suffering from tongue cancer die within 5 years of being diagnosed. Flavonoids are secondary plant metabolites with a wide range of biological activities including antioxidant, anti-inflammatory, and anticancer activities. Flavonoids have generated high interest as therapeutic agents owing to their low toxicity and their effects on a large variety of cancer cell types. In this literature review, we evaluate the actions of flavonoids on SCC of the tongue demonstrated in both in vivo and in vitro models.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, México, México
| | - Manuel Alejandro Sánchez-Carballido
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, México, México
| | - Claire Delmas Suárez
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, México, México
| | - Juan Arturo Gómez-Mora
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, México, México
| | - Noémie Bonneau
- Laboratorio de Bioquímica de la División de Estudios de Posgrado e Investigación de la Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, México, México
| |
Collapse
|
22
|
Isoliquiritigenin Inhibits Ovarian Cancer Metastasis by Reversing Epithelial-to-Mesenchymal Transition. Molecules 2019; 24:molecules24203725. [PMID: 31623144 PMCID: PMC6833095 DOI: 10.3390/molecules24203725] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a prominent role in cancer metastasis. Isoliquiritigenin (ISL), one of the flavonoids in licorice, has been shown to exhibit anticancer activities in many cancer types through various mechanisms. However, it is unknown whether ISL impacts the EMT process. Here, we show that ISL is able to suppress mesenchymal features of ovarian cancer SKOV3 and OVCAR5 cells, evidenced by an apparent morphological change from a mesenchymal to an epithelial phenotype and reduced levels of mesenchymal markers accompanied by the gain of E-cadherin expression. The suppression of EMT is also supported by the observed decrease in cell migration and in vitro invasion upon ISL treatment. Moreover, we show that ISL effectively blocks the intraperitoneal xenograft development of the SKOV3 cell line and prolonged the survival of tumor-bearing mice. These data suggest that ISL inhibits intraperitoneal ovary tumor development through the suppression of EMT, indicating that ISL may be an effective therapeutic agent against ovarian cancer.
Collapse
|
23
|
Isoliquiritigenin Suppresses E2-Induced Uterine Leiomyoma Growth through the Modulation of Cell Death Program and the Repression of ECM Accumulation. Cancers (Basel) 2019; 11:cancers11081131. [PMID: 31394829 PMCID: PMC6721550 DOI: 10.3390/cancers11081131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 11/17/2022] Open
Abstract
Uterine leiomyomas, also known as fibroids, are common and prevalent in women of reproductive age. In this study, the effect of Isoliquiritigenin (ISL), a licorice flavonoid, on the anti-proliferation of uterine leiomyoma was investigated. We found that the survival of uterine leiomyoma ELT3 cells and primary uterine smooth muscle (UtSMC) cells was reduced by treatment with ISL alone or with ISL plus estradiol (E2). Cell cycles were arrested through the reduction of G2/M- and S-phase populations in ELT3 and UtSMC cells, respectively. Furthermore, increased sub-G1 phase and nucleus condensation were observed in ELT3 cells but not in UtSMC cells. Co-treatment of ELT3 cells with E2 and ISL inhibited ERK1/2 activation, whereas p38 and c-Jun N-terminal kinase (JNK) activation was enhanced. Moreover, ISL-induced apoptosis and autophagy cell death in ELT3 cells were observed. Serum E2 and P4 levels were reduced in a E2-enhanced uterine myometrium hyperplasia mouse model by ISL treatment, which contributed to the downregulation of the expression of extracellular matrix (ECM) associated proteins and matrix metalloproteinase (MMPs). Taken together, these results showed that ISL exerted a higher effect on the inhibition of estrogen-induced uterine leiomyoma growth for both in vitro and in vivo ECM accumulation, demonstrating its potential as a new option for treatment of uterine leiomyoma.
Collapse
|
24
|
Tu MG, Sun KT, Wang TH, He YZ, Hsia SM, Tsai BH, Shih YH, Shieh TM. Effects of mineral trioxide aggregate and bioceramics on macrophage differentiation and polarization in vitro. J Formos Med Assoc 2019; 118:1458-1465. [PMID: 31358435 DOI: 10.1016/j.jfma.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Mineral trioxide aggregate (Pro-Root MTA, PR-MTA) and bioceramics (iRoot® SP Injectable Root Canal Sealer, iR-BC) are used for making apical plugs used in apexification, repairing root perforations during root canal therapy, and treating internal root resorption. The purpose of the present in vitro study was to compare the biological effects of PR-MTA- and iR-BC-based dental sealers in the mouse macrophage cell line RAW 264.7. METHODS Cytotoxicity and cell proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell hemocytometer, respectively. Protein expression of biomarkers of cell proliferation, autophagy, and osteoclast differentiation was determined by western blotting. Pro-inflammatory gene expression was examined using quantitative reverse transcription-PCR. RESULTS PR-MTA induced cytotoxicity in RAW 264.7 cells in a dose-dependent manner, and iR-BC was more cytotoxic than PR-MTA. Low-dose and short-term treatments of both PR-MTA and iR-BC induced RAW 264.7 cell proliferation. PR-MTA induced autophagy, whereas iR-BC did not. Neither PR-MTA nor iR-BC induced osteoclastogenesis. Pro-inflammatory genes were activated by both materials. However, the expression of inducible nitric oxide synthase (iNOS) mRNA was upregulated by iR-BC treatment, but not by PR-MTA treatment. CONCLUSION Overall, dental PR-MTA and iR-BC induced pro-inflammatory genes but did not induce osteoclastogenesis in macrophages. PR-MTA and iR-BC induced M2 and M1 polarization, respectively, of RAW 264.7 cells.
Collapse
Affiliation(s)
- Ming-Gene Tu
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Kuo-Ting Sun
- School of Dentistry, China Medical University, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Linko, Taiwan
| | - Yun-Zhen He
- School of Dentistry, China Medical University, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Bi-He Tsai
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, China Medical University, Taichung, Taiwan.
| |
Collapse
|
25
|
Tu HF, Chen MY, Lai JCY, Chen YL, Wong YW, Yang CC, Chen HY, Hsia SM, Shih YH, Shieh TM. Arecoline-regulated ataxia telangiectasia mutated expression level in oral cancer progression. Head Neck 2019; 41:2525-2537. [PMID: 30821076 DOI: 10.1002/hed.25718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/02/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia mutated (ATM) regulates DNA repair and cell cycle. The present study analyzed arecoline-induced ATM expression during oral cancer progression. METHODS In vitro studies were performed using oral squamous cell carcinoma (OSCC) cell lines treated with arecoline to analyze cell response and ATM regulation. in vivo studies were performed using immunohistochemistry to detect ATM expression in normal, oral potentially malignant disorder (OPMD), and OSCC tissues. RESULTS Low-dose arecoline induced cell proliferation, ATM promoter activity, and DNA repair. High-dose arecoline induced cell cycle arrest, apoptosis, and DNA damage. ATM was overexpressed in OPMD tissues but was downregulated in OSCC tissues. ATM expression level was associated with the risk of developing dysplasia, buccal-OSCC, and with OSCC survival rate. CONCLUSION High ATM expression helps DNA repair mechanisms to maintain the cells in the OPMD stage, but low ATM expression causes DNA damage accumulation to increase cell malignancy.
Collapse
Affiliation(s)
- Hsi-Feng Tu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral & Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Joseph Chieh-Yui Lai
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Ling Chen
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yih-Wen Wong
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,School of Food and Safety, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Isoliquiritigenin-mediated p62/SQSTM1 induction regulates apoptotic potential through attenuation of caspase-8 activation in colorectal cancer cells. Eur J Pharmacol 2018; 841:90-97. [DOI: 10.1016/j.ejphar.2018.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
|
27
|
Therapeutic benefits of liquorice in dentistry. J Ayurveda Integr Med 2018; 11:82-88. [PMID: 30391123 PMCID: PMC7125382 DOI: 10.1016/j.jaim.2017.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 12/22/2022] Open
Abstract
Oral health influences general well-being and quality of life. Oral diseases can be debilitating and are a major heath concern worldwide. Medicinal plants have been used for thousands of years for treating human diseases. Considering the emergence of multi-drug resistant pathogens and financial difficulties in developing countries, there is an urgent need for developing new antimicrobial compounds which are safe, efficient and cost effective. Liquorice also known as yashtimadhu, sweetwood or mulhatti is one such herbal remedy which has shown to have immense potential in treatment of orofacial diseases. Liquorice is rich in secondary metabolites which are used in cosmetics, foods, traditional and modern medicine. It has well known properties such as antiviral, glucocorticoid, anti-inflammatory, antioxidant, anti-ulcerative, anti-carcinogenic and many more. Liquorice extracts and liquorice bioactive ingredients such as glabridin, licoricidin, licorisoflavan A, licochalcone A, and glycyrrhizin have shown beneficial effects in preventing and treating oral diseases. This paper reviews the effects of liquorice and its constituents on oral diseases such as dental caries, periodontitis, gingivitis, candidiasis, recurrent aphthous ulcer and oral cancer and its use as a root canal medicament and summarizes the results of clinical trials that investigated the potential beneficial effects of liquorice and its constituents as a prevention and treatment modality in oral diseases. Clinical trials, case reports and review of literature evaluating the effect of liquorice on oral microorganisms and oral diseases are included. Literature pertaining to the effects of liquorice on systemic diseases have been excluded from this review of literature.
Collapse
|
28
|
Chen C, Shenoy AK, Padia R, Fang D, Jing Q, Yang P, Su SB, Huang S. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2', 4'-Tetrahydroxychalcone. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:243. [PMID: 30285892 PMCID: PMC6171243 DOI: 10.1186/s13046-018-0902-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/03/2023]
Abstract
Background Licorice is an herb extensively used for both culinary and medicinal purposes. Various constituents of licorice have been shown to exhibit anti-tumorigenic effect in diverse cancer types. However, majority of these studies focus on the aspect of their growth-suppressive role. In this study, we systematically analyzed known licorice’s constituents on the goal of identifying component(s) that can effectively suppress both cell migration and growth. Methods Effect of licorice’s constituents on cell growth was evaluated by MTT assay while cell migration was assessed by both wound-healing and Transwell assays. Cytoskeleton reorganization and focal adhesion assembly were visualized by immunofluorescence staining with labeled phalloidin and anti-paxillin antibody. Activity of Src in cells was judged by western blot using phosphor-Src416 antibody while Src kinase activity was measured using Promega Src kinase assay system. Anti-tumorigenic capabilities of isoliquiritigenin (ISL) and 2, 4, 2′, 4’-Tetrahydroxychalcone (THC) were investigated using lung cancer xenograft model. Results Using a panel of lung cancer cell lines, ISL was identified as the only licorice’s constituent capable of inhibiting both cell migration and growth. ISL-led inhibition in cell migration resulted from impaired cytoskeleton reorganization and focal adhesion assembly. Assessing the phosphorylation of 141 cytoskeleton dynamics-associated proteins revealed that ISL reduced the abundance of Tyr421-phosphorylation of cortactin, Tyr925- and Tyr861-phosphorylation of FAK, indicating the involvement of Src because these sites are known to be phosphorylated by Src. Enigmatically, ISL inhibited Src in cells while displayed no effect on Src activity in cell-free system. The discrepancy was explained by the observation that THC, one of the major ISL metabolite identified in lung cancer cells abrogated Src activity both in cells and cell-free system. Similar to ISL, THC deterred cell migration and abolished cytoskeleton reorganization/focal adhesion assembly. Furthermore, we showed both ISL and THC suppressed in vitro lung cancer cell invasion and in vivo tumor progression. Conclusion Our study suggests that ISL inhibits lung cancer cell migration and tumorigenesis by interfering with Src through its metabolite THC. As licorice is safely used for culinary purposes, our study suggests that ISL or THC may be safely used as a Src inhibitor. Electronic supplementary material The online version of this article (10.1186/s13046-018-0902-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changliang Chen
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Anitha K Shenoy
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.,Department of Pharmaceutics and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA
| | - Ravi Padia
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Dongdong Fang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | - Ping Yang
- Instrumental Analysis Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shuang Huang
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China. .,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
29
|
Xiang S, Chen H, Luo X, An B, Wu W, Cao S, Ruan S, Wang Z, Weng L, Zhu H, Liu Q. Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:184. [PMID: 30081934 PMCID: PMC6091185 DOI: 10.1186/s13046-018-0844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid isolated from the root of licorice (Glycyrrhiza uralensis), has shown various pharmacological properties including anti-oxidant, anti-inflammatory and anti-cancer activities. MicroRNAs (miRNAs), a class of small non-coding RNAs, have been reported as post-transcriptional regulators with altered expression levels in melanoma. This study aims to investigate the anti-melanoma effect of ISL and its potential mechanism. METHODS We investigated the effect of ISL on the proliferation and apoptosis of melanoma cell lines with functional assays, such as CCK-8 assay, colony formation assay and flow cytometry. The protein level of apoptosis related genes were measured by western blotting. High-throughput genome sequencing was used for screening differentially expressed miRNAs of melanoma cell lines after the treatment of ISL. We performed functional assays to determine the oncogenic role of miR-301b, the most differentially expressed miRNA, and its target gene leucine rich repeats and immunoglobulin like domains 1 (LRIG1), confirmed by bioinformatic analysis, luciferase reporter assay, western blotting and immunohistochemical assay in melanoma. Immunocompromised mouse models were used to determine the role of miR-301b and its target gene in melanoma tumorigenesis in vivo. The relationship between miR-301b and LRIG1 was further verified in GEO data set and tissue specimens. RESULTS Functional assays indicated that ISL exerted significant growth inhibition and apoptosis induction on melanoma cells. MiR-301b is the most differentially expressed miRNA after the treatment of ISL and significantly downregulated. The suppressive effect of ISL on cell growth is reversed by ectopic expression of miR-301b. Intratumorally administration of miR-301b angomir enhances the inhibitory effect of ISL on tumor growth in vivo. Bioinformatic analysis showed that miR-301b may target LRIG1, miR-301b suppresses the luciferase activity of reporter constructs containing 3'UTR of LRIG1 as well as the expression level of LRIG1. And the anti-cancer effect of ISL is mitigated when LRIG1 is silenced in vivo and in vitro. Analysis of the melanoma samples obtained from patients shows that LRIG1 is negatively correlated with miR-301b. CONCLUSIONS ISL may inhibit the proliferation of melanoma cells by suppressing miR-301b and inducing its target LRIG1.
Collapse
Affiliation(s)
- Shijian Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Baichao An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenfeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Siwei Cao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shifa Ruan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lidong Weng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Zhang XR, Wang SY, Sun W, Wei C. Isoliquiritigenin inhibits proliferation and metastasis of MKN28 gastric cancer cells by suppressing the PI3K/AKT/mTOR signaling pathway. Mol Med Rep 2018; 18:3429-3436. [PMID: 30066879 DOI: 10.3892/mmr.2018.9318] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/19/2018] [Indexed: 11/06/2022] Open
Abstract
Isoliquiritigenin (ISL) is a flavonoid extracted from licorice root, which is known to serve important antitumor roles in numerous types of cancers; however, its effect on gastric cancer remains to be elucidated. The present study aimed to explore the roles and underlying mechanisms of ISL in MKN28 gastric cancer cells. MKN28 cell proliferation was measured using the Cell Counting Kit‑8 (CCK8) assay. A Transwell assay was used to determine the effects of ISL on the migration and invasion of MKN28 cells. Apoptosis was assessed by flow cytometry, and the expression levels of apoptosis‑, autophagy‑ and signaling pathway‑related proteins were detected by western blot analysis. The results of the CCK8 assay demonstrated that ISL significantly inhibited the proliferation of MKN28 cells (P<0.05). Transwell assays demonstrated that the migration and invasion of MKN28 cells were significantly inhibited following treatment with ISL (P<0.05). Flow cytometric analysis indicated that ISL induced apoptosis of MKN28 cells. In addition, western blot analysis revealed that the ratio of microtubule‑associated proteins 1A/1B light chain 3B (LC3)II/LC3I was upregulated, as was Beclin 1 expression; however, p62 was downregulated following ISL pretreatment, thus suggesting that ISL triggered autophagy in MKN28 cells. In addition, the phosphorylation levels of protein kinase B (AKT) and mammalian target of rapamycin (mTOR) were significantly reduced following ISL treatment. These results indicated that ISL may influence apoptosis and autophagy in MKN28 cells by suppressing the phosphoinositide 3‑kinase/AKT/mTOR signaling pathway. In conclusion, the findings of the present study suggested that ISL may inhibit MKN28 cell proliferation, migration and invasion by inducing apoptosis and autophagy, implying potential as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Xiu-Rong Zhang
- Department of Traditional Chinese Medicine, Maternal and Child Health Care of Shandong Province, Jinan, Shandong 250014, P.R. China
| | - Shi-Yao Wang
- Department of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Wen Sun
- Department of Research, Beijing Splinger Medical Research Institute, Jinan, Shandong 250021, P.R. China
| | - Chao Wei
- Department of Ophthalmology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
31
|
Abstract
Background Ovarian cancer is one of the most fatal gynecologic malignancies, with most patients diagnosed at the late stage due to insidious onset and lack of early onset specific symptoms. Previous studies have implied that isoliquiritigenin (ILQ) is a promising chemopreventive agent against oral cancer. Aim This study aimed to investigate effects of ILQ and elucidate the related mechanism. Materials and methods Ovarian cancer cell lines, SKOV3 and OVCAR3, were treated with various concentrations of ILQ to detect the dose-dependent effects of ILQ and select the suitable concentration. CCK8 assay and clone formation efficiency assays were used to detect viability and proliferation. The cell migration, invasion, and apoptosis were evaluated by wound healing assays, transwell, and flow cytometry assays. The expression of apoptosis-related proteins (Caspase-3, Caspase3-p17, Bcl-2, Bax, and Bim) and related-signaling pathway proteins were also detected by Western blot. Results It was observed that the treatment of ILQ inhibited the survival and proliferation of SKOV3 and OVCAR3 cells. ILQ treatment inhibited migration and invasion, and induced apoptosis in SKOV3 and OVCAR3 cells. Also, the ILQ treatment increased the Bax/Bcl-2 ratio in SKOV3 and OVCAR3 cells, suggesting that a mitochondrial apoptotic pathway was triggered. It was also observed that, after treated with ILQ, the phosphorylated form of Akt and mTOR decreased and the expression of GSK3β increased, while P70/S6K decreased. ILQ treatment also decreased the expression of Wnt3a and, therefore, caused the decrease of phosphorylated ERK. ILQ also suppressed the PI3K/Akt/mTOR pathway by reduced the expression level of p-Akt, p-mTOR, P70/S6K and Cyclin D1 in Ishikawa and ES-2 cells. Conclusion The data suggested that ILQ inhibited viability, proliferation, and invasion, and induced apoptosis of SKOV3 and OVCAR3 cells through the PI3K/Akt/mTOR pathway. Together, the data revealed that ILQ treatment may be used as a novel strategy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Department of Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liang Yang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xinna Deng
- Department of Oncology & Immunotherapy, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yanan Sun
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital of PLA, Shijiazhuang, People's Republic of China
| |
Collapse
|
32
|
Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget 2018; 7:73432-73447. [PMID: 27708238 PMCID: PMC5341989 DOI: 10.18632/oncotarget.12369] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/25/2016] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer is the most common cancer in women, typically with onset after menopause. Isoliquiritigenin (ISL), a licorice flavonoid, was previously shown to have anti-oxidant, anti-inflammatory, and tumor suppression effects. In this study, we investigated the anti-tumor effect of ISL on human endometrial cancer both in vitro and in vivo. We used telomerase-immortalized human endometrial stromal cells (T-HESCs) and human endometrial cancer cell lines (Ishikawa, HEC-1A, and RL95-2 cells) as targets. The effects of ISL on cell proliferation, cell cycle regulation, and apoptosis or autophagy-related protein expression were examined. In addition, we conducted in vivo experiments to confirm the inhibitory effects of ISL on cancer cells. ISL significantly inhibited the viability of cancer cells in a dose- and time-dependent manner but with little toxicity on normal cells. In addition, flow cytometry analysis indicated that ISL induced sub-G1 or G2/M phase arrest. ISL treatment activated the extracellular signal regulated kinase signaling pathway to enhance the protein expression of caspase-7/LC3BII associated with apoptosis/autophagy. Furthermore, ISL suppressed xenograft tumor growth in vivo. Taken together, these findings suggest that ISL may induce apoptosis, autophagy, and cell growth inhibition, indicating its potential as a therapeutic agent for human endometrial cancer.
Collapse
|
33
|
Fan L, Liu Z, Zhang Y, Zhu H, Yu H, Yang F, Yang R, Wu F. MiRNA373 induces cervical squamous cell carcinoma SiHa cell apoptosis. Cancer Biomark 2018; 21:455-460. [PMID: 29125482 DOI: 10.3233/cbm-170692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Limei Fan
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Zongyu Liu
- Bethune School of Medicine, Jilin University, Changchun 130021, Jilin, China
| | - Yong Zhang
- Deparment of Pathology and Pathophysiology, Bethune Medical College, Jilin University, Changchun 130021,Jilin, China
| | - He Zhu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Huimei Yu
- Deparment of Pathology and Pathophysiology, Bethune Medical College, Jilin University, Changchun 130021,Jilin, China
| | - Fan Yang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ruiqi Yang
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Fei Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, China
| |
Collapse
|
34
|
Zhang B, Lai Y, Li Y, Shu N, Wang Z, Wang Y, Li Y, Chen Z. Antineoplastic activity of isoliquiritigenin, a chalcone compound, in androgen-independent human prostate cancer cells linked to G2/M cell cycle arrest and cell apoptosis. Eur J Pharmacol 2017; 821:57-67. [PMID: 29277717 DOI: 10.1016/j.ejphar.2017.12.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023]
Abstract
Isoliquiritigenin is a natural chalcone derived from Glycyrrhiza, which has been reported to have anti-tumor activity in recent years. Here, we investigate the anticancer efficacy and associated mechanisms of isoliquiritigenin in human prostate cancer PC-3 and 22RV1 cells. Isoliquiritigenin (25-50μM) inhibited cell proliferation, induced cell apoptosis, and caused G2/M cell cycle arrest in vitro. This agent also repressed the growth of PC-3 xenograft tumors in vivo with the results of hematoxylin/eosin staining and immunohistochemistry staining showing differences between isoliquiritigenin-treated groups and control group. Next, we used microarray transcriptional profiling to identify isoliquiritigenin-regulated genes on PC-3 prostate cancer cells. Multiple genes involved in cell cycle, DNA damage, and apoptosis signaling pathways were changed remarkably with the treatment of isoliquiritigenin. Molecular studies revealed that G2/M arrest was associated with a decrease in cyclin B1, cyclin-dependent kinase 1 (CDK1), and phosphorylated CDK1 (Thr14, Tyr15, and Thr161), whereas the expression of 14-3-3σ and growth arrest and DNA damage-inducible 45 alpha (GADD45A) was increased. The complexes of cyclin B1-CDK1 were also examined to show a decrease in the binding of CDK1 with cyclin B1. In addition, treatment with relatively high concentrations of isoliquiritigenin induced apoptosis, mainly associated with enhancing apoptosis regulator (Bax/Bcl-2) ratio. Collectively, these findings indicate that isoliquiritigenin modulates cyclin B1-CDK1 for G2/M arrest, together with an alteration of cell cycle regulators and apoptotic factors in human prostate cancer cells. However, we observed pleiotropic effects for isoliquiritigenin in microarray results, suggesting that other biological mechanisms also contribute to its efficacy, which could be of interest for future investigations.
Collapse
Affiliation(s)
- Biyan Zhang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yun Lai
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yufeng Li
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Nan Shu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yanping Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yunsen Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| | - Zijun Chen
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
35
|
Hu FW, Yu CC, Hsieh PL, Liao YW, Lu MY, Chu PM. Targeting oral cancer stemness and chemoresistance by isoliquiritigenin-mediated GRP78 regulation. Oncotarget 2017; 8:93912-93923. [PMID: 29212198 PMCID: PMC5706844 DOI: 10.18632/oncotarget.21338] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer stem cells (CSCs) are cells that drive tumorigenesis, contributing to metastasis and cancer recurrence as well as resistance to chemotherapy of oral squamous cell carcinomas (OSCC). Therefore, approaches to target CSCs become the subject of intense research for cancer therapy. In this study, we demonstrated that isoliquiritigenin, a chalcone-type flavonoid isolated from licorice root, exhibited more toxicity in oral cancer stem cells (OSCC-CSCs) compared to normal cells. Treatment of isoliquiritigenin not only inhibited the self-renewal ability but also reduced the expression of CSC markers, including the ALDH1 and CD44. In addition, the capacities of OSCC-CSCs to invade, metastasize and grow into a colony were suppressed by isoliquiritigenin. Most importantly, we showed that isoliquiritigenin potentiated chemotherapy along with downregulated expression of an ABC transporter that is associated with drug resistance, ABCG2. Moreover, a combination of isoliquiritigenin and Cisplatin significantly repressed the invasion and colony formation abilities of OSCC-CSCs. Our results suggested that administration of isoliquiritigenin reduced the protein expression of mRNA and membrane GRP78, a critical mediator of tumor biology. Overexpression of GRP78 reversed the inhibitory effect of isoliquiritigenin on OSCC-CSCs. Furthermore, isoliquiritigenin retarded the tumor growth in nude mice bearing OSCC xenografts. Taken together, these findings showed that isoliquiritigenin is an effective natural compound that can serve as an adjunct to chemotherapy for OSCC.
Collapse
Affiliation(s)
- Fang-Wei Hu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy and Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
36
|
Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin Induces Autophagy and Inhibits Ovarian Cancer Cell Growth. Int J Mol Sci 2017; 18:ijms18102025. [PMID: 28934130 PMCID: PMC5666707 DOI: 10.3390/ijms18102025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/02/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is one of the commonest gynecologic malignancies, which has a poor prognosis for patients at the advanced stage. Isoliquiritigenin (ISL), an active flavonoid component of the licorice plant, previously demonstrated antioxidant, anti-inflammatory, and tumor suppressive effects. In this study, we investigated the antitumor effect of ISL on human ovarian cancer in vitro using the human ovarian cancer cell lines, OVCAR5 and ES-2, as model systems. Our results show that ISL significantly inhibited the viability of cancer cells in a concentration- and time-dependent manner. Flow cytometry analysis indicated that ISL induced G2/M phase arrest. Furthermore, the expression of cleaved PARP, cleaved caspase-3, Bax/Bcl-2 ratio, LC3B-II, and Beclin-1 levels were increased in western blot analysis. To clarify the role of autophagy and apoptosis in the effect of ISL, we used the autophagy inhibitor-3-methyladenine (3-MA) to attenuate the punctate fluorescence staining pattern of the p62/sequestosome 1 (SQSTM1, red fluorescence) and LC3 (green fluorescence) proteins after ISL treatment, and 3-MA inhibited the cytotoxicity of ISL. These findings provide new information about the link between ISL-induced autophagy and apoptosis and suggest that ISL is a candidate agent for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tsui-Chin Huang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung 40402, Taiwan.
| | - Chi-Hao Wu
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Li-Chun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
37
|
Antitumoral effects of γCdcPLI, a PLA 2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci Rep 2017; 7:7077. [PMID: 28765552 PMCID: PMC5539153 DOI: 10.1038/s41598-017-07082-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022] Open
Abstract
Phospholipases A2(PLA2s) overexpression is closely associated with the malignant potential of breast cancers. Here, we showed for the first the antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 cell. Firstly, γCdcPLI was more cytotoxic to MDA-MB-231 breast cancer cells than other cell lines (MCF-7, HeLa, PC3 and A549) and did not affect the viability of non-tumorigenic breast cell (MCF 10A). In addition, γCdcPLI induced modulation of important mediators of apoptosis pathways such as p53, MAPK-ERK, BIRC5 and MDM2. γCdcPLI decreased MDA-MB-231 adhesion, migration and invasion. Interestingly, the γCdcPLI also inhibited the adhesion and migration of endothelial cells and blocked angiogenesis by inhibiting tube formation by HUVECs in vitro and sprouting elongation on aortic ring assay ex vivo. Furthermore, γCdcPLI reduced the production of vascular endothelial growth factor (VEGF). γCdcPLI was also able to decrease PGE2 levels in MDA-MB-231 and inhibited gene and protein expression of the PI3K/Akt pathway. In conclusion, γCdcPLI showed in vitro antitumoral, antimestatatic and anti-angiogenic potential effects and could be an attractive approach for futures studies in cancer therapy.
Collapse
|
38
|
Lin Q, Ma L, Liu Z, Yang Z, Wang J, Liu J, Jiang G. Targeting microRNAs: a new action mechanism of natural compounds. Oncotarget 2017; 8:15961-15970. [PMID: 28052018 PMCID: PMC5362538 DOI: 10.18632/oncotarget.14392] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 01/22/2023] Open
Abstract
Unlike genetics, epigenetics involves the modification of genome without changes in DNA sequences, including DNA methylation, histone modification, chromatin remodeling and noncoding RNA regulation. MicroRNA (miRNA), a member of noncoding RNAs superfamily, participates in RNA interference through a unique mechanism. Currently, microRNAs have been found to be regulated by some natural compounds. Through altering the expression of miRNAs and influencing the downstream signaling pathways or target genes, several natural compounds exhibit its bioactivity in the prevention, diagnosis, therapy, prognosis and drug resistance of human diseases, such as cancer. In this review, several natural compounds and their studies about miRNA-related action mechanism were summarized. These studies provide a new insight into action mechanism by which natural compound exerts its bioactivity and a novel treatment strategy, demonstrating natural compound a promising remedy for clinical treatments.
Collapse
Affiliation(s)
- Qian Lin
- College of Medicine, Qingdao University, Qingdao, China
| | - Leina Ma
- The Department of Oncology, The First Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhantao Liu
- College of Medicine, Qingdao University, Qingdao, China
| | - Zhihong Yang
- College of Medicine, Qingdao University, Qingdao, China
| | - Jin Wang
- College of Medicine, Qingdao University, Qingdao, China
| | - Jia Liu
- College of Medicine, Qingdao University, Qingdao, China
| | - Guohui Jiang
- College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
39
|
Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1379430. [PMID: 28203317 PMCID: PMC5292127 DOI: 10.1155/2017/1379430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL on TSCC cells (Tca8113) were evaluated in relation to cell proliferation, apoptosis and adhesion, migration, and invasion using sulforhodamine B assay, fluorescence microscopy technique, flow cytometry (FCM) analysis, and Boyden chamber assay. The associated regulatory mechanisms were examined using FCM and fluorescence microscopy for intracellular reactive oxygen species (ROS) generation, Gelatin zymography assay for matrix metalloproteinase (MMP) activities, and Western blot for apoptosis regulatory proteins (Bcl-2 and Bax). Our data indicated that S-ISL inhibited Tca8113 cell proliferation, adhesion, migration, and invasion while promoting the cell apoptosis. Such effects were accompanied by downregulation of Bcl-2 and upregulation of Bax, reduction of MMP-2 and MMP-9 activities, and decreased ROS production. We conclude that S-ISL is a promising agent targeting TSCC through multiple anticancer effects, regulated by its antioxidant mechanism.
Collapse
|
40
|
Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 2016; 313:204-214. [PMID: 27702603 DOI: 10.1016/j.taap.2016.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/16/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200nM to 200μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland.
Collapse
|
41
|
WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Res 2016; 27:274-293. [PMID: 27958289 DOI: 10.1038/cr.2016.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions.
Collapse
|
42
|
Zheng M, Zhu Z, Zhao Y, Yao D, Wu M, Sun G. Oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation. Mol Med Rep 2016; 15:375-379. [PMID: 27959435 DOI: 10.3892/mmr.2016.6008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/09/2016] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oridonin, a tetracyclic diterpenoid compound extracted from Rabdosia rubescens, inhibits proliferation and induces apoptosis in several tumor cell lines. However, the mechanism by which oridonin inhibits the cell cycle remains poorly understood. In the present study, possible mechanisms by which oridonin affects cell cycle progression were explored in A549 lung cancer cells. Flow cytometry analysis indicated that oridonin inhibited the proliferation of A549 cells by inducing G2/M cell cycle arrest in a dose‑dependent manner. Western blot analysis revealed that in oridonin treated cells, phosphorylated (p‑)ATM serine/threonine kinase (S1981), p‑checkpoint kinase 2 (CHK2) (T68), p‑p53, and phosphorylated H2A histone family member X protein levels were visibly increased, indicating that oridonin promoted G2/M arrest in A549 cells through the ATM‑p53‑CHK2 pathway. This data suggests that oridonin promotes G2/M arrest in A549 cells by facilitating ATM activation, which is likely a common mechanism in other tumor cell types when using this drug for cancer treatment.
Collapse
Affiliation(s)
- Mingxing Zheng
- Department of Respiratory Medicine, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhibing Zhu
- Department of Gastrointestinal Surgery, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yongzhao Zhao
- School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Da Yao
- Department of Thoracic Surgery, Clinical College of Anhui Medical University Affiliated Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Maoqing Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gengyun Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
43
|
Abstract
Liquorice foliage
Collapse
|
44
|
Márquez J, Mena J, Hernandez-Unzueta I, Benedicto A, Sanz E, Arteta B, Olaso E. Ocoxin® oral solution slows down tumor growth in an experimental model of colorectal cancer metastasis to the liver in Balb/c mice. Oncol Rep 2015; 35:1265-72. [PMID: 26676882 PMCID: PMC4750781 DOI: 10.3892/or.2015.4486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
Liver metastatic disease is the main cause of death in colorectal cancer (CRC) patients. During metastatic spread of the disease an imbalance in the oxidative stress and inflammation plays a crucial role in tumor progression. In order to improve the efficacy of current therapies, new complementary therapeutic approaches are being analyzed including biologically active compounds with low side effects. The anti-inflammatory and anti-oxidant properties of Ocoxin® oral solution (OOS) prompt us to analyze its effect on the metastatic development of CRC to the liver. First, in vitro effect of OOS in tumor cell viability and migration was analyzed. Second, in vivo effect of different dosage patterns and concentrations in the development of hepatic metastasis was analyzed by intrasplenic inoculation of C26 colon carcinoma cells in Balb/c mice. Third, the expression of alpha smooth muscle actin, caspase-3 and Ki-67 expression was quantified by immunohistochemistry, then gene expression levels of inflammatory factors were measured by quantitative RT-PCR. According to our results, OOS reduced tumor cell viability and migration in vitro. Moreover, in vivo daily administration of OOS from the 7th day after tumor cell inoculation decreased the total area and size of metastatic foci in the liver. Furthermore, cell proliferation and fibroblast recruitment was decreased in tumor foci while a higher number of apoptotic cells were observed. Finally, RNA levels for the inflammatory mediators COX-2, IFNγ, IL1β, IL6 and TNFα were reduced in total liver. In conclusion, OOS reduced the metastatic development of colorectal cancer to the liver by increasing apoptosis, and decreasing tumor cell proliferation and fibroblast recruitment in the tumor foci, as well as the expression of inflammatory mediators in total liver. These results point out OOS as a potential supplement to be applied as complementary therapy for the treatment of liver metastasis from colorectal cancer.
Collapse
Affiliation(s)
- Joana Márquez
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Jorge Mena
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Iera Hernandez-Unzueta
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | | | - Beatriz Arteta
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| | - Elvira Olaso
- Department of Cellular Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Bizkaia E-48940, Spain
| |
Collapse
|
45
|
Feng X, Li H, Dean M, Wilson HE, Kornaga E, Enwere EK, Tang P, Paterson A, Lees-Miller SP, Magliocco AM, Bebb G. Low ATM protein expression in malignant tumor as well as cancer-associated stroma are independent prognostic factors in a retrospective study of early-stage hormone-negative breast cancer. Breast Cancer Res 2015; 17:65. [PMID: 25935535 PMCID: PMC4453198 DOI: 10.1186/s13058-015-0575-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The serine/threonine protein kinase ataxia telangiectasia mutated (ATM) is critical in maintaining genomic integrity. Upon DNA double-strand breaks, ATM phosphorylates key downstream proteins including p53 and BRCA1/2, thereby orchestrating complex signaling pathways involved in cell cycle arrest, DNA repair, senescence and apoptosis. Although sporadic mutation of ATM occurs rarely in breast cancer, the status of its protein expression and its clinical significance in breast cancer remain not well established. Our study was designed to investigate the influence of ATM protein in both tumor and cancer-associated stroma on clinical outcome in hormone-positive (HPBC) and hormone-negative (HNBC) early-stage breast cancer (EBC). METHODS Tissue microarrays (TMAs), containing formalin-fixed, paraffin-embedded resected tumors from two cohorts of patients (HPBC cohort: n=130; HNBC cohort: n=168) diagnosed at the Tom Baker Cancer Centre, Calgary, Canada, were analyzed for ATM protein expression using fluorescence immunohistochemistry (IHC) and automated quantitative analysis (AQUA). ATM expression levels were measured within the tumor as a whole (tATM) as indicated by pan-cytokeratin expression, tumor nuclear compartment (nATM) as indicated by both DAPI and pan-cytokeratin-positive results, and cancer-associated stroma (csATM) as indicated by vimentin-positive and pan-cytokeratin-negative results. ATM expression levels within these compartments were correlated with clinical outcome. RESULTS While tATM and nATM were significantly lower in tumors compared to normal breast epithelial tissues, csATM was significantly higher than the corresponding normal tissue compartment. In addition, the median expression level of both tATM and nATM were two- to threefold lower (P<0.001) in HNBC than in HPBC. In both HNBC and HPBC cohorts, patients with low tATM, nATM and csATM tumors had significantly poorer survival outcomes than those with a high tATM, nATM and csATM, but this effect was more pronounced in HNBC. A multivariate analysis demonstrates that these biomarkers predict survival independent of tumor size and lymph node status, but only in the HNBC cohort (P<0.001). CONCLUSIONS Low ATM protein expression in both malignant tumor and stromal compartments likely contributes to the aggressive nature of breast cancer and is an independent prognostic factor associated with worse survival in HNBC patients.
Collapse
Affiliation(s)
- Xiaolan Feng
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Haocheng Li
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
- Department of Community Health Science, TRW Building, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Michelle Dean
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Holly E Wilson
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Elizabeth Kornaga
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Emeka K Enwere
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Patricia Tang
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Alexander Paterson
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Health Science Building, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4 N1, Canada.
| | - Anthony M Magliocco
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Translational Research Laboratory, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB, T2N 4 N2, Canada.
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Gwyn Bebb
- Department of Oncology, Tom Baker Cancer Centre and University of Calgary, 1331 29th Street NW, Calgary, AB, T2N 4 N2, Canada.
| |
Collapse
|
46
|
Shih YH, Chang KW, Yu CC, Kao MC, Chen MY, Wang TH, Chi TY, Chen YL, Shieh TM. Hinokitiol suppressed pan-histone expression and cell growth in oral squamous cell carcinoma cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|