1
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Su Q, Zhao Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. A Novel ARNT-Dependent HIF-2α Signaling as a Protective Mechanism for Cardiac Microvascular Barrier Integrity and Heart Function Post-Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.12.532316. [PMID: 36993497 PMCID: PMC10054928 DOI: 10.1101/2023.03.12.532316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) significantly compromises the integrity of the cardiac microvascular endothelial barrier, leading to enhanced leakage and inflammation that contribute to the progression of heart failure. While HIF2α is highly expressed in cardiac endothelial cells (ECs) under hypoxic conditions, its role in regulating microvascular endothelial barrier function during MI is not well understood. In this study, we utilized mice with a cardiac-specific deletion of HIF2α, generated through an inducible Cre (Cdh5Cre-ERT2) recombinase system. These mice exhibited no apparent phenotype under normal conditions. However, following left anterior descending (LAD) artery ligation-induced MI, they showed increased mortality associated with enhanced cardiac vascular leakage, inflammation, worsened cardiac function, and exacerbated heart remodeling. These outcomes suggest a protective role for endothelial HIF2α in response to cardiac ischemia. Parallel investigations in human cardiac microvascular endothelial cells (CMVECs) revealed that loss of ecHif2α led to diminished endothelial barrier function, characterized by reduced tight-junction protein levels and increased cell death, along with elevated expression of IL6 and other inflammatory markers. These effects were substantially reversed by overexpressing ARNT, a critical dimerization partner for HIF2α during hypoxia. Additionally, ARNT deletion also led to increased CMVEC permeability. Interestingly, ARNT, rather than HIF2α itself, directly binds to the IL6 promoter to suppress IL6 expression. Our findings demonstrate the critical role of endothelial HIF2α in response to MI and identify the HIF2α/ARNT axis as a transcriptional repressor, offering novel insights for developing therapeutic strategies against heart failure following MI.
Collapse
|
2
|
Puvvula J, Manz KE, Braun JM, Pennell KD, DeFranco EA, Ho SM, Leung YK, Huang S, Vuong AM, Kim SS, Percy ZP, Bhashyam P, Lee R, Jones DP, Tran V, Kim DV, Chen A. Maternal and newborn metabolomic changes associated with urinary polycyclic aromatic hydrocarbon metabolite concentrations at delivery: an untargeted approach. Metabolomics 2023; 20:6. [PMID: 38095785 DOI: 10.1007/s11306-023-02074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse human health outcomes. To explore the plausible associations between maternal PAH exposure and maternal/newborn metabolomic outcomes, we conducted a cross-sectional study among 75 pregnant people from Cincinnati, Ohio. METHOD We quantified 8 monohydroxylated PAH metabolites in maternal urine samples collected at delivery. We then used an untargeted high-resolution mass spectrometry approach to examine alterations in the maternal (n = 72) and newborn (n = 63) serum metabolome associated with PAH metabolites. Associations between individual maternal urinary PAH metabolites and maternal/newborn metabolome were assessed using linear regression adjusted for maternal and newborn factors while accounting for multiple testing with the Benjamini-Hochberg method. We then conducted functional analysis to identify potential biological pathways. RESULTS Our results from the metabolome-wide associations (MWAS) indicated that an average of 1% newborn metabolome features and 2% maternal metabolome features were associated with maternal urinary PAH metabolites. Individual PAH metabolite concentrations in maternal urine were associated with maternal/newborn metabolome related to metabolism of vitamins, amino acids, fatty acids, lipids, carbohydrates, nucleotides, energy, xenobiotics, glycan, and organic compounds. CONCLUSION In this cross-sectional study, we identified associations between urinary PAH concentrations during late pregnancy and metabolic features associated with several metabolic pathways among pregnant women and newborns. Further studies are needed to explore the mediating role of the metabolome in the relationship between PAHs and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kathrine E Manz
- School of Engineering, Brown University, Providence, RI, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Emily A DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shouxiong Huang
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Stephani S Kim
- Health Research, Battelle Memorial Institute, Columbus, OH, USA
| | - Zana P Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Priyanka Bhashyam
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Raymund Lee
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Vilinh Tran
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Dasom V Kim
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Ximerakis M, Holton KM, Giadone RM, Ozek C, Saxena M, Santiago S, Adiconis X, Dionne D, Nguyen L, Shah KM, Goldstein JM, Gasperini C, Gampierakis IA, Lipnick SL, Simmons SK, Buchanan SM, Wagers AJ, Regev A, Levin JZ, Rubin LL. Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. NATURE AGING 2023; 3:327-345. [PMID: 37118429 PMCID: PMC10154248 DOI: 10.1038/s43587-023-00373-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023]
Abstract
Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.
Collapse
Affiliation(s)
- Methodios Ximerakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard M Giadone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ceren Ozek
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Monika Saxena
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Samara Santiago
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kavya M Shah
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jill M Goldstein
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Caterina Gasperini
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ioannis A Gampierakis
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Scott L Lipnick
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sayed TS, Maayah ZH, Zeidan HA, Agouni A, Korashy HM. Insight into the physiological and pathological roles of the aryl hydrocarbon receptor pathway in glucose homeostasis, insulin resistance, and diabetes development. Cell Mol Biol Lett 2022; 27:103. [PMID: 36418969 PMCID: PMC9682773 DOI: 10.1186/s11658-022-00397-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcriptional factor that mediates the toxicities of several environmental pollutants. Decades of research have been carried out to understand the role of AhR as a novel mechanism for disease development. Its involvement in the pathogenesis of cancer, cardiovascular diseases, rheumatoid arthritis, and systemic lupus erythematosus have long been known. One of the current hot research topics is investigating the role of AhR activation by environmental pollutants on glucose homeostasis and insulin secretion, and hence the pathogenesis of diabetes mellitus. To date, epidemiological studies have suggested that persistent exposure to environmental contaminants such as dioxins, with subsequent AhR activation increases the risk of specific comorbidities such as obesity and diabetes. The importance of AhR signaling in various molecular pathways highlights that the role of this receptor is far beyond just xenobiotic metabolism. The present review aims at providing significant insight into the physiological and pathological role of AhR and its regulated enzymes, such as cytochrome P450 1A1 (CYP1A1) and CYP1B1 in both types of diabetes. It also provides a comprehensive summary of the current findings of recent research studies investigating the role of the AhR/CYP1A1 pathway in insulin secretion and glucose hemostasis in the pancreas, liver, and adipose tissues. This review further highlights the molecular mechanisms involved, such as gluconeogenesis, hypoxia-inducible factor (HIF), oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Tahseen S. Sayed
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Zaid H. Maayah
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Heba A. Zeidan
- grid.498552.70000 0004 0409 8340American School of Doha, Doha, Qatar
| | - Abdelali Agouni
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Hesham M. Korashy
- grid.412603.20000 0004 0634 1084Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
6
|
Tiwari R, Kapitsinou PP. Role of Endothelial Prolyl-4-Hydroxylase Domain Protein/Hypoxia-Inducible Factor Axis in Acute Kidney Injury. Nephron Clin Pract 2022; 146:243-248. [PMID: 34515168 PMCID: PMC8885783 DOI: 10.1159/000518632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) results from a cessation or restriction of blood supply to an organ followed by reestablishment of perfusion and reoxygenation. In the kidney, IRI due to transplantation, cardiac surgery with cardiopulmonary bypass, and other major vascular surgeries contributes to acute kidney injury (AKI), a clinical condition associated with significant morbidity and mortality in hospitalized patients. In the postischemic kidney, endothelial damage promotes inflammatory responses and leads to persistent hypoxia of the renal tubular epithelium. Like other cell types, endothelial cells respond to low oxygen tension by multiple hypoxic signaling mechanisms. Key mediators of adaptation to hypoxia are hypoxia-inducible factors (HIF)-1 and -2, transcription factors whose activity is negatively regulated by prolyl-hydroxylase domain proteins 1 to 3 (PHD1 to PHD3). The PHD/HIF axis controls several processes determining injury outcome, including ATP generation, cell survival, proliferation, and angiogenesis. Here, we discuss recent advances in our understanding of the endothelial-derived PHD/HIF signaling and its effects on postischemic AKI.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Address correspondence and Lead contact: Dr. Pinelopi P. Kapitsinou, Division of Nephrology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, SQBRC 8-408, Chicago, IL 60611.
| |
Collapse
|
7
|
Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021; 10:2371. [PMID: 34572020 PMCID: PMC8472468 DOI: 10.3390/cells10092371] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
| | - Monika Golinska
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
| |
Collapse
|
8
|
Overexpression of the aryl hydrocarbon receptor nuclear translocator partially rescues fetoplacental angiogenesis in severe fetal growth restriction. Clin Sci (Lond) 2019; 133:1353-1365. [PMID: 31189688 DOI: 10.1042/cs20190381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Abstract
Pregnancies complicated by severe fetal growth restriction with abnormal umbilical artery Doppler velocimetry (FGRadv) are at substantial risk for adverse perinatal and long-term outcomes. Impaired angiogenesis of the placental vasculature in these pregnancies results in a sparse, poorly branched vascular tree, which structurally contributes to the abnormally elevated fetoplacental vascular resistance that is clinically manifested by absent or reversed umbilical artery Doppler indices. Previous studies have shown that aryl hydrocarbon receptor nuclear translocator (ARNT) is a key mediator of proper placental angiogenesis, and within placental endothelial cells (ECs) from human FGRadv pregnancies, low expression of ARNT leads to decreased vascular endothelial growth factor A (VEGFA) expression and deficient tube formation. Thus, the aim of the present study was to determine the effect of VEGFA administration or ARNT overexpression on angiogenic potential of FGRadv ECs. ECs were isolated and cultured from FGRadv or gestational age-matched control placentas and subjected to either vehicle vs VEGFA treatment or transduction with adenoviral-CMV (ad-CMV) vs adenoviral-ARNT (ad-ARNT) constructs. They were then assessed via wound scratch and tube formation assays. We found that VEGFA administration nominally improved FGRadv EC migration (P<0.01) and tube formation (P<0.05). ARNT overexpression led to significantly enhanced ARNT expression in FGRadv ECs (P<0.01), to a level similar to control ECs. Despite this, FGRadv EC migration (P<0.05) and tube formation (P<0.05) were still only partially rescued. This suggests that although ARNT does play a role in fetoplacental EC migration, other factors in addition to ARNT are likely also important in placental angiogenesis.
Collapse
|
9
|
Wang X, Lockhart SM, Rathjen T, Albadawi H, Sørensen D, O'Neill BT, Dwivedi N, Preil SR, Beck HC, Dunwoodie SL, Watkins MT, Rasmussen LM, Rask-Madsen C. Insulin Downregulates the Transcriptional Coregulator CITED2, an Inhibitor of Proangiogenic Function in Endothelial Cells. Diabetes 2016; 65:3680-3690. [PMID: 27561725 PMCID: PMC5127242 DOI: 10.2337/db16-0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Abstract
In patients with atherosclerotic complications of diabetes, impaired neovascularization of ischemic tissue in the myocardium and lower limb limits the ability of these tissues to compensate for poor perfusion. We identified 10 novel insulin-regulated genes, among them Adm, Cited2, and Ctgf, which were downregulated in endothelial cells by insulin through FoxO1. CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), which was downregulated by insulin by up to 54%, is an important negative regulator of hypoxia-inducible factor (HIF) and impaired HIF signaling is a key mechanism underlying the impairment of angiogenesis in diabetes. Consistent with impairment of vascular insulin action, CITED2 was increased in cardiac endothelial cells from mice with diet-induced obesity and from db/db mice and was 3.8-fold higher in arterial tissue from patients with type 2 diabetes than control subjects without diabetes. CITED2 knockdown promoted endothelial tube formation and endothelial cell proliferation, whereas CITED2 overexpression impaired HIF activity in vitro. After femoral artery ligation, induction of an endothelial-specific HIF target gene in hind limb muscle was markedly upregulated in mice with endothelial cell deletion of CITED2, suggesting that CITED2 can limit HIF activity in vivo. We conclude that vascular insulin resistance in type 2 diabetes contributes to the upregulation of CITED2, which impairs HIF signaling and endothelial proangiogenic function.
Collapse
Affiliation(s)
- Xuanchun Wang
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
- Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Samuel M Lockhart
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
- Queen's University Belfast, Belfast, U.K
| | - Thomas Rathjen
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
- Novo Nordisk A/S, Måløv, Denmark
| | - Hassan Albadawi
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Ditte Sørensen
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
- University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Brian T O'Neill
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Nishant Dwivedi
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Simone R Preil
- Center for Individualized Medicine of Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine of Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | - Lars Melholt Rasmussen
- Center for Individualized Medicine of Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
10
|
Swartley OM, Foley JF, Livingston DP, Cullen JM, Elmore SA. Histology Atlas of the Developing Mouse Hepatobiliary Hemolymphatic Vascular System with Emphasis on Embryonic Days 11.5-18.5 and Early Postnatal Development. Toxicol Pathol 2016; 44:705-25. [PMID: 26961180 DOI: 10.1177/0192623316630836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A critical event in embryo development is the proper formation of the vascular system, of which the hepatobiliary system plays a pivotal role. This has led researchers to use transgenic mice to identify the critical steps involved in developmental disorders associated with the hepatobiliary vascular system. Vascular development is dependent upon normal vasculogenesis, angiogenesis, and the transformation of vessels into their adult counterparts. Any alteration in vascular development has the potential to cause deformities or embryonic death. Numerous publications describe specific stages of vascular development relating to various organs, but a single resource detailing the stage-by-stage development of the vasculature pertaining to the hepatobiliary system has not been available. This comprehensive histology atlas provides hematoxylin & eosin and immunohistochemical-stained sections of the developing mouse blood and lymphatic vasculature with emphasis on the hepatobiliary system between embryonic days (E) 11.5-18.5 and the early postnatal period. Additionally, this atlas includes a 3-dimensional video representation of the E18.5 mouse venous vasculature. One of the most noteworthy findings of this atlas is the identification of the portal sinus within the mouse, which has been erroneously misinterpreted as the ductus venosus in previous publications. Although the primary purpose of this atlas is to identify normal hepatobiliary vascular development, potential embryonic abnormalities are also described.
Collapse
Affiliation(s)
- Olivia M Swartley
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Julie F Foley
- Cellular and Molecular Pathology Branch, National Toxicology Program, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| | - David P Livingston
- USDA, Washington, DC, USA North Carolina State University, Raleigh, North Carolina, USA
| | - John M Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program, NIEHS, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Su EJ, Xin H, Yin P, Dyson M, Coon J, Farrow KN, Mestan KK, Ernst LM. Impaired fetoplacental angiogenesis in growth-restricted fetuses with abnormal umbilical artery doppler velocimetry is mediated by aryl hydrocarbon receptor nuclear translocator (ARNT). J Clin Endocrinol Metab 2015; 100:E30-40. [PMID: 25343232 PMCID: PMC4283004 DOI: 10.1210/jc.2014-2385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CONTEXT Fetal growth restriction with abnormal umbilical artery Doppler velocimetry (FGRadv), reflective of elevated fetoplacental vascular resistance, is associated with increased risks of fetal morbidity and mortality even in comparison to those of growth-restricted fetuses with normal placental blood flow. One major cause of this abnormally elevated fetoplacental vascular resistance is the aberrantly formed, thin, elongated villous vessels that are seen in FGRadv placentas. OBJECTIVE The purpose of this study was to determine the role of fetoplacental endothelial cells (ECs) in angiogenesis in normal pregnancies and in those complicated by FGRadv. DESIGN AND PARTICIPANTS Human placental specimens were obtained from FGRadv and gestational age-matched, appropriately grown control pregnancies for EC isolation/culture and for immunohistochemical studies. Additional mechanistic studies were performed on ECs isolated from subjects with term, uncomplicated pregnancies. MAIN OUTCOME MEASURES We evaluated tube formation and differential angiogenic gene expression in FGRadv and control ECs, and we used ECs from uncomplicated pregnancies to further elucidate the molecular mechanisms by which angiogenesis is impaired in FGRadv pregnancies. RESULTS Tube formation assays showed that FGRadv ECs demonstrate fewer branch points and total length compared with those from gestational age-matched controls, and this defect was not rescued by exposure to hypoxia. FGRadv ECs also demonstrated lower aryl hydrocarbon receptor nuclear translocator (ARNT) expression. ARNT knockdown resulted in suppression of key angiogenic genes including vascular endothelial growth factor A expression and led to deficient tube formation. CONCLUSIONS ARNT expression in the placental vasculature mediates key angiogenic expression and fetoplacental EC angiogenesis, and low ARNT expression in FGRadv ECs appears to be a key factor in deficient angiogenesis. This, in turn, results in malformed thin villous vessels that structurally contribute to the abnormally elevated fetoplacental vascular resistance that is associated with high morbidity and mortality in fetal growth restriction.
Collapse
Affiliation(s)
- Emily J Su
- Department of Obstetrics and Gynecology (E.J.S., H.X., P.Y., M.D., J.C.), Division of Maternal-Fetal Medicine and/or Division of Reproductive Science in Medicine, and Department of Pathology (L.M.E.), Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; and Department of Pediatrics (K.N.F., K.K.M.), Division of Neonatology, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois 60611
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Han Y, Tao J, Gomer A, Ramirez-Bergeron DL. Loss of endothelial-ARNT in adult mice contributes to dampened circulating proangiogenic cells and delayed wound healing. Vasc Med 2014; 19:429-41. [PMID: 25398385 DOI: 10.1177/1358863x14559588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recruitment and homing of circulating bone marrow-derived cells include endothelial progenitor cells (EPCs) that are critical to neovascularization and tissue regeneration of various vascular pathologies. We report here that conditional inactivation of hypoxia-inducible factor's (HIF) transcriptional activity in the endothelium of adult mice (Arnt(ΔiEC) mice) results in a disturbance of infiltrating cells, a hallmark of neoangiogenesis, during the early phases of wound healing. Cutaneous biopsy punches show distinct migration of CD31(+) cells into wounds of control mice by 36 hours. However, a significant decline in numbers of infiltrating cells with immature vascular markers, as well as decreased transcript levels of genes associated with their expression and recruitment, were identified in wounds of Arnt(ΔiEC) mice. Matrigel plug assays further confirmed neoangiogenic deficiencies alongside a reduction in numbers of proangiogenic progenitor cells from bone marrow and peripheral blood samples of recombinant vascular endothelial growth factor-treated Arnt(ΔiEC) mice. In addition to HIF's autocrine requirements in endothelial cells, our data implicate that extrinsic microenvironmental cues provided by endothelial HIF are pivotal for early migration of proangiogenic cells, including those involved in wound healing.
Collapse
Affiliation(s)
- Yu Han
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Jiayi Tao
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alla Gomer
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute and University Hospitals Harrington Heart & Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
13
|
Hypoxic signaling during tissue repair and regenerative medicine. Int J Mol Sci 2014; 15:19791-815. [PMID: 25365172 PMCID: PMC4264139 DOI: 10.3390/ijms151119791] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/12/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
In patients with chronic wounds, autologous tissue repair is often not sufficient to heal the wound. These patients might benefit from regenerative medicine or the implantation of a tissue-engineered scaffold. Both wound healing and tissue engineering is dependent on the formation of a microvascular network. This process is highly regulated by hypoxia and the transcription factors hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α). Even though much is known about the function of HIF-1α in wound healing, knowledge about the function of HIF-2α in wound healing is lacking. This review focuses on the function of HIF-1α and HIF-2α in microvascular network formation, wound healing, and therapy strategies.
Collapse
|
14
|
Lalwani A, Stokes RA, Lau SM, Gunton JE. Deletion of ARNT (Aryl hydrocarbon receptor nuclear translocator) in β-cells causes islet transplant failure with impaired β-cell function. PLoS One 2014; 9:e98435. [PMID: 24878748 PMCID: PMC4039512 DOI: 10.1371/journal.pone.0098435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 05/03/2014] [Indexed: 01/13/2023] Open
Abstract
Background Replacing β-cells by islet-transplantation can cure type 1 diabetes, but up to 70% of β-cells die within 10 days of transplantation. ARNT (Aryl hydrocarbon Receptor Nuclear Translocator) regulates β-cell function, and potentially survival. Lack of ARNT impairs the ability of β-cells to respond to physiological stress and potentiates the onset of diabetes, but the exact role of ARNT in graft outcome is unknown. Aim To investigate the effect of β-cell deletion of ARNT on graft outcomes. Methods Islets were isolated from donor mice which had β-cell specific ARNT-deletion (β-ARNT) or littermate floxed controls. The islets were transplanted into diabetic SCID recipients in ratios of (a) 3 donors: 1 recipient, (b) 1 donor: 1 recipient or (c) ½ of the islets from 1 donor: 1 recipient. After 28 days, the kidney containing the graft was removed (nephrectomy) to exclude regeneration of the endogenous pancreas. Results In the supra-physiological-mass model (3∶1), both groups achieved reasonable glycaemia, with slightly higher levels in β-ARNT-recipients. In adequate-mass model (1∶1), β-ARNT recipients had poor glucose control versus floxed-control recipients and versus the β-ARNT donors. In the low-β-cell-mass model (½:1) β-ARNT transplants completely failed, whereas controls had good outcomes. Unexpectedly, there was no difference in the graft insulin content or β-cell mass between groups indicating that the defect was not due to early altered β-cell survival. Conclusion Outcomes for islet transplants lacking β-cell ARNT were poor, unless markedly supra-physiological masses of islets were transplanted. In the 1∶1 transplant model, there was no difference in β-cell volume. This is surprising because transplants of islets lacking one of the ARNT-partners HIF-1α have increased apoptosis and decreased islet volume. ARNT also partners HIF-2α and AhR (aryl hydrocarbon receptor) to form active transcriptional complexes, and further work to understand the roles of HIF-2α and AhR in transplant outcomes is needed.
Collapse
Affiliation(s)
- Amit Lalwani
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research (GIMR), Sydney, Australia
- Faculty of Medicine, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Rebecca A. Stokes
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research (GIMR), Sydney, Australia
| | - Sue Mei Lau
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research (GIMR), Sydney, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Jenny E. Gunton
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research (GIMR), Sydney, Australia
- Faculty of Medicine, Westmead Hospital, University of Sydney, Sydney, Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, Australia
- * E-mail:
| |
Collapse
|
15
|
Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, Erickson-Miller CL, Sutton TA, Haase VH. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J Clin Invest 2014; 124:2396-409. [PMID: 24789906 DOI: 10.1172/jci69073] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The hypoxia-inducible transcription factors HIF-1 and HIF-2 mediate key cellular adaptions to hypoxia and contribute to renal homeostasis and pathophysiology; however, little is known about the cell type-specific functions of HIF-1 and HIF-2 in response to ischemic kidney injury. Here, we used a genetic approach to specifically dissect the roles of endothelial HIF-1 and HIF-2 in murine models of hypoxic kidney injury induced by ischemia reperfusion or ureteral obstruction. In both models, inactivation of endothelial HIF increased injury-associated renal inflammation and fibrosis. Specifically, inactivation of endothelial HIF-2α, but not endothelial HIF-1α, resulted in increased expression of renal injury markers and inflammatory cell infiltration in the postischemic kidney, which was reversed by blockade of vascular cell adhesion molecule-1 (VCAM1) and very late antigen-4 (VLA4) using monoclonal antibodies. In contrast, pharmacologic or genetic activation of HIF via HIF prolyl-hydroxylase inhibition protected wild-type animals from ischemic kidney injury and inflammation; however, these same protective effects were not observed in HIF prolyl-hydroxylase inhibitor-treated animals lacking endothelial HIF-2. Taken together, our data indicate that endothelial HIF-2 protects from hypoxia-induced renal damage and represents a potential therapeutic target for renoprotection and prevention of fibrosis following acute ischemic injury.
Collapse
|
16
|
Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production. Kidney Int 2014; 85:276-88. [DOI: 10.1038/ki.2013.342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
|
17
|
Lomax MA, Karamanlidis G, Laws J, Cremers SG, Weinberg PD, Clarke L. Pigs fed saturated fat/cholesterol have a blunted hypothalamic-pituitary-adrenal function, are insulin resistant and have decreased expression of IRS-1, PGC1α and PPARα. J Nutr Biochem 2013; 24:656-63. [DOI: 10.1016/j.jnutbio.2012.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/22/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
18
|
Vijaya M, Manikandan J, Parakalan R, Dheen ST, Kumar SD, Tay SSW. Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy. Gene 2012; 516:218-27. [PMID: 23287646 DOI: 10.1016/j.gene.2012.12.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/09/2012] [Indexed: 11/19/2022]
Abstract
Congenital heart defects (CHD) are one of the most common defects in offspring of diabetic mothers. There is a clear association between maternal diabetes and CHD; however the underlying molecular mechanism remains unknown. We hypothesized that maternal diabetes affects with the expression of early developmental genes that regulate the essential developmental processes of the heart, thereby resulting in the pathogenesis of CHD. We analyzed genome-wide expression profiling in the developing heart of embryos from diabetic and control mice by using the oligonucleotide microarray. Microarray analysis revealed that a total of 878 genes exhibited more than 1.5 fold changes in expression level in the hearts of experimental embryos in either E13.5 or E15.5 compared with their respective controls. Expression pattern of genes that is differentially expressed in the developing heart was further examined by the real-time reverse transcriptase-polymerase chain reaction. Several genes involved in a number of molecular signaling pathways such as apoptosis, proliferation, migration and differentiation in the developing heart were differentially expressed in embryos of diabetic pregnancy. It is concluded that altered expression of several genes involved in heart development may contribute to CHD in offspring of diabetic mothers.
Collapse
Affiliation(s)
- Murugaiyan Vijaya
- Department of Anatomy, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Collapse
Affiliation(s)
- Bryan L Krock
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
20
|
Plourde D, Vigneault C, Lemay A, Breton L, Gagné D, Laflamme I, Blondin P, Robert C. Contribution of oocyte source and culture conditions to phenotypic and transcriptomic variation in commercially produced bovine blastocysts. Theriogenology 2012; 78:116-31.e1-3. [DOI: 10.1016/j.theriogenology.2012.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
|
21
|
Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc Natl Acad Sci U S A 2012; 109:10504-9. [PMID: 22699503 DOI: 10.1073/pnas.1208314109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infarction occurs when myocardial perfusion is interrupted for prolonged periods of time. Short episodes of ischemia and reperfusion protect against tissue injury when the heart is subjected to a subsequent prolonged ischemic episode, a phenomenon known as ischemic preconditioning (IPC). Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates adaptive responses to hypoxia/ischemia and is required for IPC. In this study, we performed a cellular and molecular characterization of the role of HIF-1 in IPC. We analyzed mice with knockout of HIF-1α or HIF-1β in Tie2(+) lineage cells, which include bone marrow (BM) and vascular endothelial cells, compared with control littermates. Hearts were subjected to 30 min of ischemia and 120 min of reperfusion, either as ex vivo Langendorff preparations or by in situ occlusion of the left anterior descending artery. The IPC stimulus consisted of two cycles of 5-min ischemia and 5-min reperfusion. Mice lacking HIF-1α or HIF-1β in Tie2(+) lineage cells showed complete absence of protection induced by IPC, whereas significant protection was induced by adenosine infusion. Treatment of mice with a HIF-1 inhibitor (digoxin or acriflavine) 4 h before Langendorff perfusion resulted in loss of IPC, as did administration of acriflavine directly into the perfusate immediately before IPC. We conclude that HIF-1 activity in endothelial cells is required for acute IPC. Expression and dimerization of the HIF-1α and HIF-1β subunits is required, suggesting that the heterodimer is functioning as a transcriptional activator, despite the acute nature of the response.
Collapse
|
22
|
Han Y, Yang K, Proweller A, Zhou G, Jain MK, Ramirez-Bergeron DL. Inhibition of ARNT severely compromises endothelial cell viability and function in response to moderate hypoxia. Angiogenesis 2012; 15:409-20. [PMID: 22484908 DOI: 10.1007/s10456-012-9269-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia inducible factor (HIF) is a master heterodimeric transcriptional regulator of oxygen (O(2)) homeostasis critical to proper angiogenic responses. Due to the distinctive coexpression of HIF-1α and HIF-2α subunits in endothelial cells, our goal was to examine the genetic elimination of HIF transcriptional activity in response to physiological hypoxic conditions by using a genetic model in which the required HIF-β subunit (ARNT, Aryl hydrocarbon Receptor Nuclear Translocator) to HIF transcriptional responses was depleted. Endothelial cells (ECs) and aortic explants were isolated from Arnt ( loxP/loxP ) mice and infected with Adenovirus-Cre/GFP or control-GFP. We observed that moderate levels of 2.5 % O(2) promoted vessel sprouting, growth, and branching in control aortic ring assays while growth from Adenovirus-Cre infected explants was compromised. Primary Adenovirus-Cre infected EC cultures featured adverse migration and tube formation phenotypes. Primary pulmonary or cardiac ARNT-deleted ECs also failed to proliferate and survive in response to 8 or 2.5 % O(2) and hydrogen peroxide treatment. Our data demonstrates that ARNT promotes EC migration and vessel outgrowth and is indispensible for the proliferation and preservation of ECs in response to the physiological environmental cue of hypoxia. Thus, these results demonstrate that ARNT plays a critical intrinsic role in ECs and support an important collaboration between HIF-1 and HIF-2 transcriptional activity in these cells.
Collapse
Affiliation(s)
- Yu Han
- Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University School of Medicine, 2103 Cornell Road, Rm. 4-532, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
23
|
Skuli N, Majmundar AJ, Krock BL, Mesquita RC, Mathew LK, Quinn ZL, Runge A, Liu L, Kim MN, Liang J, Schenkel S, Yodh AG, Keith B, Simon MC. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J Clin Invest 2012; 122:1427-43. [PMID: 22426208 PMCID: PMC3314446 DOI: 10.1172/jci57322] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/12/2022] Open
Abstract
Localized tissue hypoxia is a consequence of vascular compromise or rapid cellular proliferation and is a potent inducer of compensatory angiogenesis. The oxygen-responsive transcriptional regulator hypoxia-inducible factor 2α (HIF-2α) is highly expressed in vascular ECs and, along with HIF-1α, activates expression of target genes whose products modulate vascular functions and angiogenesis. However, the mechanisms by which HIF-2α regulates EC function and tissue perfusion under physiological and pathological conditions are poorly understood. Using mice in which Hif2a was specifically deleted in ECs, we demonstrate here that HIF-2α expression is required for angiogenic responses during hindlimb ischemia and for the growth of autochthonous skin tumors. EC-specific Hif2a deletion resulted in increased vessel formation in both models; however, these vessels failed to undergo proper arteriogenesis, resulting in poor perfusion. Analysis of cultured HIF-2α-deficient ECs revealed cell-autonomous increases in migration, invasion, and morphogenetic activity, which correlated with HIF-2α-dependent expression of specific angiogenic factors, including delta-like ligand 4 (Dll4), a Notch ligand, and angiopoietin 2. By stimulating Dll4 signaling in cultured ECs or restoring Dll4 expression in ischemic muscle tissue, we rescued most of the HIF-2α-dependent EC phenotypes in vitro and in vivo, emphasizing the critical role of Dll4/Notch signaling as a downstream target of HIF-2α in ECs. These results indicate that HIF-1α and HIF-2α fulfill complementary, but largely nonoverlapping, essential functions in pathophysiological angiogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Angiopoietin-2/genetics
- Angiopoietin-2/physiology
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Calcium-Binding Proteins
- Cell Hypoxia
- Cell Movement
- Cells, Cultured/cytology
- Collateral Circulation/physiology
- Endothelial Cells/metabolism
- Hindlimb/blood supply
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Ischemia/physiopathology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Receptors, Notch/physiology
- Recombinant Fusion Proteins/physiology
- Recovery of Function
- Skin Neoplasms/blood supply
- Skin Neoplasms/chemically induced
- Wound Healing/physiology
Collapse
Affiliation(s)
- Nicolas Skuli
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amar J. Majmundar
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryan L. Krock
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rickson C. Mesquita
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijoy K. Mathew
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary L. Quinn
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anja Runge
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liping Liu
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meeri N. Kim
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiaming Liang
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Schenkel
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G. Yodh
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian Keith
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Celeste Simon
- Howard Hughes Medical Institute,
Abramson Family Cancer Research Institute,
School of Medicine,
Department of Physics and Astronomy,
Department of Cancer Biology, and
Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Nath B, Szabo G. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. HEPATOLOGY (BALTIMORE, MD.) 2012. [PMID: 22120903 DOI: 10.1002/hep.25497]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
25
|
Abstract
Hypoxia has been shown to have a role in the pathogenesis of several forms of liver disease. The hypoxia inducible factors (HIFs) are a family of evolutionarily conserved transcriptional regulators that affect a homeostatic response to low oxygen tension and have been identified as key mediators of angiogenesis, inflammation, and metabolism. In this review we summarize the evidence for a role of HIFs across a range of hepatic pathophysiology. We describe regulation of the HIFs and review investigations that demonstrate a role for HIFs in the development of liver fibrosis, activation of innate immune pathways, hepatocellular carcinoma, as well as other liver diseases in both human disease as well as murine models.
Collapse
Affiliation(s)
- Bharath Nath
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
26
|
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet 2011; 7:e1001285. [PMID: 21298084 PMCID: PMC3029248 DOI: 10.1371/journal.pgen.1001285] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/22/2010] [Indexed: 01/06/2023] Open
Abstract
Hypoxia Inducible Factor-1 (HIF-1) is essential for mammalian development and is the principal transcription factor activated by low oxygen tensions. HIF-α subunit quantities and their associated activity are regulated in a post-translational manner, through the concerted action of a class of enzymes called Prolyl Hydroxylases (PHDs) and Factor Inhibiting HIF (FIH) respectively. However, alternative modes of HIF-α regulation such as translation or transcription are under-investigated, and their importance has not been firmly established. Here, we demonstrate that NF-κB regulates the HIF pathway in a significant and evolutionary conserved manner. We demonstrate that NF-κB directly regulates HIF-1β mRNA and protein. In addition, we found that NF-κB–mediated changes in HIF-1β result in modulation of HIF-2α protein. HIF-1β overexpression can rescue HIF-2α protein levels following NF-κB depletion. Significantly, NF-κB regulates HIF-1β (tango) and HIF-α (sima) levels and activity (Hph/fatiga, ImpL3/ldha) in Drosophila, both in normoxia and hypoxia, indicating an evolutionary conserved mode of regulation. These results reveal a novel mechanism of HIF regulation, with impact in the development of novel therapeutic strategies for HIF–related pathologies including ageing, ischemia, and cancer. The mechanisms by which cells and organisms respond to oxygen are of extreme importance for development and also for certain pathologies such as cancer, ageing, and ischemia. These are mediated by a family of transcription factors called hypoxia inducible factor (HIF), a factor that coordinates expression of a great number of genes. Significantly, these processes are evolutionary conserved from worms to humans. It is known that regulation of HIF occurs to a great extent through protein degradation. However, other important mechanisms of HIF control are currently being investigated. In this study, we have uncovered a novel mechanism of HIF regulation that relies on the action of another transcription factor family called NF-κB. We have found that NF-κB controls the levels of HIF-1α and HIF-1β genes by direct regulation. Furthermore, through its control of HIF-1β, NF-κB indirectly controls HIF-2α. Importantly, we find that this mechanism is conserved in Drosophila and mice. These results suggest an alternative avenue for therapeutic intervention in the HIF pathway, which has important implications for many human diseases.
Collapse
Affiliation(s)
- Patrick van Uden
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Niall S. Kenneth
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ryan Webster
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. Arno Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sharon Mudie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Coulon C, Georgiadou M, Roncal C, De Bock K, Langenberg T, Carmeliet P. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb Vasc Biol 2010; 30:2331-6. [PMID: 20966400 DOI: 10.1161/atvbaha.110.214106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The accepted model of vessel branching distinguishes several endothelial cell fates. At the forefront of a vessel sprout, "tip cells" guide the sprouting vessel toward an angiogenic stimulus. Behind the tip, "stalk cells" proliferate to elongate the vessel branch and create a lumen. In mature vessels, endothelial cells acquire a streamlined shape to optimally conduct blood flow. For this purpose, endothelial cells switch to the "phalanx" cell fate, which is characterized by quiescent and nonproliferating cells aligned in a tight cobblestonelike layer. Vessel maturation also requires the recruitment of mural cells (ie, smooth muscle cells and pericytes). These cell fates are often altered in pathological conditions, most prominently during the formation of tumor vasculature. Given the essential role of hypoxia as the driving force for initiating angiogenesis, it is not surprising that the hypoxia-sensing machinery controls key steps in physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Cathy Coulon
- Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Nukaya M, Walisser JA, Moran SM, Kennedy GD, Bradfield CA. Aryl hydrocarbon receptor nuclear translocator in hepatocytes is required for aryl hydrocarbon receptor-mediated adaptive and toxic responses in liver. Toxicol Sci 2010; 118:554-63. [PMID: 20935161 DOI: 10.1093/toxsci/kfq305] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays a central role in the toxic responses to halogenated dibenzo-p-dioxins ("dioxins"), in the metabolic adaptation to polycyclic aromatic hydrocarbons, and in the development of the mature vascular system. A number of lines of evidence support the idea that the regulation of adaptive metabolism requires an AHR partnership with the aryl hydrocarbon receptor nuclear translocator (ARNT). Yet, for AHR-dependent vascular development and dioxin toxicity, the role of ARNT is less certain. In fact, numerous models have been proposed over the years to suggest that the AHR signals in important ways via ARNT-independent events. In an effort to clarify the role of ARNT in AHR-mediated dioxin hepatotoxicity, we generated a conditional Arnt mouse model. Such a model was essential because global inactivation of Arnt results in embryonic lethality presumably due to this protein's role as a heterodimeric partner for the hypoxia-inducible factors (HIFs). Using a hepatocyte-specific Arnt deletion, we were able to demonstrate that hepatocyte ARNT is required for major aspects of AHR-mediated dioxin toxicity in the liver. Results from this conditional Arnt allele are also consistent with a model where hepatocyte ARNT is unrelated to AHR-mediated hepatovascular development. In sum, these data suggest that AHR-ARNT dimers within the hepatocyte direct the toxic and adaptive and developmental functions associated with the AHR and that developmental vascular events arise due to signaling in a distinct cell type expressing this dimeric pair.
Collapse
Affiliation(s)
- Manabu Nukaya
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Angiogenesis: multiple masks in hepatocellular carcinoma and liver regeneration. Hepatol Int 2010; 4:537-47. [PMID: 21063476 DOI: 10.1007/s12072-010-9192-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 07/09/2010] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is naturally resistant to radiotherapy and cytotoxic chemotherapy, leaving surgery as the mainstream therapeutic approach. However, the 5-year recurrence rate after curative resection is as high as 61.5%. The background hepatitis B- or C-induced cirrhosis and the presence of micrometastases at the time of surgery have been regarded as two main causes of recurrence. Recently, accumulating evidence suggests that growth factors and cytokines released during the physiological process of post-surgical liver regeneration could induce the activation of dormant micrometastatic lesions. The establishment of neovasculature to support either liver regeneration or HCC growth involves multiple cell types including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and circulating endothelial progenitors. The crosstalks among these cells are driven by multiple molecules and signaling pathways, including vascular endothelial growth factors and their receptors, platelet-derived growth factor, the angiopoietin/Tie family, hepatocyte growth factor/c-Met signaling, and others. Anti-angiogenic agent targeting liver cancer vasculature has been reported to be able to generate limited survival benefit of the patients. In this review, discussions are focused on various angiogenic mechanisms of HCC and liver regeneration, as well as the prevailing anti-angiogenic strategies.
Collapse
|
30
|
Cheng K, Ho K, Stokes R, Scott C, Lau SM, Hawthorne WJ, O'Connell PJ, Loudovaris T, Kay TW, Kulkarni RN, Okada T, Wang XL, Yim SH, Shah Y, Grey ST, Biankin AV, Kench JG, Laybutt DR, Gonzalez FJ, Kahn CR, Gunton JE. Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. J Clin Invest 2010; 120:2171-83. [PMID: 20440072 DOI: 10.1172/jci35846] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/10/2010] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a transcription factor that regulates cellular stress responses. While the levels of HIF-1alpha protein are tightly regulated, recent studies suggest that it can be active under normoxic conditions. We hypothesized that HIF-1alpha is required for normal beta cell function and reserve and that dysregulation may contribute to the pathogenesis of type 2 diabetes (T2D). Here we show that HIF-1alpha protein is present at low levels in mouse and human normoxic beta cells and islets. Decreased levels of HIF-1alpha impaired glucose-stimulated ATP generation and beta cell function. C57BL/6 mice with beta cell-specific Hif1a disruption (referred to herein as beta-Hif1a-null mice) exhibited glucose intolerance, beta cell dysfunction, and developed severe glucose intolerance on a high-fat diet. Increasing HIF-1alpha levels by inhibiting its degradation through iron chelation markedly improved insulin secretion and glucose tolerance in control mice fed a high-fat diet but not in beta-Hif1a-null mice. Increasing HIF-1alpha levels markedly increased expression of ARNT and other genes in human T2D islets and improved their function. Further analysis indicated that HIF-1alpha was bound to the Arnt promoter in a mouse beta cell line, suggesting direct regulation. Taken together, these findings suggest an important role for HIF-1alpha in beta cell reserve and regulation of ARNT expression and demonstrate that HIF-1alpha is a potential therapeutic target for the beta cell dysfunction of T2D.
Collapse
Affiliation(s)
- Kim Cheng
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research (GIMR), Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Skuli N, Simon MC. HIF-1alpha versus HIF-2alpha in endothelial cells and vascular functions: is there a master in angiogenesis regulation? Cell Cycle 2009; 8:3252-3. [PMID: 19806013 PMCID: PMC3144027 DOI: 10.4161/cc.8.20.9618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
32
|
Yuen MF, Fung J, Seto WK, Wong DKH, Yuen JCH, Lai CL. Combination of baseline parameters and on-treatment hepatitis B virus DNA levels to start and continue patients with lamivudine therapy. Antivir Ther 2009. [DOI: 10.1177/135965350901400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background This study aimed to identify the baseline hepatitis B virus (HBV) DNA, alanine aminotransferase (ALT) levels and on-treatment HBV DNA levels for favourable outcome in patients receiving 5-year lamivudine. Methods Virological, serological and biochemical parameters were assessed in 74 hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) patients at year 5 of therapy. Results Patients with baseline HBV DNA levels <9 log10 copies/ml and ALT≥2x the upper limit of normal (ULN) had a significantly higher chance of HBV DNA suppression to <4 log10 copies/ml (76.5%) and HBeAg seroconversion (82.4%), and a lower chance of YMDD mutations (35.3%) compared with patients with HBV DNA<9 log10 copies/ml and ALT<2xULN and patients with HBV DNA≥9 log10 copies/ml (all P<0.05). All patients with these two baseline parameters plus week 4 HBV DNA<4 log10 copies/ml achieved HBV DNA<35 copies/ml, HBeAg seroconversion and ALT normalization without YMDD mutations at year 5. When these two baseline parameters were combined with week 24 HBV DNA<3 log10 copies/ml, 60%, 80% and 90% of patients had HBV DNA<35 copies/ml, <3 log10 copies/ml and <4 log10 copies/ml, respectively at year 5. Overall, 90% of patients had HBeAg seroconversion and only 10% had YMDD mutations. Conclusions For HBeAg-positive patients with baseline HBV DNA<9 log10 copies/ml and ALT≥2xULN, lamivudine could be initiated. For those with HBV DNA<4 log10 copies/ml at week 4 or <3 log10 copies/ml at week 24, continuation of lamivudine treatment would be more likely to result in a good long-term response.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - James Fung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Danny Ka-Ho Wong
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - John Chi-Hang Yuen
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ching-Lung Lai
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
33
|
Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 2009; 114:469-77. [PMID: 19439736 DOI: 10.1182/blood-2008-12-193581] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-2alpha (HIF-2alpha) is highly expressed in embryonic vascular endothelial cells (ECs) and activates the expression of target genes whose products modulate vascular function and angiogenesis. In this report, we describe a genetic model designed to test the physiologic consequences of deleting HIF-2alpha in murine endothelial cells. Surprisingly, mice with HIF-2alpha-deficient ECs developed normally but displayed a variety of phenotypes, including increased vessel permeability, aberrant endothelial cell ultrastructure, and pulmonary hypertension. Moreover, these animals exhibited defective tumor angiogenesis associated with increased hypoxic stress and tumor cell apoptosis. Immortalized HIF-2alpha-deficient ECs displayed decreased adhesion to extracellular matrix proteins and expressed reduced levels of transcripts encoding fibronectin, integrins, endothelin B receptor, angiopoietin 2, and delta-like ligand 4 (Dll4). Together, these data identify unique cell-autonomous functions for HIF-2alpha in vascular endothelial cells.
Collapse
|
34
|
Abstract
Angiogenesis and disruption of liver vascular architecture have been linked to progression to cirrhosis and liver cancer (HCC) in chronic liver diseases, which contributes both to increased hepatic vascular resistance and portal hypertension and to decreased hepatocyte perfusion. On the other hand, recent evidence shows that angiogenesis modulates the formation of portal-systemic collaterals and the increased splanchnic blood flow which are involved in the life threatening complications of cirrhosis. Finally, angiogenesis plays a key role in the growth of tumours, suggesting that interference with angiogenesis may prevent or delay the development of HCC. This review summarizes current knowledge on the molecular mechanisms of liver angiogenesis and on the consequences of angiogenesis in chronic liver disease. On the other hand, it presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and its potential role in preventing transition to cirrhosis, development of portal hypertension and its consequences, and its application in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mercedes Fernández
- Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Ribatti D, Nico B, Crivellato E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 2009; 12:101-11. [PMID: 19130273 DOI: 10.1007/s10456-008-9125-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/20/2008] [Indexed: 12/24/2022]
Abstract
The cardiovascular system plays a crucial role in vertebrate development and homeostasis. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. During embryonal life, blood vessels first appear as the result of vasculogenesis, whereas remodeling of the primary vascular plexus occurs by angiogenesis. Many tissue-derived factors are involved in blood vessel formation and evidence is emerging that endothelial cells themselves represent a source of instructive signals to non-vascular tissue cells during organ development. This review article summarizes our knowledge concerning the principal factors involved in the regulation of vascular morphogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy.
| | | | | |
Collapse
|
36
|
Lui YYN, Chan HLY. A review of telbivudine for the management of chronic hepatitis B virus infection. Expert Opin Drug Metab Toxicol 2008; 4:1351-61. [DOI: 10.1517/17425255.4.10.1351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283:10892-903. [PMID: 18281291 PMCID: PMC2447655 DOI: 10.1074/jbc.m800102200] [Citation(s) in RCA: 1271] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/08/2008] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.
Collapse
Affiliation(s)
- Huafeng Zhang
- Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Genetic and environmental agents that disrupt organogenesis are numerous and well described. Less well established, however, is the role of delay in the developmental processes that yield functionally immature tissues at birth. Evidence is mounting that organs do not continue to develop postnatally in the context of these organogenesis insults, condemning the patient to utilize under-developed tissues for adult processes. These poorly differentiated organs may appear histologically normal at birth but with age may deteriorate revealing progressive or adult-onset pathology. The genetic and molecular underpinning of the proposed paradigm reveals the need for a comprehensive systems biology approach to evaluate the role of maternal-fetal environment on organogenesis."You may delay, but time will not" Benjamin Franklin, USA Founding Father.
Collapse
Affiliation(s)
- J Craig Cohen
- The Brady Laboratory, Section of Neonatology, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
40
|
Rüegg J, Swedenborg E, Wahlström D, Escande A, Balaguer P, Pettersson K, Pongratz I. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor beta-selective coactivator, and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 2007; 22:304-16. [PMID: 17991765 DOI: 10.1210/me.2007-0128] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The biological effects of dioxins are mediated by the aryl hydrocarbon receptor (AhR) and its dimerization partner, the AhR nuclear translocator (ARNT), and include interference with hormonal signaling pathways like the response to estrogens. The effects of estrogens are mediated by two estrogen receptor (ER) isoforms, ERalpha and ERbeta, which belong to the family of nuclear receptors. We have previously shown that ARNT can act as coactivator of the ERs. In this study, we show that recruitment of ARNT to AhR or hypoxia-inducible factor-1alpha signaling pathways as well as small interfering RNA-mediated down-regulation of ARNT levels lead to a reduction in ER transcriptional activity. Using chromatin immunoprecipitation assays, we demonstrate that this decrease coincides with reduced recruitment of ARNT to estradiol-regulated promoters. We show further that coactivation by ARNT as well as inhibition by dioxin acts stronger on ERbeta than on ERalpha activity. Additionally, we demonstrate that the effects of ARNT are dependent on the A/B domain of the ERs with the A/B domain of ERbeta being considerably stronger in mediating the coactivating effects of ARNT. Taken together, our studies show that recruitment of ARNT to the AhR after dioxin treatment can account for the antiestrogenic effect of dioxins. Moreover, we show for the first time that the inhibitory effects of dioxin are more pronounced on ERbeta than on ERalpha.
Collapse
Affiliation(s)
- Joëlle Rüegg
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Hayes KR, Zastrow GM, Nukaya M, Pande K, Glover E, Maufort JP, Liss AL, Liu Y, Moran SM, Vollrath AL, Bradfield CA. Hepatic transcriptional networks induced by exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chem Res Toxicol 2007; 20:1573-81. [PMID: 17949056 DOI: 10.1021/tx7003294] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) serves as a prototype for a range of environmental toxicants and as a pharmacologic probe to study signal transduction by the aryl hydrocarbon receptor (AHR). Despite a detailed understanding of how TCDD exposure leads to the transcriptional up-regulation of cytochrome P450-dependent monooxygenases, we know little about how compounds like TCDD lead to a variety of AHR-dependent toxic end points such as liver pathology, terata, thymic involution, and cancer. Using an acute exposure protocol and the toxic response of the mouse liver as a model system, we have begun a detailed microarray analysis to describe the transcriptional changes that occur after various TCDD doses and treatment times. Through correlation analysis of time- and dose-dependent toxicological end points, we are able to identify coordinately responsive transcriptional events that can be defined as primary transcriptional events and downstream events that may represent mechanistically linked sequelae or that have potential as biomarkers of toxicity.
Collapse
Affiliation(s)
- Kevin R Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Avenue, Madison, Wisconsin 53706-1599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 2007; 211:415-27. [PMID: 17683480 PMCID: PMC2375830 DOI: 10.1111/j.1469-7580.2007.00790.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2007] [Indexed: 01/02/2023] Open
Abstract
It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Research, Anatomy Section, University of Udine, Italy.
| | | | | |
Collapse
|
43
|
Kiriakidis S, Esteban MA, Maxwell PH. Genetic insights into the hypoxia-inducible factor (HIF) pathway. ACTA ACUST UNITED AC 2007; 47:288-306. [PMID: 17335877 DOI: 10.1016/j.advenzreg.2006.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Serafim Kiriakidis
- Renal Laboratory, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|