1
|
Sabei FY, Y Safhi A, Almoshari Y, Salawi A, H Sultan M, Ali Bakkari M, Alsalhi A, A Madkhali O, M Jali A, Ahsan W. Structure-based virtual screening of natural compounds as inhibitors of HCV using molecular docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 42:11574-11585. [PMID: 37776007 DOI: 10.1080/07391102.2023.2263588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
The hepatitis C virus (HCV), which causes hepatitis C, is a viral infection that damages the liver and causes inflammation in the liver. New potentially effective antiviral drugs are required for its treatment owing to various issues associated with the existing medications, including moderate to severe adverse effects, higher costs, and the emergence of drug-resistant strains. The objective of the current study was to utilize computational techniques to assess the anti-HCV efficacy of certain phytochemicals against tetraspanin (CD81) and claudin 1 (CLDN1) entry proteins. A 200-nanosecond molecular dynamics (MD) simulation was employed to examine the stability of the lead-protein complexes. Free binding energy and molecular docking calculations were conducted utilizing MM/GBSA method, and the selectivity of hit compounds for CD81 and CLDN1 was determined. Five significant CD81 and CLDN1 inhibitors were identified: Petasiphenone, Silibinin, Tanshinone IIA, Taxifolin, and Topaquinone. The MM/GBSA analysis of the compounds revealed high free binding energies. All the identified compounds were stable within the CD81 and CLDN1 binding pockets. This study indicated the promising inhibitory potential of the identified compounds against CD81 and CLDN1 receptors and might develop into potential viral entry inhibitors. However, to validate the chemotherapeutic capabilities of the discovered leads extensive preclinical research is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Kamboj S, Rajput A, Rastogi A, Thakur A, Kumar M. Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches. Comput Struct Biotechnol J 2022; 20:3422-3438. [PMID: 35832613 PMCID: PMC9271984 DOI: 10.1016/j.csbj.2022.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5-10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed the "Anti-HCV" platform using machine learning and quantitative structure-activity relationship (QSAR) approaches to predict repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A (495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using a recursive feature elimination algorithm. Different machine learning techniques viz. support vector machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the predictive models. We achieved Pearson's correlation coefficients from 0.80 to 0.92 during 10-fold cross validation and similar performance on independent datasets using the best developed models. The robustness and reliability of developed predictive models were also supported by applicability domain, chemical diversity and decoy datasets analyses. The "Anti-HCV" predictive models were used to identify potential repurposing drugs. Representative candidates were further validated by molecular docking which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naftifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove useful in antiviral drug development against HCV.
Collapse
Affiliation(s)
- Sakshi Kamboj
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Malandris K, Kalopitas G, Theocharidou E, Germanidis G. The Role of RASs /RVs in the Current Management of HCV. Viruses 2021; 13:2096. [PMID: 34696525 PMCID: PMC8539246 DOI: 10.3390/v13102096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The approval of combination therapies with direct-acting antiviral (DAA) regimens has led to significant progress in the field of hepatitis C virus (HCV) treatment. Although most patients treated with these agents achieve a virological cure, resistance to DAAs is a major issue. The rapid emergence of resistance-associated substitutions (RASs), in particular in the context of incomplete drug pressure, has an impact on sustained virological response (SVR) rates. Several RASs in NS3, NS5A and NS5B have been linked with reduced susceptibility to DAAs. RAS vary based on HCV characteristics and the different drug classes. DAA-resistant HCV variant haplotypes (RVs) are dominant in cases of virological failure. Viruses with resistance to NS3-4A protease inhibitors are only detected in the peripheral blood in a time frame ranging from weeks to months following completion of treatment, whereas NS5A inhibitor-resistant viruses may persist for years. Novel agents have been developed that demonstrate promising results in DAA-experienced patients. The recent approval of broad-spectrum drug combinations with a high genetic barrier to resistance and antiviral potency may overcome the problem of resistance.
Collapse
Affiliation(s)
- Konstantinos Malandris
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Kalopitas
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- Second Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (K.M.); (E.T.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
4
|
Martinez MA, Franco S. Therapy Implications of Hepatitis C Virus Genetic Diversity. Viruses 2020; 13:E41. [PMID: 33383891 PMCID: PMC7824680 DOI: 10.3390/v13010041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is an important human pathogen with a high chronicity rate. An estimated 71 million people worldwide are living with chronic hepatitis C (CHC) infection, which carries the risk of progression to hepatic fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Similar to other RNA viruses, HCV has a high rate of genetic variability generated by its high mutation rate and the actions of evolutionary forces over time. There are two levels of HCV genetic variability: intra-host variability, characterized by the distribution of HCV mutant genomes present in an infected individual, and inter-host variability, represented by the globally circulating viruses that give rise to different HCV genotypes and subtypes. HCV genetic diversity has important implications for virus persistence, pathogenesis, immune responses, transmission, and the development of successful vaccines and antiviral strategies. Here we will discuss how HCV genetic heterogeneity impacts viral spread and therapeutic control.
Collapse
Affiliation(s)
- Miguel Angel Martinez
- Miguel Angel Martínez, IrsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | | |
Collapse
|
5
|
Similarities between Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Genetic and Phenotypic Protease Quasispecies Diversity. J Virol 2015; 89:9758-64. [PMID: 26178979 DOI: 10.1128/jvi.01097-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) are two highly variable RNA viruses that cause chronic infections in humans. Although HCV likely preceded the AIDS epidemic by some decades, the global spread of both viruses is a relatively recent event. Nevertheless, HCV global diversity is higher than that of HIV-1. To identify differences in mutant diversity, we compared the HIV-1 protease and HCV NS3 protease quasispecies. Three protease gene quasispecies samples per virus, isolated from a total of six infected patients, were genetically and phenotypically analyzed at high resolution (HIV-1, 308 individual clones; HCV, 299 clones). Single-nucleotide variant frequency did not differ between quasispecies from the two viruses (HIV-1, 2.4 × 10(-3) ± 0.4 × 10(-3); HCV, 2.1 × 10(-3) ± 0.5 × 10(-3)) (P = 0.1680). The proportion of synonymous substitutions to potential synonymous sites was similar (3.667 ± 0.6667 and 2.183 ± 0.9048, respectively) (P = 0.2573), and Shannon's entropy values did not differ between HIV-1 and HCV (0.84 ± 0.02 and 0.83 ± 0.12, respectively) (P = 0.9408). Of note, 65% (HIV-1) and 67% (HCV) of the analyzed enzymes displayed detectable protease activity, suggesting that both proteases have a similar mutational robustness. In both viruses, there was a rugged protease enzymatic activity landscape characterized by a sharp peak, representing the master sequence, surrounded by a collection of diverse variants present at lower frequencies. These results indicate that nucleotide quasispecies diversification during chronic infection is not responsible for the higher worldwide genetic diversity observed in HCV. IMPORTANCE HCV global diversity is higher than that of HIV-1. We asked whether HCV genetic diversification during infection is responsible for the higher worldwide genetic diversity observed in HCV. To this end, we analyzed and compared the genotype and enzymatic activities of HIV-1 and HCV protease quasispecies existing in infected individuals. Our results indicate that HIV-1 and HCV protease quasispecies have very similar genetic diversity and comparable rugged enzymatic activity landscapes. Therapy for HCV has expanded, with new therapeutic agents such as the direct-acting antivirals (DAAs). DAAs, which target HCV NS3 protease and other virus proteins, have improved cure rates. However, major questions remain to be elucidated regarding the virologic correlates of HCV eradication. The findings shown here may help our understanding of the different therapeutic responses observed during chronic HCV infection.
Collapse
|
6
|
Preciado MV, Valva P, Escobar-Gutierrez A, Rahal P, Ruiz-Tovar K, Yamasaki L, Vazquez-Chacon C, Martinez-Guarneros A, Carpio-Pedroza JC, Fonseca-Coronado S, Cruz-Rivera M. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy. World J Gastroenterol 2014; 20:15992-16013. [PMID: 25473152 PMCID: PMC4239486 DOI: 10.3748/wjg.v20.i43.15992] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.
Collapse
|
7
|
Liu G, Cai Q, Li Z, Shao X, Luo Q, Zhang X, Zhao Z. Effect of drug resistance mutations on antiviral agents in HCV patients. Antivir Ther 2014; 21:369-75. [PMID: 25222865 DOI: 10.3851/imp2852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Gene polymorphism of HCV is an important cause of drug resistance to direct-acting antivirals (DAAs). METHODS Nested PCR assays were performed to amplify the HCV viral regions of NS3, NS5A and NS5B. RESULTS Major resistant mutation A156S was found in 18.33% of patients with HCV-1b and 64.28% of patients with HCV-2a. HCV-6a patients had a Q80K mutation rate of 95.45%, while the mutation rate of V170I was up to 100%. Mutation frequency varied with the different genotypes of HCV. The proportion of four resistance mutations (M36L, Q80K, A156S, V170I) in different groups were statistically significant (P<0.05). Resistant mutation Q30R was detected in 116 (72.5%) samples with HCV-1b and -6a, L31M was found in 16 patients, including 12 with HCV-2a and 4 with HCV-6a, H58P was discovered in 42.5% (68/160) of patients with the genotypes Q30R, L31M and H58P; Y93C was found in 9individuals with only HCV-2a. In HCV NS5B sequences, only a few resistant variants were detected, including C316N and S282T. CONCLUSIONS Naturally occurring dominant resistance mutations to HCV DAAs pre-existed in treatment-naive patients in China. Mutation frequency and characteristics varied with the HCV genotype.
Collapse
Affiliation(s)
- Grey Liu
- The Department of Infectious Disease, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Ireton RC, Gale M. Pushing to a cure by harnessing innate immunity against hepatitis C virus. Antiviral Res 2014; 108:156-64. [PMID: 24907428 DOI: 10.1016/j.antiviral.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) causes 350,000 deaths and infects at least 3million people worldwide every year. Currently no vaccine has been developed. Direct-acting antiviral (DAA) drugs with high efficacy for suppressing HCV infection have recently been introduced into the clinic. While DAAs initially required combination therapy with type-1 interferon (IFN) administration for full efficacy and to avoid viral resistance to treatment, new DAA combinations show promise as an IFN-free regimen. However, IFN-free DAA therapy is in its infancy, still to be proven and today is cost-prohibitive for the patient. A major goal in HCV therapy to remove or replace IFN with DAAs or an alternative therapeutic to render virologic response with continued virus sensitivity to DAAs, thus facilitating a cure for infection. Recent advances in our understanding of innate immune responses to HCV have identified new therapeutic targets to combat HCV infection. We discuss how the targeting of innate immune response factors can be harnessed with DAAs to produce new generations of DAA-based HCV therapeutics. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Reneé C Ireton
- Center for the Study of Innate Immunity to Hepatitis C Virus, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, United States.
| | - Michael Gale
- Center for the Study of Innate Immunity to Hepatitis C Virus, Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, United States.
| |
Collapse
|
9
|
Nevot M, Boesecke C, Parera M, Andrés C, Franco S, Revollo B, Ingiliz P, Tural C, Clotet B, Rockstroh JK, Martinez MA. Hepatitis C virus NS3/4A quasispecies diversity in acute hepatitis C infection in HIV-1 co-infected patients. J Viral Hepat 2014; 21:e19-28. [PMID: 24674023 DOI: 10.1111/jvh.12254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The growing number of cases of acute hepatitis C (AHC) infections among human immunodeficiency virus type 1 (HIV-1)-positive men who have sex with men (MSM) in the last 10 years has promoted the search for predictors of AHC clearance as well as for epidemiological networks of viral transmission. We characterized the diversity and catalytic efficiency of HCV NS3/4A protease quasispecies in AHC patients coinfected with HIV-1. Plasma samples obtained at HCV diagnosis from 18 MSM HIV-coinfected patients with AHC were studied. Five HCV monoinfected patient samples with AHC were also investigated. An average of 39 clones from each sample was analysed. The catalytic efficiency of the dominant quasispecies (i.e. the most abundant) from each quasispecies was also assayed for mitochondrial antiviral signalling protein (MAVS) cleavage. Phylogenetic analysis identified two clusters of patients with highly related viruses, suggesting a common source of HCV infection. None of the 18 MSM HIV-coinfected patients spontaneously cleared HCV, although 78% of the treated patients achieved a sustained virological response after early treatment with pegylated interferon (pegIFN) plus ribavirin (RBV). The synonymous-nonsynonymous (ds/dn) mutation ratio, a marker of selective pressure, was higher in AHC compared to 26 HIV-1-infected men with genotype 1a chronic hepatitis C (CHC) (P < 0.0001). NS3/4A proteases from AHC patients also exhibited higher catalytic efficiency compared to CHC patients (P < 0.0001). No differences were found when ds/dn mutation ratios and NS3/4A protease catalytic efficiencies from AHC HIV-coinfected patients were compared with AHC monoinfected patients. The presence of epidemiological networks of HCV transmission was confirmed among HIV-1-positive MSM. In addition, substantial genetic diversity was demonstrated in AHC. NS3/4A protease efficiency cleaving MAVS may be associated with virus transmission and response to pegIFN/RBV treatment.
Collapse
Affiliation(s)
- M Nevot
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
A central question in protein molecular evolution is whether an amino acid that occurs at a given site makes an independent contribution to fitness or whether its contribution depends on other amino acid sites in the protein sequence, a phenomenon known as intragenic epistasis. In the absence of intragenic epistasis, natural selection acts on a protein mutation independent of its genetic background, and the experimentally determined fitness for a mutation should be the same across all genetic backgrounds. We tested this hypothesis by using site-directed mutagenesis to introduce a well-characterized deleterious single amino acid substitution in 56 different hepatitis C virus NS3 protease variants. The catalytic efficiency of the mutated proteases was determined and compared with the corresponding wild-type protein. Fitness effects ranged from lethality to significantly beneficial. Although primarily deleterious and lethal effects were observed (41 and 5 out of 56 tested variants, respectively), deleterious effects ranged from near neutral (-26.7% reduction of fitness) to near lethal (-98.5%). Our findings demonstrate that the introduced amino acid substitution has different fitness effects in different protein variants and provide independent support for the relevant role of intragenic epistasis in protein evolution.
Collapse
Affiliation(s)
- Mariona Parera
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miguel Angel Martinez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
11
|
|
12
|
Paolucci S, Fiorina L, Piralla A, Gulminetti R, Novati S, Barbarini G, Sacchi P, Gatti M, Dossena L, Baldanti F. Naturally occurring mutations to HCV protease inhibitors in treatment-naïve patients. Virol J 2012; 9:245. [PMID: 23095680 PMCID: PMC3493344 DOI: 10.1186/1743-422x-9-245] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 10/18/2012] [Indexed: 01/09/2023] Open
Abstract
Background Protease inhibitors (PIs) to treat hepatitis C (HCV) virus infection have been approved and others are under development. Results The aims of this study were to illustrate natural polymorphisms in the HCV protease and measure the frequency of PI resistance mutations in different HCV genotypes from PI-naïve patients. Direct sequencing of HCV NS3/4A protease was performed in 156 HCV patients naïve to PIs who were infected with genotype 1a (n = 31), 1b (n = 39), 2 (n = 30), 3 (n = 33) and 4 (n = 23). Amino acid (aa) substitutions associated with HCV PI resistance were found in 17/156 (10.8%) sequences. Mutations V36L, T54S, V55A/I, and Q80K/L were observed in 29% of patients with genotype 1a, and V55F, Q80L/N and M175L in 10% of patients with genotype 1b. The mutation V158M was found in 3% of patients with genotype 2, D168Q was present in 100% of patients with genotype 3 and D168E was observed in 13% of patients with genotype 4. In addition, multiple aa polymorphisms not associated with PI resistance were detected in patients with genotypes 1a, 1b and 4. Conclusions Although major PI resistance mutations were not detected, other resistance mutations conferring low level resistance to PIs together with a number of natural polymorphisms were observed in proteases of PI naïve HCV patients. A more extensive analysis is needed to better evaluate the impact of baseline resistance and compensatory mutations in the efficacy of HCV PI treatment.
Collapse
Affiliation(s)
- Stefania Paolucci
- Molecular Virology Unit, Virology and Microbiology Department, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Canine hepacivirus NS3 serine protease can cleave the human adaptor proteins MAVS and TRIF. PLoS One 2012; 7:e42481. [PMID: 22870331 PMCID: PMC3411667 DOI: 10.1371/journal.pone.0042481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/05/2012] [Indexed: 01/28/2023] Open
Abstract
Canine hepacivirus (CHV) was recently identified in domestic dogs and horses. The finding that CHV is genetically the virus most closely related to hepatitis C virus (HCV) has raised the question of whether HCV might have evolved as the result of close contact between dogs and/or horses and humans. The aim of this study was to investigate whether the NS3/4A serine protease of CHV specifically cleaves human mitochondrial antiviral signaling protein (MAVS) and Toll-IL-1 receptor domain-containing adaptor inducing interferon-beta (TRIF). The proteolytic activity of CHV NS3/4A was evaluated using a bacteriophage lambda genetic screen. Human MAVS- and TRIF-specific cleavage sites were engineered into the lambda cI repressor. Upon infection of Escherichia coli cells coexpressing these repressors and a CHV NS3/4A construct, lambda phage replicated up to 2000-fold more efficiently than in cells expressing a CHV protease variant carrying the inactivating substitution S139A. Comparable results were obtained when several HCV NS3/4A constructs of genotype 1b were assayed. This indicates that CHV can disrupt the human innate antiviral defense signaling pathway and suggests a possible evolutionary relationship between CHV and HCV.
Collapse
|
14
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
15
|
Tong J, Wang YW, Lu YA. New developments in small molecular compounds for anti-hepatitis C virus (HCV) therapy. J Zhejiang Univ Sci B 2012; 13:56-82. [PMID: 22205621 DOI: 10.1631/jzus.b1100120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Infection with hepatitis C virus (HCV) affects approximately 170 million people worldwide. However, no vaccine or immunoglobulin is currently available for the prevention of HCV infection. The standard of care (SOC) involving pegylated interferon-α (PEG-IFN α) plus ribavirin (RBV) for 48 weeks results in a sustained virologic response in less than 50% of patients with chronic hepatitis C genotype 1, the most prevalent type of HCV in North America and Europe. Recently, reliable in vitro culture systems have been developed for accelerating antiviral therapy research, and many new specifically targeted antiviral therapies for hepatitis C (STAT-C) and treatment strategies are being evaluated in clinical trials. These new antiviral agents are expected to improve present treatment significantly and may potentially shorten treatment duration. The aim of this review is to summarize the current developments in new anti-HCV drugs.
Collapse
Affiliation(s)
- Jing Tong
- Department of Public Health Sciences, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
16
|
Abstract
The first direct-acting antivirals (DAAs) have recently been approved for the treatment of chronic HCV infection. These molecules interact with different HCV proteins, including NS3/4A protease, NS5B polymerase and NS5A. Several compounds belonging to distinct drug families are in the advanced stages of clinical development. Whereas most DAAs have demonstrated a potent antiviral activity against HCV, emergence of drug resistance represents a huge challenge with almost all of these drugs. The use of combination therapy greatly increases the chances of achieving rapid and complete viral suppression, preventing selection of DAA resistance. Drug resistance mutations and pathways differ according to antiviral agents and HCV genotypes/subtypes. HCV subtype 1a displays a uniformly lower barrier to resistance than HCV subtype 1b when confronting most HCV protease inhibitors, NS5B non-nucleoside inhibitors and NS5A inhibitors. Broad cross-resistance exists between drugs belonging to the same family, except for NS5B non-nucleoside analogs that may exhibit at least four distinct drug resistance profiles. Second-generation inhibitors are in development that may overcome the reduced susceptibility caused by single mutations. The large genetic variability of HCV suggests that some drug resistance changes may exist as natural polymorphisms in certain HCV geno/subtypes at rates that may require the consideration drug resistance testing before recommending certain antivirals.
Collapse
Affiliation(s)
- Eva Poveda
- Department of Infectious Diseases, Hospital Carlos III, Calle Sinesio Delgado 10, Madrid 28029, Spain
| | - Vincent Soriano
- Department of Infectious Diseases, Hospital Carlos III, Calle Sinesio Delgado 10, Madrid 28029, Spain
| |
Collapse
|
17
|
Halfon P, Locarnini S. Hepatitis C virus resistance to protease inhibitors. J Hepatol 2011; 55:192-206. [PMID: 21284949 DOI: 10.1016/j.jhep.2011.01.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022]
Abstract
Recent advances in molecular biology have led to the development of novel small molecules that target specific viral proteins of the hepatitis C virus (HCV) life cycle. These drugs, collectively termed directly acting antivirals (DAA) against HCV, include a range of non-structural (NS) 3/NS4A protease, NS5B polymerase, and NS5A inhibitors at various stages of clinical development. The rapid replication rate of HCV, along with the low fidelity of its polymerase, gives rise to generations of mutations throughout the viral genome resulting in remarkable sequence variation in the HCV population, known as a quasispecies. The efficacy of DAAs is limited by the presence of those mutations that give rise to amino-acid substitutions within the targeted protein, and that affect the viral sensitivity to these compounds. Thus, due to the high genetic variability of HCV, variants with reduced susceptibility to DAA can occur naturally even before treatment begins, but usually at low levels. Not surprisingly then, these changes are selected in patients either breaking through or not responding to potent DAA treatment. In vitro or in vivo, six major position mutations in the NS3 HCV protease (36, 54, 155, 156, 168, and 170) have now been reported associated with different levels of resistance. The amino acid composition at several of the drug resistance sites can vary between the HCV genotypes/subtypes, resulting in different consensus amino acids leading to a reduction in replicative fitness as well as reduced DAA sensitivity. Different amino acid diversity profiles for HCV genotypes/subtypes suggest differences in the position/type of immune escape and drug resistance mutations. Also, different pathways of resistance profiles based on the chemical scaffold (linear or macrocyclic) of the protease inhibitors have been described. This review first describes how resistance to a protease inhibitor can develop and then provides an overview of the mechanism of how particular mutations confer varying levels of resistance to protease inhibitor, which have been identified and characterized using both genotypic and phenotypic tools. Future potential therapeutic strategies to assist patients who do develop resistance to protease inhibitors are also outlined. The challenge developing new HCV protease inhibitors should take into consideration not only the antiviral potency of the drugs, the occurrence and importance of side effects, the frequency of oral administration, but also the resistance profiles of these agents.
Collapse
Affiliation(s)
- Philippe Halfon
- Virological Departement Laboratoire Alphabio, Hôpital Ambroise Paré, Marseille, France.
| | | |
Collapse
|
18
|
Complexity and catalytic efficiency of hepatitis C virus (HCV) NS3 and NS4A protease quasispecies influence responsiveness to treatment with pegylated interferon plus ribavirin in HCV/HIV-coinfected patients. J Virol 2011; 85:5961-9. [PMID: 21471227 DOI: 10.1128/jvi.00308-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the hepatitis C virus (HCV) NS3/4A protease in ablating the signaling pathway involved in the production of alpha/beta interferon (IFN-α/β) suggests a relationship between NS3/4A proteolytic activity and a patient's response to IFN-based therapy. To identify viral factors associated with the HCV treatment response, we analyzed the pretreatment NS3/4A protease gene quasispecies composition of 56 HCV genotype 1-HIV-1-coinfected patients treated in our clinic with pegylated IFN (pegIFN) plus ribavirin (RBV). The catalytic efficiency of the dominant (i.e., the most abundant) quasispecies was also assayed for Cardif cleavage and correlated with treatment outcome. A total of 1,745 clones were isolated and sequenced. Significantly less nucleotide quasispecies heterogeneity and lower Shannon entropy values were detected within the responder group (P < 0.05). A correlation was also found between the efficiency of NS3/4A protease Cardif cleavage and therapy outcome. Proteases from sustained responder patients were more efficient at processing Cardif (mean ± standard error of the mean [SEM], 0.8960 ± 0.05568; n = 19) than proteases from nonresponders (mean ± SEM, 0.7269 ± 0.05306; n = 37; P < 0.05). Finally, the amino acid p distance (the proportion [p] of nucleotide sites at which two sequences being compared are different) was significantly shorter in patients with an interleukin-28B (IL-28B) risk allele (P < 0.01), suggesting that IL-28B risk allele carriers exert a lower positive selection pressure on the NS3/4A protease. NS3/4A protease efficiency in cleaving Cardif may be associated with the pegIFN-RBV treatment response, as shown in our cohort of HIV-HCV-coinfected patients. Greater NS3/4A nucleotide heterogeneity and higher Shannon entropy values in nonresponders suggest that less HCV quasispecies complexity may favor a better response to pegIFN-RBV.
Collapse
|
19
|
Aparicio E, Parera M, Franco S, Pérez-Alvarez N, Tural C, Clotet B, Martínez MA. IL28B SNP rs8099917 is strongly associated with pegylated interferon-α and ribavirin therapy treatment failure in HCV/HIV-1 coinfected patients. PLoS One 2010; 5:e13771. [PMID: 21048934 PMCID: PMC2966433 DOI: 10.1371/journal.pone.0013771] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022] Open
Abstract
Recent genome-wide association studies report that the SNP rs8099917, located 8.9 kb upstream of the start codon of IL28B, is associated with both disease chronicity and therapeutic response to pegIFN-α and RBV in patients infected with genotype 1 HCV. To determine the effect of rs8099917 variation on the response of HCV to therapy, we genotyped this variant in a cohort of 160 HCV/HIV-1 coinfected patients in our clinic unit who received combined peg-IFN-α/RBV therapy. The rs8099917 T/G or G/G genotypes were observed in 56 patients (35%). Treatment failure occurred in 80% of G-allele carriers versus 48% of non-carriers (P<0.0001). This result reveals that the G allele was strongly associated with treatment failure in this patient cohort. Importantly, a highly significant association was found between the G-allele and response to therapy in HCV genotype 1-infected patients (P<0.0001) but not in HCV genotype 3-infected patients. Multivariate analysis (odds ratio; 95% confidence interval; P value) indicated that the rs8099917 TT genotype was a strong predictor of treatment success (5.83; 1.26-26.92; P = 0.021), independent of baseline plasma HCV-RNA load less than 500 000 IU/ml (4.85; 1.18-19.95; P = 0.025) and absence of advanced liver fibrosis (5.24; 1.20-22.91; P = 0.025). These results reveal the high prevalence of the rs8099917 G allele in HCV/HIV-1 coinfected patients as well as its strong association with treatment failure in HCV genotype 1-infected patients. rs8099917 SNP genotyping may be a valid pre-treatment predictor of which patients are likely to respond to treatment in this group of difficult-to-treat HCV/HIV-infected patients.
Collapse
Affiliation(s)
- Ester Aparicio
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Mariona Parera
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Sandra Franco
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Nuria Pérez-Alvarez
- Fundació de la Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Statistics and Operations Research Department, Technical University of Catalonia, Barcelona, Spain
| | - Cristina Tural
- Fundació de la Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona (UAB), Badalona, Barcelona, Spain
- Fundació de la Lluita contra la Sida, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona (UAB), Badalona, Barcelona, Spain
| |
Collapse
|
20
|
Leontiev V, Hadany L. Regulated superinfection may help HIV adaptation on rugged landscape. INFECTION GENETICS AND EVOLUTION 2010; 10:505-10. [DOI: 10.1016/j.meegid.2010.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|
21
|
Rodrigue-Gervais IG, Rigsby H, Jouan L, Sauvé D, Sékaly RP, Willems B, Lamarre D. Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:3134-44. [PMID: 20173023 DOI: 10.4049/jimmunol.0902522] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although chronic viral infections have evolved mechanisms to interfere with aspects of pathogen recognition by dendritic cells (DCs), the role that these APCs play in virus-specific T cell exhaustion is unclear. Herein we report that NS3-dependent suppression of Toll/IL-1 domain-containing adapter-inducing IFN-beta- and IFN-beta promoter stimulator-1- but not MyD88-coupled pathogen-recognition receptor-induced synthesis of proinflammatory cytokines (IL-12 and TNF-alpha) from DCs by hepatitis C virus (HCV) is a distinctive feature of a subgroup of chronically infected patients. The result is decreased CD8(+) T cell polyfunctional capacities (production of IFN-gamma, IL-2, TNF-alpha, and CD107a mobilization) that is confined to HCV specificities and that relates to the extent to which HCV inhibits DC responses in infected subjects, despite comparable plasma viral load, helper T cell environments, and inhibitory programmed death 1 receptor/ligand signals. Thus, subjects in whom pathogen-recognition receptor signaling in DCs was intact exhibited enhanced polyfunctionality (i.e., IL-2-secretion and CD107a). In addition, differences between HCV-infected patients in the ability of CD8(+) T cells to activate multiple functions in response to HCV did not apply to CD8(+) T cells specific for other immune-controlled viruses (CMV, EBV, and influenza). Our findings identify reversible virus evasion of DC-mediated innate immunity as an additional important factor that impacts the severity of polyfunctional CD8(+) T cell exhaustion during a chronic viral infection.
Collapse
Affiliation(s)
- Ian Gaël Rodrigue-Gervais
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Unfinished stories on viral quasispecies and Darwinian views of evolution. J Mol Biol 2010; 397:865-77. [PMID: 20152841 DOI: 10.1016/j.jmb.2010.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/22/2022]
Abstract
Experimental evidence that RNA virus populations consist of distributions of mutant genomes, termed quasispecies, was first published 31 years ago. This work provided the earliest experimental support for a theory to explain a system that replicated with limited fidelity and to understand the self-organization and adaptability of early life forms on Earth. High mutation rates and quasispecies dynamics of RNA viruses are intimately related to both viral disease and antiviral treatment strategies. Moreover, the quasispecies concept is being applied to other biological systems such as cancer research in which cellular mutant spectra can be also detected. This review addresses some of the unanswered questions regarding viral and theoretical quasispecies concepts as well as more practical aspects concerning resistance to antiviral treatments and pathogenesis.
Collapse
|
23
|
Suzuki F, Suzuki Y, Akuta N, Sezaki H, Yatsuji H, Arase Y, Hirakawa M, Kawamura Y, Hosaka T, Kobayashi M, Saito S, Ikeda K, Kobayashi M, Watahiki S, Mineta R, Iwasaki S, Kumada H. Sustained virological response in a patient with chronic hepatitis C treated by monotherapy with the NS3-4A protease inhibitor telaprevir. J Clin Virol 2009; 47:76-8. [PMID: 19857995 DOI: 10.1016/j.jcv.2009.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/10/2009] [Accepted: 09/25/2009] [Indexed: 01/21/2023]
Abstract
Here, we describe for the first time a case of sustained virological response (SVR) achieved in a patient with chronic hepatitis C (CH-C) by monotherapy with a NS3-4A protease inhibitor, telaprevir, without interferon therapy. A 59-year-old treatment-naïve Japanese man was enrolled in a phase II trial of telaprevir by repeat oral administration at a dose of 750mg every 8h for 24 weeks. At the start of treatment, he exhibited a low-level viremia with genotype 1b of the hepatitis C virus (HCV). After the first week of treatment with telaprevir, serum HCV RNA was undetectable, and negativity remained until the end of treatment. Moreover, he was evaluated as having a SVR after the post-treatment 24-week follow-up program. Two characteristics may explain the strong antiviral activity of telaprevir in the present case. First, although pre-treatment PCR-direct sequencing and cloning for the N-terminal in the NS3 region showed a protease inhibitor-resistant variant (T54A) in 1 of 32 independent clones, the T54A substitution has only a low-level resistance to protease inhibitors and his viral load was low. Second, when compared to a consequence sequence of 35 treatment-naïve patients with HCV genotype 1b, R130K and Q195K substitutions were unique to the present case. Although it is presently unknown whether the R130K and Q195K substitutions are related to SVR, this case suggests that long-term telaprevir monotherapy may be effective in CH-C patients with genotype 1 and a low viral load.
Collapse
Affiliation(s)
- Fumitaka Suzuki
- Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim AY, Timm J. Resistance mechanisms in HCV: from evolution to intervention. Expert Rev Anti Infect Ther 2008; 6:463-78. [PMID: 18662114 DOI: 10.1586/14787210.6.4.463] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in our understanding of the HCV life cycle and the functions of virally encoded proteins enabled the development of specifically targeted antiviral therapies for HCV, which directly inhibit HCV replication. Early clinical trials show great efficacy; however, from the first trials it became evident that, similar to HIV and HBV, selection of resistant variants will be problematic. Error-prone replication of HCV, resulting in a complex quasispecies population within each infected individual, enables rapid adaptation to changing environments. In this review, the evolutionary mechanisms involved in the selection process resulting in drug resistance are discussed. We give an overview of the resistance profiles to recently developed HCV protease and polymerase inhibitors and discuss potential implications for future treatment developments.
Collapse
Affiliation(s)
- Arthur Y Kim
- Partners AIDS Research Center, Massachusetts General Hospital/Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
25
|
Mapping Natural Polymorphisms of Hepatitis C virus NS3/4A Protease and Antiviral Resistance to Inhibitors in Worldwide Isolates. Antivir Ther 2008. [DOI: 10.1177/135965350801300413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Several inhibitors for the hepatitis C virus (HCV) NS3/4A protease are under development. Although previous studies identified viral resistance mutations, there is little information on the natural variability of proteases from the different viral subtypes. Here, we aimed to determine both the natural variability and presence of resistance or compensatory mutations to new protease inhibitors (PI) in NS3/4A proteases from worldwide HCV isolates. Methods A comprehensive analysis was performed in 380 HCV NS3 sequences (275 genotype 1; 105 other genotypes) from public HCV databases (EuHCVdb and Los Alamos). Amino acid polymorphism and signature patterns were deduced in the protease domain, including all sites associated with resistance to the PIs BILN-2061, Telaprevir (VX-950), Boceprevir (SCH-503034), SCH-6 and ITMN-191. Results Few of the residues in the catalytic triad or in substrate/metal-binding sites were polymorphic, and were identified in only 4/380 isolates. However, a relevant polymorphism was found in sites associated either with resistance to PI (V36, I170 and D168) or with compensatory mutations (I71, T72, Q86 and I153). Furthermore, some unique genotype-specific signature patterns associated with resistance to PI were also identified. Conclusions We describe for the first time the relevant natural polymorphisms of the HCV NS3/4A protease in worldwide isolates. Although the prevalence of major resistance mutations is very low, many compensatory sites are naturally polymorphic among proteases from several HCV subtypes. These data will help to determine whether HCV resistance is likely to be selected with new PIs and will aid the design of genotypic resistance testing.
Collapse
|
26
|
The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors. Antimicrob Agents Chemother 2008; 52:1604-12. [PMID: 18285474 DOI: 10.1128/aac.01317-07] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Specific inhibitors of hepatitis C virus (HCV) replication that target the NS3/4A protease (e.g., VX-950) or the NS5B polymerase (e.g., R1479/R1626, PSI-6130/R7128, NM107/NM283, and HCV-796) have advanced into clinical development. Treatment of patients with VX-950 or HCV-796 rapidly selected for drug-resistant variants after a 14-day monotherapy treatment period. However, no viral resistance was identified after monotherapy with R1626 (prodrug of R1479) or NM283 (prodrug of NM107) after 14 days of monotherapy. Based upon the rapid selection of resistance to the protease and nonnucleoside inhibitors during clinical trials and the lack of selection of resistance to the nucleoside inhibitors, we used the replicon system to determine whether nucleoside inhibitors demonstrate a higher genetic barrier to resistance than protease and nonnucleoside inhibitors. Treatment of replicon cells with nucleoside inhibitors at 10 and 15 times the 50% effective concentration resulted in clearance of the replicon, while treatment with a nonnucleoside or protease inhibitor selected resistant colonies. In combination, the presence of a nucleoside inhibitor reduced the frequency of colonies resistant to the other classes of inhibitors. These results indicate that the HCV replicon presents a higher barrier to the selection of resistance to nucleoside inhibitors than to nonnucleoside or protease inhibitors. Furthermore, the combination of a nonnucleoside or protease inhibitor with a nucleoside polymerase inhibitor could have a clear clinical benefit through the delay of resistance emergence.
Collapse
|
27
|
Franco S, Clotet B, Martínez MA. A wide range of NS3/4A protease catalytic efficiencies in HCV-infected individuals. Virus Res 2008; 131:260-70. [DOI: 10.1016/j.virusres.2007.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/29/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
|