1
|
Ghosh S, Ganguly A, Habib M, Shin BC, Thamotharan S, Andersson S, Devaskar SU. Hepatic and Pancreatic Cellular Response to Early Life Nutritional Mismatch. Endocrinology 2025; 166:bqaf007. [PMID: 39823439 PMCID: PMC11815087 DOI: 10.1210/endocr/bqaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric-restricted rats with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate, we investigated male and female IUGR-HFhf and IUGR-high carbohydrate, vs HFhf and control offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, and hepatomegaly with hepatic steatosis. Male hepatic triglyceride synthesis, de novo lipogenesis genes increased, while female lipolysis, β-oxidation, fatty acid efflux, and FGF21 genes increased. IUGR-HFhf males demonstrated reduced β-islet insulin and humanin, and type 1 diabetes mellitus human amniotic fluid increased humanin. Humanin suppression disabled glucose stimulated insulin, ATP production, with apoptotic diminished β-islet viability. Humanin and FGF21 may reverse perinatal nutritional mismatched phenotype by restoring functional β islets and preventing metabolic dysfunction-associated steatotic liver disease and diabetes mellitus.
Collapse
Affiliation(s)
- Shubhamoy Ghosh
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Amit Ganguly
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Manal Habib
- Division of Endocrinology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Shanthie Thamotharan
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| | - Sture Andersson
- Department of Pediatrics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Sherin U Devaskar
- Division of Neonatology & Developmental Biology, Department of Pediatrics, UCLA Children’s Discovery & Innovation Institute at the David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752, USA
| |
Collapse
|
2
|
Zhu L, Litts B, Wang Y, Rein JA, Atzrodt CL, Chinnarasu S, An J, Thorson AS, Xu Y, Stafford JM. Ablation of IFNγ in myeloid cells suppresses liver inflammation and fibrogenesis in mice with hepatic small heterodimer partner (SHP) deletion. Mol Metab 2024; 83:101932. [PMID: 38589002 PMCID: PMC11035112 DOI: 10.1016/j.molmet.2024.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common complication of obesity and, in severe cases, progresses to metabolic dysfunction-associated steatohepatitis (MASH). Small heterodimer partner (SHP) is an orphan member of the nuclear receptor superfamily and regulates metabolism and inflammation in the liver via a variety of pathways. In this study, we investigate the molecular foundation of MASH progression in mice with hepatic SHP deletion and explore possible therapeutic means to reduce MASH. METHODS Hepatic SHP knockout mice (SHPΔhep) and their wild-type littermates (SHPfl/fl) of both sexes were fed a fructose diet for 14 weeks and subjected to an oral glucose tolerance test. Then, plasma lipids were determined, and liver lipid metabolism and inflammation pathways were analyzed with immunoblotting, RNAseq, and qPCR assays. To explore possible therapeutic intersections of SHP and inflammatory pathways, SHPΔhep mice were reconstituted with bone marrow lacking interferon γ (IFNγ-/-) to suppress inflammation. RESULTS Hepatic deletion of SHP in mice fed a fructose diet decreased liver fat and increased proteins for fatty acid oxidation and liver lipid uptake, including UCP1, CPT1α, ACDAM, and SRBI. Despite lower liver fat, hepatic SHP deletion increased liver inflammatory F4/80+ cells and mRNA levels of inflammatory cytokines (IL-12, IL-6, Ccl2, and IFNγ) in both sexes and elevated endoplasmic reticulum stress markers of Cox2 and CHOP in female mice. Liver bulk RNAseq data showed upregulation of genes whose protein products regulate lipid transport, fatty acid oxidation, and inflammation in SHPΔhep mice. The increased inflammation and fibrosis in SHPΔhep mice were corrected with bone marrow-derived IFNγ-/- myeloid cell transplantation. CONCLUSION Hepatic deletion of SHP improves fatty liver but worsens hepatic inflammation possibly by driving excess fatty acid oxidation, which is corrected by deletion of IFNγ specifically in myeloid cells. This suggests that hepatic SHP limits fatty acid oxidation during fructose diet feeding but, in doing so, prevents pro-MASH pathways. The IFNγ-mediated inflammation in myeloid cells appears to be a potential therapeutic target to suppress MASH.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Bridget Litts
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey A Rein
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | | | | | - Julia An
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA
| | - Ariel S Thorson
- Department of Molecular Physiology & Biophysics, Vanderbilt University, USA
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John M Stafford
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, USA.
| |
Collapse
|
3
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Lee YK, Park JE, Lee M, Mifflin R, Xu Y, Novak R, Zhang Y, Hardwick JP. Deletion of hepatic small heterodimer partner ameliorates development of nonalcoholic steatohepatitis in mice. J Lipid Res 2023; 64:100454. [PMID: 37827334 PMCID: PMC10665942 DOI: 10.1016/j.jlr.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.
Collapse
Affiliation(s)
- Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Jung Eun Park
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Mikang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ryan Mifflin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Robert Novak
- Department of Pathology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
5
|
Qin D, Wang R, Ji J, Wang D, Lu Y, Cao S, Chen Y, Wang L, Chen X, Zhang L. Hepatocyte-specific Sox9 knockout ameliorates acute liver injury by suppressing SHP signaling and improving mitochondrial function. Cell Biosci 2023; 13:159. [PMID: 37649095 PMCID: PMC10468867 DOI: 10.1186/s13578-023-01104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND AND AIMS Sex determining region Y related high-mobility group box protein 9 (Sox9) is expressed in a subset of hepatocytes, and it is important for chronic liver injury. However, the roles of Sox9+ hepatocytes in response to the acute liver injury and repair are poorly understood. METHODS In this study, we developed the mature hepatocyte-specific Sox9 knockout mouse line and applied three acute liver injury models including PHx, CCl4 and hepatic ischemia reperfusion (IR). Huh-7 cells were subjected to treatment with hydrogen peroxide (H2O2) in order to induce cellular damage in an in vitro setting. RESULTS We found the positive effect of Sox9 deletion on acute liver injury repair. Small heterodimer partner (SHP) expression was highly suppressed in hepatocyte-specific Sox9 deletion mouse liver, accompanied by less cell death and more cell proliferation. However, in mice with hepatocyte-specific Sox9 deletion and SHP overexpression, we observed an opposite phenotype. In addition, the overexpression of SOX9 in H2O2-treated Huh-7 cells resulted in an increase in cytoplasmic SHP accumulation, accompanied by a reduction of SHP in the nucleus. This led to impaired mitochondrial function and subsequent cell death. Notably, both the mitochondrial dysfunction and cell damage were reversed when SHP siRNA was employed, indicating the crucial role of SHP in mediating these effects. Furthermore, we found that Sox9, as a vital transcription factor, directly bound to SHP promoter to regulate SHP transcription. CONCLUSIONS Overall, our findings unravel the mechanism by which hepatocyte-specific Sox9 knockout ameliorates acute liver injury via suppressing SHP signaling and improving mitochondrial function. This study may provide a new treatment strategy for acute liver injury in future.
Collapse
Affiliation(s)
- Dan Qin
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Wang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jinwei Ji
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Duo Wang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuanyuan Lu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiyao Cao
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing, 100853, China
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Masschelin PM, Saha P, Ochsner SA, Cox AR, Kim KH, Felix JB, Sharp R, Li X, Tan L, Park JH, Wang L, Putluri V, Lorenzi PL, Nuotio-Antar AM, Sun Z, Kaipparettu BA, Putluri N, Moore DD, Summers SA, McKenna NJ, Hartig SM. Vitamin B2 enables regulation of fasting glucose availability. eLife 2023; 12:e84077. [PMID: 37417957 PMCID: PMC10328530 DOI: 10.7554/elife.84077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.
Collapse
Affiliation(s)
- Peter M Masschelin
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Pradip Saha
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Aaron R Cox
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Kang Ho Kim
- Department of Anesthesiology, University of Texas Health Sciences CenterHoustonUnited States
| | - Jessica B Felix
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Robert Sharp
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Xin Li
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Liping Wang
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | | | - Zheng Sun
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of UtahSalt Lake CityUnited States
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Sean M Hartig
- Department of Diabetes, Endocrinology, and Metabolism, Baylor College of MedicineHoustonUnited States
- Department of Medicine, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
7
|
Zhou LM, Fan JH, Xu MM, Xiong MY, Wang QJ, Chai X, Li XD, Li XG, Ye XL. Epiberberine regulates lipid synthesis through SHP (NR0B2) to improve non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166639. [PMID: 36638873 DOI: 10.1016/j.bbadis.2023.166639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Epiberberine (EPI), extracted from Rhizome Coptidis, has been shown to attenuate hyperlipidemia in vivo. Herein we have studied the mechanism by which EPI is active against non-alcoholic steatohepatitis (NASH) using, mice fed on a methionine- and choline-deficient (MCD) diet and HepG2 cells exposed to free fatty acids (FFA). We show that small heterodimer partner (SHP) protein is key in the regulation of lipid synthesis. In HepG2 cells and in the livers of MCD-fed mice, EPI elevated SHP levels, and this was accompanied by a reduction in sterol regulatory element-binding protein-1c (SREBP-1c) and FASN. Therefore, EPI reduced triglyceride (TG) accumulation in steatotic hepatocytes, even in HepG2 cells treated with siRNA-SHP, and also improved microbiota. Thus, EPI suppresses hepatic TG synthesis and ameliorates liver steatosis by upregulating SHP and inhibiting the SREBP1/FASN pathway, and improves gut microbiome.
Collapse
Affiliation(s)
- Li-Ming Zhou
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Hua Fan
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min-Min Xu
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Meng-Yuan Xiong
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qiao-Jiao Wang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue Chai
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiao-Duo Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue-Gang Li
- School of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400716, China.
| | - Xiao-Li Ye
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Fang W, Chen Q, Cui K, Chen Q, Li X, Xu N, Mai K, Ai Q. Lipid overload impairs hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in large yellow croaker (Larimichthys crocea). Free Radic Biol Med 2021; 172:213-225. [PMID: 34116177 DOI: 10.1016/j.freeradbiomed.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023]
Abstract
Lipid overload-induced hepatic steatosis is a major public health problem worldwide. However, the potential molecular mechanism is not completely understood. Herein, we found that high-fat diet (HFD) or oleic acid (OA) treatment induced oxidative stress which prevented the entry of hepatocyte nuclear factor 4 alpha (HNF4α) into the nucleus by activating protein kinase C delta (PKCδ) in vivo and in vitro in large yellow croaker (Larimichthys crocea). This reduced the level of microsomal triglyceride transfer protein (MTP) transcription, resulting in the impaired secretion of very-low-density lipoprotein (VLDL) and the abnormal accumulation of triglyceride (TG) in hepatocytes. Meanwhile, the detrimental effects induced by lipid overload could be partly alleviated by pretreating hepatocytes with Go6983 (PKCδ inhibitor) or N-acetylcysteine (NAC, reactive oxygen species (ROS) scavenger). In conclusion, for the first time, we revealed that lipid overload impaired hepatic VLDL secretion via oxidative stress-mediated PKCδ-HNF4α-MTP pathway in fish. This study may provide critical insights into potential intervention strategies against lipid overload-induced hepatic steatosis of fish and human beings.
Collapse
Affiliation(s)
- Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K, Samarghandian S. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 2021; 188:52-61. [PMID: 34364937 DOI: 10.1016/j.ijbiomac.2021.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Sirtuin-1 (SIRT1) as a NAD + -dependent Class III protein deacetylase, involves in longevity and various cellular physiological processes. SIRT1 via deacetylating transcription factors regulates cell growth, inflammation, metabolism, hypoxic responses, cell survival, senescence, and aging. MicroRNAs (miRNAs) are short non-coding RNAs that modulate the expression of target genes in a post-transcriptional manner. Recent investigations have exhibited that miRNAs have an important role in regulating cell growth, development, stress responses, tumor formation and suppression, cell death, and aging. In the present review, we summarize recent findings about the roles of miRNAs in regulating SIRT1 and SIRT1-associated signaling cascade and downstream effects, like apoptosis and aging. Here we introduce and discuss how activity and expression of SIRT1 are modulated by miRNAs and further review the therapeutic potential of targeting miRNAs for age-associated diseases that involve SIRT1 dysfunction. Although at its infancy, research on the roles of miRNAs in aging and their function through modulating SIRT1 may provide new insights in deciphering the key molecular pathways related to aging and age-associated disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Faezeh Sahebdel
- Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, Division of epidemiology, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
10
|
Clifford BL, Sedgeman LR, Williams KJ, Morand P, Cheng A, Jarrett KE, Chan AP, Brearley-Sholto MC, Wahlström A, Ashby JW, Barshop W, Wohlschlegel J, Calkin AC, Liu Y, Thorell A, Meikle PJ, Drew BG, Mack JJ, Marschall HU, Tarling EJ, Edwards PA, de Aguiar Vallim TQ. FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab 2021; 33:1671-1684.e4. [PMID: 34270928 PMCID: PMC8353952 DOI: 10.1016/j.cmet.2021.06.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.
Collapse
Affiliation(s)
- Bethan L Clifford
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Leslie R Sedgeman
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Lipidomics Core Facility, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Pauline Morand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Angela Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alvin P Chan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Madelaine C Brearley-Sholto
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Annika Wahlström
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julianne W Ashby
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anna C Calkin
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yingying Liu
- Lipid Metabolism & Cardiometabolic Disease Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Anders Thorell
- Karolinska Institutet, Department of Clinical Science, Danderyd Hospital and Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Brian G Drew
- Central Clinical School, Monash University, Melbourne, VIC, Australia; Molecular Metabolism & Ageing Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Peter A Edwards
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
11
|
Combination Treatment of Arazyme and Soy Leaf Extract Attenuates Hyperglycemia and Hepatic Steatosis in High-Fat Diet-Fed C57BL/6J Mice. Life (Basel) 2021; 11:life11070645. [PMID: 34357017 PMCID: PMC8304291 DOI: 10.3390/life11070645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Arazyme and extracts of soy leaves (ESLs) are used as ingredients for functional foods; however, their combined administration has not been studied. This study assessed the combined effect of Arazyme and ESLs in high-fat-diet (HFD)-induced obese C57BL/6J mice fed 2 mg/kg Arazyme, 50 mg/kg ESLs, or a combination of 2 mg/kg Arazyme and 50 mg/kg ESLs by oral gavage for 13 weeks. Individually, Arazyme and ESLs had no effect on the HFD-induced phenotypes. The combination of Arazyme and ESLs significantly suppressed body weight gain, improved glucose and insulin tolerance, and suppressed hepatic steatosis by reducing lipid synthesis and enhancing lipid utilization gene expression. Furthermore, the combination significantly reduced HFD-induced plasma bile acid reabsorption by suppressing bile acid transporter expression, including the ATP biding cassette subfamily B member 11 (Abcb11), solute carrier family 10 member 1 (Slc10a1), Slc10a2, Slc51a, and Slc51b in the liver and gut. Moreover, the combination of Arazyme and ESLs significantly prevented HFD-induced islet compensation in the pancreas. These results suggest that the incorporation of Arazyme combined with ESLs reduces HFD-induced body weight, hyperglycemia, and hepatic steatosis by regulating liver–gut bile acid circulation in HFD-fed mice. This combination can markedly reduce treatment doses and enhance their therapeutic effects, thereby reducing therapeutic healthcare costs.
Collapse
|
12
|
Kao TW, Huang CC. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci 2021; 22:6862. [PMID: 34202257 PMCID: PMC8269131 DOI: 10.3390/ijms22136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a well-defined yet difficult-to-manage disease entity. Both the precipitous rise in its incidence due to contemporary lifestyles and the growing heterogeneity among affected populations present unprecedented challenges. Moreover, the predisposed risk for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in populations with MetS, and the viral impacts on host metabolic parameters, underscores the need to investigate this mechanism thoroughly. Recent investigations of metabolomics and proteomics have revealed not only differentially expressed substances in MetS, but also the consequences of diet consumption and physical activity on energy metabolism. These variations in metabolites, as well as protein products, also influence a wide spectrum of host characteristics, from cellular behavior to phenotype. Research on the dysregulation of gut microbiota and the resultant inflammatory status has also contributed to our understanding of the underlying pathogenic mechanisms. As for state-of-the-art therapies, advancing depictions of the bio-molecular landscape of MetS have emerged and now play a key role in individualized precision medicine. Fecal microbiota transplantation, aiming to restore the host's homeostasis, and targeting of the bile acid signaling pathway are two approaches to combatting MetS. Comprehensive molecular inquiries about MetS by omics measures are mandatory to facilitate the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
13
|
Palmisano BT, Zhu L, Litts B, Burman A, Yu S, Neuman JC, Anozie U, Luu TN, Edington EM, Stafford JM. Hepatocyte Small Heterodimer Partner Mediates Sex-Specific Effects on Triglyceride Metabolism via Androgen Receptor in Male Mice. Metabolites 2021; 11:330. [PMID: 34065318 PMCID: PMC8161262 DOI: 10.3390/metabo11050330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Mechanisms of sex differences in hypertriglyceridemia remain poorly understood. Small heterodimer partner (SHP) is a nuclear receptor that regulates bile acid, glucose, and lipid metabolism. SHP also regulates transcriptional activity of sex hormone receptors and may mediate sex differences in triglyceride (TG) metabolism. Here, we test the hypothesis that hepatic SHP mediates sex differences in TG metabolism using hepatocyte-specific SHP knockout mice. Plasma TGs in wild-type males were higher than in wild-type females and hepatic deletion of SHP lowered plasma TGs in males but not in females, suggesting hepatic SHP mediates plasma TG metabolism in a sex-specific manner. Additionally, hepatic deletion of SHP failed to lower plasma TGs in gonadectomized male mice or in males with knockdown of the liver androgen receptor, suggesting hepatic SHP modifies plasma TG via an androgen receptor pathway. Furthermore, the TG lowering effect of hepatic deletion of SHP was caused by increased clearance of postprandial TG and accompanied with decreased plasma levels of ApoC1, an inhibitor of lipoprotein lipase activity. These data support a role for hepatic SHP in mediating sex-specific effects on plasma TG metabolism through androgen receptor signaling. Understanding how hepatic SHP regulates TG clearance may lead to novel approaches to lower plasma TGs and mitigate cardiovascular disease risk.
Collapse
Affiliation(s)
- Brian T. Palmisano
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2201 W End Ave, Nashville, TN 37235, USA;
- Department of Internal Medicine, Stanford Healthcare, Stanford, CA 94304, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Lin Zhu
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Bridget Litts
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Andreanna Burman
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2201 W End Ave, Nashville, TN 37235, USA;
| | - Sophia Yu
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Joshua C. Neuman
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Uche Anozie
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Thao N. Luu
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - Emery M. Edington
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| | - John M. Stafford
- Tennessee Valley Health System, Veterans Affairs, Nashville, TN 37212, USA; (B.T.P.); (L.Z.); (S.Y.); (J.C.N.); (U.A.)
- Department of Molecular Physiology & Biophysics, Vanderbilt University, 2201 W End Ave, Nashville, TN 37235, USA;
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (B.L.); (T.N.L.); (E.M.E.)
| |
Collapse
|
14
|
Hegazy MA, Abd ALgwad I, Abuel Fadl S, Sayed Hassan M, Ahmed Rashed L, Hussein MA. Serum Micro-RNA-122 Level as a Simple Noninvasive Marker of MAFLD Severity. Diabetes Metab Syndr Obes 2021; 14:2247-2254. [PMID: 34040409 PMCID: PMC8142686 DOI: 10.2147/dmso.s291595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolic-associated fatty liver disease (MAFLD) is a common disease worldwide. Micro-RNA-122 is known to be the most abundant micro-RNA expressed in the liver. OBJECTIVE To evaluate the association of micro-RNA-122 and the degree of steatosis and fibrosis in obese patients with MAFLD. METHODS The study included 120 obese Egyptian patients with MAFLD, which were diagnosed and classified according to ultra-sonographic liver findings. All patients enrolled in the study were subjected to thorough clinical examination and laboratory investigations (serum micro-RNA-122 levels by PCR, lipid profile, liver biochemistry, and functions). Fibro-scan was used to assess the level of fibrosis. RESULTS There was a significant increase in levels of micro-RNA-122 in obese patients with MAFLD compared to controls (p<0.001). Micro-RNA-122 level was lower in patients with mild liver steatosis than patients with moderate or severe steatosis (p<0.001). It was lower in patients with a mild degree of fibrosis than those with mild or moderate fibrosis (p<0.001). Micro-RNA-122 was significantly positively correlated with low-density cholesterol and triglycerides level, and liver enzymes, and negatively correlated to high-density cholesterol (p<0.001). CONCLUSION Serum micro-RNA-122 could be a useful predictor of assessing MAFLD severity regarding level of steatosis or fibrosis.
Collapse
Affiliation(s)
- Mona A Hegazy
- Internal Medicine Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| | - Ibrahim Abd ALgwad
- Internal Medicine Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| | - Soheir Abuel Fadl
- Internal Medicine Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| | - Mohamed Sayed Hassan
- Internal Medicine Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Biochemistry Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| | - Maha A Hussein
- Internal Medicine Department, Kasr Al-Aini Hospitals, Cairo University, Cairo, Egypt
| |
Collapse
|
15
|
Wu J, Nagy LE, Wang L. The long and the small collide: LncRNAs and small heterodimer partner (SHP) in liver disease. Mol Cell Endocrinol 2021; 528:111262. [PMID: 33781837 PMCID: PMC8087644 DOI: 10.1016/j.mce.2021.111262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a large and diverse class of RNA molecules that are transcribed but not translated into proteins, with a length of more than 200 nucleotides. LncRNAs are involved in gene expression and regulation. The abnormal expression of lncRNAs is associated with disease pathogenesis. Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that plays a pivotal role in many biological processes by acting as a transcriptional repressor. In this review, we present the critical roles of SHP and summarize recent findings demonstrating the regulation between lncRNAs and SHP in liver disease.
Collapse
Affiliation(s)
- Jianguo Wu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Laura E Nagy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Gastroenterology and Hepatology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Li Wang
- Independent Researcher, Tucson, AZ, USA
| |
Collapse
|
16
|
Sun Y, Demagny H, Schoonjans K. Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166145. [PMID: 33862147 DOI: 10.1016/j.bbadis.2021.166145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Nuclear receptors play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. The nuclear receptor, liver receptor homolog-1 (LRH-1, NR5A2), originally identified in the liver as a regulator of bile acid and cholesterol homeostasis, was recently recognized to coordinate a multitude of other hepatic metabolic processes, including glucose and lipid processing, methyl group sensing, and cellular stress responses. In this review, we summarize the physiological and pathophysiological functions of LRH-1 in the liver, as well as the molecular mechanisms underlying these processes. This review also focuses on the recent advances highlighting LRH-1 as an attractive target for liver-associated diseases, such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Yu Sun
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hadrien Demagny
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Magee N, Zou A, Ghosh P, Ahamed F, Delker D, Zhang Y. Disruption of hepatic small heterodimer partner induces dissociation of steatosis and inflammation in experimental nonalcoholic steatohepatitis. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49910-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Magee N, Zou A, Ghosh P, Ahamed F, Delker D, Zhang Y. Disruption of hepatic small heterodimer partner induces dissociation of steatosis and inflammation in experimental nonalcoholic steatohepatitis. J Biol Chem 2019; 295:994-1008. [PMID: 31831621 DOI: 10.1074/jbc.ra119.010233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/23/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease worldwide and is characterized by steatosis, inflammation, and fibrosis. The molecular mechanisms underlying NASH development remain obscure. The nuclear receptor small heterodimer partner (Shp) plays a complex role in lipid metabolism and inflammation. Here, we sought to determine SHP's role in regulating steatosis and inflammation in NASH. Shp deletion in murine hepatocytes (Shp Hep-/-) resulted in massive infiltration of macrophages and CD4+ T cells in the liver. Shp Hep-/- mice developed reduced steatosis, but surprisingly increased hepatic inflammation and fibrosis after being fed a high-fat, -cholesterol, and -fructose (HFCF) diet. RNA-Seq analysis revealed that pathways involved in inflammation and fibrosis are significantly activated in the liver of Shp Hep-/- mice fed a chow diet. After having been fed the HFCF diet, WT mice displayed up-regulated peroxisome proliferator-activated receptor γ (Pparg) signaling in the liver; however, this response was completely abolished in the Shp Hep-/- mice. In contrast, livers of Shp Hep-/- mice had consistent NF-κB activation. To further characterize the role of Shp specifically in the transition of steatosis to NASH, mice were fed the HFCF diet for 4 weeks, followed by Shp deletion. Surprisingly, Shp deletion after steatosis development exacerbated hepatic inflammation and fibrosis without affecting liver steatosis. Together, our results indicate that, depending on NASH stage, hepatic Shp plays an opposing role in steatosis and inflammation. Mechanistically, Shp deletion in hepatocytes activated NF-κB and impaired Pparg activation, leading to the dissociation of steatosis, inflammation, and fibrosis in NASH development.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - An Zou
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Priyanka Ghosh
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Don Delker
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 .,Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
20
|
Desterke C, Chiappini F. Lipid Related Genes Altered in NASH Connect Inflammation in Liver Pathogenesis Progression to HCC: A Canonical Pathway. Int J Mol Sci 2019; 20:ijms20225594. [PMID: 31717414 PMCID: PMC6888337 DOI: 10.3390/ijms20225594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming a public health problem worldwide. While the number of research studies on NASH progression rises every year, sometime their findings are controversial. To identify the most important and commonly described findings related to NASH progression, we used an original bioinformatics, integrative, text-mining approach that combines PubMed database querying and available gene expression omnibus dataset. We have identified a signature of 25 genes that are commonly found to be dysregulated during steatosis progression to NASH and cancer. These genes are implicated in lipid metabolism, insulin resistance, inflammation, and cancer. They are functionally connected, forming the basis necessary for steatosis progression to NASH and further progression to hepatocellular carcinoma (HCC). We also show that five of the identified genes have genome alterations present in HCC patients. The patients with these genes associated to genome alteration are associated with a poor prognosis. In conclusion, using an integrative literature- and data-mining approach, we have identified and described a canonical pathway underlying progression of NASH. Other parameters (e.g., polymorphisms) can be added to this pathway that also contribute to the progression of the disease to cancer. This work improved our understanding of the molecular basis of NASH progression and will help to develop new therapeutic approaches.
Collapse
Affiliation(s)
| | - Franck Chiappini
- Laboratoire Croissance, Régénération, Réparation et Régénération Tissulaires (CRRET)/ EAC CNRS 7149, Univ Paris-Est Créteil (UPEC), F-94010 Créteil, France
- Correspondence: ; Tel.: +33-(0)1-45177080; Fax: +33-(0)1-45171816
| |
Collapse
|
21
|
Complete resolution of postbariatric surgery associated hepatic steatosis after nutrition support. Surg Obes Relat Dis 2019; 16:165-167. [PMID: 31662287 DOI: 10.1016/j.soard.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/29/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022]
|
22
|
Jiang B, Lv Q, Wan W, Le L, Xu L, Hu K, Xiao P. Transcriptome analysis reveals the mechanism of the effect of flower tea Coreopsis tinctoria on hepatic insulin resistance. Food Funct 2019; 9:5607-5620. [PMID: 30370909 DOI: 10.1039/c8fo00965a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-Camellia tea and herbal medicine help prevent the development of diabetes and other metabolic diseases. Previous studies revealed that Coreopsis tinctoria (CT) flower tea increases insulin sensitivity and, in some high-fat diet (HFD)-fed rats, even prevents hepatic metabolic disorders. However, the molecular mechanisms by which CT improves insulin resistance are not known. In this study, six-week-old rats were fed a normal diet (ND), an HFD or an HFD supplemented with CT for 8 weeks. Serum samples were collected, and the livers were extracted for RNA-seq gene expression analysis. Real-time PCR and western blotting further verified the RNA-seq results. In our results, dietary CT ameliorated HFD-induced hepatosteatosis, glucose intolerance, and insulin resistance. In the HFD group, 1667 differentially expressed genes (DEGs) were identified compared with the ND group. In the CT group, 327 DEGs were identified compared with the HFD group. Some of these DEGs were related to insulin signalling, hepatic lipogenesis and glucose homeostasis. This study suggested that insulin resistance with hyperinsulinaemia, and not insulin insufficiency, is an early problem in HFD-fed rats, and CT downregulates insulin secretion genes (e.g., Rasd1, Stxbp1 and Sfxn1). Hepatic gene and protein expression analyses indicated that the regulatory effects of CT on glucose and lipid homeostasis are likely mediated via the Akt/FoxO1 signalling pathway and are regulated by the transcription factors hairy and enhancer of split 1 (HES1) and small heterodimer partner (SHP). Our study provides transcriptomic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and proves that supplementation with CT improves insulin resistance at a global scale.
Collapse
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
24
|
Zhang T, Yu F, Guo L, Chen M, Yuan X, Wu B. Small Heterodimer Partner Regulates Circadian Cytochromes p450 and Drug-Induced Hepatotoxicity. Theranostics 2018; 8:5246-5258. [PMID: 30555544 PMCID: PMC6276094 DOI: 10.7150/thno.28676] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/24/2018] [Indexed: 01/01/2023] Open
Abstract
The role of small heterodimer partner (SHP) in regulation of xenobiotic detoxification remains elusive. Here, we uncover a critical role for SHP in circadian regulation of cytochromes P450 (CYPs) and drug-induced hepatotoxicity. Methods: The mRNA and protein levels of CYPs in the livers of wild-type and SHP-/- mice were measured by quantitative real-time polymerase chain reaction and Western blotting, respectively. Regulation of CYP by SHP was investigated using luciferase reporter, mobility shift, chromatin immunoprecipitation, and/or co-immunoprecipitation assays. Results: The circadian rhythmicities of xenobiotic-detoxifying CYP mRNAs and proteins were disrupted in SHP-deficient mice. Of note, SHP ablation up-regulated Cyp2c38 and Cyp2c39, whereas it down-regulated all other CYP genes. Moreover, SHP regulated the expression of CYP genes through different mechanisms. SHP repressed Lrh-1/Hnf4α to down-regulate Cyp2c38, E4bp4 to up-regulate Cyp2a5, Dec2/HNF1α axis to up-regulate Cyp1a2, Cyp2e1 and Cyp3a11, and Rev-erbα to up-regulate Cyp2b10, Cyp4a10 and Cyp4a14. Furthermore, SHP ablation sensitized mice to theophylline (or mitoxantrone)-induced toxicity. Higher level of toxicity was correlated with down-regulated metabolism and clearance of theophylline (or mitoxantrone). In contrast, SHP ablation blunted the circadian rhythmicity of acetaminophen-induced hepatotoxicity and alleviated the toxicity by down-regulating Cyp2e1-mediated metabolism and reducing formation of the toxic metabolite. Toxicity alleviation by SHP ablation was also observed for aflatoxin B1 due to reduced formation of the toxic epoxide metabolite. Conclusion: SHP participates in circadian regulation of CYP enzymes, thereby impacting xenobiotic metabolism and drug-induced hepatotoxicity.
Collapse
|
25
|
Tran M, Liu Y, Huang W, Wang L. Nuclear receptors and liver disease: Summary of the 2017 basic research symposium. Hepatol Commun 2018; 2:765-777. [PMID: 30129636 PMCID: PMC6049066 DOI: 10.1002/hep4.1203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor superfamily contains important transcriptional regulators that play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. Many nuclear receptors are ligand-activated transcription factors that regulate the expression of their target genes by modulating transcriptional activities and epigenetic changes. Additionally, the protein complex associated with nuclear receptors consists of a multitude of coregulators, corepressors, and noncoding RNAs. Therefore, acquiring new information on nuclear receptors may provide invaluable insight into novel therapies and shed light on new interventions to reduce the burden and incidence of liver diseases. (Hepatology Communications 2018;2:765-777).
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT.,Veterans Affairs Connecticut Healthcare System West Haven CT.,Department of Internal Medicine, Section of Digestive Diseases Yale University New Haven CT
| |
Collapse
|
26
|
Liu C, Yang Z, Wu J, Zhang L, Lee S, Shin DJ, Tran M, Wang L. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 2018; 67:1768-1783. [PMID: 29140550 PMCID: PMC5906152 DOI: 10.1002/hep.29654] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED H19 is an imprinted long noncoding RNA abundantly expressed in embryonic liver and repressed after birth. We show that H19 serves as a lipid sensor by synergizing with the RNA-binding polypyrimidine tract-binding protein 1 (PTBP1) to modulate hepatic metabolic homeostasis. H19 RNA interacts with PTBP1 to facilitate its association with sterol regulatory element-binding protein 1c mRNA and protein, leading to increased stability and nuclear transcriptional activity. H19 and PTBP1 are up-regulated by fatty acids in hepatocytes and in diet-induced fatty liver, which further augments lipid accumulation. Ectopic expression of H19 induces steatosis and pushes the liver into a "pseudo-fed" state in response to fasting by promoting sterol regulatory element-binding protein 1c protein cleavage and nuclear translocation. Deletion of H19 or knockdown of PTBP1 abolishes high-fat and high-sucrose diet-induced steatosis. CONCLUSION Our study unveils an H19/PTBP1/sterol regulatory element-binding protein 1 feedforward amplifying signaling pathway to exacerbate the development of fatty liver. (Hepatology 2018;67:1768-1783).
Collapse
Affiliation(s)
- Chune Liu
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Zhihong Yang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Jianguo Wu
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Li Zhang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Sangmin Lee
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Dong-Ju Shin
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Melanie Tran
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Corresponding author: Li Wang, Ph.D., 75 North Eagleville Rd., U3156, Storrs, CT 06269. ; Tel: 860-486-0857; Fax: 860-486-3303
| |
Collapse
|
27
|
Zou A, Magee N, Deng F, Lehn S, Zhong C, Zhang Y. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. J Biol Chem 2018; 293:8656-8671. [PMID: 29666185 DOI: 10.1074/jbc.ra117.001653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide, ranging from nonalcoholic fatty liver (NAFL, steatosis without hepatocellular injury) to the more aggressive nonalcoholic steatohepatitis (NASH, steatosis with ballooning, inflammation, or fibrosis). Although many studies have greatly contributed to the elucidation of NAFLD pathogenesis, the disease progression from NAFL to NASH remains incompletely understood. Nuclear receptor small heterodimer partner (Nr0b2, SHP) is a transcriptional regulator critical for the regulation of bile acid, glucose, and lipid metabolism. Here, we show that SHP levels are decreased in the livers of patients with NASH and in diet-induced mouse NASH. Exposing primary mouse hepatocytes to palmitic acid and lipopolysaccharide in vitro, we demonstrated that the suppression of Shp expression in hepatocytes is due to c-Jun N-terminal kinase (JNK) activation, which stimulates c-Jun-mediated transcriptional repression of Shp Interestingly, in vivo induction of hepatocyte-specific SHP in steatotic mouse liver ameliorated NASH progression by attenuating liver inflammation and fibrosis, but not steatosis. Moreover, a key mechanism linking the anti-inflammatory role of hepatocyte-specific SHP expression to inflammation involved SHP-induced suppression of NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2), which activates macrophage proinflammatory polarization and migration. In summary, our results indicate that a JNK/SHP/NF-κB/CCL2 regulatory network controls communications between hepatocytes and macrophages and contributes to the disease progression from NAFL to NASH. Our findings may benefit the development of new management or prevention strategies for NASH.
Collapse
Affiliation(s)
- An Zou
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nancy Magee
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Fengyan Deng
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sarah Lehn
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Cuncong Zhong
- the Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas 66045, and
| | - Yuxia Zhang
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, .,the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
28
|
Abstract
The regulation of hepatic very-low-density lipoprotein (VLDL) secretion plays an important role in the pathogenesis of dyslipidemia and fatty liver diseases. VLDL is controlled by hepatic microsomal triglyceride transfer protein (MTTP). Mttp is regulated by carbohydrate response element binding protein (ChREBP) and small heterodimer partner (SHP). However, it is unclear whether both coordinately regulate Mttp expression and VLDL secretion. Here, adenoviral overexpression of ChREBP and SHP in rat primary hepatocytes induced and suppressed Mttp mRNA, respectively. However, Mttp induction by ChREBP was much more potent than suppression by SHP. Promoter assays of Mttp and the liver type pyruvate kinase gene revealed that SHP and ChREBP did not affect the transcriptional activity of each other. Mttp mRNA and protein levels of Shp−/− mice were similar to those of wild-types; however, those of Chrebp−/−Shp−/− and Chrebp−/− mice were significantly much lower. Consistent with this, the VLDL particle number and VLDL secretion rates in Shp−/− mice were similar to wild-types but were much lower in Chrebp−/− and Chrebp−/−Shp−/− mice. These findings suggest that ChREBP, rather than SHP, regulates VLDL secretion under normal conditions and that ChREBP and SHP do not affect the transcriptional activities of each other.
Collapse
|
29
|
Song Y, Lu S, Zhao J, Wang L. Nuclear Receptor SHP: A Critical Regulator of miRNA and lncRNA Expression and Function. NUCLEAR RECEPTOR RESEARCH 2017; 4:101312. [PMID: 30148159 PMCID: PMC6103530 DOI: 10.11131/2017/101312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Small heterodimer partner (SHP, NR0B2) is identified as a unique orphan nuclear receptor that acts as a transcriptional repressor. SHP plays a crucial role in the control of various physiological processes and in several diseases by regulating the expression of disease-specific genes. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), are encoded of RNAs that are transcribed but not translated into proteins, which are involved in diverse developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified factors participating in the regulation of ncRNAs biogenesis and function. In this review, we summarize recent findings demonstrating a critical role of SHP as a transcriptional regulator of ncRNAs expression and function.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Shan Lu
- Genesis Biotechnology, Trenton, NJ 08619, USA
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Li Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250021, China
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
30
|
WITHDRAWN: Long noncoding RNAs in liver metabolism and liver disease: Current Status. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Small heterodimer partner (SHP) deficiency protects myocardia from lipid accumulation in high fat diet-fed mice. PLoS One 2017; 12:e0186021. [PMID: 29016649 PMCID: PMC5634594 DOI: 10.1371/journal.pone.0186021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/22/2017] [Indexed: 11/19/2022] Open
Abstract
The small heterodimer partner (SHP) regulates fatty acid oxidation and lipogenesis in the liver by regulating peroxisome proliferator-activated receptor (PPAR) γ expression. SHP is also abundantly expressed in the myocardium. We investigated the effect of SHP expression on myocardia assessing not only heart structure and function but also lipid metabolism and related gene expression in a SHP deletion animal model. Transcriptional profiling with a microarray revealed that genes participating in cell growth, cytokine signalling, phospholipid metabolism, and extracellular matrix are up-regulated in the myocardia of SHP knockout (KO) mice compared to those of wild-type (WT) mice (nominal p value < 0.05). Consistent with these gene expression changes, the left ventricular masses of SHP KO mice were significantly higher than WT mice (76.8 ± 20.5 mg vs. 52.8 ± 6.8 mg, P = 0.0093). After 12 weeks of high fat diet (HFD), SHP KO mice gained less weight and exhibited less elevation in serum-free fatty acid and less ectopic lipid accumulation in the myocardium than WT mice. According to microarray analysis, genes regulated by PPARγ1 and PPARα were down-regulated in myocardia of SHP KO mice compared to their expression in WT mice after HFD, suggesting that the reduction in lipid accumulation in the myocardium resulted from a decrease in lipogenesis regulated by PPARγ. We confirmed the reduced expression of PPARγ1 and PPARα target genes such as CD36, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase by SHP KO after HFD.
Collapse
|
32
|
Zhao Y, Wu J, Liangpunsakul S, Wang L. Long Non-coding RNA in Liver Metabolism and Disease: Current Status. LIVER RESEARCH 2017; 1:163-167. [PMID: 29576888 PMCID: PMC5863923 DOI: 10.1016/j.livres.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are comprised of RNA transcripts exceeding 200 nucleotides in length but lacking identifiable open reading frames (with rare exceptions). Herein, we highlight emerging evidence demonstrating that lncRNAs are critical regulators of liver metabolic function and diseases. We summarize current knowledges about dysregulated lncRNAs and outline the underlying molecular mechanisms by which lncRNAs control hepatic lipid ad glucose metabolism, as well as cholestatic liver disease. lncLSTR, Lnc18q22.2, SRA, HULC, MALAT1, lncLGR, MEG3, and H19, lncHR1, lnc-HC, APOA1-AS, DYNLRB2-2, and LeXis are included in the discussion.
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Jianguo Wu
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
33
|
Kim KH, Choi S, Zhou Y, Kim EY, Lee JM, Saha PK, Anakk S, Moore DD. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 2017; 66:498-509. [PMID: 28378930 PMCID: PMC8156739 DOI: 10.1002/hep.29199] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED The nuclear receptors farnesoid X receptor (FXR; NR1H4) and small heterodimer partner (SHP; NR0B2) play crucial roles in bile acid homeostasis. Global double knockout of FXR and SHP signaling (DKO) causes severe cholestasis and liver injury at early ages. Here, we report an unexpected beneficial impact on glucose and fatty acid metabolism in aged DKO mice, which show suppressed body weight gain and adiposity when maintained on normal chow. This phenotype was not observed in single Fxr or Shp knockouts. Liver-specific Fxr/Shp double knockout mice fully phenocopied the DKO mice, with lower hepatic triglyceride accumulation, improved glucose/insulin tolerance, and accelerated fatty acid use. In both DKO and liver-specific Fxr/Shp double knockout livers, these metabolic phenotypes were associated with altered expression of fatty acid metabolism and autophagy-machinery genes. Loss of the hepatic FXR/SHP axis reprogrammed white and brown adipose tissue gene expression to boost fatty acid usage. CONCLUSION Combined deletion of the hepatic FXR/SHP axis improves glucose/fatty acid homeostasis in aged mice, reversing the aging phenotype of body weight gain, increased adiposity, and glucose/insulin tolerance, suggesting a central role of this axis in whole-body energy homeostasis. (Hepatology 2017;66:498-509).
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sungwoo Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| | - Eun Young Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX,Program in Developmental Biology, Baylor College of Medicine, Houston, TX,Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX
| |
Collapse
|
34
|
Zhai G, Song J, Shu T, Yan J, Jin X, He J, Yin Z. LRH-1 senses signaling from phosphatidylcholine to regulate the expansion growth of digestive organs via synergy with Wnt/β-catenin signaling in zebrafish. J Genet Genomics 2017. [PMID: 28642062 DOI: 10.1016/j.jgg.2017.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that is critical for the growth and proliferation of cancer cells and other biological processes, including lipid transportation and metabolism, sexual determination and steroidogenesis. However, because homozygous lrh-1-/- mice die in utero, the regulatory mechanisms involved in embryonic development mediated by this receptor are poorly understood. In the present study, we performed transcription activator-like effector nuclease (TALEN)-mediated loss-of-function assays, taking advantage of zebrafish external fertilization, to investigate the function of lrh-1. The digestive organs were affected by lrh-1 depletion as a result of cell-cycle arrest (at the checkpoint of G1 to S phase), but not cell apoptosis. Biochemical analysis revealed that LRH-1 augments the transcriptional activity of β-catenin 1 and 2 via physical interactions. Screening the specific ligand(s) sensed by LRH-1 during organogenesis revealed that phosphatidylcholine (PC), a potential ligand, is the upstream target of LRH-1 during endoderm development. These data provide evidence for the crosstalk between the PC/LRH-1 and Wnt/β-catenin signaling pathways during the expansion growth of endoderm organs.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jia Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
35
|
Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, Samuel D, Duclos-Vallée JC, Touboul D, Bertrand-Michel J, Brunelle A, Guettier C, Le Naour F. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep 2017; 7:46658. [PMID: 28436449 PMCID: PMC5402394 DOI: 10.1038/srep46658] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a condition which can progress to cirrhosis and hepatocellular carcinoma. Markers for NASH diagnosis are still lacking. We performed a comprehensive lipidomic analysis on human liver biopsies including normal liver, nonalcoholic fatty liver and NASH. Random forests-based machine learning approach allowed characterizing a signature of 32 lipids discriminating NASH with 100% sensitivity and specificity. Furthermore, we validated this signature in an independent group of NASH patients. Then, metabolism dysregulations were investigated in both patients and murine models. Alterations of elongase and desaturase activities were observed along the fatty acid synthesis pathway. The decreased activity of the desaturase FADS1 appeared as a bottleneck, leading upstream to an accumulation of fatty acids and downstream to a deficiency of long-chain fatty acids resulting to impaired phospholipid synthesis. In NASH, mass spectrometry imaging on tissue section revealed the spreading into the hepatic parenchyma of selectively accumulated fatty acids. Such lipids constituted a highly toxic mixture to human hepatocytes. In conclusion, this study characterized a specific and sensitive lipid signature of NASH and positioned FADS1 as a significant player in accumulating toxic lipids during NASH progression.
Collapse
Affiliation(s)
- Franck Chiappini
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France
| | - Audrey Coilly
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Hanane Kadar
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Philippe Gual
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Albert Tran
- Inserm, Unité 1065, Nice, F-06204, France.,University of Nice-Sophia-Antipolis, Nice, F-06204, France.,Centre Hospitalier Universitaire de Nice, Hôpital L'Archet, Nice Cedex 3, F-06202, France
| | - Christophe Desterke
- Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| | - Didier Samuel
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - Jean-Charles Duclos-Vallée
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif, F-94800, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | | | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, F-91198 Gif-Sur-Yvette, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,AP-HP, Hôpital du Kremlin-Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Univ Paris-Sud, UMR-S1193, Villejuif, F-94800, France.,DHU Hepatinov, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France.,Univ Paris-Sud, US33, Villejuif, F-94800, France
| |
Collapse
|
36
|
Maguire M, Bushkofsky JR, Larsen MC, Foong YH, Tanumihardjo SA, Jefcoate CR. Diet-dependent retinoid effects on liver gene expression include stellate and inflammation markers and parallel effects of the nuclear repressor Shp. J Nutr Biochem 2017; 47:63-74. [PMID: 28570941 DOI: 10.1016/j.jnutbio.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
For mice, a maternal vitamin A (VA)-deficient diet initiated from midgestation (GVAD) produces serum retinol deficiency in mature offspring. We hypothesize that the effects of GVAD arise from preweaning developmental changes. We compare the effect of this GVAD protocol in combination with a postweaning high-fat diet (HFD) or high-carbohydrate diet (LF12). Each is compared to an equivalent VA-sufficient combination. GVAD extensively decreased serum retinol and liver retinol, retinyl esters, and retinoid homeostasis genes (Lrat, Cyp26b1 and Cyp26a1). These suppressions were each more effective with LF12 than with HFD. Postweaning initiation of VA deficiency with LF12 depleted liver retinoids, but serum retinol was unaffected. Liver retinoid depletion, therefore, precedes serum attenuation. Maternal LF12 decreased the obesity response to the HFD, which was further decreased by GVAD. LF12 fed to the mother and offspring extensively stimulated genes marking stellate activation (Col1a1, Timp2 and Cyp1b1) and novel inflammation markers (Ly6d, Trem2 and Nupr1). The GVAD with LF12 diet combination suppressed these responses. GVAD in combination with the HFD increased these same clusters. A further set of expression differences on the HFD when compared to a high-carbohydrate diet was prevented when GVAD was combined with HFD. Most of these GVAD gene changes match published effects from deletion of Nr0b2/Shp, a retinoid-responsive, nuclear co-repressor that modulates metabolic homeostasis. The stellate and inflammatory increases seen with the high-carbohydrate LF12 diet may represent postprandial responses. They depend on retinol and Shp, but the regulation reverses with an HFD.
Collapse
Affiliation(s)
- Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53705; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Justin R Bushkofsky
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53705
| | | | - Yee Hoon Foong
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Sherry A Tanumihardjo
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53705
| | - Colin R Jefcoate
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI 53705; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705.
| |
Collapse
|
37
|
Wu H, Zhang T, Pan F, Steer CJ, Li Z, Chen X, Song G. MicroRNA-206 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and impairing lipogenesis. J Hepatol 2017; 66:816-824. [PMID: 28025059 PMCID: PMC5568011 DOI: 10.1016/j.jhep.2016.12.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The paradox of selective hepatic insulin resistance, wherein the insulin-resistant liver fails to suppress glucose production but continues to produce lipids, has been central to the pathophysiology of hepatosteatosis and hyperglycemia. Our study was designed to investigate the mechanism(s) by which microRNA-206 alleviates the pathogenesis of hepatosteatosis and hyperglycemia. METHODS Dietary obese mice induced by a high fat diet were used to study the role of microRNA-206 in the pathogenesis of hepatosteatosis and hyperglycemia. A mini-circle vector was used to deliver microRNA-206 into the livers of mice. RESULTS Lipid accumulation impaired biogenesis of microRNA-206 in fatty livers of dietary obese mice and human hepatocytes (p<0.01). Delivery of microRNA-206 into the livers of dietary obese mice resulted in the strong therapeutic effects on hepatosteatosis and hyperglycemia. Mechanistically, miR-206 interacted with the 3' untranslated region of PTPN1 (protein tyrosine phosphatase, non-receptor type 1) and induced its degradation. By inhibiting PTPN1 expression, microRNA-206 facilitated insulin signaling by promoting phosphorylation of INSR (insulin receptor) and impaired hepatic lipogenesis by inhibiting Srebp1c transcription. By simultaneously modulating lipogenesis and insulin signaling, microRNA-206 reduced lipid (p=0.006) and glucose (p=0.018) production in human hepatocytes and livers of dietary obese mice (p<0.001 and p<0.01 respectively). Re-introduction of Ptpn1 into livers offset the inhibitory effects of microRNA-206, indicating that PTPN1 mediates the inhibitory effects of microRNA-206 on both hepatosteatosis and hyperglycemia. CONCLUSIONS MicroRNA-206 is a potent inhibitor of lipid and glucose production by simultaneously facilitating insulin signaling and impairing hepatic lipogenesis. Our findings potentially provide a novel therapeutic agent for both hepatosteatosis and hyperglycemia. LAY SUMMARY The epidemic of obesity is causing a sharp rise in the incidence of insulin resistance and its major complications, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). However, there are no effective treatments because the mechanisms underlying both disorders are not well described. We identified microRNA-206 as a novel and effective inhibitor for both glucose and lipid production in liver and potentially provide a unique therapeutic drug for both hepatosteatosis and hyperglycemia.
Collapse
Affiliation(s)
- Heng Wu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Tianpeng Zhang
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Fei Pan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan City 030006, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
38
|
Stein S, Lemos V, Xu P, Demagny H, Wang X, Ryu D, Jimenez V, Bosch F, Lüscher TF, Oosterveer MH, Schoonjans K. Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. J Clin Invest 2017; 127:583-592. [PMID: 28094767 DOI: 10.1172/jci85499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatic steatosis is caused by metabolic imbalances that could be explained in part by an increase in de novo lipogenesis that results from increased sterol element binding protein 1 (SREBP-1) activity. The nuclear receptor liver receptor homolog 1 (LRH-1) is an important regulator of intermediary metabolism in the liver, but its role in regulating lipogenesis is not well understood. Here, we have assessed the contribution of LRH-1 SUMOylation to the development of nonalcoholic fatty liver disease (NAFLD). Mice expressing a SUMOylation-defective mutant of LRH-1 (LRH-1 K289R mice) developed NAFLD and early signs of nonalcoholic steatohepatitis (NASH) when challenged with a lipogenic, high-fat, high-sucrose diet. Moreover, we observed that the LRH-1 K289R mutation induced the expression of oxysterol binding protein-like 3 (OSBPL3), enhanced SREBP-1 processing, and promoted de novo lipogenesis. Mechanistically, we demonstrated that ectopic expression of OSBPL3 facilitates SREBP-1 processing in WT mice, while silencing hepatic Osbpl3 reverses the lipogenic phenotype of LRH-1 K289R mice. These findings suggest that compromised SUMOylation of LRH-1 promotes the development of NAFLD under lipogenic conditions through regulation of OSBPL3.
Collapse
|
39
|
Tran M, Yang Z, Liangpunsakul S, Wang L. Metabolomics Analysis Revealed Distinct Cyclic Changes of Metabolites Altered by Chronic Ethanol-Plus-Binge and Shp Deficiency. Alcohol Clin Exp Res 2016; 40:2548-2556. [PMID: 27790731 DOI: 10.1111/acer.13257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic ethanol (EtOH) consumption causes alcoholic liver disease (ALD), and disruption of the circadian system facilitates the development of ALD. Small heterodimer partner (SHP) is a nuclear receptor and critical regulator of hepatic lipid metabolism. This study aimed at depicting circadian metabolomes altered by chronic EtOH-plus-binge and Shp deficiency using high-throughput metabolomics. METHODS Wild-type (WT) C57BL/6 and Shp-/- mice were fed the control diet (CD) or Lieber-DeCarli EtOH liquid diet (ED) for 10 days followed by a single bout of maltose (CD + M) or EtOH (ED + E) binge on the 11th day. Serum and liver were collected over a 24-hour light/dark (LD) cycle at Zeitgeber time ZT12, ZT18, ZT0, and ZT6, and metabolomics was performed using gas chromatography-mass spectrometry. RESULTS A total of 110 metabolites were identified in liver and of those 80 were also present in serum from pathways of carbohydrates, lipids, pentose phosphate, amino acids, nucleotides, and tricarboxylic acid cycle. In the liver, 91% of metabolites displayed rhythmicity with ED + E, whereas in the serum, only 87% were rhythmic. Bioinformatics analysis identified unique metabolome patterns altered in WT CD + M, WT ED + E, Shp-/- CD + M, and Shp-/- ED + E groups. Specifically, metabolites from the nucleotide and amino acid pathway (ribose, glucose-6-phosphate, glutamic acid, aspartic acid, and sedoheptulose-7-P) were elevated in Shp-/- CD + M mice during the dark cycle, whereas metabolites including N-methylalanine, 2-hydroxybutyric acid, and 2-hydroxyglutarate were elevated in WT ED + E mice during the light cycle. The rhythmicity and abundance of other individual metabolites were also significantly altered by both control and EtOH diets. CONCLUSIONS Metabolomics provides a useful means to identify unique metabolites altered by chronic EtOH-plus-binge.
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - Zhihong Yang
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Li Wang
- Department of Physiology and Neurobiology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
40
|
Rudraiah S, Zhang X, Wang L. Nuclear Receptors as Therapeutic Targets in Liver Disease: Are We There Yet? Annu Rev Pharmacol Toxicol 2016; 56:605-626. [PMID: 26738480 DOI: 10.1146/annurev-pharmtox-010715-103209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) are ligand-modulated transcription factors that play diverse roles in cell differentiation, development, proliferation, and metabolism and are associated with numerous liver pathologies such as cancer, steatosis, inflammation, fibrosis, cholestasis, and xenobiotic/drug-induced liver injury. The network of target proteins associated with NRs is extremely complex, comprising coregulators, small noncoding microRNAs, and long noncoding RNAs. The importance of NRs as targets of liver disease is exemplified by the number of NR ligands that are currently used in the clinics or in clinical trials with promising results. Understanding the regulation by NR during pathophysiological conditions, and identifying ligands for orphan NR, points to a potential therapeutic approach for patients with liver diseases. An overview of complex NR metabolic networks and their pharmacological implications in liver disease is presented here.
Collapse
Affiliation(s)
- Swetha Rudraiah
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Xi Zhang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269
| | - Li Wang
- Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269.,Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
41
|
Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, Vargas GM, Wang L. REV-ERBα Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2909-2920. [PMID: 27664470 DOI: 10.1016/j.ajpath.2016.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022]
Abstract
The small heterodimer partner (SHP) nuclear receptor is an important regulator of nonalcoholic fatty liver disease. However, little is known about the role of SHP in alcoholic fatty liver. In this study, we used a modified chronic ethanol-binge model to examine cyclic alterations of lipid metabolism in wild-type (WT) and Shp-/- mice over a 24-hour period after binge. The serum and hepatic lipid profiles, as well as the expression of lipid synthesis genes and markers of endoplasmic reticulum stress, exhibited distinct variations in WT and Shp-/- mice in response to ethanol diet plus ethanol binge (ED+E) and control diet plus maltose binge. ED+E induced steatosis in WT mice, which correlated with a marked up-regulation of activating transcription factor 4 protein (ATF4) but down-regulation of C/EBP homologous protein (CHOP) and sterol regulatory element-binding transcription factor 1c protein (SREBP-1c). On the contrary, the control diet plus maltose binge caused lipid accumulation in Shp-/- mice, which was accompanied by a sharp elevation of CHOP, SREBP-1c, and REV-ERBα proteins but a diminished ATF4. REV-ERBα activated CHOP promoter activity and gene transcription, which were inhibited by SHP. Knockdown Rev-Erbα in Shp-/- mice prevented steatosis induced by ED+E. Our study revealed a critical role of SHP and REV-ERBα in controlling rhythmic CHOP expression in alcoholic fatty liver.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Down-Regulation
- Ethanol/adverse effects
- Fatty Liver, Alcoholic/etiology
- Fatty Liver, Alcoholic/pathology
- Gene Expression Regulation
- Humans
- Lipid Metabolism
- Lipogenesis
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sterol Regulatory Element Binding Protein 1/genetics
- Sterol Regulatory Element Binding Protein 1/metabolism
- Transcription Factor CHOP/genetics
- Transcription Factor CHOP/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Zhihong Yang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Hiroyuki Tsuchiya
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Sangmin Lee
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - Chune Liu
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - Yi Huang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gymar M Vargas
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Section of Digestive Diseases, Department of Internal Medicine, Yale University, New Haven, Connecticut.
| |
Collapse
|
42
|
Wu N, Kim KH, Zhou Y, Lee JM, Kettner NM, Mamrosh JL, Choi S, Fu L, Moore DD. Small Heterodimer Partner (NR0B2) Coordinates Nutrient Signaling and the Circadian Clock in Mice. Mol Endocrinol 2016; 30:988-95. [PMID: 27427832 PMCID: PMC5004116 DOI: 10.1210/me.2015-1295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 07/13/2016] [Indexed: 12/13/2022] Open
Abstract
Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprandially, serving as regulators of the fed state in the liver. Here, we show that nuclear receptor Small Heterodimer Partner (SHP), a regulator of bile acid metabolism, impacts the endogenous peripheral clock by directly regulating Bmal1. Bmal1-dependent gene expression is altered in Shp knockout mice, and liver clock adaptation is delayed in Shp knockout mice upon restricted feeding. These results identify SHP as a potential mediator connecting nutrient signaling with the circadian clock.
Collapse
Affiliation(s)
- Nan Wu
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Ying Zhou
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Jae Man Lee
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Nicole M Kettner
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Jennifer L Mamrosh
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Sungwoo Choi
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - Loning Fu
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| | - David D Moore
- Department of Molecular and Cellular Biology (N.W., K.H.K., Y.Z., J.M.L., N.M.K., J.L.M., S.C., L.F., D.D.M.) and Program in Developmental Biology (S.C.), Baylor College of Medicine, Houston, Texas 77030; and Department of Biochemistry and Cell Biology (J.M.L.), School of Medicine, Kyungpook National University, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
43
|
Wang L, Liangpunsakul S. Circadian clock control of hepatic lipid metabolism: role of small heterodimer partner (Shp). J Investig Med 2016; 64:1158-61. [PMID: 27473715 DOI: 10.1136/jim-2016-000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 01/28/2023]
Abstract
Hepatic steatosis, the accumulation of triglyceride droplets in the hepatocytes, is a common hepatic pathology seen in subjects with obesity/metabolic syndrome and those with excessive alcohol use. The pathogenesis underlying hepatic steatosis is complex. Recent studies have shown the specific role played by the molecular clock mechanism in the control of lipid metabolism and that the disruption of these tissue clocks may lead to the disturbances in lipid homeostasis. This review reports a novel role of small heterodimer partner in maintaining triglyceride and lipoprotein homeostasis through neuronal PAS domain protein 2.
Collapse
Affiliation(s)
- Li Wang
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Connecticut, USA Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, USA School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
44
|
Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57:1541-51. [PMID: 27354419 DOI: 10.1194/jlr.m069013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism.
Collapse
Affiliation(s)
- Brian T Palmisano
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Thao D Le
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Lin Zhu
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - John M Stafford
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
45
|
Liangpunsakul S, Gao B. Alcohol and fat promote steatohepatitis: a critical role for fat-specific protein 27/CIDEC. J Investig Med 2016; 64:1078-81. [PMID: 27342423 DOI: 10.1136/jim-2016-000204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/20/2022]
Abstract
Alcoholic liver disease (ALD) is a major public health problem worldwide and is the leading cause of end-stage liver disease. While the ultimate control of ALD will require the prevention of alcohol abuse, better understanding of the mechanisms of alcohol-induced liver injury may lead to treatments of fatty liver, alcoholic hepatitis, and prevention or delay of occurrence of cirrhosis. The elucidation and the discovery of several new concepts in ALD pathogenesis have raised our understanding on the complex mechanisms and the potential in developing the new strategies for therapeutic benefits. In this review, we provide the most up-to-date information on the basic molecular mechanisms focusing on the role of fat-specific protein 27/CIDEC in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA Indiana University School of Medicine, Indianapolis, Indiana, USA Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute of Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| |
Collapse
|
46
|
Zhang Y, Liu C, Barbier O, Smalling R, Tsuchiya H, Lee S, Delker D, Zou A, Hagedorn CH, Wang L. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and lncRNA H19 function. Sci Rep 2016; 6:20559. [PMID: 26838806 PMCID: PMC4738356 DOI: 10.1038/srep20559] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/07/2016] [Indexed: 01/28/2023] Open
Abstract
Bile acid (BA) metabolism is tightly controlled by nuclear receptor signaling to coordinate regulation of BA synthetic enzymes and transporters. Here we reveal a molecular cascade consisting of the antiapoptotic protein BCL2, nuclear receptor Shp, and long non-coding RNA (lncRNA) H19 to maintain BA homeostasis. Bcl2 was overexpressed in liver of C57BL/6J mice using adenovirus mediated gene delivery for two weeks. Hepatic overexpression of Bcl2 caused drastic accumulation of serum BA and bilirubin levels and dysregulated BA synthetic enzymes and transporters. Bcl2 reactivation triggered severe liver injury, fibrosis and inflammation, which were accompanied by a significant induction of H19. Bcl2 induced rapid SHP protein degradation via the activation of caspase-8 pathway. The induction of H19 in Bcl2 overexpressed mice was contributed by a direct loss of Shp transcriptional repression. H19 knockdown or Shp re-expression largely rescued Bcl2-induced liver injury. Strikingly different than Shp, the expression of Bcl2 and H19 was hardly detectable in adult liver but was markedly increased in fibrotic/cirrhotic human and mouse liver. We demonstrated for the first time a detrimental effect of Bcl2 and H19 associated with cholestatic liver fibrosis and an indispensable role of Shp to maintain normal liver function.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Pharmacology, Toxicology &Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chune Liu
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU-Québec Research Centre and Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - Rana Smalling
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108
| | | | - Sangmin Lee
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696
| | - Don Delker
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108
| | - An Zou
- Department of Pharmacology, Toxicology &Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Curt H Hagedorn
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Little Rock, AR
| | - Li Wang
- Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696.,Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516.,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
| |
Collapse
|
47
|
Ahn HY, Kim HH, Kim YA, Kim M, Ohn JH, Chung SS, Lee YK, Park DJ, Park KS, Moore DD, Park YJ. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1. Endocrinol Metab (Seoul) 2015; 30:584-92. [PMID: 26485468 PMCID: PMC4722415 DOI: 10.3803/enm.2015.30.4.584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/24/2015] [Accepted: 09/24/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). METHODS We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line. RESULTS Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. CONCLUSION We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1.
Collapse
Affiliation(s)
- Hwa Young Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hwan Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ye An Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kwang Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Do Joon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Wang X, Lu Y, Wang E, Zhang Z, Xiong X, Zhang H, Lu J, Zheng S, Yang J, Xia X, Yang S, Li X. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner. J Hepatol 2015; 63:183-90. [PMID: 25720568 DOI: 10.1016/j.jhep.2015.02.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Estrogen participates in the control of energy homeostasis and lipid metabolism. However the role of hepatic estrogen receptor α (ERα) in triglyceride (TG) homeostasis remains poorly understood. This study aims to investigate the roles of estrogen and ERα in the regulation of hepatic TG metabolism. METHODS Liver TG metabolism was analyzed in female mice with ovariectomy or tamoxifen treatment, and in hepatic ERα knockdown or overexpression. Phenotypes and expression of genes were compared in male and female mice with farnesoid X receptor deficiency. The mechanism of ERα in the regulation of small heterodimer partner (SHP) expression was further investigated. RESULTS Female mice receiving ovariectomy or tamoxifen treatment exhibited hepatic TG accumulation. Ablation of ERα using adenoviral shRNA markedly increased hepatic TG accumulation, while overexpression of ERα ameliorated hepatosteatosis in obese mice. At the molecular level, estrogen upregulated hepatic SHP expression through binding to its proximal promoter. In addition, the roles of estrogen were largely blunted in mice with SHP deficiency. CONCLUSION These findings reveal a novel role of estrogen in improving hepatosteatosis through upregulation of SHP expression.
Collapse
Affiliation(s)
- Xiaolin Wang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Lu
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - E Wang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhijian Zhang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuelian Xiong
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijie Zhang
- Xiamen Diabetes Institute, Department of Endocrinology and Metabolism, The First Hospital of Xiamen, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
| | - Jieli Lu
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Zheng
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Yang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Xia
- Genomic Medicine and Center for Diabetes Research, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Shuyu Yang
- Xiamen Diabetes Institute, Department of Endocrinology and Metabolism, The First Hospital of Xiamen, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China.
| | - Xiaoying Li
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The Key Laboratory of Endocrine Tumors and the Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025, China; Chinese-French Laboratory of Genomics and Life Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
49
|
González-Reimers E, Quintero-Platt G, Rodríguez-Gaspar M, Alemán-Valls R, Pérez-Hernández O, Santolaria-Fernández F. Liver steatosis in hepatitis C patients. World J Hepatol 2015; 7:1337-1346. [PMID: 26052379 PMCID: PMC4450197 DOI: 10.4254/wjh.v7.i10.1337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
There is controversy regarding some aspects of hepatitis C virus (HCV) infection-associated liver steatosis, and their relationship with body fat stores. It has classically been found that HCV, especially genotype 3, exerts direct metabolic effects which lead to liver steatosis. This supports the existence of a so called viral steatosis and a metabolic steatosis, which would affect HCV patients who are also obese or diabetics. In fact, several genotypes exert metabolic effects which overlap with some of those observed in the metabolic syndrome. In this review we will analyse the pathogenic pathways involved in the development of steatosis in HCV patients. Several cytokines and adipokines also become activated and are involved in “pure” steatosic effects, in addition to inflammation. They are probably responsible for the evolution of simple steatosis to steatohepatitis, making it difficult to explain why such alterations only affect a proportion of steatosic patients.
Collapse
|
50
|
Tseng HT, Park YJ, Lee YK, Moore DD. The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice. J Biomed Sci 2015; 22:30. [PMID: 25951943 PMCID: PMC4489392 DOI: 10.1186/s12929-015-0133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small heterodimer partner (SHP, NR0B2) is involved in diverse metabolic pathways, including hepatic bile acid, lipid and glucose homeostasis, and has been implicated in effects on the peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and the receptor for antidiabetic drugs thiazolidinediones (TZDs). In this study, we aim to investigate the role of SHP in TZD response by comparing TZD-treated leptin-deficient (ob/ob) and leptin-, SHP-deficient (ob/ob;Shp(-/-)) double mutant mice. RESULTS Both ob/ob and double mutant ob/ob;Shp(-/-) mice developed hyperglycemia, insulin resistance, and hyperlipidemia, but hepatic fat accumulation was decreased in the double mutant ob/ob;Shp(-/-) mice. PPARγ2 mRNA levels were markedly lower in ob/ob;Shp(-/-) liver and decreased to a lesser extent in adipose tissue. The TZD troglitazone did not reduce glucose or circulating triglyceride levels in ob/ob;Shp(-/-) mice. Expression of the adipocytokines, such as adiponectin and resistin, was not stimulated by troglitazone treatment. Expression of hepatic lipogenic genes was also reduced in ob/ob;Shp(-/-) mice. Moreover, overexpression of SHP by adenovirus infection increased PPARγ2 mRNA levels in mouse primary hepatocytes. CONCLUSIONS Our results suggest that SHP is required for both antidiabetic and hypolipidemic effects of TZDs in ob/ob mice through regulation of PPARγ expression.
Collapse
Affiliation(s)
- Hsiu-Ting Tseng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.
| | - Young Joo Park
- 300 Gumi-dong, Bundang-gu, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Kyeonggi-do, South Korea.
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA.
| |
Collapse
|