1
|
Vázquez Salgado AM, Cai C, Lee M, Yin D, Chrystostome ML, Gefre AF, He S, Kieckhaefer JE, Wangensteen KJ. In Vivo CRISPR Activation Screening Reveals Chromosome 1q Genes VPS72, GBA1, and MRPL9 Drive Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2025; 19:101460. [PMID: 39761726 DOI: 10.1016/j.jcmgh.2025.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by using CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes. METHODS We used data from The Cancer Genome Atlas to identify that frequently copy number-amplified and up-regulated genes all reside on human chromosomes 1q and 8q. We generated CRISPRa screening transposons that contain oncogenic Myc to drive tumor formation. We conducted CRISPRa screens in vivo in the liver to identify tumor driver genes. We extensively validated the findings in separate mice and performed RNA sequencing analysis to explore mechanisms driving tumorigenesis. RESULTS We targeted genes that frequently undergo amplification in human HCC using an in vivo CRISPRa screening system in mice, which induced extensive liver tumorigenesis. Human chromosome 1q genes Zbtb7b, Vps72, Gba1, and Mrpl9 emerged as drivers of liver tumorigenesis. In human HCC there is a trend in correlation between levels of MRPL9, VPS72, or GBA1 and poor survival. In validation assays, activation of Vps72, Gba1, or Mrpl9 resulted in extensive liver tumorigenesis and decreased survival in mice. RNA sequencing revealed different mechanisms driving HCC, with Mrpl9 activation altering genes functionally related to mitochondrial function, Vps72 levels altering phospholipid metabolism, and Gba1 activation enhancing endosomal-lysosomal activity, all leading to promotion of cellular proliferation. Analysis of human tumor tissues with high levels of MRPL9, VPS72, or GBA1 revealed congruent results, indicating conserved mechanisms driving HCC. CONCLUSIONS This study reveals chromosome 1q genes Vps72, Gba1, and Mrpl9 as drivers of HCC. Future efforts to prevent or treat HCC can focus on these new driver genes.
Collapse
Affiliation(s)
- Alexandra M Vázquez Salgado
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Pharmacology Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chunmiao Cai
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Markcus Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Dingzi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marie-Lise Chrystostome
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adrienne F Gefre
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shirui He
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia E Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Diwan R, Gaytan SL, Bhatt HN, Pena-Zacarias J, Nurunnabi M. Liver fibrosis pathologies and potentials of RNA based therapeutics modalities. Drug Deliv Transl Res 2024; 14:2743-2770. [PMID: 38446352 DOI: 10.1007/s13346-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
Liver fibrosis (LF) occurs when the liver tissue responds to injury or inflammation by producing excessive amounts of scar tissue, known as the extracellular matrix. This buildup stiffens the liver tissue, hinders blood flow, and ultimately impairs liver function. Various factors can trigger this process, including bloodborne pathogens, genetic predisposition, alcohol abuse, non-steroidal anti-inflammatory drugs, non-alcoholic steatohepatitis, and non-alcoholic fatty liver disease. While some existing small-molecule therapies offer limited benefits, there is a pressing need for more effective treatments that can truly cure LF. RNA therapeutics have emerged as a promising approach, as they can potentially downregulate cytokine levels in cells responsible for liver fibrosis. Researchers are actively exploring various RNA-based therapeutics, such as mRNA, siRNA, miRNA, lncRNA, and oligonucleotides, to assess their efficacy in animal models. Furthermore, targeted drug delivery systems hold immense potential in this field. By utilizing lipid nanoparticles, exosomes, nanocomplexes, micelles, and polymeric nanoparticles, researchers aim to deliver therapeutic agents directly to specific biomarkers or cytokines within the fibrotic liver, increasing their effectiveness and reducing side effects. In conclusion, this review highlights the complex nature of liver fibrosis, its underlying causes, and the promising potential of RNA-based therapeutics and targeted delivery systems. Continued research in these areas could lead to the development of more effective and personalized treatment options for LF patients.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Samantha Lynn Gaytan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Himanshu Narendrakumar Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA
| | - Jacqueline Pena-Zacarias
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA
- Department of Biological Sciences, College of Science, The University of Texas El Paso, El Paso, Texas, 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX, 79902, USA.
- Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX, 79968, USA.
- Department of Interdisciplinary Health Sciences, College of Health Sciences, The University of Texas El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
3
|
Keng VW, Chiu AP, To JC, Li XX, Linden MA, Amin K, Moriarity BS, Yusa K. Transposon delivery for CRISPR-based loss-of-function screen in mice identifies NF2 as a cooperating gene involved with the canonical WNT signaling molecular class of hepatocellular carcinoma. Heliyon 2023; 9:e18774. [PMID: 37576222 PMCID: PMC10412851 DOI: 10.1016/j.heliyon.2023.e18774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Various molecular subclasses of hepatocellular carcinoma (HCC) exists, with many novel cooperating oncogenes and tumor suppressor genes involved in its tumorigenesis. The emerging importance of WNT signaling in HCC has been established. However, the intricate genetic mechanisms involved in this complex signaling pathway remains to be elucidated. Importantly, while some cooperating genes have been identified, there are still many unknown genes associated with catenin beta 1 (CTNNB1)-induced HCC. Mutations in both oncogenes and tumor suppressor genes are required for HCC tumorigenesis. The emergence of the CRISPR/Cas9 system has allowed researchers now to target both alleles efficiently. In this novel study, the Sleeping Beauty transposon system was used as a gene delivery system in vivo to stably integrate an expression cassette that carry pools of gRNAs and overexpress a mutant version of CTNNB1 into the hepatocyte genome. We identified 206 candidate genes that drive HCC tumorigenesis in the context of WNT signaling activation and, neurofibromin 2 (NF2) gene, a known tumor suppressor gene with clinical relevance was validated in this proof-of-principle study.
Collapse
Affiliation(s)
- Vincent W. Keng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Amy P. Chiu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jeffrey C. To
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiao-Xiao Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
4
|
Saito Y, Yin D, Kubota N, Wang X, Filliol A, Remotti H, Nair A, Fazlollahi L, Hoshida Y, Tabas I, Wangensteen KJ, Schwabe RF. A Therapeutically Targetable TAZ-TEAD2 Pathway Drives the Growth of Hepatocellular Carcinoma via ANLN and KIF23. Gastroenterology 2023; 164:1279-1292. [PMID: 36894036 PMCID: PMC10335360 DOI: 10.1053/j.gastro.2023.02.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/24/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.
Collapse
Affiliation(s)
- Yoshinobu Saito
- Department of Medicine, Columbia University, New York, New York.
| | - Dingzi Yin
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota
| | - Naoto Kubota
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaobo Wang
- Department of Medicine, Columbia University, New York, New York
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, New York
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, New York
| | - Ladan Fazlollahi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ira Tabas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Institute of Human Nutrition, New York, New York
| | - Kirk J Wangensteen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Mayo Clinic, Rochester, Minnesota.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, New York; Institute of Human Nutrition, New York, New York.
| |
Collapse
|
5
|
Kopasz AG, Pusztai DZ, Karkas R, Hudoba L, Abdullah KSA, Imre G, Pankotai-Bodó G, Migh E, Nagy A, Kriston A, Germán P, Drubi AB, Molnár A, Fekete I, Dani VÉ, Ocsovszki I, Puskás LG, Horváth P, Sükösd F, Mátés L. A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver. BMC Biol 2022; 20:74. [PMID: 35361222 PMCID: PMC8974095 DOI: 10.1186/s12915-022-01262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice.
Collapse
Affiliation(s)
| | - Dávid Zsolt Pusztai
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Réka Karkas
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Liza Hudoba
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Khaldoon Sadiq Ahmed Abdullah
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Gergely Imre
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | | | - Ede Migh
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Andrea Nagy
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - András Kriston
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Péter Germán
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Andrea Bakné Drubi
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Anna Molnár
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Ildikó Fekete
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Virág Éva Dani
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Imre Ocsovszki
- grid.9008.10000 0001 1016 9625Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - László Géza Puskás
- grid.481815.1Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Péter Horváth
- grid.481814.00000 0004 0479 9817Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary ,grid.452494.a0000 0004 0409 5350Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Farkas Sükösd
- grid.9008.10000 0001 1016 9625Institute of Pathology, University of Szeged, Szeged, Hungary
| | - Lajos Mátés
- Institute of Genetics, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
6
|
Holczbauer Á, Wangensteen KJ, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Rep 2022; 4:100416. [PMID: 35243280 PMCID: PMC8873941 DOI: 10.1016/j.jhepr.2021.100416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
Collapse
|
7
|
Pu R, Liu W, Zhou X, Chen X, Hou X, Cai S, Chen L, Wu J, Yang F, Tan X, Yin J, Wang X, Cao G. The Effects and Underlying Mechanisms of Hepatitis B Virus X Gene Mutants on the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:836517. [PMID: 35223517 PMCID: PMC8867042 DOI: 10.3389/fonc.2022.836517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
We aimed to elucidate the mechanism by which hepatitis B virus X (HBx) mutations increase the occurrence of hepatocellular carcinoma (HCC) and identify novel putative therapeutic targets. Wild-type HBx (WT-HBx) and four HBx mutants (M1, A1762T/G1764A; M2, T1674G+T1753C+A1762T/G1764A; M3, C1653T+T1674G+A1762T/G1764A; and Ct-HBx, carboxylic acid-terminal truncated HBx) were delivered into Sleeping Beauty (SB) mouse models. The HCC incidence was higher in the M3-HBx- and Ct-HBx-injected SB mice. M3-HBx had a stronger capacity of upregulating inflammatory cytokines than other HBx variants. Ectopic expression of M3-HBx and Ct-HBx significantly increased proliferation and S phase proportion of HepG2 and HeLa cells, compared to WT-HBx. Plasminogen activator inhibitor-1 (PAI1) and cell division cycle 20 (CDC20) were identified as novel effectors by cDNA microarray analysis. M3-HBx and Ct-HBx significantly upregulated the expression of PAI1 and CDC20 in HepG2 and HeLa cells as well as the livers of SB mice. Silencing PAI1 attenuated the effects of M3-HBx and Ct-HBx on the growth of HepG2 and HeLa cells. PAI1, an important player bridging the HBx mutants and HCC, should be a promising candidate as a prognostic biomarker and therapeutic target in HBV-related HCC.
Collapse
Affiliation(s)
- Rui Pu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xinyu Zhou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Liping Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Pathology, Xijing Hospital, Xi'an, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Lu F, Pan X, Zhang W, Su X, Gu Y, Qiu H, Shen S, Liu C, Liu W, Wang X, Zhan Z, Liu Z, He Z. A Three-Dimensional Imaging Method for the Quantification and Localization of Dynamic Cell Tracking Posttransplantation. Front Cell Dev Biol 2021; 9:698795. [PMID: 34557483 PMCID: PMC8452970 DOI: 10.3389/fcell.2021.698795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cell transplantation has been proposed as a promising therapeutic strategy for curing the diseases requiring tissue repairing and functional restoration. A preclinical method to systematically evaluate the fates of donor cells in recipients, spatially and temporally, is demanded for judging therapeutic potentials for the particularly designed cell transplantation. Yet, the dynamic cell tracking methodology for tracing transplanted cells in vivo is still at its early phase. Here, we created a practical protocol for dynamically tracking cell via a three-dimensional (3D) technique which enabled us to localize, quantify, and overall evaluate the transplanted hepatocytes within a liver failure mouse model. First, the capacity of 3D bioluminescence imaging for quantifying transplanted hepatocytes was defined. Images obtained from the 3D bioluminescence imaging module were then combined with the CT scanner to reconstruct structure images of host mice. With those reconstructed images, precise locations of transplanted hepatocytes in the liver of the recipient were dynamically monitored. Immunohistochemistry staining of transplanted cells, and the serology assay of liver panel of the host mice were applied to verify the successful engraftment of donor cells in the host livers. Our protocol was practical for evaluating the engraftment efficiency of donor cells at their preclinical phases, which is also applicable as a referable standard for studying the fates of other transplanted cells, such as stem cell-derived cell types, during preclinical studies with cell transplantation therapy.
Collapse
Affiliation(s)
- Fengfeng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xin Pan
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xin Su
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yuying Gu
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hua Qiu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengwei Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhenzhen Zhan
- Institute of Heart Failure, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Institute of Heart Failure, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
9
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Smith JL, Rodríguez TC, Mou H, Kwan SY, Pratt H, Zhang XO, Cao Y, Liang S, Ozata DM, Yu T, Yin Q, Hazeltine M, Weng Z, Sontheimer EJ, Xue W. YAP1 Withdrawal in Hepatoblastoma Drives Therapeutic Differentiation of Tumor Cells to Functional Hepatocyte-Like Cells. Hepatology 2021; 73:1011-1027. [PMID: 32452550 PMCID: PMC8500588 DOI: 10.1002/hep.31389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Despite surgical and chemotherapeutic advances, the 5-year survival rate for stage IV hepatoblastoma (HB), the predominant pediatric liver tumor, remains at 27%. Yes-associated protein 1 (YAP1) and β-catenin co-activation occurs in 80% of children's HB; however, a lack of conditional genetic models precludes tumor maintenance exploration. Thus, the need for a targeted therapy remains unmet. Given the predominance of YAP1 and β-catenin activation in HB, we sought to evaluate YAP1 as a therapeutic target in HB. APPROACH AND RESULTS We engineered the conditional HB murine model using hydrodynamic injection to deliver transposon plasmids encoding inducible YAP1S127A , constitutive β-cateninDelN90 , and a luciferase reporter to murine liver. Tumor regression was evaluated using bioluminescent imaging, tumor landscape characterized using RNA and ATAC sequencing, and DNA footprinting. Here we show that YAP1S127A withdrawal mediates more than 90% tumor regression with survival for 230+ days in mice. YAP1S127A withdrawal promotes apoptosis in a subset of tumor cells, and in remaining cells induces a cell fate switch that drives therapeutic differentiation of HB tumors into Ki-67-negative hepatocyte-like HB cells ("HbHeps") with hepatocyte-like morphology and mature hepatocyte gene expression. YAP1S127A withdrawal drives the formation of hbHeps by modulating liver differentiation transcription factor occupancy. Indeed, tumor-derived hbHeps, consistent with their reprogrammed transcriptional landscape, regain partial hepatocyte function and rescue liver damage in mice. CONCLUSIONS YAP1S127A withdrawal, without silencing oncogenic β-catenin, significantly regresses hepatoblastoma, providing in vivo data to support YAP1 as a therapeutic target for HB. YAP1S127A withdrawal alone sufficiently drives long-term regression in HB, as it promotes cell death in a subset of tumor cells and modulates transcription factor occupancy to reverse the fate of residual tumor cells to mimic functional hepatocytes.
Collapse
Affiliation(s)
- Jordan L Smith
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Tomás C Rodríguez
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Haiwei Mou
- Cold Spring Harbor LaboratoryCold Spring HarborNY
| | - Suet-Yan Kwan
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Henry Pratt
- Medical Scientist Training ProgramUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Yueying Cao
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Shunqing Liang
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Deniz M Ozata
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Tianxiong Yu
- Department of BioinformaticsSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Qiangzong Yin
- Graduate School of Biomedical SciencesUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Max Hazeltine
- Department of SurgeryUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Erik J Sontheimer
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMA.,Li Weibo Institute for Rare Diseases ResearchUniversity of Massachusetts Medical SchoolWorcesterMA
| | - Wen Xue
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMA.,Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMA.,Li Weibo Institute for Rare Diseases ResearchUniversity of Massachusetts Medical SchoolWorcesterMA.,Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMA
| |
Collapse
|
11
|
To JC, Chiu AP, Tschida BR, Lo LH, Chiu CH, Li XX, Kuka TP, Linden MA, Amin K, Chan WC, Bell JB, Moriarity BS, Largaespada DA, Keng VW. ZBTB20 regulates WNT/CTNNB1 signalling pathway by suppressing PPARG during hepatocellular carcinoma tumourigenesis. JHEP Rep 2020; 3:100223. [PMID: 33604532 PMCID: PMC7873381 DOI: 10.1016/j.jhepr.2020.100223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Background & Aims Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis. Methods A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1). Results Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (T r p53) inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis. Conclusions These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the WNT/CTNNB1 signalling pathway in HCC tumourigenesis. Lay summary ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading to tumourigenesis.
Collapse
Key Words
- AFP, alpha-foetoprotein
- BTB/POZ, broad complex
- CTNNB1
- CTNNB1, catenin beta 1
- Fah, fumarylacetoacetate hydrolase
- GSK3B, glycogen synthase kinase 3 beta
- HCC, hepatocellular carcinoma
- HHL, immortalized human hepatic cell line
- Hepatocellular carcinoma
- IF, immunofluorescence
- NTBC, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione
- OFP, orange fluorescent protein
- PHI, post-hydrodynamic injection
- POK, POZ and Kruppel
- PPARG
- PPARG, peroxisome proliferator activated receptor gamma
- Reverse genetic screen
- SB, Sleeping Beauty
- Sleeping Beauty
- ZBTB20
- ZBTB20, zinc finger and BTB domain containing 20
- qPCR, quantitative RT-PCR
- tramtrack, bric a brac/poxvirus and zinc finger
Collapse
Affiliation(s)
- Jeffrey C To
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Amy P Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Barbara R Tschida
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lilian H Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Cynthia H Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Xiao-Xiao Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Timothy P Kuka
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.,College of Natural Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wing-Cheung Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Jason B Bell
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Branden S Moriarity
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, Department of Pediatrics, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| |
Collapse
|
12
|
Li C, Zhang Y, Chen Y, Su T, Zhao Y, Shi S. Cell-Autonomous Autophagy Protects Against Chronic Intermittent Hypoxia Induced Sensory Nerves and Endothelial Dysfunction of the Soft Palate. Med Sci Monit 2020; 26:e920878. [PMID: 32616707 PMCID: PMC7353292 DOI: 10.12659/msm.920878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic intermittent hypoxia (CIH) is a key feature of obstructive sleep apnea (OSA) syndrome. The pathogenesis of CIH-induced soft palate lesion is not well understood. Understanding the mechanisms of CIH-induced soft palate damage could provide new strategies for clinical treatment. MATERIAL AND METHODS Twenty male Sprague‑Dawley rats were randomized into a control group (n=10) and experimental group (n=10). The experimental group were exposed to CIH for 28 days. The control experiments were run in parallel. Morphological changes of CIH-induced soft palate were examined by hematoxylin and eosin. Peripheral nerves and vascular associated markers were analyzed by western blot and immunohistochemical staining. LC3B expression and transmission electron microscopy analysis was detected to investigate the destiny of cells in CIH-induced soft palate. RESULTS Histological studies demonstrated the thicken mucosal layer, muscular changes consistent with glands hyperplasia, and loose connective tissues of the soft palate in CIH induced rat models. CIH exposure significantly decreased the expression of annexin V but did not change argin level, suggesting that sensory nerves not motor nerves were damaged when exposed to intermittent hypoxia. Moreover, in response to CIH, the vascular vessel around the nerves and muscles became enlarged and caveolin-1 was overexpressed. Autophagy occurs in response to CIH-induced neuromuscular and vascular endothelial injury. CONCLUSIONS Sensory nerves and endothelial dysfunction contributed to the morphological damage of soft palate under intermittent hypoxia. Autophagy as a compensatory mechanism protects against CIH-induced injury. These findings have important implications for understanding mechanisms contributing to the increased soft palate lesion in patients with OSA.
Collapse
Affiliation(s)
- Cong Li
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yu Zhang
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yuqin Chen
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Tiantian Su
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Yaming Zhao
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| | - Song Shi
- Ear, Nose, and Throat (ENT) Department, Tongren Hospital, Shanghai, China (mainland)
| |
Collapse
|
13
|
Wang G, Wang Q, Liang N, Xue H, Yang T, Chen X, Qiu Z, Zeng C, Sun T, Yuan W, Liu C, Chen Z, He X. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer. Cell Death Dis 2020; 11:313. [PMID: 32366840 PMCID: PMC7198508 DOI: 10.1038/s41419-020-2509-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Primary liver cancer (PLC) may be mainly classified as the following four types: hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), hepatoblastoma (HB), and combined hepatocellular carcinoma and intrahepatic cholangiocarcinoma (cHCC-ICC). The majority of PLC develops in the background of tumor microenvironment, such as inflammatory microenvironments caused by viral hepatitis, alcoholic or nonalcoholic steatohepatitis, carbon tetrachloride (CCl4), 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), and necroptosis-associated hepatic cytokine microenvironment caused by necroptosis of hepatocytes. However, the impact of different types of microenvironments on the phenotypes of PLC generated by distinct oncogenes is still unclear. In addition, the cell origin of different liver cancers have not been clarified, as far as we know. Recent researches show that mature hepatocytes retain phenotypic plasticity to differentiate into cholangiocytes. More importantly, our results initially demonstrated that HCC, ICC, and cHCC-ICC could originate from mature hepatocytes rather than liver progenitor cells (LPCs), hepatic stellate cells (HSCs) and cholangiocytes in AKT-driven, AKT/NICD-driven and AKT/CAT-driven mouse PLC models respectively by using hydrodynamic transfection methodology. Therefore, liver tumors originated from mature hepatocytes embody a wide spectrum of phenotypes from HCC to CC, possibly including cHCC-ICC and HB. However, the underlying mechanism determining the cancer phenotype of liver tumors has yet to be delineated. In this review, we will provide a summary of the possible mechanisms for directing the cancer phenotype of liver tumors (i.e., ICC, HCC, and cHCC-ICC) in terms of oncogenic driver genes and tumor microenvironment. Moreover, this study initially revealed the cell origin of different types of liver cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The 74th Group Army Hospital, Guangzhou, 510220, China.,Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Liang
- Department of General Surgery, The 75th Group Army Hospital, Dali, 671000, China
| | - Hongyuan Xue
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China
| | - Tao Yang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shanxi, China
| | - Xuguang Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China
| | - Zhaoyan Qiu
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Chao Zeng
- Department of Cardiology, The 74th Group Army Hospital, Guangzhou, 510318, China
| | - Tao Sun
- Departmentof Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zheng zhou, 450052, China
| | - Weitang Yuan
- Department of Anorectal Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan North Hospital, Fudan University, Shanghai, 201907, China. .,Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003, China.
| | - Zhangqian Chen
- Department of Infectious Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China. .,State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Zahm AM, Wang AW, Wang YJ, Schug J, Wangensteen KJ, Kaestner KH. A High-Content Screen Identifies MicroRNAs That Regulate Liver Repopulation After Injury in Mice. Gastroenterology 2020; 158:1044-1057.e17. [PMID: 31759059 PMCID: PMC7472793 DOI: 10.1053/j.gastro.2019.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is impaired in mice with hepatocyte-specific deficiencies in microRNA (miRNA) processing, but it is not clear which miRNAs regulate this process. We developed a high-throughput screen to identify miRNAs that regulate hepatocyte repopulation after toxic liver injury using fumarylacetoacetate hydrolase-deficient mice. METHODS We constructed plasmid pools encoding more than 30,000 tough decoy miRNA inhibitors (hairpin nucleic acids designed to specifically inhibit interactions between miRNAs and their targets) to target hepatocyte miRNAs in a pairwise manner. The plasmid libraries were delivered to hepatocytes in fumarylacetoacetate hydrolase-deficient mice at the time of liver injury via hydrodynamic tail-vein injection. Integrated transgene-containing transposons were quantified after liver repopulation via high-throughput sequencing. Changes in polysome-bound transcripts after miRNA inhibition were determined using translating ribosome affinity purification followed by high-throughput sequencing. RESULTS Analyses of tough decoy abundance in hepatocyte genomic DNA and input plasmid pools identified several thousand miRNA inhibitors that were significantly depleted or increased after repopulation. We classified a subset of miRNA binding sites as those that have strong effects on liver repopulation, implicating the targeted hepatocyte miRNAs as regulators of this process. We then generated a high-content map of pairwise interactions between 171 miRNA-binding sites and identified synergistic and redundant effects. CONCLUSIONS We developed a screen to identify miRNAs that regulate liver repopulation after injury in live mice.
Collapse
Affiliation(s)
| | | | - Yue J Wang
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Jonathan Schug
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Wang AW, Wang YJ, Zahm AM, Morgan AR, Wangensteen KJ, Kaestner KH. The Dynamic Chromatin Architecture of the Regenerating Liver. Cell Mol Gastroenterol Hepatol 2019; 9:121-143. [PMID: 31629814 PMCID: PMC6909351 DOI: 10.1016/j.jcmgh.2019.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood. METHODS We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). RESULTS Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation. CONCLUSIONS Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yue J Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashleigh R Morgan
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Wang AW, Zahm AM, Wangensteen KJ. Cell Type-specific Gene Expression Profiling in the Mouse Liver. J Vis Exp 2019:10.3791/60242. [PMID: 31609340 PMCID: PMC7507956 DOI: 10.3791/60242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Liver repopulation after injury is a crucial feature of mammals which prevents immediate organ failure and death after exposure of environmental toxins. A deeper understanding of the changes in gene expression that occur during repopulation could help identify therapeutic targets to promote the restoration of liver function in the setting of injuries. Nonetheless, methods to isolate specifically the repopulating hepatocytes are inhibited by a lack of cell markers, limited cell numbers, and the fragility of these cells. The development of translating ribosome affinity purification (TRAP) technology in conjunction with the Fah-/- mouse model to recapitulate repopulation in the setting of liver injury allows gene expression profiling of the repopulating hepatocytes. With TRAP, cell type-specific translating mRNA is rapidly and efficiently isolated. We developed a method that utilizes TRAP with affinity-based isolation of translating mRNA from hepatocytes that selectively express the green fluorescent protein (GFP)-tagged ribosomal protein (RP), GFP:RPL10A. TRAP circumvents the long time period required for fluorescence-activated cell sorting that could change the gene expression profile. Furthermore, since only the repopulating hepatocytes express the GFP:RPL10A fusion protein, the isolated mRNA is devoid of contamination from the surrounding injured hepatocytes and other cell types in the liver. The affinity-purified mRNA is of high quality and allows downstream PCR- or high-throughput sequencing-based analysis of gene expression.
Collapse
Affiliation(s)
- Amber W Wang
- Department of Genetics, University of Pennsylvania
| | - Adam M Zahm
- Department of Genetics, University of Pennsylvania
| | - Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania; Department of Medicine, University of Pennsylvania;
| |
Collapse
|
17
|
Kieckhaefer JE, Maina F, Wells R, Wangensteen KJ. Liver Cancer Gene Discovery Using Gene Targeting, Sleeping Beauty, and CRISPR/Cas9. Semin Liver Dis 2019; 39:261-274. [PMID: 30912094 PMCID: PMC7485130 DOI: 10.1055/s-0039-1678725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a devastating and prevalent cancer with limited treatment options. Technological advances have enabled genetic screens to be employed in HCC model systems to characterize genes regulating tumor initiation and growth. Relative to traditional methods for studying cancer biology, such as candidate gene approaches or expression analysis, genetic screens have several advantages: they are unbiased, with no a priori selection; can directly annotate gene function; and can uncover gene-gene interactions. In HCC, three main types of screens have been conducted and are reviewed here: (1) transposon-based mutagenesis screens, (2) knockdown screens using RNA interference (RNAi) or the CRISPR/Cas9 system, and (3) overexpression screens using CRISPR activation (CRISPRa) or cDNAs. These methods will be valuable in future genetic screens to delineate the mechanisms underlying drug resistance and to identify new treatments for HCC.
Collapse
Affiliation(s)
- Julia E. Kieckhaefer
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Flavio Maina
- Aix Marseille University, CNRS, Developmental Biology Institute of Marseille (IBDM), Parc Scientifique de Luminy, Marseille, France
| | - Rebecca Wells
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
- Pathology and Laboratory Medicine and Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Chiu AP, Tschida BR, Sham TT, Lo LH, Moriarity BS, Li XX, Lo RC, Hinton DE, Rowlands DK, Chan CO, Mok DKW, Largaespada DA, Warner N, Keng VW. HBx-K130M/V131I Promotes Liver Cancer in Transgenic Mice via AKT/FOXO1 Signaling Pathway and Arachidonic Acid Metabolism. Mol Cancer Res 2019; 17:1582-1593. [PMID: 30975706 DOI: 10.1158/1541-7786.mcr-18-1127] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Chronic hepatitis B viral (HBV) infection remains a high underlying cause for hepatocellular carcinoma (HCC) worldwide, while the genetic mechanisms behind this remain unclear. This study elucidated the mechanisms contributing to tumor development induced by the HBV X (HBx) gene of predominantly Asian genotype B HBV and its common HBx variants. To compare the potential tumorigenic effects of K130M/V131I (Mut) and wild-type (WT) HBx on HCC, the Sleeping Beauty (SB) transposon system was used to deliver HBx Mut and WT into the livers of fumarylacetoacetate hydrolase (Fah)-deficient mice and in the context of transformation related protein 53 (Trp53) deficiency. From our results, HBx Mut had a stronger tumorigenic effect than its WT variant. Also, inflammation, necrosis, and fibrosis were evident in HBx experimental animals. Reduction of forkhead box O1 (FOXO1) with increased phosphorylation of upstream serine/threonine kinase (AKT) was detected under HBx Mut overexpression. Thus, it is proposed that HBx Mut enhances disease progression by reducing FOXO1 via phosphorylation of AKT. At the metabolomic level, HBx altered the expression of genes that participated in arachidonic acid (AA) metabolism, as a result of inflammation via accumulation of proinflammatory factors such as prostaglandins and leukotriene in liver. Taken together, the increased rate of HCC observed in chronic hepatitis B patients with K130M/V131I-mutated X protein, may be due to changes in AA metabolism and AKT/FOXO1 signaling. IMPLICATIONS: Our findings suggested that HBx-K130M/V131I-mutant variant promoted HCC progression by activating AKT/FOXO1 pathway and inducing stronger inflammation in liver via AA metabolism.
Collapse
Affiliation(s)
- Amy P Chiu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Barbara R Tschida
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Tung-Ting Sham
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lilian H Lo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Branden S Moriarity
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Xiao-Xiao Li
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Regina C Lo
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Dewi K Rowlands
- Laboratory Animal Services Centre, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Chi-On Chan
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel K W Mok
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - David A Largaespada
- Center for Genome Engineering, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
| | - Vincent W Keng
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
19
|
Chiu AP, Keng VW. Liver-Specific Delivery of Sleeping Beauty Transposon System by Hydrodynamic Injection for Cancer Gene Validation. Methods Mol Biol 2019; 1907:185-196. [PMID: 30543001 DOI: 10.1007/978-1-4939-8967-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the complex genetic background of cancers is key in developing effective targeted therapies. The Sleeping Beauty (SB) transposon system is a powerful and unbiased genetic editing tool that can be used for rapid screening of candidate liver cancer driver genes. Manipulating their expression level using a reverse genetic mouse model involving hydrodynamic tail-vein injection delivery can rapidly elucidate the role of these candidate genes in liver cancer tumorigenesis.
Collapse
Affiliation(s)
- Amy P Chiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Vincent W Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Wangensteen KJ, Wang YJ, Dou Z, Wang AW, Mosleh-Shirazi E, Horlbeck MA, Gilbert LA, Weissman JS, Berger SL, Kaestner KH. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform. Hepatology 2018; 68:663-676. [PMID: 29091290 PMCID: PMC5930141 DOI: 10.1002/hep.29626] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 activation (CRISPRa) systems have enabled genetic screens in cultured cell lines to discover and characterize drivers and inhibitors of cancer cell growth. We adapted this system for use in vivo to assess whether modulating endogenous gene expression levels can result in functional outcomes in the native environment of the liver. We engineered the catalytically dead CRISPR-associated 9 (dCas9)-positive mouse, cyclization recombination-inducible (Cre) CRISPRa system for cell type-specific gene activation in vivo. We tested the capacity for genetic screening in live animals by applying CRISPRa in a clinically relevant model of liver injury and repopulation. We targeted promoters of interest in regenerating hepatocytes using multiple single guide RNAs (gRNAs), and employed high-throughput sequencing to assess enrichment of gRNA sequences during liver repopulation and to link specific gRNAs to the initiation of carcinogenesis. All components of the CRISPRa system were expressed in a cell type-specific manner and activated endogenous gene expression in vivo. Multiple gRNA cassettes targeting a proto-oncogene were significantly enriched following liver repopulation, indicative of enhanced division of cells expressing the proto-oncogene. Furthermore, hepatocellular carcinomas developed containing gRNAs that activated this oncogene, indicative of cancer initiation events. Also, we employed our system for combinatorial cancer genetics in vivo as we found that while clonal hepatocellular carcinomas were dependent on the presence of the oncogene-inducing gRNAs, they were depleted for multiple gRNAs activating tumor suppressors. CONCLUSION The in vivo CRISPRa platform developed here allows for parallel and combinatorial genetic screens in live animals; this approach enables screening for drivers and suppressors of cell replication and tumor initiation. (Hepatology 2017).
Collapse
Affiliation(s)
- Kirk J. Wangensteen
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yue J. Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhixun Dou
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amber W. Wang
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elham Mosleh-Shirazi
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | - Luke A. Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
| | - Shelley L. Berger
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
The extent of liver injury determines hepatocyte fate toward senescence or cancer. Cell Death Dis 2018; 9:575. [PMID: 29760381 PMCID: PMC5951829 DOI: 10.1038/s41419-018-0622-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
It is well known that induction of hepatocyte senescence could inhibit the development of hepatocellular carcinoma (HCC). Until now, it is still unclear how the degree of liver injury dictates hepatocyte senescence and carcinogenesis. In this study, we investigated whether the severity of injury determines cell fate decisions between hepatocyte senescence and carcinogenesis. After testing of different degrees of liver injury, we found that hepatocyte senescence is strongly induced in the setting of severe acute liver injury. Longer-term, moderate liver injury, on the contrary did not result into hepatocyte senescence, but led to a significant incidence of HCC instead. In addition, carcinogenesis was significantly reduced by the induction of severe acute injury after chronic moderate liver injury. Meanwhile, immune surveillance, especially the activations of macrophages, was activated after re-induction of senescence by severe acute liver injury. We conclude that severe acute liver injury leads to hepatocyte senescence along with activating immune surveillance and a low incidence of HCC, whereas chronic moderate injury allows hepatocytes to proliferate rather than to enter into senescence, and correlates with a high incidence of HCC. This study improves our understanding in hepatocyte cell fate decisions and suggests a potential clinical strategy to induce senescence to treat HCC.
Collapse
|
22
|
Wang AW, Wangensteen KJ, Wang YJ, Zahm AM, Moss NG, Erez N, Kaestner KH. TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury. J Clin Invest 2018. [PMID: 29517978 DOI: 10.1172/jci95120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding the molecular basis of the regenerative response following hepatic injury holds promise for improved treatment of liver diseases. Here, we report an innovative method to profile gene expression specifically in the hepatocytes that regenerate the liver following toxic injury. We used the Fah-/- mouse, a model of hereditary tyrosinemia, which conditionally undergoes severe liver injury unless fumarylacetoacetate hydrolase (FAH) expression is reconstituted ectopically. We used translating ribosome affinity purification followed by high-throughput RNA sequencing (TRAP-seq) to isolate mRNAs specific to repopulating hepatocytes. We uncovered upstream regulators and important signaling pathways that are highly enriched in genes changed in regenerating hepatocytes. Specifically, we found that glutathione metabolism, particularly the gene Slc7a11 encoding the cystine/glutamate antiporter (xCT), is massively upregulated during liver regeneration. Furthermore, we show that Slc7a11 overexpression in hepatocytes enhances, and its suppression inhibits, repopulation following toxic injury. TRAP-seq allows cell type-specific expression profiling in repopulating hepatocytes and identified xCT, a factor that supports antioxidant responses during liver regeneration. xCT has potential as a therapeutic target for enhancing liver regeneration in response to liver injury.
Collapse
Affiliation(s)
| | - Kirk J Wangensteen
- Department of Genetics and.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Noam Erez
- Department of Genetics and.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
23
|
Riordan JD, Feddersen CR, Tschida BR, Jackson P, Keng VW, Linden MA, Amin K, Stipp CS, Largaespada DA, Dupuy AJ. Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice. Hepatology 2018; 67:924-939. [PMID: 28961327 PMCID: PMC5826818 DOI: 10.1002/hep.29565] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Most hepatocellular carcinomas (HCCs) develop in a chronically injured liver, yet the extent to which this microenvironment promotes neoplastic transformation or influences selective pressures for genetic drivers of HCC remains unclear. We sought to determine the impact of hepatic injury in an established mouse model of HCC induced by Sleeping Beauty transposon mutagenesis. Chemically induced chronic liver injury dramatically increased tumor penetrance and significantly altered driver mutation profiles, likely reflecting distinct selective pressures. In addition to established human HCC genes and pathways, we identified several injury-associated candidates that represent promising loci for further study. Among them, we found that FIGN is overexpressed in human HCC and promotes hepatocyte invasion. We also validated Gli2's oncogenic potential in vivo, providing direct evidence that Hedgehog signaling can drive liver tumorigenesis in the context of chronic injury. Finally, we show that a subset of injury-associated candidate genes identifies two distinct classes of human HCCs. Further analysis of these two subclasses revealed significant trends among common molecular classification schemes of HCC. The genes and mechanisms identified here provide functional insights into the origin of HCC in a chronic liver damage environment. CONCLUSION A chronically damaged liver microenvironment influences the genetic mechanisms that drive hepatocarcinogenesis. (Hepatology 2018;67:924-939).
Collapse
Affiliation(s)
- Jesse D. Riordan
- Department of Anatomy & Cell Biology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Charlotte R. Feddersen
- Department of Anatomy & Cell Biology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Barbara R. Tschida
- Masonic Cancer Center, Department of Pediatrics & Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pauline Jackson
- Masonic Cancer Center, Department of Pediatrics & Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vincent W. Keng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher S. Stipp
- Department of Biology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - David A. Largaespada
- Masonic Cancer Center, Department of Pediatrics & Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam J. Dupuy
- Department of Anatomy & Cell Biology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
24
|
Blackburn PR, Hickey RD, Nace RA, Giama NH, Kraft DL, Bordner AJ, Chaiteerakij R, McCormick JB, Radulovic M, Graham RP, Torbenson MS, Tortorelli S, Scott CR, Lindor NM, Milliner DS, Oglesbee D, Al-Qabandi W, Grompe M, Gavrilov DK, El-Youssef M, Clark KJ, Atwal PS, Roberts LR, Klee EW, Ekker SC. Silent Tyrosinemia Type I Without Elevated Tyrosine or Succinylacetone Associated with Liver Cirrhosis and Hepatocellular Carcinoma. Hum Mutat 2016; 37:1097-105. [PMID: 27397503 PMCID: PMC5108417 DOI: 10.1002/humu.23047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Tyrosinemia type I (TYRSN1, TYR I) is caused by fumarylacetoacetate hydrolase (FAH) deficiency and affects approximately one in 100,000 individuals worldwide. Pathogenic variants in FAH cause TYRSN1, which induces cirrhosis and can progress to hepatocellular carcinoma (HCC). TYRSN1 is characterized by the production of a pathognomonic metabolite, succinylacetone (SUAC) and is included in the Recommended Uniform Screening Panel for newborns. Treatment intervention is effective if initiated within the first month of life. Here, we describe a family with three affected children who developed HCC secondary to idiopathic hepatosplenomegaly and cirrhosis during infancy. Whole exome sequencing revealed a novel homozygous missense variant in FAH (Chr15(GRCh38):g.80162305A>G; NM_000137.2:c.424A > G; NP_000128.1:p.R142G). This novel variant involves the catalytic pocket of the enzyme, but does not result in increased SUAC or tyrosine, making the diagnosis of TYRSN1 problematic. Testing this novel variant using a rapid, in vivo somatic mouse model showed that this variant could not rescue FAH deficiency. In this case of atypical TYRSN1, we show how reliance on SUAC as a primary diagnostic test can be misleading in some patients with this disease. Augmentation of current screening for TYRSN1 with targeted sequencing of FAH is warranted in cases suggestive of the disorder.
Collapse
Affiliation(s)
| | - Raymond D Hickey
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rebecca A Nace
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nasra H Giama
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniel L Kraft
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Roongruedee Chaiteerakij
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Pathumwan
| | | | - Maja Radulovic
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rondell P Graham
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Silvia Tortorelli
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - C Ronald Scott
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | - Dawn S Milliner
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Devin Oglesbee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wafa'a Al-Qabandi
- Deptartment of Pediatrics, Faculty of Medicine, University of Kuwait, 24923 Safat, Kuwait City, Kuwait
| | - Markus Grompe
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Science & Health University, Portland, Oregon
| | | | - Mounif El-Youssef
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karl J Clark
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Paldeep S Atwal
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida
| | - Lewis R Roberts
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Stephen C Ekker
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
25
|
Ding N, Che L, Li XL, Liu Y, Jiang LJ, Fan B, Tao JY, Chen X, Ji JF. Oncogenic potential of IDH1R132C mutant in cholangiocarcinoma development in mice. World J Gastroenterol 2016; 22:2071-2080. [PMID: 26877611 PMCID: PMC4726679 DOI: 10.3748/wjg.v22.i6.2071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether IDH1R132C mutant in combination with loss of p53 and activated Notch signaling promotes intrahepatic cholangiocarcinoma (ICC) development.
METHODS: We applied hydrodynamic injection and sleeping beauty mediated somatic integration to induce loss of p53 (via shP53), activation of Notch [via intracellular domain of Notch1 (NICD)] and/or overexpression of IDH1R132C mutant together with the sleeping beauty transposase into the mouse liver. Specifically, we co-expressed shP53 and NICD (shP53/NICD, n = 4), shP53 and IDH1R132C (shP53/IDH1R132C, n = 3), NICD and IDH1R132C (NICD/IDH1R132C, n = 4), as well as NICD, shP53 and IDH1R132C (NICD/shP53/IDH1R132C, n = 9) in mice. Mice were monitored for liver tumor development and euthanized at various time points. Liver histology was analyzed by hematoxylin and eosin staining. Molecular features of NICD/shP53/IDH1R132C ICC tumor cells were characterized by Myc tag, Flag tag, Ki-67, p-Erk and p-AKT immunohistochemical staining. Desmoplastic reaction in tumor tissues was studied by Picro-Sirius red staining.
RESULTS: We found that co-expression of shP53/NICD, shP53/IDH1R132C or NICD/IDH1R132C did not lead to liver tumor formation. In striking contrast, co-expression of NICD/shP53/IDH1R132C resulted in ICC development in mice (P < 0.01). The tumors could be identified as early as 12 wk post hydrodynamic injection. Tumors rapidly progressed, and by 18 wk post hydrodynamic injection, multiple cystic lesions could be identified on the liver surface. NICD/shP53/IDH1R132C liver tumors shared multiple histological features of human ICCs, including hyperplasia of irregular glands. Importantly, all tumor cells were positive for the biliary epithelial cell marker cytokeratin 19. Extensive collagen fibers could be visualized in tumor tissues using Sirus red staining, duplicating the desmoplastic reaction observed in human ICC. Tumors were highly proliferative and expressed ectopically injected genes. Together these studies supported that NICD/shP53/IDH1R132C liver tumors were indeed ICCs. Finally, no p-AKT or p-ERK positive staining was observed, suggesting that NICD/shP53/IDH1R132C driven ICC development was independent of AKT/mTOR and Ras/MAPK signaling cascades.
CONCLUSION: We have generated a simple, non-germline murine ICC model with activated Notch, loss of p53 and IDH1R132C mutant. The study supported the oncogenic potential of IDH1R132C.
Collapse
|
26
|
Chiu AP, Tschida BR, Lo LH, Moriarity BS, Rowlands DK, Largaespada DA, Keng VW. Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma. World J Gastroenterol 2015; 21:12157-12170. [PMID: 26576100 PMCID: PMC4641133 DOI: 10.3748/wjg.v21.i42.12157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia.
Collapse
|
27
|
Wangensteen KJ, Zhang S, Greenbaum LE, Kaestner KH. A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes Dev 2015; 29:904-9. [PMID: 25934503 PMCID: PMC4421979 DOI: 10.1101/gad.258855.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wangensteen et al. employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. The transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. The fundamental question of which genes are most important in controlling liver regeneration remains unanswered. We employed a parallel screen to test the impact of 43 selected genes on liver repopulation in the Fah−/− mouse model of hereditary tyrosinemia. We discovered that the transcription factor Foxa3 was a strong promoter of liver regeneration, while tumor necrosis factor receptor 1 (TNFR1) was the most significant suppressor of repopulation among all of the genes tested. Our approach enabled the identification of these factors as important regulators of liver repopulation and potential drug targets for the promotion of liver repopulation.
Collapse
Affiliation(s)
- Kirk J Wangensteen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sophia Zhang
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Linda E Greenbaum
- Janssen Research and Development, Spring House, Pennsylvania 19477, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Center for Molecular Studies in Digestive and Liver Diseases, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
28
|
Bermejo-Rodríguez C, Pérez-Mancera PA. Use of DNA transposons for functional genetic screens in mouse models of cancer. Curr Opin Biotechnol 2015; 35:103-10. [PMID: 26073851 DOI: 10.1016/j.copbio.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/14/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Cancer is a very heterogeneous disease with complex genetic interactions. In recent years, the systematic sequencing of cancer genomes has provided information to design personalized therapeutic interventions. However, the complexity of cancer genomes commonly makes it difficult to identify specific genes involved in tumour development or therapeutic responsiveness. The generation of mouse models of cancer using transposon-mediated approaches has provided a powerful tool to unveil the role of key genes during cancer development. Here we will discuss how the use of forward and reverse genetic approaches mediated by DNA transposons can support the investigation of cancer pathogenesis, including the identification of cancer promoting mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Camino Bermejo-Rodríguez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Pedro A Pérez-Mancera
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Molecular and Clinical Cancer Medicine, National Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| |
Collapse
|
29
|
Hickey RD, Mao SA, Amiot B, Suksanpaisan L, Miller A, Nace R, Glorioso J, Peng KW, Ikeda Y, Russell SJ, Nyberg SL. Noninvasive 3-dimensional imaging of liver regeneration in a mouse model of hereditary tyrosinemia type 1 using the sodium iodide symporter gene. Liver Transpl 2015; 21:442-53. [PMID: 25482651 PMCID: PMC5957080 DOI: 10.1002/lt.24057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/30/2014] [Indexed: 12/24/2022]
Abstract
Cell transplantation is a potential treatment for the many liver disorders that are currently only curable by organ transplantation. However, one of the major limitations of hepatocyte (HC) transplantation is an inability to monitor cells longitudinally after injection. We hypothesized that the thyroidal sodium iodide symporter (NIS) gene could be used to visualize transplanted HCs in a rodent model of inherited liver disease: hereditary tyrosinemia type 1. Wild-type C57Bl/6J mouse HCs were transduced ex vivo with a lentiviral vector containing the mouse Slc5a5 (NIS) gene controlled by the thyroxine-binding globulin promoter. NIS-transduced cells could robustly concentrate radiolabeled iodine in vitro, with lentiviral transduction efficiencies greater than 80% achieved in the presence of dexamethasone. Next, NIS-transduced HCs were transplanted into congenic fumarylacetoacetate hydrolase knockout mice, and this resulted in the prevention of liver failure. NIS-transduced HCs were readily imaged in vivo by single-photon emission computed tomography, and this demonstrated for the first time noninvasive 3-dimensional imaging of regenerating tissue in individual animals over time. We also tested the efficacy of primary HC spheroids engrafted in the liver. With the NIS reporter, robust spheroid engraftment and survival could be detected longitudinally after direct parenchymal injection, and this thereby demonstrated a novel strategy for HC transplantation. This work is the first to demonstrate the efficacy of NIS imaging in the field of HC transplantation. We anticipate that NIS labeling will allow noninvasive and longitudinal identification of HCs and stem cells in future studies related to liver regeneration in small and large preclinical animal models.
Collapse
Affiliation(s)
- Raymond D. Hickey
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Bruce Amiot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
30
|
Chew SK, Lu D, Campos LS, Scott KL, Saci A, Wang J, Collinson A, Raine K, Hinton J, Teague JW, Jones D, Menzies A, Butler AP, Gamble J, O'Meara S, McLaren S, Chin L, Liu P, Futreal PA. Polygenic in vivo validation of cancer mutations using transposons. Genome Biol 2014; 15:455. [PMID: 25260652 PMCID: PMC4210617 DOI: 10.1186/s13059-014-0455-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/27/2014] [Indexed: 01/22/2023] Open
Abstract
The in vivo validation of cancer mutations and genes identified in cancer genomics is resource-intensive because of the low throughput of animal experiments. We describe a mouse model that allows multiple cancer mutations to be validated in each animal line. Animal lines are generated with multiple candidate cancer mutations using transposons. The candidate cancer genes are tagged and randomly expressed in somatic cells, allowing easy identification of the cancer genes involved in the generated tumours. This system presents a useful, generalised and efficient means for animal validation of cancer genes.
Collapse
|
31
|
Xiang D, Liu CC, Wang MJ, Li JX, Chen F, Yao H, Yu B, Lu L, Borjigin U, Chen YX, Zhong L, Wangensteen KJ, He ZY, Wang X, Hu YP. Non-viral FoxM1 gene delivery to hepatocytes enhances liver repopulation. Cell Death Dis 2014; 5:e1252. [PMID: 24853430 PMCID: PMC4047909 DOI: 10.1038/cddis.2014.230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 01/08/2023]
Abstract
Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation.
Collapse
Affiliation(s)
- D Xiang
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - C-C Liu
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - M-J Wang
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - J-X Li
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - F Chen
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - H Yao
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - B Yu
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - L Lu
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - U Borjigin
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot, China
| | - Y-X Chen
- 1] Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA [2] Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - L Zhong
- 1] School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China [2] Shenzhen Center for ADR Monitoring, Shenzhen, China
| | - K J Wangensteen
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Z-Y He
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| | - X Wang
- 1] The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Huhhot, China [2] Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA [3] Hepatoscience Incorporation, Palo Alto, CA, USA
| | - Y-P Hu
- 1] Department of Cell Biology, Second Military Medical University, Shanghai, China [2] Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, China
| |
Collapse
|
32
|
Gopinathan L, Tan SLW, Padmakumar VC, Coppola V, Tessarollo L, Kaldis P. Loss of Cdk2 and cyclin A2 impairs cell proliferation and tumorigenesis. Cancer Res 2014; 74:3870-9. [PMID: 24802190 DOI: 10.1158/0008-5472.can-13-3440] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-cycle inhibition has yet to offer a generally effective approach to cancer treatment, but a full evaluation of different combinations of cell-cycle inhibitors has not been evaluated. Cyclin A2, a core component of the cell cycle, is often aberrantly expressed in cancer where it may impact cell proliferation. In this study, we investigated the role of cyclin A2 in tumorigenesis using a conditional genetic knockout mouse model. Cyclin A2 deletion in oncogene-transformed mouse embryonic fibroblasts (MEF) suppressed tumor formation in immunocompromised mice. These findings were confirmed in mice with cyclin A2-deficient hepatocytes, where a delay in liver tumor formation was observed. Because cyclin A2 acts in complex with Cdk2 in the cell cycle, we explored a hypothesized role for Cdk2 dysregulation in this effect through conditional deletions of both genes. In oncogene-transformed MEFs lacking both genes, tumor formation was strongly suppressed in a manner associated with decreased proliferation, premature senescence, and error-prone recovery from serum deprivation after immortalization. Whereas loss of cyclin A2 led to a compensatory increase in Cdk1 activity, this did not occur with loss of both Cdk2 and cyclin A2. Our work offers a rationale to explore combinations of Cdk1 and Cdk2 inhibitors as a general approach in cancer therapy.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research)
| | - Shawn Lu Wen Tan
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research)
| | - V C Padmakumar
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Vincenzo Coppola
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Lino Tessarollo
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Frederick, Maryland
| | - Philipp Kaldis
- Authors' Affiliations: Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research); Department of Biochemistry, National University of Singapore (NUS), Singapore, Republic of Singapore; and
| |
Collapse
|
33
|
Hydrodynamic transfection for generation of novel mouse models for liver cancer research. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:912-923. [PMID: 24480331 DOI: 10.1016/j.ajpath.2013.12.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Primary liver cancers, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, are leading causes of cancer-related death worldwide. Recent large-scale genomic approaches have identified a wide number of genes whose deregulation is associated with hepatocellular carcinoma and intrahepatic cholangiocarcinoma development. Murine models are critical tools to determine the oncogenic potential of these genes. Conventionally, transgenic or knockout mouse models are used for this purpose. However, several limitations apply to the latter models. Herein, we review a novel approach for stable gene expression in mouse hepatocytes by hydrodynamic injection in combination with Sleeping Beauty-mediated somatic integration. This method represents a flexible, reliable, and cost-effective tool to generate preclinical murine models for liver cancer research. Furthermore, it can be used as an in vivo transfection method to study biochemical cross talks among multiple pathways along hepatocarcinogenesis and to test the therapeutic potential of drugs against liver cancer.
Collapse
|
34
|
Mouse models of cancer: Sleeping Beauty transposons for insertional mutagenesis screens and reverse genetic studies. Semin Cell Dev Biol 2014; 27:86-95. [PMID: 24468652 DOI: 10.1016/j.semcdb.2014.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 01/04/2023]
Abstract
The genetic complexity and heterogeneity of cancer has posed a problem in designing rationally targeted therapies effective in a large proportion of human cancer. Genomic characterization of many cancer types has provided a staggering amount of data that needs to be interpreted to further our understanding of this disease. Forward genetic screening in mice using Sleeping Beauty (SB) based insertional mutagenesis is an effective method for candidate cancer gene discovery that can aid in distinguishing driver from passenger mutations in human cancer. This system has been adapted for unbiased screens to identify drivers of multiple cancer types. These screens have already identified hundreds of candidate cancer-promoting mutations. These can be used to develop new mouse models for further study, which may prove useful for therapeutic testing. SB technology may also hold the key for rapid generation of reverse genetic mouse models of cancer, and has already been used to model glioblastoma and liver cancer.
Collapse
|
35
|
Identification of rtl1, a retrotransposon-derived imprinted gene, as a novel driver of hepatocarcinogenesis. PLoS Genet 2013; 9:e1003441. [PMID: 23593033 PMCID: PMC3616914 DOI: 10.1371/journal.pgen.1003441] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/22/2013] [Indexed: 12/23/2022] Open
Abstract
We previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB–induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis. We identified strong induction of Retrotransposon-like 1 (Rtl1) expression as the only consistent alteration detected in all SB–induced tumors with Dlk1-Dio3 integrations, suggesting that Rtl1 activation serves as a driver of HCC. While previous studies have identified correlations between disrupted expression of multiple Dlk1-Dio3 domain members and HCC, we show here that direct modulation of a single domain member, Rtl1, can promote hepatocarcinogenesis in vivo. Overexpression of Rtl1 in the livers of adult mice using a hydrodynamic gene delivery technique resulted in highly penetrant (86%) tumor formation. Additionally, we detected overexpression of RTL1 in 30% of analyzed human HCC samples, indicating the potential relevance of this locus as a therapeutic target for patients. The Rtl1 locus is evolutionarily derived from the domestication of a retrotransposon. In addition to identifying Rtl1 as a novel driver of HCC, our study represents one of the first direct in vivo demonstrations of a role for such a co-opted genetic element in promoting carcinogenesis. HCC is the third deadliest cancer worldwide, largely due to a lack of effective treatment options. Therapeutic approaches targeted at the molecular mechanisms underlying tumor formation and progression have shown great efficacy for treating other tumor types. Unfortunately, however, much remains to be learned about the molecular pathogenesis of HCC. There is an urgent need to identify and characterize genetic alterations that drive HCC in order to facilitate the development of more effective targeted therapeutics for patients. Here, we present data showing that recurrent mutations identified in a mouse model of HCC result in overexpression of the Rtl1 gene. We have validated Rtl1 as a driver of HCC by demonstrating that its overexpression in mouse liver causes tumor formation. We also detected overexpression of this gene in a significant proportion of human HCC samples, suggesting that it may be a relevant therapeutic target for patients with this disease.
Collapse
|
36
|
Moriarity BS, Rahrmann EP, Keng VW, Manlove LS, Beckmann DA, Wolf NK, Khurshid T, Bell JB, Largaespada DA. Modular assembly of transposon integratable multigene vectors using RecWay assembly. Nucleic Acids Res 2013; 41:e92. [PMID: 23444141 PMCID: PMC3632113 DOI: 10.1093/nar/gkt115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Studying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system. Further, because RecWay assembly uses truly modular components, it allows for the generation of randomly assembled multigene vector libraries. These multigene vectors are integratable, and later excisable, using the highly efficient piggyBac (PB) DNA transposon system. Moreover, we have dramatically improved the expression of stably integrated multigene vectors by incorporation of insulator elements to prevent promoter interference seen with multigene vectors. We demonstrate that insulated multigene PB transposons can stably integrate and faithfully express up to five fluorescent proteins and the puromycin-thymidine kinase resistance gene in vitro, with up to 70-fold higher gene expression compared with analogous uninsulated vectors. RecWay assembly of multigene transposon vectors allows for widely applicable modelling of highly complex biological processes and can be easily performed by other research laboratories.
Collapse
Affiliation(s)
- Branden S Moriarity
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.
Collapse
|
38
|
Keng VW, Sia D, Sarver AL, Tschida BR, Fan D, Alsinet C, Solé M, Lee WL, Kuka TP, Moriarity BS, Villanueva A, Dupuy AJ, Riordan JD, Bell JB, Silverstein KA, Llovet JM, Largaespada DA. Sex bias occurrence of hepatocellular carcinoma in Poly7 molecular subclass is associated with EGFR. Hepatology 2013; 57:120-30. [PMID: 22899566 PMCID: PMC3511635 DOI: 10.1002/hep.26004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/08/2012] [Indexed: 12/15/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood. The Sleeping Beauty (SB) transposon system was used to elucidate candidate oncogenic drivers of HCC in a forward genetics screening approach. Sex bias occurrence was conserved in our model, with male experimental mice developing liver tumors at reduced latency and higher tumor penetrance. In parallel, we explored sex differences regarding genomic aberrations in 235 HCC patients. Liver cancer candidate genes were identified from both sexes and genotypes. Interestingly, transposon insertions in the epidermal growth factor receptor (Egfr) gene were common in SB-induced liver tumors from male mice (10/10, 100%) but infrequent in female mice (2/9, 22%). Human single-nucleotide polymorphism data confirmed that polysomy of chromosome 7, locus of EGFR, was more frequent in males (26/62, 41%) than females (2/27, 7%) (P = 0.001). Gene expression-based Poly7 subclass patients were predominantly male (9/9) compared with 67% males (55/82) in other HCC subclasses (P = 0.02), and this subclass was accompanied by EGFR overexpression (P < 0.001). CONCLUSION Sex bias occurrence of HCC associated with EGFR was confirmed in experimental animals using the SB transposon system in a reverse genetic approach. This study provides evidence for the role of EGFR in sex bias occurrences of liver cancer and as the driver mutational gene in the Poly7 molecular subclass of human HCC.
Collapse
Affiliation(s)
- Vincent W. Keng
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Center for Genome Engineering, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Daniela Sia
- HCC Translational Research Lab, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, IRCSS Foundation, Milan, Italy
| | - Aaron L. Sarver
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Barbara R. Tschida
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Center for Genome Engineering, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Danhua Fan
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Clara Alsinet
- HCC Translational Research Lab, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Manel Solé
- HCC Translational Research Lab, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Wai L. Lee
- Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Timothy P. Kuka
- Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Branden S. Moriarity
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Augusto Villanueva
- HCC Translational Research Lab, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | | | | | - Jason B. Bell
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Center for Genome Engineering, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| | - Kevin A.T. Silverstein
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Josep M. Llovet
- HCC Translational Research Lab, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Mount Sinai Liver Cancer Program. Mount Sinai School of Medicine, New York City, New York 10029, USA,Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - David A. Largaespada
- Masonic Cancer Center, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Department of Genetics, Cell Biology and Development, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain,Center for Genome Engineering, BCLC Group-Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, Barcelona 08036, Spain
| |
Collapse
|
39
|
Murine embryonic stem cell-derived hepatocytes correct metabolic liver disease after serial liver repopulation. Int J Biochem Cell Biol 2012; 44:648-58. [PMID: 22249028 DOI: 10.1016/j.biocel.2012.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 12/21/2022]
Abstract
Although embryonic stem (ES) cell-derived hepatocytes have the capacity for liver engraftment and repopulation, their in vivo hepatic function has not been analyzed yet. We aimed to determine the metabolic function and therapeutic action of ES cell-derived hepatocytes after serial liver repopulations in fumaryl acetoacetate hydrolase knockout (Fah(-/-)) mice. Albumin expressing (Alb(+)) cells were obtained by hepatic differentiation of ES cells using two frequently reported methods. After transplantation, variable levels of liver repopulation were found in Fah(-/-) mice recipients. FAH expressing (FAH(+)) hepatocytes were found either as single cells or as nodules with multiple hepatocytes. After serial transplantation, the proportion of the liver that was repopulated by the re-transplanted FAH(+) hepatocytes increased significantly. ES cell-derived FAH(+) hepatocytes were found in homogenous nodules and corrected the liver metabolic disorder of Fah(-/-) recipients and rescued them from death. ES cell-derived hepatocytes had normal karyotype, hepatocytic morphology and metabolic function both in vitro and in vivo. In conclusion, ES cell-derived hepatocytes were capable of liver repopulation and correction of metabolic defects after serial transplantation. Our results are an important piece of evidence to support future clinical applications of ES cell-derived hepatocytes in treating liver diseases.
Collapse
|
40
|
Stauffer JK, Scarzello AJ, Andersen JB, DeKluyver RL, Back TC, Weiss JM, Thorgeirsson SS, Wiltrout RH. Coactivation of AKT and β-catenin in mice rapidly induces formation of lipogenic liver tumors. Cancer Res 2011; 71:2718-27. [PMID: 21324921 PMCID: PMC3074499 DOI: 10.1158/0008-5472.can-10-2705] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for development of certain cancers but the basis for this risk is unclear. In this study, we developed a novel mouse model that demonstrates directly how lipogenic phenotypes commonly associated with diet-induced metabolic syndromes can influence hepatic cancer development. Activated AKT and β-catenin (AKT/CAT) genes were hydrodynamically codelivered using the Sleeping Beauty transposon to initiate liver tumorigenesis. AKT/CAT and MET/CAT combination induced microscopic tumor foci by 4 weeks, whereas no tumorigenesis resulted from delivery of AKT, MET, or CAT alone. Primary AKT/CAT tumor cells were steatotic (fatty) hepatocellular adenomas which progressed to hepatocellular carcinomas (HCC) upon in vivo passage, whereas primary MET/CAT tumors emerged directly as frank HCC. Conversion of AKT/CAT tumor cells to frank HCC during passage was associated with induction of the human HCC marker α-fetoprotein and the stem cell marker CD133. Using hierarchical clustering and gene set enrichment analysis, we compared the primary murine AKT/CAT and MET/CAT tumors to a panel of 53 human HCCs and determined that these two mouse models could be stratified as distinct subtypes associated in humans with poor clinical prognosis. The chief molecular networks identified in primary and passaged AKT/CAT tumors were steatosis and lipid metabolic pathways, respectively. Our findings show how coactivation of the AKT and CAT pathways in hepatocytes can efficiently model development of a lipogenic tumor phenotype. Furthermore, we believe that our approach could speed the dissection of microenvironmental factors responsible for driving steatotic-neoplastic transformation to frank carcinoma, through genetic modification of existing immunodefined transgenic models.
Collapse
|
41
|
Keng VW, Tschida BR, Bell JB, Largaespada DA. Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system. Hepatology 2011; 53:781-90. [PMID: 21374658 PMCID: PMC3079950 DOI: 10.1002/hep.24091] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED The mechanisms associated with hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remain elusive, and there are currently no well-established animal models for studying this disease. Using the Sleeping Beauty transposon as a delivery system, we introduced an oncogenic component of HBV, the hepatitis B virus X (HBx) gene, into the livers of fumarylacetoacetate hydrolase (Fah) mutant mice via hydrodynamic tail vein injections. Coexpression of Fah complementary DNA from the transposon vector allowed for the selective repopulation of genetically corrected hepatocytes in Fah mutant mice. The process of hydrodynamic delivery induced liver inflammation, and the subsequent selective repopulation of hepatocytes carrying the transgene(s) could provide useful genetic information about the mechanisms of HBV-induced hyperplasia. Short hairpin RNA directed against transformation-related protein 53 (shp53) or other tumor suppressor genes and oncogenes [e.g., constitutively active neuroblastoma RAS viral (v-ras) oncogene homolog with Gly12Val substitution (NRAS(G12V) )] could also be codelivered with HBx by this system so that we could determine whether oncogenic cooperation existed. We found that the expression of HBx induced the activation of β-catenin expression in hydrodynamically injected livers, and this indicated its association with the Wnt signaling pathway in HBV-induced hyperplasia. HBx coinjected with shp53 accelerated the formation of liver hyperplasia in these mice. As expected, constitutively active NRAS(G12V) alone was sufficient to induce liver hyperplasia, and its tumorigenicity was augmented when it was coinjected with shp53. Interestingly, HBx did not seem to cooperate with constitutively active NRAS(G12V) in driving liver tumorigenesis. CONCLUSION This system can be used as a model for studying the various genetic contributions of HBV to liver hyperplasia and finally HCC in an in vivo system.
Collapse
Affiliation(s)
- Vincent W. Keng
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barbara R. Tschida
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason B. Bell
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Li F, Liu P, Liu C, Xiang D, Deng L, Li W, Wangensteen K, Song J, Ma Y, Hui L, Wei L, Li L, Ding X, Hu Y, He Z, Wang X. Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology 2010; 139:2158-2169.e8. [PMID: 20801124 DOI: 10.1053/j.gastro.2010.08.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/10/2010] [Accepted: 08/19/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Hepatocyte-like cells can be derived from pluripotent stem cells such as embryonic stem (ES) cells, but ES cell-derived hepatic cells with extensive capacity to repopulate liver have not been identified. We aimed to identify and purify ES cell-derived hepatoblast-like progenitor cells and to explore their capacity for liver repopulation in mice after in vitro expansion. METHODS Unmanipulated mouse ES cells were cultured under defined conditions and allowed to undergo stepwise hepatic differentiation. The derived hepatic cells were examined by morphologic, fluorescence-activated cell sorting, gene expression, and clonal expansion analyses. The capacities of ES cell-derived hepatic progenitor cells to repopulate liver were investigated in mice that were deficient in fumarylacetoacetate hydrolase (Fah) (a model of liver injury). RESULTS Mouse ES cells were induced to differentiate into a population that contained hepatic progenitor cells; this population included cells that expressed epithelial cell adhesion molecule (EpCAM) but did not express c-Kit. Clonal hepatic progenitors that arose from single c-Kit(-)EpCAM(+) cells could undergo long-term expansion and maintain hepatoblast-like characteristics. Enriched c-Kit(-)EpCAM(+) cells and clonally expanded hepatic progenitor cells repopulated the livers of Fah-deficient mice without inducing tumorigenesis. CONCLUSIONS ES cell-derived c-Kit(-)EpCAM(+) cells contain a population of hepatoblast-like progenitor cells that can repopulate livers of mice.
Collapse
Affiliation(s)
- Fuming Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Figueiredo ML, Wentworth KM, Sandgren EP. Quantifying growth and transformation frequency of oncogene-expressing mouse hepatocytes in vivo. Hepatology 2010; 52:634-43. [PMID: 20683961 DOI: 10.1002/hep.23682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Gene changes can affect cancer cells in many ways, but changes that increase disease severity--by allowing cells to proliferate when they should be quiescent, by enhancing their rate of growth under growth permissive conditions, or by increasing the risk that they will accumulate additional carcinogenic alterations--must be identified so that strategies to counter their effects can be developed. We describe a novel in vivo assay system based on hepatocyte transplantation that permits us to accomplish this objective for genetically modified hepatocytes. We find that the oncogenes c-myc and transforming growth factor alpha, but not simian virus 40 T-antigen, increase the rate of hepatocyte growth under growth permissive conditions. However, no single oncogene can induce hepatocyte growth in quiescent liver. In contrast, at least one oncogene combination, transforming growth factor alpha/T-antigen, was sufficient to direct cell autonomous growth even in this nonpermissive environment. Furthermore, we could quantify risk for progression to neoplasia associated with oncogene expression; increased transformation frequency was the principal carcinogenic effect of T-antigen. CONCLUSION This system identifies biological mechanistic role(s) in carcinogenesis for candidate genetic changes implicated in development of human liver cancer. The quantitative and comparative evaluation of gene effects on liver cancer allows us to prioritize targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marxa L Figueiredo
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
44
|
A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 2009; 27:264-74. [PMID: 19234449 DOI: 10.1038/nbt.1526] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/22/2009] [Indexed: 02/07/2023]
Abstract
We describe a system that permits conditional mobilization of a Sleeping Beauty (SB) transposase allele by Cre recombinase to induce cancer specifically in a tissue of interest. To demonstrate its potential for developing tissue-specific models of cancer in mice, we limit SB transposition to the liver by placing Cre expression under the control of an albumin enhancer/promoter sequence and screen for hepatocellular carcinoma (HCC)-associated genes. From 8,060 nonredundant insertions cloned from 68 tumor nodules and comparative analysis with data from human HCC samples, we identify 19 loci strongly implicated in causing HCC. These encode genes, such as EGFR and MET, previously associated with HCC and others, such as UBE2H, that are potential new targets for treating this neoplasm. Our system, which could be modified to drive transposon-based insertional mutagenesis wherever tissue-specific Cre expression is possible, promises to enhance understanding of cancer genomes and identify new targets for therapeutic development.
Collapse
|