1
|
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, Kim JH. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality. Biomaterials 2024; 314:122898. [PMID: 39447308 DOI: 10.1016/j.biomaterials.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies.
Collapse
Affiliation(s)
- Kyun Yoo Chi
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyojin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Heeseok Yoon
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seunghyun Cho
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jeongjun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jin-Seok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Gyu-Bum Yeon
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Dae-Sung Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul, 02841, South Korea; Laboratory of Reprogramming and Differentiation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
2
|
Balogun O, Shao D, Carson M, King T, Kosar K, Zhang R, Zeng G, Cornuet P, Goel C, Lee E, Patel G, Brooks E, Monga SP, Liu S, Nejak-Bowen K. Loss of β-catenin reveals a role for glutathione in regulating oxidative stress during cholestatic liver disease. Hepatol Commun 2024; 8:e0485. [PMID: 38967587 PMCID: PMC11227358 DOI: 10.1097/hc9.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Cholestasis is an intractable liver disorder that results from impaired bile flow. We have previously shown that the Wnt/β-catenin signaling pathway regulates the progression of cholestatic liver disease through multiple mechanisms, including bile acid metabolism and hepatocyte proliferation. To further explore the impact of these functions during intrahepatic cholestasis, we exposed mice to a xenobiotic that causes selective biliary injury. METHODS α-naphthylisothiocyanate (ANIT) was administered to liver-specific knockout (KO) of β-catenin and wild-type mice in the diet. Mice were killed at 6 or 14 days to assess the severity of cholestatic liver disease, measure the expression of target genes, and perform biochemical analyses. RESULTS We found that the presence of β-catenin was protective against ANIT, as KO mice had a significantly lower survival rate than wild-type mice. Although serum markers of liver damage and total bile acid levels were similar between KO and wild-type mice, the KO had minor histological abnormalities, such as sinusoidal dilatation, concentric fibrosis around ducts, and decreased inflammation. Notably, both total glutathione levels and expression of glutathione-S-transferases, which catalyze the conjugation of ANIT to glutathione, were significantly decreased in KO after ANIT. Nuclear factor erythroid-derived 2-like 2, a master regulator of the antioxidant response, was activated in KO after ANIT as well as in a subset of patients with primary sclerosing cholangitis lacking activated β-catenin. Despite the activation of nuclear factor erythroid-derived 2-like 2, KO livers had increased lipid peroxidation and cell death, which likely contributed to mortality. CONCLUSIONS Loss of β-catenin leads to increased cellular injury and cell death during cholestasis through failure to neutralize oxidative stress, which may contribute to the pathology of this disease.
Collapse
Affiliation(s)
- Oluwashanu Balogun
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Shao
- Case-Western Reserve University, Departments of Biochemistry and Computer Science, Cleveland, Ohio, USA
| | - Matthew Carson
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thalia King
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karis Kosar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gang Zeng
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela Cornuet
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chhavi Goel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth Lee
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Garima Patel
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Brooks
- Duquesne University, School of Science and Engineering, Department of Biotechnology, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Hepatology and Nutrition, Division of Gastroenterology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Wang H, Liu J, Qiang S, Che Y, Hu T. 4-tert-Butylphenol impairs the liver by inducing excess liver lipid accumulation via disrupting the lipid metabolism pathway in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124385. [PMID: 38897274 DOI: 10.1016/j.envpol.2024.124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Endocrine disrupting chemicals (EDCs) can disrupt normal endocrine function by interfering with the synthesis and release of hormones, causing adverse reactions to development, immunity, nerves, and reproduction. 4-tert-Butylphenol (4-t-BP) is disruptive to early zebrafish development, but its effects on zebrafish liver are unknown. In this study, the adverse effects of 4-t-BP on the liver were investigated using zebrafish as a model organism. 4-t-BP inhibited liver development in zebrafish embryos and induced liver damage in adult zebrafish. Even if F1 was not directly exposed to 4-t-BP, its growth and development were inhibited. 4-t-BP can lead to an increase in lipid accumulation, total cholesterol and triglycerides contents, and the activities of alanine transaminase and aspartate aminotransferase in zebrafish embryos and adult zebrafish livers, and also cause an acceleration of glucose metabolism in zebrafish embryos. In addition, qRT-PCR showed that 4-t-BP induced the changes in the expressions of liver development-, steroid and unsaturated fatty acid biosynthesis-, and glycerolipid and arachidonic acid metabolism-related genes in zebrafish embryos and inflammatory factors-, antioxidant enzymes- and lipid metabolism-related genes in adult zebrafish livers. Transcriptome sequencing of embryos showed that 4-t-BP altered the expressions of lipid metabolism pathways such as steroid and unsaturated fatty acid biosynthesis, glycerolipid, and arachidonic acid metabolism pathways. Therefore, 4-t-BP may be external stimuli that cause oxidative stress, inflammation, and lipid accumulation in zebrafish liver, resulting in tissue damage and dysfunction in zebrafish liver.
Collapse
Affiliation(s)
- Huiyun Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuting Qiang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yufeng Che
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
4
|
Matsumoto S, Kikuchi A. Wnt/β-catenin signaling pathway in liver biology and tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:466-481. [PMID: 38379098 DOI: 10.1007/s11626-024-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway that controls fundamental physiological and pathological processes by regulating cell proliferation and differentiation. The Wnt/β-catenin pathway enables liver homeostasis by inducing differentiation and contributes to liver-specific features such as metabolic zonation and regeneration. In contrast, abnormalities in the Wnt/β-catenin pathway promote the development and progression of hepatocellular carcinoma (HCC). Similarly, hepatoblastoma, the most common childhood liver cancer, is frequently associated with β-catenin mutations, which activate Wnt/β-catenin signaling. HCCs with activation of the Wnt/β-catenin pathway have unique gene expression patterns and pathological and clinical features. Accordingly, they are highly differentiated with retaining hepatocyte-like characteristics and tumorigenic. Activation of the Wnt/β-catenin pathway in HCC also alters the state of immune cells, causing "immune evasion" with inducing resistance to immune checkpoint inhibitors, which have recently become widely used to treat HCC. Activated Wnt/β-catenin signaling exhibits these phenomena in liver tumorigenesis through the expression of downstream target genes, and the molecular basis is still poorly understood. In this review, we describe the physiological roles of Wnt/b-catenin signaling and then discuss their characteristic changes by the abnormal activation of Wnt/b-catenin signaling. Clarification of the mechanism would contribute to the development of therapeutic agents in the future.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Yang L, Wang X, Yu XX, Yang L, Zhou BC, Yang J, Xu CR. The default and directed pathways of hepatoblast differentiation involve distinct epigenomic mechanisms. Dev Cell 2023; 58:1688-1700.e6. [PMID: 37490911 DOI: 10.1016/j.devcel.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The effectiveness of multiomics analyses in defining cell differentiation pathways during development is ambiguous. During liver development, hepatoblasts follow a default or directed pathway to differentiate into hepatocytes or cholangiocytes, respectively, and this provides a practical model to address this issue. Our study discovered that promoter-associated histone modifications and chromatin accessibility dynamics, rather than enhancer-associated histone modifications, effectively delineated the "default vs. directed" process of hepatoblast differentiation. Histone H3K27me3 on bivalent promoters is associated with this asymmetric differentiation strategy in mice and humans. We demonstrated that Ezh2 and Jmjd3 exert opposing regulatory roles in hepatoblast-cholangiocyte differentiation. Additionally, active enhancers, regulated by P300, correlate with the development of both hepatocytes and cholangiocytes. This research proposes a model highlighting the division of labor between promoters and enhancers, with promoter-associated chromatin modifications governing the "default vs. directed" differentiation mode of hepatoblasts, whereas enhancer-associated modifications primarily dictate the progressive development processes of hepatobiliary lineages.
Collapse
Affiliation(s)
- Li Yang
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Xin Yu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lu Yang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Bi-Chen Zhou
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing Yang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Cheng-Ran Xu
- Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Female Fertility Promotion, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Gabdulkhakova A, Krutsenko Y, Zhu J, Liu S, Poddar M, Singh S, Ma X, Nejak-Bowen K, Monga SP, Molina LM. Loss of TAZ after YAP deletion severely impairs foregut development and worsens cholestatic hepatocellular injury. Hepatol Commun 2023; 7:e0220. [PMID: 37556373 PMCID: PMC10412434 DOI: 10.1097/hc9.0000000000000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/10/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity. METHODS We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET). We evaluated these mice using immunohistochemistry, serum biochemistry, bile acid profiling, and RNA sequencing. RESULTS DKO mice were embryonic lethal, but their livers were similar to YAPKO, suggesting an extrahepatic cause of death. Male YAPKO TAZHET mice were also embryonic lethal, with insufficient samples to determine the cause. However, YAPKO TAZHET females survived and were phenotypically similar to YAPKO mice, with increased bile acid hydrophilicity and similar global gene expression adaptations but worsened the hepatocellular injury. TAZ heterozygosity in YAPKO impacted the expression of canonical YAP targets Ctgf and Cyr61, and we found changes in pathways regulating cell division and inflammatory signaling correlating with an increase in hepatocyte cell death, cell cycling, and macrophage recruitment. CONCLUSIONS YAP loss (with or without TAZ loss) aborts biliary development. YAP and TAZ play a codependent critical role in foregut endoderm development outside the liver, but they are not essential for hepatocyte development. TAZ heterozygosity in YAPKO livers increased cell cycling and inflammatory signaling in the setting of chronic injury, highlighting genes that are especially sensitive to TAZ regulation.
Collapse
Affiliation(s)
- Adelya Gabdulkhakova
- Precision Digital Health, Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Germany
| | - Yekaterina Krutsenko
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Minakshi Poddar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sucha Singh
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P.S. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura M. Molina
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Kim M, An G, Park J, Song G, Lim W. Bensulide-induced oxidative stress causes developmental defects of cardiovascular system and liver in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131577. [PMID: 37156044 DOI: 10.1016/j.jhazmat.2023.131577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bensulide is an organophosphate herbicide commonly used in agricultural crops; however, no studies have reported on its toxic effects in the embryonic development of vertebrates, particularly gene expression level and cellular response. Therefore, to identify developmental toxicity, zebrafish eggs 8 h post-fertilization (hpf) were exposed to bensulide concentrations of up to 3 mg/L. The results indicated that exposure to 3 mg/L bensulide inhibited the hatching of all eggs and decreased the size of the body, eyes, and inner ear. There were demonstrated effects observed in the cardiovascular system and liver caused by bensulide in fli1:eGFP and L-fabp:dsRed transgenic zebrafish models, respectively. Following exposure to 3 mg/L bensulide, normal heart development, including cardiac looping, was disrupted and the heart rate of 96 hpf zebrafish larvae decreased to 16.37%. Development of the liver, the main detoxification organ, was also inhibited by bensulide, and after exposure to 3 mg/L bensulide its size reduced to 41.98%. Additionally, exposure to bensulide resulted in inhibition of antioxidant enzyme expression and an increase in ROS levels by up to 238.29%. Collectively, we identified various biological responses associated with the toxicity of bensulide, which led to various organ malformations and cytotoxic effects in zebrafish.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Chen PC, Hsu CP, Wang SY, Wu TY, Lin YJ, Chen YT, Hsu SH. miR-194 Up-Regulates Cytochrome P450 Family 7 Subfamily A Member 1 Expression via β-Catenin Signaling and Aggravates Cholestatic Liver Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00058-5. [PMID: 36868469 DOI: 10.1016/j.ajpath.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
miR-194 is abundantly expressed in hepatocytes, and its depletion induces hepatic resistance to acetaminophen-induced acute injuries. In this study, the biological role of miR-194 in cholestatic liver injury was investigated by using miR-194/miR-192 cluster liver-specific knockout (LKO) mice, in which no liver injuries or metabolic disorders were predisposed. Bile duct ligation (BDL) and 1-naphthyl isothiocyanate (ANIT) were applied to LKO and matched control wild-type (WT) mice to induce hepatic cholestasis. Periportal liver damage, mortality rate, and liver injury biomarkers in LKO mice were significantly less than in WT mice after BDL and ANIT injection. Intrahepatic bile acid level was significantly lower in the LKO liver within 48 hours of BDL- and ANIT-induced cholestasis compared with WT. Western blot analysis showed that β-catenin (CTNNB1) signaling and genes involved in cellular proliferation were activated in BDL- and ANIT-treated mice. The expression levels of cytochrome P450 family 7 subfamily A member 1 (CYP7A1), pivotal in bile synthesis, and its upstream regulator hepatocyte nuclear factor 4α were reduced in primary LKO hepatocytes and liver tissues compared with WT. The knockdown of miR-194 using antagomirs reduced CYP7A1 expression in WT hepatocytes. In contrast, the knockdown of CTNNB1 and overexpression of miR-194, but not miR-192, in LKO hepatocytes and AML12 cells increased CYP7A1 expression. In conclusion, the results suggest that the loss of miR-194 ameliorates cholestatic liver injury and may suppress CYP7A1 expression via activation of CTNNB1 signaling.
Collapse
Affiliation(s)
- Po-Chun Chen
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan; Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chien-Peng Hsu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Sheng-Ya Wang
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Tsai-Yen Wu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Yu-Jyun Lin
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Hao Hsu
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Keys HR, Knouse KA. Genome-scale CRISPR screening in a single mouse liver. CELL GENOMICS 2022; 2:100217. [PMID: 36643909 PMCID: PMC9835819 DOI: 10.1016/j.xgen.2022.100217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
A complete understanding of the genetic determinants underlying mammalian physiology and disease is limited by the capacity for high-throughput genetic dissection in the living organism. Genome-wide CRISPR screening is a powerful method for uncovering the genetic regulation of cellular processes, but the need to stably deliver single guide RNAs to millions of cells has largely restricted its implementation to ex vivo systems. There thus remains a need for accessible high-throughput functional genomics in vivo. Here, we establish genome-wide screening in the liver of a single mouse and use this approach to uncover regulation of hepatocyte fitness. We uncover pathways not identified in cell culture screens, underscoring the power of genetic dissection in the organism. The approach we developed is accessible, scalable, and adaptable to diverse phenotypes and applications. We have hereby established a foundation for high-throughput functional genomics in a living mammal, enabling comprehensive investigation of physiology and disease.
Collapse
Affiliation(s)
- Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kristin A. Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
12
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
13
|
Lu S, Jiang M, Chen Q, Luo X, Cao Z, Huang H, Zheng M, Du J. Upregulated YAP promotes oncogenic CTNNB1 expression contributing to molecular pathology of hepatoblastoma. Pediatr Blood Cancer 2022; 69:e29705. [PMID: 35404538 DOI: 10.1002/pbc.29705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Hepatoblastoma (HB) is one of the most common cancers in children. Recent studies have shown that the occurrence of nuclear accumulation of β-catenin reaches 90%-100% because of the anomalous activation of the Wnt pathway in HB patients. Furthermore, emerging studies have shown that concomitant activated forms of YAP and β-catenin trigger the formation and progression of HB. YAP might play a vital role in β-catenin-mediated HB development. However, the molecular mechanisms by which YAP/TEAD4 transcription factor regulates CTNNB1 underlying HB pathogenesis are still unclear. PROCEDURE YAP and CTNNB1 expression and correlation were analyzed by a combination of network enrichment analysis and gene set enrichment analysis of the public microarray datasets (GSE131329 and GSE81928). The protein levels of YAP and β-catenin were further validated by Western blotting in paired patients' samples. The direct interplay between YAP/TEAD4 and the promoter region of CTNNB1 was proven by the combination of dual-luciferase report assay and chromatin immunoprecipitation assay. RESULTS YAP-conserved signature and WNT signaling pathway were significantly enriched in HB patients, with upregulated expression of YAP and β-catenin compared to non-HB patients. Further functional assays demonstrated that YAP/TEAD4 transcription factor complex could bind to the CTNNB1 promoter region directly to promote β-catenin expression and cell proliferation. Targeting the YAP/TEAD4 complex with a specific small-molecule compound markedly suppressed HepaG2 cell proliferation. CONCLUSIONS As the upstream transcription factor of CTNNB1, YAP/TEAD4 is a promising target for the treatment of HB patients with high levels of YAP and β-catenin.
Collapse
Affiliation(s)
- Songxian Lu
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Chen
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xufeng Luo
- Institute for Lymphoma Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhenjie Cao
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Huang
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingjun Zheng
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Du
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Kanno M, Suzuki M, Tanikawa K, Numakura C, Matsuzawa SI, Niihori T, Aoki Y, Matsubara Y, Makino S, Tamiya G, Nakano S, Funayama R, Shirota M, Nakayama K, Mitsui T, Hayasaka K. Heterozygous calcyclin-binding protein/Siah1-interacting protein (CACYBP/SIP) gene pathogenic variant linked to a dominant family with paucity of interlobular bile duct. J Hum Genet 2022; 67:393-397. [PMID: 35087201 DOI: 10.1038/s10038-022-01017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Paucity of interlobular bile ducts (PILBD) is a heterogeneous disorder classified into two categories, syndromic and non-syndromic bile duct paucity. Syndromic PILBD is characterized by the presence of clinical manifestations of Alagille syndrome. Non-syndromic PILBD is caused by multiple diseases, such as metabolic and genetic disorders, infectious diseases, and inflammatory and immune disorders. We evaluated a family with a dominantly inherited PILBD, who presented with cholestasis at 1-2 months of age but spontaneously improved by 1 year of age. Next-generation sequencing analysis revealed a heterozygous CACYBP/SIP p.E177Q pathogenic variant. Calcyclin-binding protein and Siah1 interacting protein (CACYBP/SIP) form a ubiquitin ligase complex and induce proteasomal degradation of non-phosphorylated β-catenin. Immunohistochemical analysis revealed a slight decrease in CACYBP and β-catenin levels in the liver of patients in early infancy, which almost normalized by 13 months of age. The CACYBP/SIP p.E177Q pathogenic variant may form a more active or stable ubiquitin ligase complex that enhances the degradation of β-catenin and delays the maturation of intrahepatic bile ducts. Our findings indicate that accurate regulation of the β-catenin concentration is essential for the development of intrahepatic bile ducts and CACYBP/SIP pathogenic variant is a novel cause of PILDB.
Collapse
Affiliation(s)
- Miyako Kanno
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ken Tanikawa
- Departments of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Satoshi Makino
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Sciences, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuo Mitsui
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan. .,Department of Pediatrics, Miyukikai Hospital, Social Medical Corporation Miyuki, Kaminoyama, Japan.
| |
Collapse
|
15
|
Goel C, Monga SP, Nejak-Bowen K. Role and Regulation of Wnt/β-Catenin in Hepatic Perivenous Zonation and Physiological Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:4-17. [PMID: 34924168 PMCID: PMC8747012 DOI: 10.1016/j.ajpath.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/β-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/β-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The β-catenin protein is the central player in the Wnt/β-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/β-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. β-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/β-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.
Collapse
Affiliation(s)
- Chhavi Goel
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
16
|
Tian L, Wang Y, Jang YY. Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood) 2021; 247:360-367. [PMID: 34861115 DOI: 10.1177/15353702211061376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.
Collapse
Affiliation(s)
- Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichen Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoon Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Campbell SA, Stephan TL, Lotto J, Cullum R, Drissler S, Hoodless PA. Signalling pathways and transcriptional regulators orchestrating liver development and cancer. Development 2021; 148:272023. [PMID: 34478514 DOI: 10.1242/dev.199814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver development is controlled by key signals and transcription factors that drive cell proliferation, migration, differentiation and functional maturation. In the adult liver, cell maturity can be perturbed by genetic and environmental factors that disrupt hepatic identity and function. Developmental signals and fetal genetic programmes are often dysregulated or reactivated, leading to dedifferentiation and disease. Here, we highlight signalling pathways and transcriptional regulators that drive liver cell development and primary liver cancers. We also discuss emerging models derived from pluripotent stem cells, 3D organoids and bioengineering for improved studies of signalling pathways in liver cancer and regenerative medicine.
Collapse
Affiliation(s)
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
18
|
Zhou Y, Chen Y, Zhang X, Xu Q, Wu Z, Cao X, Shao M, Shu Y, Lv T, Lu C, Xie M, Wen T, Yang J, Shi Y, Bu H. Brahma-Related Gene 1 Inhibition Prevents Liver Fibrosis and Cholangiocarcinoma by Attenuating Progenitor Expansion. Hepatology 2021; 74:797-815. [PMID: 33650193 DOI: 10.1002/hep.31780] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Intrahepatic cholangiocarcinoma (iCCA) is closely correlated with hepatic progenitor cell (HPC) expansion and liver fibrosis. Brahma-related gene 1 (Brg1), an enzymatic subunit of the switch/sucrose nonfermentable complex that is critical in stem cell maintenance and tumor promotion, is prominently up-regulated in both HPCs and iCCA; however, its role in this correlation remains undefined. APPROACH AND RESULTS A retrospective cohort study indicated that high Brg1 expression suggests poor prognosis in patients with iCCA. In chronically injured livers induced by a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet or bile duct ligation surgery, HPCs were dramatically activated, as indicated by their enhanced expression of Brg1 and a subset of stem cell markers; however, Brg1 ablation in HPCs strongly suppressed HPC expansion and liver fibrosis. Furthermore, in a chemically induced iCCA model, inhibition of Brg1 by a specific inhibitor or inducible gene ablation markedly improved histology and suppressed iCCA growth. Mechanistically, in addition to transcriptionally promoting both Wnt receptor genes and target genes, Brg1 was found to bind to the β-catenin/transcription factor 4 transcription complex, suggesting a possible approach for regulation of Wnt/β-catenin signaling. CONCLUSIONS We have demonstrated the function of Brg1 in promoting HPC expansion, liver cirrhosis, and, ultimately, iCCA development in chronically injured livers, which is largely dependent on Wnt/β-catenin signaling. Our data suggest that therapies targeting Brg1-expressing HPCs are promising for the treatment of liver cirrhosis and iCCA.
Collapse
Affiliation(s)
- Yongjie Zhou
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina.,Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yuwei Chen
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyun Zhang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina.,Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Qing Xu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyue Cao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Mingyang Shao
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Yuke Shu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina
| | - Tao Lv
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina.,Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Changli Lu
- Department of PathologyWest China HospitalSichuan UniversityChengduChina
| | - Mingjun Xie
- Department of General SurgeryThe First People's Hospital of YibinYibinChina
| | - Tianfu Wen
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina.,Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Jiayin Yang
- Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina.,Department of Liver SurgeryWest China HospitalSichuan UniversityChengduChina
| | - Yujun Shi
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina.,Laboratory of Liver TransplantationFrontiers Science Center for Disease-Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Hong Bu
- Laboratory of PathologyKey Laboratory of Transplant Engineering and ImmunologyNHCWest China HospitalSichuan UniversityChengduChina.,Department of PathologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Molina LM, Zhu J, Li Q, Pradhan-Sundd T, Krutsenko Y, Sayed K, Jenkins N, Vats R, Bhushan B, Ko S, Hu S, Poddar M, Singh S, Tao J, Sundd P, Singhi A, Watkins S, Ma X, Benos PV, Feranchak A, Michalopoulos G, Nejak-Bowen K, Watson A, Bell A, Monga SP. Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Rep 2021; 36:109310. [PMID: 34233187 PMCID: PMC8280534 DOI: 10.1016/j.celrep.2021.109310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Yes-associated protein 1 (YAP1) regulates cell plasticity during liver injury, regeneration, and cancer, but its role in liver development is unknown. We detect YAP1 activity in biliary cells and in cells at the hepatobiliary bifurcation in single-cell RNA sequencing analysis of developing livers. Deletion of Yap1 in hepatoblasts does not impair Notch-driven SOX9+ ductal plate formation but does prevent the formation of the abutting second layer of SOX9+ ductal cells, blocking the formation of a patent intrahepatic biliary tree. Intriguingly, these mice survive for 8 months with severe cholestatic injury and without hepatocyte-to-biliary transdifferentiation. Ductular reaction in the perihilar region suggests extrahepatic biliary proliferation, likely seeking the missing intrahepatic biliary network. Long-term survival of these mice occurs through hepatocyte adaptation via reduced metabolic and synthetic function, including altered bile acid metabolism and transport. Overall, we show YAP1 as a key regulator of bile duct development while highlighting a profound adaptive capability of hepatocytes.
Collapse
Affiliation(s)
- Laura M Molina
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Junjie Zhu
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Qin Li
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Tirthadipa Pradhan-Sundd
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Yekaterina Krutsenko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Khaled Sayed
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Ave, Pittsburgh, PA 15213, USA; Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Nathaniel Jenkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ravi Vats
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bharat Bhushan
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Junyan Tao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Prithu Sundd
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Aatur Singhi
- Division of Anatomic Pathology, Department of Pathology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences and Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Andrew Feranchak
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - George Michalopoulos
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
β-Catenin Activation in Hepatocellular Cancer: Implications in Biology and Therapy. Cancers (Basel) 2021; 13:cancers13081830. [PMID: 33921282 PMCID: PMC8069637 DOI: 10.3390/cancers13081830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Liver cancer is a dreadful tumor which has gradually increased in incidence all around the world. One major driver of liver cancer is the Wnt–β-catenin pathway which is active in a subset of these tumors. While this pathway is normally important in liver development, regeneration and homeostasis, it’s excessive activation due to mutations, is detrimental and leads to tumor cell growth, making it an important therapeutic target. There are also some unique characteristics of this pathway activation in liver cancer. It makes the tumor addicted to specific amino acids and in turn to mTOR signaling, which can be treated by certain existing therapies. In addition, activation of the Wnt–β-catenin in liver cancer appears to alter the immune cell landscape making it less likely to respond to the new immuno-oncology treatments. Thus, Wnt–β-catenin active tumors may need to be treated differently than non-Wnt–β-catenin active tumors. Abstract Hepatocellular cancer (HCC), the most common primary liver tumor, has been gradually growing in incidence globally. The whole-genome and whole-exome sequencing of HCC has led to an improved understanding of the molecular drivers of this tumor type. Activation of the Wnt signaling pathway, mostly due to stabilizing missense mutations in its downstream effector β-catenin (encoded by CTNNB1) or loss-of-function mutations in AXIN1 (the gene which encodes for Axin-1, an essential protein for β-catenin degradation), are seen in a major subset of HCC. Because of the important role of β-catenin in liver pathobiology, its role in HCC has been extensively investigated. In fact, CTNNB1 mutations have been shown to have a trunk role. β-Catenin has been shown to play an important role in regulating tumor cell proliferation and survival and in tumor angiogenesis, due to a host of target genes regulated by the β-catenin transactivation of its transcriptional factor TCF. Proof-of-concept preclinical studies have shown β-catenin to be a highly relevant therapeutic target in CTNNB1-mutated HCCs. More recently, studies have revealed a unique role of β-catenin activation in regulating both tumor metabolism as well as the tumor immune microenvironment. Both these roles have notable implications for the development of novel therapies for HCC. Thus, β-catenin has a pertinent role in driving HCC development and maintenance of this tumor-type, and could be a highly relevant therapeutic target in a subset of HCC cases.
Collapse
|
21
|
Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021; 18:131-142. [PMID: 33051603 PMCID: PMC7854502 DOI: 10.1038/s41575-020-00365-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
With the rapid expansion of the obesity epidemic, nonalcoholic fatty liver disease is now the most common chronic liver disease, with almost 25% global prevalence. Nonalcoholic fatty liver disease ranges in severity from simple steatosis, a benign 'pre-disease' state, to the liver injury and inflammation that characterize nonalcoholic steatohepatitis (NASH), which in turn predisposes individuals to liver fibrosis. Fibrosis is the major determinant of clinical outcomes in patients with NASH and is associated with increased risks of cirrhosis and hepatocellular carcinoma. NASH has no approved therapies, and liver fibrosis shows poor response to existing pharmacotherapy, in part due to an incomplete understanding of the underlying pathophysiology. Patient and mouse data have shown that NASH is associated with the activation of developmental pathways: Notch, Hedgehog and Hippo-YAP-TAZ. Although these evolutionarily conserved fundamental signals are known to determine liver morphogenesis during development, new data have shown a coordinated and causal role for these pathways in the liver injury response, which becomes maladaptive during obesity-associated chronic liver disease. In this Review, we discuss the aetiology of this reactivation of developmental pathways and review the cell-autonomous and cell-non-autonomous mechanisms by which developmental pathways influence disease progression. Finally, we discuss the potential prognostic and therapeutic implications of these data for NASH and liver fibrosis.
Collapse
|
22
|
Abbas AA, Samkari AM, Almehdar AS. Hepatoblastoma: Review of Pathology, Diagnosis and Modern Treatment Strategies. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200206103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatoblastoma (HB) is the most common primary malignant hepatic tumor of childhood
and, occurring predominantly in the first two years of life. Approximately 100 cases are diagnosed
every year in the United States of America. The management of HB has changed markedly
over the last three decades. Alfa feto protein (AFP) and beta human chorionic gonadotrophin (beta
HCG) are the main tumor markers and are markers for diagnosis and follow up. International collaborative
efforts have led to the implementation of the Pre - Treatment Extent of the Disease PRETEXT
staging system consensus classification to assess upfront resectability. Complete surgical
resection plays a key role in successful management. Overall, outcomes have greatly improved over
the past decades mainly because of advances in chemotherapy (CTR) agents and administration
protocols, newer surgical approaches and liver transplantation (LT). Targeted medications towards
the newly discovered β-catenin and Wnt genetic pathways in tumor cells may soon become an option
for treatment. The current disease free survival (DFS) rates are approaching 85%. For the 25%
of patients with metastasis at presentation, the overall survival (OS) remains poor. A more individualized
approach to treating the heterogeneous spectrum of HB may become the basis of successful
treatment in complex cases. Newer medications and surgical techniques are being exploited.
Here we present a comprehensive review of the recent advances in the management of HB. A wide
literature search was made using internet search engines such as PubMed and Google scholar. More
than 100 articles were reviewed and the information extrapolated was arranged to produce this
review.
Collapse
Affiliation(s)
- Adil A. Abbas
- Pediatric Hematology/Oncology Section, College of Medicine, Princess Nourah Oncology Centre, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Alaa M.N. Samkari
- Department of Laboratory Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abeer S. Almehdar
- Department of Medical Imaging, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Mu T, Xu L, Zhong Y, Liu X, Zhao Z, Huang C, Lan X, Lufei C, Zhou Y, Su Y, Xu L, Jiang M, Zhou H, Lin X, Wu L, Peng S, Liu S, Brix S, Dean M, Dunn NR, Zaret KS, Fu XY, Hou Y. Embryonic liver developmental trajectory revealed by single-cell RNA sequencing in the Foxa2 eGFP mouse. Commun Biol 2020; 3:642. [PMID: 33144666 PMCID: PMC7642341 DOI: 10.1038/s42003-020-01364-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/08/2020] [Indexed: 02/05/2023] Open
Abstract
The liver and gallbladder are among the most important internal organs derived from the endoderm, yet the development of the liver and gallbladder in the early embryonic stages is not fully understood. Using a transgenic Foxa2eGFP reporter mouse line, we performed single-cell full-length mRNA sequencing on endodermal and hepatic cells isolated from ten embryonic stages, ranging from E7.5 to E15.5. We identified the embryonic liver developmental trajectory from gut endoderm to hepatoblasts and characterized the transcriptome of the hepatic lineage. More importantly, we identified liver primordium as the nascent hepatic progenitors with both gut and liver features and documented dynamic gene expression during the epithelial-hepatic transition (EHT) at the stage of liver specification during E9.5–11.5. We found six groups of genes switched on or off in the EHT process, including diverse transcripitional regulators that had not been previously known to be expressed during EHT. Moreover, we identified and revealed transcriptional profiling of gallbladder primordium at E9.5. The present data provides a high-resolution resource and critical insights for understanding the liver and gallbladder development. The authors report a single cell-resolution gene expression atlas for the developing mouse liver and gallbladder using a transgenic Foxa2eGFP mouse line. By tracing the development of cells from gut endoderm to hepatoblasts they identify key transcriptional changes during liver specification.
Collapse
Affiliation(s)
- Tianhao Mu
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.,GenEros Biopharma, 310018, Hangzhou, China
| | - Liqin Xu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Yu Zhong
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | - Xinyu Liu
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Zhikun Zhao
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Chaoben Huang
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiaofeng Lan
- Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Chengchen Lufei
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Yi Zhou
- GenEros Biopharma, 310018, Hangzhou, China.,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Yixun Su
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore.,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Luang Xu
- Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Miaomiao Jiang
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Hongpo Zhou
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Xinxin Lin
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Liang Wu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Siqi Peng
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Shiping Liu
- BGI-Shenzhen, 518033, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Soltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Norris R Dunn
- Endodermal Development and Differentiation Laboratory, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine, Smilow Center for Translation Research, Philadelphia, PA, 19104, USA
| | - Xin-Yuan Fu
- Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, 119615, Singapore. .,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China. .,GenEros Biopharma, 310018, Hangzhou, China. .,Cancer Science Institute of Singapore, YLL School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yong Hou
- BGI-Shenzhen, 518033, Shenzhen, China. .,China National GeneBank, BGI-Shenzhen, 518120, Shenzhen, China.
| |
Collapse
|
24
|
Huang Y, Sakai Y, Hara T, Katsuda T, Ochiya T, Gu WL, Miyamoto D, Hamada T, Kanetaka K, Adachi T, Eguchi S. Differentiation of chemically induced liver progenitor cells to cholangiocytes: Investigation of the optimal conditions. J Biosci Bioeng 2020; 130:545-552. [DOI: 10.1016/j.jbiosc.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
|
25
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
26
|
Wang T, Yang X, Tang H, Kong J, Shen S, Qiu H, Wang W. Integrated nomograms to predict overall survival and recurrence-free survival in patients with combined hepatocellular cholangiocarcinoma (cHCC) after liver resection. Aging (Albany NY) 2020; 12:15334-15358. [PMID: 32788423 PMCID: PMC7467372 DOI: 10.18632/aging.103577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023]
Abstract
The current clinical classification of primary liver cancer is unable to efficiently predict the prognosis of combined hepatocellular cholangiocarcinoma (cHCC). Accurate satellite nodules (SAT) and microvascular invasion (MVI) prediction in cHCC patients is very important for treatment decision making and prognostic evaluation. The aim of this work was to explore important factors affecting the prognosis of cHCC patients after liver resection and to develop preoperative nomograms to predict SAT and MVI in cHCC patients. The nomogram was developed using the data from 148 patients who underwent liver resection for cHCC patients at our hospital between January 2006 and December 2014. Based on the results of the multivariate analysis, a nomogram integrating all significant independent factors affecting overall survival and recurrence-free survival was constructed to predict the prognosis of cHCC. Next, risk factors for SAT and MVI were evaluated with logistic regression. Blood signatures were established using the LASSO regression, and then, we combined the clinical risk factors and blood signatures of the patients to establish predictive models for SAT and MVI. The C-index of the nomogram for predicting survival was 0.685 (95% CI, 0.638 to 0.732), which was significantly higher than the C-index for other liver cancer classification systems.
Collapse
Affiliation(s)
- Tao Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Xianwei Yang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Huairong Tang
- Physical Examination Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Junjie Kong
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Shu Shen
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Haizhou Qiu
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| | - Wentao Wang
- Department of Liver Surgery and Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
27
|
PDE2A Is Indispensable for Mouse Liver Development and Hematopoiesis. Int J Mol Sci 2020; 21:ijms21082902. [PMID: 32326334 PMCID: PMC7215450 DOI: 10.3390/ijms21082902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A−/−) is embryonic lethal. Notably, livers of PDE2A−/− embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A−/− liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A−/− livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A−/− embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A−/− embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.
Collapse
|
28
|
Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, Hou SX. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun 2020; 11:220. [PMID: 31924786 PMCID: PMC6954189 DOI: 10.1038/s41467-019-14046-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023] Open
Abstract
Cancer stem cells (CSCs) may be responsible for treatment resistance, tumor metastasis, and disease recurrence. Here we demonstrate that the Arf1-mediated lipid metabolism sustains cells enriched with CSCs and its ablation induces anti-tumor immune responses in mice. Notably, Arf1 ablation in cancer cells induces mitochondrial defects, endoplasmic-reticulum stress, and the release of damage-associated molecular patterns (DAMPs), which recruit and activate dendritic cells (DCs) at tumor sites. The activated immune system finally elicits antitumor immune surveillance by stimulating T-cell infiltration and activation. Furthermore, TCGA data analysis shows an inverse correlation between Arf1 expression and T-cell infiltration and activation along with patient survival in various human cancers. Our results reveal that Arf1-pathway knockdown not only kills CSCs but also elicits a tumor-specific immune response that converts dying CSCs into a therapeutic vaccine, leading to durable benefits. Cancer stem cells (CSC) have been shown as the origin for therapeutic resistance and patient relapse. Here, the authors show that targeting Arf1-mediated lipid metabolism in CSC induces cell death but also an immunogenic anti-cancer response.
Collapse
Affiliation(s)
- Guohao Wang
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| | - Junji Xu
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jiangsha Zhao
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| | - Weiqin Yin
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| | - Dayong Liu
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| | - WanJun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven X Hou
- The Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Kalasekar SM, Kotiyal S, Conley C, Phan C, Young A, Evason KJ. Heterogeneous beta-catenin activation is sufficient to cause hepatocellular carcinoma in zebrafish. Biol Open 2019; 8:bio047829. [PMID: 31575545 PMCID: PMC6826293 DOI: 10.1242/bio.047829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Up to 41% of hepatocellular carcinomas (HCCs) result from activating mutations in the CTNNB1 gene encoding β-catenin. HCC-associated CTNNB1 mutations stabilize the β-catenin protein, leading to nuclear and/or cytoplasmic localization of β-catenin and downstream activation of Wnt target genes. In patient HCC samples, β-catenin nuclear and cytoplasmic localization are typically patchy, even among HCC with highly active CTNNB1 mutations. The functional and clinical relevance of this heterogeneity in β-catenin activation are not well understood. To define mechanisms of β-catenin-driven HCC initiation, we generated a Cre-lox system that enabled switching on activated β-catenin in (1) a small number of hepatocytes in early development; or (2) the majority of hepatocytes in later development or adulthood. We discovered that switching on activated β-catenin in a subset of larval hepatocytes was sufficient to drive HCC initiation. To determine the role of Wnt/β-catenin signaling heterogeneity later in hepatocarcinogenesis, we performed RNA-seq analysis of zebrafish β-catenin-driven HCC. At the single-cell level, 2.9% to 15.2% of hepatocytes from zebrafish β-catenin-driven HCC expressed two or more of the Wnt target genes axin2, mtor, glula, myca and wif1, indicating focal activation of Wnt signaling in established tumors. Thus, heterogeneous β-catenin activation drives HCC initiation and persists throughout hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sharanya M Kalasekar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Srishti Kotiyal
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher Conley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cindy Phan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Annika Young
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kimberley J Evason
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
30
|
Van Hul N, Lendahl U, Andersson ER. Mouse Models for Diseases in the Cholangiocyte Lineage. Methods Mol Biol 2019; 1981:203-236. [PMID: 31016657 DOI: 10.1007/978-1-4939-9420-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiopathies are an important group of liver diseases affecting the biliary system, and the purpose of this review is to describe how diseases in the biliary system can be studied in mouse models. A particular focus is placed on mouse models for Alagille syndrome, a cholangiopathy with a strong genetic link to dysfunctional Notch signaling. Recently, a number of different genetic mouse models based on various manipulations of the Notch signaling pathway have been generated to study Alagille syndrome, and we discuss the resulting phenotypes, and possible causes for the phenotypic heterogeneity among the various models. In the final section, we provide a more general discussion on how well mouse models can be expected to mimic human liver disease, as well as an outlook toward the need for new technologies that can help us to gain new insights from mouse models for liver disease.
Collapse
Affiliation(s)
- Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Lemaigre FP. Development of the Intrahepatic and Extrahepatic Biliary Tract: A Framework for Understanding Congenital Diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:1-22. [PMID: 31299162 DOI: 10.1146/annurev-pathmechdis-012418-013013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.
Collapse
Affiliation(s)
- Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
32
|
Prior N, Hindley CJ, Rost F, Meléndez E, Lau WWY, Göttgens B, Rulands S, Simons BD, Huch M. Lgr5 + stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development 2019; 146:dev.174557. [PMID: 31142540 PMCID: PMC6602348 DOI: 10.1242/dev.174557] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
During mouse embryogenesis, progenitors within the liver known as hepatoblasts give rise to adult hepatocytes and cholangiocytes. Hepatoblasts, which are specified at E8.5-E9.0, have been regarded as a homogeneous progenitor population that initiate differentiation from E13.5. Recently, scRNA-seq analysis has identified sub-populations of transcriptionally distinct hepatoblasts at E11.5. Here, we show that hepatoblasts are not only transcriptionally but also functionally heterogeneous, and that a subpopulation of E9.5-E10.0 hepatoblasts exhibit a previously unidentified early commitment to cholangiocyte fate. Importantly, we also identify a subpopulation constituting 2% of E9.5-E10.0 hepatoblasts that express the adult stem cell marker Lgr5, and generate both hepatocyte and cholangiocyte progeny that persist for the lifespan of the mouse. Combining lineage tracing and scRNA-seq, we show that Lgr5 marks E9.5-E10.0 bipotent liver progenitors residing at the apex of a hepatoblast hierarchy. Furthermore, isolated Lgr5+ hepatoblasts can be clonally expanded in vitro into embryonic liver organoids, which can commit to either hepatocyte or cholangiocyte fates. Our study demonstrates functional heterogeneity within E9.5 hepatoblasts and identifies Lgr5 as a marker for a subpopulation of bipotent liver progenitors.
Collapse
Affiliation(s)
- Nicole Prior
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Christopher J Hindley
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - Fabian Rost
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Elena Meléndez
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Winnie W Y Lau
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Steffen Rulands
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK.,Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QR, UK
| | - Meritxell Huch
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK .,Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
33
|
Zhao L, Jin Y, Donahue K, Tsui M, Fish M, Logan CY, Wang B, Nusse R. Tissue Repair in the Mouse Liver Following Acute Carbon Tetrachloride Depends on Injury-Induced Wnt/β-Catenin Signaling. Hepatology 2019; 69:2623-2635. [PMID: 30762896 PMCID: PMC7043939 DOI: 10.1002/hep.30563] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Abstract
In the liver, Wnt/β-catenin signaling is involved in regulating zonation and hepatocyte proliferation during homeostasis. We examined Wnt gene expression and signaling after injury, and we show by in situ hybridization that Wnts are activated by acute carbon tetrachloride (CCl4 ) toxicity. Following injury, peri-injury hepatocytes become Wnt-responsive, expressing the Wnt target gene axis inhibition protein 2 (Axin2). Lineage tracing of peri-injury Axin2+ hepatocytes shows that during recovery the injured parenchyma becomes repopulated and repaired by Axin2+ descendants. Using single-cell RNA sequencing, we show that endothelial cells are the major source of Wnts following acute CCl4 toxicity. Induced loss of β-catenin in peri-injury hepatocytes results in delayed repair and ultimately injury-induced lethality, while loss of Wnt production from endothelial cells leads to a delay in the proliferative response after injury. Conclusion: Our findings highlight the importance of the Wnt/β-catenin signaling pathway in restoring tissue integrity following acute liver toxicity and establish a role of endothelial cells as an important Wnt-producing regulator of liver tissue repair following localized liver injury.
Collapse
Affiliation(s)
- Ludan Zhao
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305,Medical Scientist Training Program, Stanford School of
Medicine, Stanford, CA 94305
| | - Yinhua Jin
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Katie Donahue
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Margaret Tsui
- Department of Medicine and Liver Center, University of
California San Francisco, San Francisco, CA 94143
| | - Matt Fish
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Catriona Y. Logan
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| | - Bruce Wang
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305,Department of Medicine and Liver Center, University of
California San Francisco, San Francisco, CA 94143
| | - Roel Nusse
- Institute for Stem Cell Biology and Regenerative Medicine,
Department of Developmental Biology, Howard Hughes Medical Institute, Stanford
School of Medicine, Stanford, CA 94305
| |
Collapse
|
34
|
Günther C, Brevini T, Sampaziotis F, Neurath MF. What gastroenterologists and hepatologists should know about organoids in 2019. Dig Liver Dis 2019; 51:753-760. [PMID: 30948332 DOI: 10.1016/j.dld.2019.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Most of the research behind new medical advances is carried out using either animal models or cancer cells, which both have their disadvantage in particular with regard to medical applications such as personalized medicine and novel therapeutic approaches. However, recent advances in stem cell biology have enabled long-term culturing of organotypic intestinal or hepatic tissues derived from tissue resident or pluripotent stem cells. These 3D structures, denoted as organoids, represent a substantial advance in structural and functional complexity over traditional in vitro cell culture models that are often non-physiological and transformed. They can recapitulate the in vivo architecture, functionality and genetic signature of the corresponding tissue. The opportunity to model epithelial cell biology, epithelial turnover, barrier dynamics, immune-epithelial communication and host-microbe interaction more efficiently than previous culture systems, greatly enhance the translational potential of organotypic hepato-gastrointestinal culture systems. Thus there is increasing interest in using such cultured cells as a source for tissue engineering, regenerative medicine and personalized medicine. This review will highlight some of the established and also some exciting novel perspectives on organoids in the fields of gastroenterology and hepatology.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Teresa Brevini
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Fotios Sampaziotis
- Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge Stem Cell Institute, Anne McLaren Laboratory, Department of Surgery, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Markus F Neurath
- Department of Medicine 1, University Hospital, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.
| |
Collapse
|
35
|
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e340. [PMID: 30924280 DOI: 10.1002/wdev.340] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Tissue regeneration is a process by which the remaining cells of an injured organ regrow to offset the missed cells. This field is relatively a new discipline that has been a focus of intense research by clinicians, surgeons, and scientists for decades. It constitutes the cornerstone of tissue engineering, creation of artificial organs, and generation and utilization of therapeutic stem cells to undergo transformation to different types of mature cells. Many medical experts, scientists, biologists, and bioengineers have dedicated their efforts to deeply comprehend the process of liver regeneration, striving for harnessing it to invent new therapies for liver failure. Liver regeneration after partial hepatectomy in rodents has been extensively studied by researchers for many years. It is divided into three important distinctive phases including (a) Initiation or priming phase which includes an overexpression of specific genes to prepare the liver cells for replication, (b) Proliferation phase in which the liver cells undergo a series of cycles of cell division and expansion and finally, (c) termination phase which acts as brake to stop the regenerative process and prevent the liver tissue overgrowth. These events are well controlled by cytokines, growth factors, and signaling pathways. In this review, we describe the function, embryology, and anatomy of human liver, discuss the molecular basis of liver regeneration, elucidate the hepatocyte and cholangiocyte lineages mediating this process, explain the role of hepatic progenitor cells and elaborate the developmental signaling pathways and regulatory molecules required to procure a complete restoration of hepatic lobule. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Signaling Pathways > Global Signaling Mechanisms Gene Expression and Transcriptional Hierarchies > Cellular Differentiation.
Collapse
Affiliation(s)
- Anan Abu Rmilah
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erek Nelson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Li Lin
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Abstract
The canonical Wnt-β-catenin pathway is a complex, evolutionarily conserved signalling mechanism that regulates fundamental physiological and pathological processes. Wnt-β-catenin signalling tightly controls embryogenesis, including hepatobiliary development, maturation and zonation. In the mature healthy liver, the Wnt-β-catenin pathway is mostly inactive but can become re-activated during cell renewal and/or regenerative processes, as well as in certain pathological conditions, diseases, pre-malignant conditions and cancer. In hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), the two most prevalent primary liver tumours in adults, Wnt-β-catenin signalling is frequently hyperactivated and promotes tumour growth and dissemination. A substantial proportion of liver tumours (mainly HCC and, to a lesser extent, CCA) have mutations in genes encoding key components of the Wnt-β-catenin signalling pathway. Likewise, hepatoblastoma, the most common paediatric liver cancer, is characterized by Wnt-β-catenin activation, mostly as a result of β-catenin mutations. In this Review, we discuss the most relevant molecular mechanisms of action and regulation of Wnt-β-catenin signalling in liver development and pathophysiology. Moreover, we highlight important preclinical and clinical studies and future directions in basic and clinical research.
Collapse
|
37
|
Stavraka C, Rush H, Ross P. Combined hepatocellular cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and therapeutic interventions. J Hepatocell Carcinoma 2018; 6:11-21. [PMID: 30643759 PMCID: PMC6312394 DOI: 10.2147/jhc.s159805] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Combined hepatocellular cholangiocarcinoma (CC) is a rare and aggressive primary hepatic malignancy with significant histological and biological heterogeneity. It presents with more aggressive behavior and worse survival outcomes than either hepatocellular carcinoma or CC and remains a diagnostic challenge. An accurate diagnosis is crucial for its optimal management. Major hepatectomy with hilar node resection remains the mainstay of treatment in operable cases. Advances in the genetic and molecular characterization of this tumor will contribute to the better understanding of its pathogenesis and shape its future management.
Collapse
Affiliation(s)
- Chara Stavraka
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK,
| | - Hannah Rush
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK,
| | - Paul Ross
- Department of Medical Oncology, Guy's Cancer, Guy's & St Thomas' NHS Foundation Trust, London, UK, .,Department of Oncology, King's College Hospital NHS Foundation Trust, London, UK,
| |
Collapse
|
38
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
39
|
Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies - Towards a molecular understanding. EBioMedicine 2018; 35:381-393. [PMID: 30236451 PMCID: PMC6161480 DOI: 10.1016/j.ebiom.2018.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Liver diseases constitute an important medical problem, and a number of these diseases, termed cholangiopathies, affect the biliary system of the liver. In this review, we describe the current understanding of the causes of cholangiopathies, which can be genetic, viral or environmental, and the few treatment options that are currently available beyond liver transplantation. We then discuss recent rapid progress in a number of areas relevant for decoding the disease mechanisms for cholangiopathies. This includes novel data from analysis of transgenic mouse models and organoid systems, and we outline how this information can be used for disease modeling and potential development of novel therapy concepts. We also describe recent advances in genomic and transcriptomic analyses and the importance of such studies for improving diagnosis and determining whether certain cholangiopathies should be viewed as distinct or overlapping disease entities.
Collapse
Affiliation(s)
- Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong.
| | - Rachel S Yiu
- Department of Surgery, Li Ka Shing Faculty of Medicine, and Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, and The University of Hong Kong, Hong Kong
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| |
Collapse
|
40
|
Chen C, Liang QY, Chen HK, Wu PF, Feng ZY, Ma XM, Wu HR, Zhou GQ. DRAM1 regulates the migration and invasion of hepatoblastoma cells via autophagy-EMT pathway. Oncol Lett 2018; 16:2427-2433. [PMID: 30013633 PMCID: PMC6036562 DOI: 10.3892/ol.2018.8937] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/03/2018] [Indexed: 01/05/2023] Open
Abstract
DNA-damage regulated autophagy modulator 1 (DRAM1) is known as a target of TP53-mediated autophagy, and has been reported to promote the migration and invasion abilities of glioblastoma stem cells. However, the precise contribution of DRAM1 to cancer cell invasion and migration, and the underlying mechanisms remain unclear. In the present study, small interfering (si)RNA or short hairpin RNA mediated knockdown of DRAM1 was performed in hepatoblastoma cells and the migration and invasion abilities were detected in vitro and in vivo. To investigate the underlying mechanisms, western blotting and immunofluorescence were used to detect the expression of autophagy-associated proteins and epithelial-mesenchymal-transition (EMT)-associated markers. The results showed that DRAM1 knockdown by specific siRNA abrogated cell autophagy, as well as inhibited the migration and invasion of HepG2 cells in Transwell assays, which may be reversed by rapamycin treatment. In addition, DRAM1 knockdown increased the expression of E-Cadherin while decreased the expression of vimentin in HepG2 cells, which was also be reversed by rapamycin treatment. Taken together, these results suggest that DRAM1 is involved in the regulation of the migration and invasion of HepG2 cells via autophagy-EMT pathway.
Collapse
Affiliation(s)
- Chao Chen
- Department of General Surgery, Changshu Second People's Hospital, The Fifth Hospital Affiliated to Yangzhou University, Changshu, Jiangsu 215500, P.R. China
| | - Qing-Yu Liang
- Department of General Surgery, The First Hospital of Zhang Jia Gang, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Hui-Kang Chen
- Department of General Surgery, Changshu Second People's Hospital, The Fifth Hospital Affiliated to Yangzhou University, Changshu, Jiangsu 215500, P.R. China
| | - Pin-Fei Wu
- Department of General Surgery, Changshu Second People's Hospital, The Fifth Hospital Affiliated to Yangzhou University, Changshu, Jiangsu 215500, P.R. China
| | - Zhen-Yu Feng
- Department of General Surgery, The Second Hospital Affiliated to Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiao-Ming Ma
- Department of General Surgery, The Second Hospital Affiliated to Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| | - Hao-Rong Wu
- Department of General Surgery, The Second Hospital Affiliated to Suzhou University, Suzhou, Jiangsu 215004, P.R. China
| | - Guo-Qiang Zhou
- Department of General Surgery, Changshu Second People's Hospital, The Fifth Hospital Affiliated to Yangzhou University, Changshu, Jiangsu 215500, P.R. China
| |
Collapse
|
41
|
Liver regeneration microenvironment of hepatocellular carcinoma for prevention and therapy. Oncotarget 2018; 8:1805-1813. [PMID: 27655683 PMCID: PMC5352100 DOI: 10.18632/oncotarget.12101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
Research on liver cancer prevention and treatment has mainly focused on the liver cancer cells themselves. Currently, liver cancers are no longer viewed as only collections of genetically altered cells but as aberrant organs with a plastic stroma, matrix, and vasculature. Improving the microenvironment of the liver to promote liver regeneration and repair by affecting immune function, inflammation and vasculature can regulate the dynamic imbalance between normal liver regeneration and repair and abnormal liver regeneration, thus improving the microenvironment of liver regeneration for the prevention and treatment of liver cancer. This review addresses the basic theory of the liver regeneration microenvironment, including the latest findings on immunity, inflammation and vasculature. Attention is given to the potential design of molecular targets in the microenvironment of hepatocellular carcinoma (HCC). In an effort to improve the liver regeneration microenvironment of HCC, researchers have extensively utilized the enhancement of immunity, anti-inflammation and the vasculature niche, which are discussed in detail in this review. In addition, the authors summarize the latest pro-fibrotic transition characteristics of the vascular niche and review potential cell therapies for liver disease.
Collapse
|
42
|
Burke ZD, Reed KR, Yeh SW, Meniel V, Sansom OJ, Clarke AR, Tosh D. Spatiotemporal regulation of liver development by the Wnt/β-catenin pathway. Sci Rep 2018; 8:2735. [PMID: 29426940 PMCID: PMC5807466 DOI: 10.1038/s41598-018-20888-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/23/2018] [Indexed: 01/16/2023] Open
Abstract
While the Wnt/β-catenin pathway plays a critical role in the maintenance of the zonation of ammonia metabolizing enzymes in the adult liver, the mechanisms responsible for inducing zonation in the embryo are not well understood. Herein we address the spatiotemporal role of the Wnt/β-catenin pathway in the development of zonation in embryonic mouse liver by conditional deletion of Apc and β-catenin at different stages of mouse liver development. In normal development, the ammonia metabolising enzymes carbamoylphosphate synthetase I (CPSI) and Glutamine synthetase (GS) begin to be expressed in separate hepatoblasts from E13.5 and E15.5 respectively and gradually increase in number thereafter. Restriction of GS expression occurs at E18 and becomes increasingly limited to the terminal perivenous hepatocytes postnatally. Expression of nuclear β-catenin coincides with the restriction of GS expression to the terminal perivenous hepatocytes. Conditional loss of Apc resulted in the expression of nuclear β-catenin throughout the developing liver and increased number of cells expressing GS. Conversely, conditional loss of β-catenin resulted in loss of GS expression. These data suggest that the Wnt pathway is critical to the development of zonation as well as maintaining the zonation in the adult liver.
Collapse
Affiliation(s)
- Zoë D Burke
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Karen R Reed
- European Cancer Stem Cell Research Institute, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sheng-Wen Yeh
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Valerie Meniel
- European Cancer Stem Cell Research Institute, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Owen J Sansom
- The Beatson Institute, Garscube Estate, Glasgow, G61 18D, UK
| | - Alan R Clarke
- European Cancer Stem Cell Research Institute, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
43
|
Lemberger UJ, Fuchs CD, Schöfer C, Bileck A, Gerner C, Stojakovic T, Taketo MM, Trauner M, Egger G, Österreicher CH. Hepatocyte specific expression of an oncogenic variant of β-catenin results in lethal metabolic dysfunction in mice. Oncotarget 2018. [PMID: 29541410 PMCID: PMC5834276 DOI: 10.18632/oncotarget.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Wnt/β-catenin signaling plays a crucial role in embryogenesis, tissue homeostasis, metabolism and malignant transformation of different organs including the liver. Continuous β-catenin signaling due to somatic mutations in exon 3 of the Ctnnb1 gene is associated with different liver diseases including cancer and cholestasis. Results Expression of a degradation resistant form of β-catenin in hepatocytes resulted in 100% mortality within 31 days after birth. Ctnnb1CAhep mice were characterized by reduced body weight, significantly enlarged livers with hepatocellular fat accumulation around central veins and increased hepatic triglyceride content. Proteomics analysis using whole liver tissue revealed significant deregulation of proteins involved in fat, glucose and mitochondrial energy metabolism, which was also reflected in morphological anomalies of hepatocellular mitochondria. Key enzymes involved in transport and synthesis of fatty acids and cholesterol were significantly deregulated in livers of Ctnnb1CAhep mice. Furthermore, carbohydrate metabolism was substantially disturbed in mutant mice. Conclusion Continuous β-catenin signaling in hepatocytes results in premature death due to severe disturbances of liver associated metabolic pathways and mitochondrial dysfunction. Methods To investigate the influence of permanent β-catenin signaling on liver biology we analyzed mice with hepatocyte specific expression of a dominant stable form of β-catenin (Ctnnb1CAhep) and their WT littermates by serum biochemistry, histology, electron microscopy, mRNA profiling and proteomic analysis of the liver.
Collapse
Affiliation(s)
- Ursula J Lemberger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Claudia D Fuchs
- Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Schöfer
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Makoto M Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michael Trauner
- Hans Popper Laboratory for Molecular Hepatology, Department of Internal Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | |
Collapse
|
44
|
Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:351-378. [PMID: 29125798 DOI: 10.1146/annurev-pathol-020117-044010] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an organ that performs a multitude of functions, and its health is pertinent and indispensable to survival. Thus, the cellular and molecular machinery driving hepatic functions is of utmost relevance. The Wnt signaling pathway is one such signaling cascade that enables hepatic homeostasis and contributes to unique hepatic attributes such as metabolic zonation and regeneration. The Wnt/β-catenin pathway plays a role in almost every facet of liver biology. Furthermore, its aberrant activation is also a hallmark of various hepatic pathologies. In addition to its signaling function, β-catenin also plays a role at adherens junctions. Wnt/β-catenin signaling also influences the function of many different cell types. Due to this myriad of functions, Wnt/β-catenin signaling is complex, context-dependent, and highly regulated. In this review, we discuss the Wnt/β-catenin signaling pathway, its role in cell-cell adhesion and liver function, and the cell type-specific roles of Wnt/β-catenin signaling as it relates to liver physiology and pathobiology.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
45
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
46
|
Yousaf M, Tayyeb A, Ali G. Expression profiling of adhesion proteins during prenatal and postnatal liver development in rats. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2017; 10:21-28. [PMID: 29033593 PMCID: PMC5614736 DOI: 10.2147/sccaa.s139497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Culturing of primary hepatocytes and stem cell-derived hepatocytes faces a major issue of dedifferentiation due to absence of cell–cell adhesion and 3D structures. One of the possible ways to eliminate the problem of dedifferentiation is mimicking the expression pattern of adhesion proteins during the normal developmental process of liver cells. The purpose of this study was to evaluate the expression pattern of some key adhesion proteins, namely, E-cadherin, N-cadherin, epithelial CAM (EpCAM), intracellular CAM (ICAM), collagen 1α1, α-actinin, β-catenin and vimentin, in the liver tissue during prenatal and postnatal stages. Furthermore, differences in their expression between prenatal, early postnatal and adult stages were highlighted. Wistar rats were used to isolate livers at prenatal Day 14 and 17 as well as on postnatal Day 1, 3, 7 and 14. The liver from adult rats was used as control. Both conventional and real-time quantitative polymerase chain reactions (PCRs) were performed. For most of the adhesion proteins such as E-cadherin, N-cadherin, EpCAM, ICAM, collagen 1α1 and α-actinin, low expression was observed around prenatal Day 14 and an increasing expression was observed in the postnatal period. Moreover, β-catenin and vimentin showed higher expression in the early prenatal period, which decreased gradually in the postnatal period, but still this low expression was considerably higher than that in the adult control rats. This basic knowledge of the regulation of expression of adhesion proteins during different developmental stages indicates their vital role in liver development. This pattern can be further studied and imitated under in vitro conditions to achieve better cell–cell interactions.
Collapse
Affiliation(s)
- Mehwish Yousaf
- National Centre of Excellence in Molecular Biology, University of the Punjab
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Gibran Ali
- National Centre of Excellence in Molecular Biology, University of the Punjab
| |
Collapse
|
47
|
Preziosi ME, Singh S, Valore EV, Jung CL, Popovic B, Poddar M, Nagarajan S, Ganz T, Monga SP. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. J Hepatol 2017; 67:360-369. [PMID: 28341391 PMCID: PMC5515705 DOI: 10.1016/j.jhep.2017.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. METHODS Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. RESULTS KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. CONCLUSIONS The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. LAY SUMMARY Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked human disease. Administration of an antioxidant prevented hepatic injury in this model.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Sucha Singh
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Erika V. Valore
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Chun-Ling Jung
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | | | - Minakshi Poddar
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Shanmugam Nagarajan
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Tomas Ganz
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Satdarshan P Monga
- Department of Pathology (Division of Experimental Pathology), University of Pittsburgh, Pennsylvania, United States; Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States; Department of Medicine (Division of Gastroenterology, Hepatology and Nutrition), University of Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
48
|
Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027862. [PMID: 28213465 DOI: 10.1101/cshperspect.a027862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
49
|
Goto F, Kakinuma S, Miyoshi M, Tsunoda T, Kaneko S, Sato A, Asano Y, Otani S, Azuma S, Nagata H, Kawai-Kitahata F, Murakawa M, Nitta S, Itsui Y, Nakagawa M, Asahina Y, Watanabe M. Bone morphogenetic protein-4 modulates proliferation and terminal differentiation of fetal hepatic stem/progenitor cells. Hepatol Res 2017; 47:941-952. [PMID: 27670640 DOI: 10.1111/hepr.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver organogenesis; however, molecular mechanisms regulating proliferation and terminal differentiation of such cells have not been completely elucidated. Bone morphogenetic protein-4 (BMP-4) is essential for the development of stem cells in various tissues, but its function in regulating the phenotype of hepatoblasts after the mid-gestational fetal stage remains unclear. The aim of this study is to clarify a functional role for BMP-4 in proliferation and terminal differentiation of murine hepatoblasts in mid-gestational fetal livers. METHODS A functional role for BMP-4 in proliferation and terminal differentiation of murine hepatoblasts was validated by assay of colony formation, biliary luminal formation, and hepatic maturation using primary hepatoblasts in vitro. Molecular mechanisms regulating such effects of BMP-4 on primary hepatoblasts were also analyzed. RESULTS Stimulation of BMP-4 upregulated phosphorylation of Smad1/5 in hepatoblasts. Bone morphogenetic protein-4 significantly suppressed colony formation of primary hepatoblasts in a dose-dependent manner, significantly suppressed cholangiocytic luminal formation of hepatoblasts, and promoted hepatic maturation of primary hepatoblasts. Stimulation of BMP-4 regulated the activation of several mitogen-activated protein kinases, such as extracellular signal-regulated kinase, Akt, p38 mitogen-activated protein kinase, and calcium/calmodulin-dependent protein kinase IIα in primary hepatoblasts. Moreover, Wnt5a, a molecule regulating cholangiocytic luminal formation, and BMP-4 coordinately suppressed proliferation and cholangiocytic luminal formation of hepatoblasts. CONCLUSION This study shows that BMP-4-mediated signaling controls proliferation and terminal differentiation of fetal hepatic stem/progenitor cells.
Collapse
Affiliation(s)
- Fumio Goto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Asano
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Otani
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
50
|
Lejonklou MH, Dunder L, Bladin E, Pettersson V, Rönn M, Lind L, Waldén TB, Lind PM. Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067018. [PMID: 28657538 PMCID: PMC5743697 DOI: 10.1289/ehp505] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/06/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive. OBJECTIVES The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring. METHODS Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to 0.5 μg/kg BW/d (BPA0.5; n=21) or 50 μg/kg BW/d (BPA50; n=16), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (n=26). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring. RESULTS Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels (0.81±0.10 mmol/L compared with 0.57±0.03 mmol/L, females BPA50 p=0.04; 0.81±0.05 mmol/L compared with 0.61±0.04 mmol/L, males BPA0.5 p=0.005) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls (68.2±4.4 number of adipocytes/HPF compared with 55.9±1.5 number of adipocytes/HPF; p=0.03) and by 123% in BPA0.5 females compared with BPA50 animals (68.2±4.4 number of adipocytes/high power field (HPF) compared with 55.3±2.9 number of adipocytes/HPF; p=0.04). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals (69.9±5.1 number of adipocytes/HPF compared with 54.0±3.4 number of adipocytes/HPF; p=0.03). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed animals and controls depending on the tissue, dose, and sex. CONCLUSIONS Developmental exposure to 0.5 μg/kg BW/d of BPA, which is 8-10 times lower than the current preliminary EFSA (European Food Safety Authority) tolerable daily intake (TDI) of 4 μg/kg BW/d and is within the range of environmentally relevant levels, was associated with sex-specific differences in the expression of genes in adipose tissue plasma triglyceride levels in males and adipocyte cell density in females when F344 rat offspring of dams exposed to BPA at 0.5 μg/kg BW/d were compared with the offspring of unexposed controls. https://doi.org/10.1289/EHP505.
Collapse
Affiliation(s)
- Margareta H Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Emelie Bladin
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Vendela Pettersson
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Monika Rönn
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University , Uppsala, Sweden
| | - Tomas B Waldén
- Department of Medical Cell Biology, Uppsala University , Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University , Uppsala, Sweden
| |
Collapse
|