1
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, Ibrahim SRM, Almalki NAR, Asfour HZ, Al-Rabia MW, Mohamed GA, Elshal M. Pirfenidone ameliorates ANIT-induced cholestatic liver injury via modulation of FXR, NF-кB/TNF-α, and Wnt/GSK-3β/β-catenin signaling pathways. Toxicol Appl Pharmacol 2024; 490:117038. [PMID: 39019095 DOI: 10.1016/j.taap.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3β/β-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ulfat M Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Kim JY, Jee HG, Kim JY, Yong TS, Jeon SH. NF-κB p65 and TCF-4 interactions are associated with LPS-stimulated IL-6 secretion of macrophages. Biochem Biophys Rep 2024; 38:101659. [PMID: 38352245 PMCID: PMC10859262 DOI: 10.1016/j.bbrep.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Proinflammatory cytokine plays a central role in host defense and acute inflammatory responses. Both positive and negative correlations of NF-κB and Wnt/β-catenin pathways have been reported depending on cell types in response to inflammatory stimuli for IL-6 cytokine production. Macrophages are vital to the regulation of immune responses and the development of inflammation, but the crosstalk between two pathways has not been elucidated so far in macrophages. We observed a positive cross-regulation between the NF-κB and Wnt/β-catenin pathways for IL-6 production in human macrophages. To verify the functional validity of this interaction, LY294002 or PNU74654, representative blockers of each pathway, were treated. IL-6 secretion was reduced to the basal level by both inhibitor treatments, even when stimulated by LPS. We also found that NF-κB p65 migrated to the nucleus and interacted with the transcription factor TCF-4 in macrophages upon LPS stimulation.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hyeon-Gun Jee
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Ju Yeong Kim
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soung-Hoo Jeon
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
3
|
Lu ZQ, Zhang C, Zhao LJ, Dong W, Lv L, Lu Y, Chen XY, Zhang J, Liu XY, Xiao Z, Chen LW, Yao YM, Zhao GJ. Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway. BURNS & TRAUMA 2024; 12:tkad025. [PMID: 38425412 PMCID: PMC10903637 DOI: 10.1093/burnst/tkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/24/2023] [Indexed: 03/02/2024]
Abstract
Background Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms. Methods A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both in vitro and in vivo. Results DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both in vivo and in vitro. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/β-catenin pathway. Conclusions Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.
Collapse
Affiliation(s)
- Zhong-qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Chen Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Lin-jun Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical of the Chinese PLA General Hospital, Fucheng Road, Haidian District, Beijing 100048, China
| | - Wei Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Liang Lv
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yang Lu
- Department of Emergency Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huansha Road,Shangcheng District, Hangzhou 310006, China
| | - Xiao-Yan Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Jie Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Xin-yong Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Zhong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Long-wang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yong-ming Yao
- Department of Rheumatology, Wenzhou People's Hospital, Gu'an road, Ouhai district, Wenzhou 325000, China
| | - Guang-ju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
4
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
5
|
Lu Y, Zhao D, Cao G, Yin S, Liu C, Song R, Ma J, Sun R, Wu Z, Liu J, Wu P, Wang Y. Research progress on and molecular mechanism of vacuum sealing drainage in the treatment of diabetic foot ulcers. Front Surg 2024; 11:1265360. [PMID: 38464666 PMCID: PMC10920358 DOI: 10.3389/fsurg.2024.1265360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are common chronic wounds and a common complication of diabetes. The foot is the main site of diabetic ulcers, which involve small and medium-sized arteries, peripheral nerves, and microcirculation, among others. DFUs are prone to coinfections and affect many diabetic patients. In recent years, interdisciplinary research combining medicine and material science has been increasing and has achieved significant clinical therapeutic effects, and the application of vacuum sealing drainage (VSD) in the treatment of DFUs is a typical representative of this progress, but the mechanism of action remains unclear. In this review, we integrated bioinformatics and literature and found that ferroptosis is an important signaling pathway through which VSD promotes the healing of DFUs and that System Xc-GSH-GPX4 and NAD(P)H-CoQ10-FSP1 are important axes in this signaling pathway, and we speculate that VSD is most likely to inhibit ferroptosis to promote DFU healing through the above axes. In addition, we found that some classical pathways, such as the TNF, NF-κB, and Wnt/β-catenin pathways, are also involved in the VSD-mediated promotion of DFU healing. We also compiled and reviewed the progress from clinical studies on VSD, and this information provides a reference for the study of VSD in the treatment of DFUs.
Collapse
Affiliation(s)
- Yongpan Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dejie Zhao
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqi Cao
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Sun
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Peng Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yibing Wang
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
6
|
Bragg RM, Coffey SR, Cantle JP, Hu S, Singh S, Legg SR, McHugh CA, Toor A, Zeitlin SO, Kwak S, Howland D, Vogt TF, Monga SP, Carroll JB. Huntingtin loss in hepatocytes is associated with altered metabolism, adhesion, and liver zonation. Life Sci Alliance 2023; 6:e202302098. [PMID: 37684045 PMCID: PMC10488683 DOI: 10.26508/lsa.202302098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Huntington's disease arises from a toxic gain of function in the huntingtin (HTT) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological, and plasma metabolite levels. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic β-catenin function.
Collapse
Affiliation(s)
- Robert M Bragg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Sydney R Coffey
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey P Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel Rw Legg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Cassandra A McHugh
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Amreen Toor
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Scott O Zeitlin
- https://ror.org/0153tk833 Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, WA, USA
- https://ror.org/00cvxb145 Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Ayers M, Kosar K, Xue Y, Goel C, Carson M, Lee E, Liu S, Brooks E, Cornuet P, Oertel M, Bhushan B, Nejak-Bowen K. Inhibiting Wnt Signaling Reduces Cholestatic Injury by Disrupting the Inflammatory Axis. Cell Mol Gastroenterol Hepatol 2023; 16:895-921. [PMID: 37579970 PMCID: PMC10616556 DOI: 10.1016/j.jcmgh.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND & AIMS β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.
Collapse
Affiliation(s)
- Mary Ayers
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karis Kosar
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhua Xue
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chhavi Goel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Carson
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Lee
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Brooks
- Duquesne University, Pittsburgh, Pennsylvania
| | - Pamela Cornuet
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Shannon AH, Manne A, Diaz Pardo DA, Pawlik TM. Combined radiotherapy and immune checkpoint inhibition for the treatment of advanced hepatocellular carcinoma. Front Oncol 2023; 13:1193762. [PMID: 37554167 PMCID: PMC10405730 DOI: 10.3389/fonc.2023.1193762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is one of the most common cancers and a leading cause of cancer related death worldwide. Until recently, systemic therapy for advanced HCC, defined as Barcelona Clinic Liver Cancer (BCLC) stage B or C, was limited and ineffective in terms of long-term survival. However, over the past decade, immune check point inhibitors (ICI) combinations have emerged as a potential therapeutic option for patients with nonresectable disease. ICI modulate the tumor microenvironment to prevent progression of the tumor. Radiotherapy is a crucial tool in treating unresectable HCC and may enhance the efficacy of ICI by manipulating the tumor microenvironment and decreasing tumor resistance to certain therapies. We herein review developments in the field of ICI combined with radiotherapy for the treatment of HCC, as well as look at challenges associated with these treatment modalities, and review future directions of combination therapy.
Collapse
Affiliation(s)
- Alexander H. Shannon
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Dayssy A. Diaz Pardo
- Department of Radiation Oncology, The Ohio State University, Comprehensive Cancer Center-James Hospital and Solove Research Institute, Columbus, OH, United States
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Bragg RM, Coffey SR, Cantle JP, Hu S, Singh S, Legg SR, McHugh CA, Toor A, Zeitlin SO, Kwak S, Howland D, Vogt TF, Monga SP, Carroll JB. Huntingtin loss in hepatocytes is associated with altered metabolism, adhesion, and liver zonation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.24.546334. [PMID: 37425835 PMCID: PMC10327156 DOI: 10.1101/2023.06.24.546334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Huntington's disease arises from a toxic gain of function in the huntingtin ( HTT ) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological and plasma metabolite level. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic β-catenin function.
Collapse
Affiliation(s)
- Robert M. Bragg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Sydney R. Coffey
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Jeffrey P. Cantle
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel R.W. Legg
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Cassandra A. McHugh
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Amreen Toor
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
| | - Scott O. Zeitlin
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | | | | | | | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Jeffrey B. Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham WA 98225
- Department of Neurology, University of Washington, Seattle, WA 98104-2499
| |
Collapse
|
11
|
Elwany NE, El Salem A, Mostafa Mohamed N, Khalil SS, Mahmoud NM. Rebamipide protects against experimentally induced intestinal ischemia/reperfusion-promoted liver damage: Impact on SIRT1/β-catenin/FOXO1and NFκB signaling. Int Immunopharmacol 2023; 119:110269. [PMID: 37148771 DOI: 10.1016/j.intimp.2023.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Rebamipide (Reba) is a well-known gastroprotective agent. However, its potential protective efficacy against intestinal ischemia/reperfusion (I/R)-induced liver injury remains elusive. Therefore, this study aimed to assess the modulatory effect of Reba on SIRT1/β-catenin/FOXO1-NFκB signaling cascade. Thirty-two male Wistar albino rats were randomized into four groups: G1 (sham): rats were subjected to surgical stress without I/R, GII (I/R): rats were subjected to 60 min/4-h I/R, GIII (Reba + I/R): rats received Reba 100 mg/kg/day, p.o. for three weeks, then were subjected to 60 min/4-h I/R, and GIV (Reba + EX527 + I/R): rats received Reba (100 mg/kg/day p.o.) + EX527 (10 mg/kg/day, ip) for three weeks before I/R. Reba pretreatment decreased the serum levels of ALT and AST, improved I/R-induced histological alterations of both intestine and liver, increased hepatic Silent information regulator 1 (SIRT1) expression/content, β-catenin expression/immunoreactivity, and FOXO1 expression, while suppressed NF-κB p65 expression/protein content. In addition, Reba increased hepatic total antioxidant capacity (TAC), while suppressed malondialdehyde (MDA), tumor necrosis factor (TNFα), and caspase-3 activity. Furthermore, Reba inhibited BAX expression, while upregulated Bcl-2 expression. Reba exhibited a plausible protective effect against intestinal I/R-mediated liver injury by modulating SIRT1/β-catenin/FOXO1-NFκB signaling mechanisms.
Collapse
Affiliation(s)
- Nisreen E Elwany
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Amal El Salem
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | | | - Sama S Khalil
- Associate professor of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Nevertyty M Mahmoud
- Lecturer of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
12
|
Yu SJ. Immunotherapy for hepatocellular carcinoma: Recent advances and future targets. Pharmacol Ther 2023; 244:108387. [PMID: 36948423 DOI: 10.1016/j.pharmthera.2023.108387] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Immunotherapy is a promising approach to treating various types of cancers, including hepatocellular carcinoma (HCC). While single immunotherapy drugs show limited effectiveness on a small subset of patients, the combination of the anti PD-L1 atezolizumab and anti-vascular endothelial growth factor bevacizumab has shown significant improvement in survival compared to sorafenib as a first-line treatment. However, the current treatment options still have a low success rate of about 30%. Thus, more effective treatments for HCC are urgently required. Several novel immunotherapeutic methods, including the use of novel immune checkpoint inhibitors, innovative immune cell therapies like chimeric antigen receptor T cells (CAR-T), TCR gene-modified T cells and stem cells, as well as combination strategies are being tested in clinical trials for the treatment of HCC. However, some crucial issues still exist such as the presence of heterogeneous antigens in solid tumors, the immune-suppressive environment within tumors, the risk of on-target/off-tumor, infiltrating CAR-T cells, immunosuppressive checkpoint molecules, and cytokines. Overall, immunotherapy is on the brink of major advancements in the fight against HCC.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Avery D, Morandini L, Sheakley LS, Shah AH, Bui L, Abaricia JO, Olivares-Navarrete R. Canonical Wnt signaling enhances pro-inflammatory response to titanium by macrophages. Biomaterials 2022; 289:121797. [PMID: 36156410 PMCID: PMC10262842 DOI: 10.1016/j.biomaterials.2022.121797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Biomaterial characteristics like surface roughness and wettability can determine the phenotype of macrophages following implantation. We have demonstrated that inhibiting Wnt ligand secretion abolishes macrophage polarization in vitro and in vivo; however, the role of canonical Wnt signaling in macrophage activation in response to physical and chemical biomaterial cues is unknown. The aim of this study was to understand whether canonical Wnt signaling affects the response of macrophages to titanium (Ti) surface roughness or wettability in vitro and in vivo. Activating canonical Wnt signaling increased expression of toll-like receptors and interleukin receptors and secreted pro-inflammatory cytokines and reduced anti-inflammatory cytokines on Ti, regardless of surface properties. Inhibiting canonical Wnt signaling reduced pro-inflammatory cytokines on all Ti surfaces and increased anti-inflammatory cytokines on rough or rough-hydrophilic Ti. In vivo, activating canonical Wnt signaling increased total macrophages, pro-inflammatory macrophages, and T cells and decreased anti-inflammatory macrophages on both smooth and rough-hydrophilic implants. Functionally, canonical Wnt activation increases pro-inflammatory macrophage response to cell and cell-extracellular matrix lysates. These results demonstrate that activating canonical Wnt signaling primes macrophages to a pro-inflammatory phenotype that affects their response to Ti implants in vitro and in vivo.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke S Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Loc Bui
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jefferson O Abaricia
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
14
|
Zhang JH, Tasaki T, Tsukamoto M, Wang KY, Kubo KY, Azuma K. Deletion of Wnt10a Is Implicated in Hippocampal Neurodegeneration in Mice. Biomedicines 2022; 10:biomedicines10071500. [PMID: 35884806 PMCID: PMC9313158 DOI: 10.3390/biomedicines10071500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus plays an important role in maintaining normal cognitive function and is closely associated with the neuropathogenesis of dementia. Wnt signaling is relevant to neuronal development and maturation, synaptic formation, and plasticity. The role of Wnt10a in hippocampus-associated cognition, however, is largely unclear. Here, we examined the morphological and functional alterations in the hippocampus of Wnt10a-knockout (Wnt10a-/-) mice. Neurobehavioral tests revealed that Wnt10a-/- mice exhibited spatial memory impairment and anxiety-like behavior. Immunostaining and Western blot findings showed that the protein expressions of β-catenin, brain-derived neurotrophic factor, and doublecortin were significantly decreased and that the number of activated microglia increased, accompanied by amyloid-β accumulation, synaptic dysfunction, and microglia-associated neuroinflammation in the hippocampi of Wnt10a-/- mice. Our findings revealed that the deletion of Wnt10a decreased neurogenesis, impaired synaptic function, and induced hippocampal neuroinflammation, eventually leading to hippocampal neurodegeneration and memory deficit, possibly through the β-catenin signaling pathway, providing a novel insight into preventive approaches for hippocampus-dependent cognitive impairment.
Collapse
Affiliation(s)
- Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Takashi Tasaki
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Kanagawa, Japan;
| | - Manabu Tsukamoto
- Department of Orthopedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
| | - Kin-ya Kubo
- Faculty of Human Life and Environmental Science, Nagoya Women’s University, 3-40 Shioji-cho, Mizuho-ku, Nagoya 467-8610, Aichi, Japan;
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyusyu 807-8555, Fukuoka, Japan;
- Correspondence: ; Tel.: +81-93-691-7418; Fax: +81-93-691-8544
| |
Collapse
|
15
|
Huang Z, Kuang N. Construction of a ceRNA Network Related to Rheumatoid Arthritis. Genes (Basel) 2022; 13:genes13040647. [PMID: 35456453 PMCID: PMC9031934 DOI: 10.3390/genes13040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Rheumatoid arthritis (RA) is a common systemic autoimmune disease affecting many people and has an unclear and complicated physiological mechanism. The competing endogenous RNA (ceRNA) network plays an essential role in the development and occurrence of various human physiological processes. This study aimed to construct a ceRNA network related to RA. (2) Methods: We explored the GEO database for peripheral blood mononuclear cell (PBMC) samples and then analyzed the RNA of 52 samples (without treatment) to obtain lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs), which can be differentially expressed with statistical significance in the progression of RA. Next, a ceRNA network was constructed, based on the DELs, DEMs, and DEGs. At the same time, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were used to validate the possible function of the ceRNA network. (3) Results: Through our analysis, 389 DELs, 247 DEMs, and 1081 DEGs were screened. After this, a ceRNA network was constructed for further statistical comparisons, including 16 lncRNAs, 1 miRNA, and 15 mRNAs. According to the GO and KEGG analysis, the ceRNA network was mainly enriched in the mTOR pathway, the dopaminergic system, and the Wnt signaling pathway. (4) Conclusions: The novel ceRNA network related to RA that we constructed offers novel insights into and targets for the underlying molecular mechanisms of the mTOR pathway, the dopaminergic system, and the Wnt signaling pathway (both classic and nonclassic pathways) that affect the level of the genetic regulator, which might offer novel ways to treat RA.
Collapse
Affiliation(s)
- Zhanya Huang
- Queen Mary School, Nanchang University, Nanchang 330006, China;
- Department of Immunology, Medical College of Nanchang University, Nanchang 330006, China
| | - Nanzhen Kuang
- Department of Immunology, Medical College of Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
16
|
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132:154515. [PMID: 35166233 PMCID: PMC8843739 DOI: 10.1172/jci154515] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
17
|
Ayers M, Liu S, Singhi AD, Kosar K, Cornuet P, Nejak-Bowen K. Changes in beta-catenin expression and activation during progression of primary sclerosing cholangitis predict disease recurrence. Sci Rep 2022; 12:206. [PMID: 34997170 PMCID: PMC8741932 DOI: 10.1038/s41598-021-04358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 01/26/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. We have previously demonstrated the importance of Wnt/β-catenin signaling in mouse models of PSC. In this study, we wished to determine the clinical relevance of β-catenin localization in patient samples. In livers explanted from patients diagnosed with PSC, the majority (12/16; 75%) lacked β-catenin protein expression. Biopsies from patients post-transplant were classified as recurrent or non-recurrent based on pathology reports and then scored for β-catenin activation as a function of immunohistochemical localization. Despite lack of statistical significance, patients with recurrent primary disease (n = 11) had a greater percentage of samples with nuclear, transcriptionally active β-catenin (average 58.8%) than those with no recurrence (n = 10; 40.53%), while non-recurrence is correlated with β-catenin staining at the cell surface (average 52.63% for non-recurrent vs. 27.34% for recurrent), as determined by three different methods of analysis. β-catenin score and years-to-endpoint are both strongly associated with recurrence status (p = 0.017 and p = 0.00063, respectively). Finally, there was significant association between higher β-catenin score and increased alkaline phosphatase, a marker of biliary injury and disease progression. Thus, β-catenin expression and activation changes during the progression of PSC, and its localization may be a useful prognostic tool for predicting recurrence of this disease.
Collapse
Affiliation(s)
- Mary Ayers
- grid.239553.b0000 0000 9753 0008Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Silvia Liu
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Aatur D. Singhi
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karis Kosar
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Pamela Cornuet
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Kari Nejak-Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Liu X, Zhou Q, Zhang JH, Wang KY, Saito T, Saido TC, Wang X, Gao X, Azuma K. Microglia-Based Sex-Biased Neuropathology in Early-Stage Alzheimer's Disease Model Mice and the Potential Pharmacologic Efficacy of Dioscin. Cells 2021; 10:3261. [PMID: 34831483 PMCID: PMC8625413 DOI: 10.3390/cells10113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by amyloid-β (Aβ) accumulation, microglia-associated neuroinflammation, and synaptic loss. The detailed neuropathologic characteristics in early-stage AD, however, are largely unclear. We evaluated the pathologic brain alterations in young adult App knock-in model AppNL-G-F mice at 3 and 6 months of age, which corresponds to early-stage AD. At 3 months of age, microglia expression in the cortex and hippocampus was significantly decreased. By the age of 6 months, the number and function of the microglia increased, accompanied by progressive amyloid-β deposition, synaptic dysfunction, neuroinflammation, and dysregulation of β-catenin and NF-κB signaling pathways. The neuropathologic changes were more severe in female mice than in male mice. Oral administration of dioscin, a natural product, ameliorated the neuropathologic alterations in young AppNL-G-F mice. Our findings revealed microglia-based sex-differential neuropathologic changes in a mouse model of early-stage AD and therapeutic efficacy of dioscin on the brain lesions. Dioscin may represent a potential treatment for AD.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (X.L.); (Q.Z.); (J.-H.Z.)
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Zhou
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (X.L.); (Q.Z.); (J.-H.Z.)
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-He Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (X.L.); (Q.Z.); (J.-H.Z.)
| | - Ke-Yong Wang
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan;
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Shared-Use Research Center, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan;
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (X.L.); (Q.Z.); (J.-H.Z.)
| |
Collapse
|
19
|
Hu S, Russell JO, Liu S, Cao C, McGaughey J, Rai R, Kosar K, Tao J, Hurley E, Poddar M, Singh S, Bell A, Shin D, Raeman R, Singhi AD, Nejak-Bowen K, Ko S, Monga SP. β-Catenin-NF-κB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. eLife 2021; 10:71310. [PMID: 34609282 PMCID: PMC8555990 DOI: 10.7554/elife.71310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of β-catenin, one with β-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived β-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of β-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of β-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or β-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel β-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF. The liver has an incredible capacity to repair itself or ‘regenerate’ – that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called ‘ductular reaction’, which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called β-catenin – which can cause many types of cells to proliferate – is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce β-catenin in biliary duct cells, while the other lacked β-catenin both in biliary duct cells and in hepatocytes. After a short liver injury – which Hu et al. caused by feeding the mice a specific diet – the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked β-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking β-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that β-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of β-catenin in ductular reaction. Further, the results show a previously unknown interaction between β-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China.,Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jacquelyn O Russell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Catherine Cao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Jackson McGaughey
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Ravi Rai
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Karis Kosar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Edward Hurley
- Department of Pediatrics, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aaron Bell
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Donghun Shin
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Developmental Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States.,Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, United States
| |
Collapse
|
20
|
Mebed R, Ali YB, Shehata N, El-Guendy N, Gamal N, Zekri AR, Sabet S. Combining Bevacizumab with knocked-down β-catenin reduces VEGF-A and Slug mRNA in HepG2 but not in Caco-2 cell lines. Curr Mol Med 2021; 22:374-383. [PMID: 34429048 DOI: 10.2174/1573405617666210824120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bevacizumab (Bev) resistance is hypothesized to be overcome by combination with inhibitors of other signalling pathways. OBJECTIVE We aimed to study the effect of combining Bev with knocked down β-catenin (Bev-β-cat-siRNA) on the expression of VEGF-A, Slug, NFКB and its two target genes c-Flip and FasR in HepG2. Expression of VEGF-A and Slug was also studied in Caco-2 cells. METHODS Cultured cells were divided into six groups 1) cells treated with Bev only 2) cells treated with β-catenin-siRNA 3) cells treated with Bev-β-cat-siRNA 4) cells treated with negative control 5) cells treated with Bev-negative control and untreated cells. Expressions were assessed using qPCR and western blotting. RESULTS Bev-β-cat-siRNA significantly reduced the mRNA level of VEGF-A, which was initially increased in response to Bev alone in HepG2 but not in Caco-2. Additionally, Bev-β-cat-siRNA significantly decreased Slug mRNA level compared to Bev only treated HepG2 cells. In contrast, VEGF-A and Slug mRNA levels in Bev only group were remarkably lower than Bev-β-cat-siRNA in Caco-2 cells. Distinct β-catenin and Slug protein expressions were noticed in HepG2 and Caco-2 cells. On the other hand, Bev-β-cat-siRNA remarkably reduced the level of NFКB, FasR and c-Flip compared to Bev only treated HepG2 cells although the difference was not statistically significant. CONCLUSION We conclude that, combining Bevacizumab with knocked down β-catenin reduce the expression of VEGF-A and Slug in HepG2 but not in Caco-2 cells.
Collapse
Affiliation(s)
- Reem Mebed
- Chemical control unit, National Organization for Research and Control of Biologicals, Cairo. Egypt
| | - Yasser Bm Ali
- Molecular Biology unit, Genetic Engineering and Biotechnology Research Institute, University of Sadat City. Egypt
| | - Nahla Shehata
- Lot release unit, National Organization for Research and Control of Biologicals, Cairo. Egypt
| | - Nadia El-Guendy
- Department of Cancer Biology, National Institute of Cancer, Cairo University. Egypt
| | - Nahla Gamal
- Department of Applied Research, Research & Development Sector, VACSERA, Cairo. Egypt
| | - Abdel-Rahman Zekri
- Department of Cancer Biology, National Institute of Cancer, Cairo University. Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University. Egypt
| |
Collapse
|
21
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
22
|
β-Catenin Activation in Hepatocellular Cancer: Implications in Biology and Therapy. Cancers (Basel) 2021; 13:cancers13081830. [PMID: 33921282 PMCID: PMC8069637 DOI: 10.3390/cancers13081830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Liver cancer is a dreadful tumor which has gradually increased in incidence all around the world. One major driver of liver cancer is the Wnt–β-catenin pathway which is active in a subset of these tumors. While this pathway is normally important in liver development, regeneration and homeostasis, it’s excessive activation due to mutations, is detrimental and leads to tumor cell growth, making it an important therapeutic target. There are also some unique characteristics of this pathway activation in liver cancer. It makes the tumor addicted to specific amino acids and in turn to mTOR signaling, which can be treated by certain existing therapies. In addition, activation of the Wnt–β-catenin in liver cancer appears to alter the immune cell landscape making it less likely to respond to the new immuno-oncology treatments. Thus, Wnt–β-catenin active tumors may need to be treated differently than non-Wnt–β-catenin active tumors. Abstract Hepatocellular cancer (HCC), the most common primary liver tumor, has been gradually growing in incidence globally. The whole-genome and whole-exome sequencing of HCC has led to an improved understanding of the molecular drivers of this tumor type. Activation of the Wnt signaling pathway, mostly due to stabilizing missense mutations in its downstream effector β-catenin (encoded by CTNNB1) or loss-of-function mutations in AXIN1 (the gene which encodes for Axin-1, an essential protein for β-catenin degradation), are seen in a major subset of HCC. Because of the important role of β-catenin in liver pathobiology, its role in HCC has been extensively investigated. In fact, CTNNB1 mutations have been shown to have a trunk role. β-Catenin has been shown to play an important role in regulating tumor cell proliferation and survival and in tumor angiogenesis, due to a host of target genes regulated by the β-catenin transactivation of its transcriptional factor TCF. Proof-of-concept preclinical studies have shown β-catenin to be a highly relevant therapeutic target in CTNNB1-mutated HCCs. More recently, studies have revealed a unique role of β-catenin activation in regulating both tumor metabolism as well as the tumor immune microenvironment. Both these roles have notable implications for the development of novel therapies for HCC. Thus, β-catenin has a pertinent role in driving HCC development and maintenance of this tumor-type, and could be a highly relevant therapeutic target in a subset of HCC cases.
Collapse
|
23
|
Rao J, Yang C, Yang S, Lu H, Hu Y, Lu L, Cheng F, Wang X. Deficiency of TGR5 exacerbates immune-mediated cholestatic hepatic injury by stabilizing the β-catenin destruction complex. Int Immunol 2020; 32:321-334. [PMID: 31930324 PMCID: PMC7206975 DOI: 10.1093/intimm/dxaa002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholestasis induced by drug toxicity may cause cholestatic hepatic injury
(CHI) leading to liver fibrosis and cirrhosis. The G protein-coupled bile acid receptor 1
(TGR5) is a membrane receptor with well-known roles in the regulation of glucose
metabolism and energy homeostasis. However, the role and mechanism of TGR5 in the context
of inflammation during CHI remains unclear. Wild-type (WT) and TGR5 knockout
(TGR5−/−) mice with CHI induced by bile duct ligation (BDL) were involved
in vivo, and WT and TGR5−/− bone marrow-derived macrophages
(BMDMs) were used in vitro. TGR5 deficiency significantly exacerbated
BDL-induced liver injury, inflammatory responses and hepatic fibrosis compared with WT
mice in vivo. TGR5−/− macrophages were more susceptible to
lipopolysaccharide (LPS) stimulation than WT macrophages. TGR5 activation by its ligand
suppressed LPS-induced pro-inflammatory responses in WT but not TGR5−/− BMDMs.
Notably, expression of β-catenin was effectively inhibited by TGR5 deficiency.
Furthermore, TGR5 directly interacted with Gsk3β to repress the interaction between Gsk3β
and β-catenin, thus disrupting the β-catenin destruction complex. The pro-inflammatory
nature of TGR5-knockout was almost abolished by lentivirus-mediated β-catenin
overexpression in BMDMs. BMDM migration in vitro was accelerated under
TGR5-deficient conditions or supernatant from LPS-stimulated TGR5−/− BMDMs.
From a therapeutic perspective, TGR5−/− BMDM administration aggravated
BDL-induced CHI, which was effectively rescued by β-catenin overexpression. Our findings
reveal that TGR5 plays a crucial role as a novel regulator of immune-mediated CHI by
destabilizing the β-catenin destruction complex, with therapeutic implications for the
management of human CHI.
Collapse
Affiliation(s)
- Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
24
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
25
|
β-Catenin Regulates Wound Healing and IL-6 Expression in Activated Human Astrocytes. Biomedicines 2020; 8:biomedicines8110479. [PMID: 33171974 PMCID: PMC7694627 DOI: 10.3390/biomedicines8110479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.
Collapse
|
26
|
The role of glycogen synthase kinase 3 beta in multiple sclerosis. Biomed Pharmacother 2020; 132:110874. [PMID: 33080467 DOI: 10.1016/j.biopha.2020.110874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to progressive neurological disability due to axonal deterioration. Although MS presents profound heterogeneity in the clinical course, its underlying central mechanism is active demyelination and neurodegeneration associated with inflammation. Multiple autoimmune and neuroinflammatory pathways are involved in the demyelination process of MS. Analysis of MS lesions has shown that inflammatory genes are upregulated. Glycogen synthase kinase-3 (GSK-3) is part of the mitogen-activated protein kinase (MAPK) family and has important roles in many signaling cascades. GSK-3 is a highly conserved serine/threonine protein kinase expressed in both the central and the peripheral nervous systems. GSK-3 modulates several biological processes through phosphorylation of protein kinases, including cell signaling, neuronal growth, apoptosis and production of pro-inflammatory cytokines and interleukins, allowing adaptive changes in events such as cellular proliferation, migration, inflammation, and immunity. GSK-3 occurs in mammals in two isoforms GSK-3α and GSK-3β, both of which are common in the brain, although GSK-3α is found particularly in the cerebral cortex, cerebellum, striated hippocampus and Purkinje cells, while GSK-3β is found in all brain regions. In patients with chronic progressive MS, expression of GSK-3β is elevated in several brain regions such as the corpus callosum and cerebral cortex. GSK-3β inhibition may play a role in glial cell activation, reducing pathological pain induced by nerve injury by formalin injection. According to the role of GSK-3β in pathological conditions, the aim of this article is review of the role of GSK-3β in multiple sclerosis and inflammation of neurons.
Collapse
|
27
|
Onuma AE, Zhang H, Huang H, Williams TM, Noonan A, Tsung A. Immune Checkpoint Inhibitors in Hepatocellular Cancer: Current Understanding on Mechanisms of Resistance and Biomarkers of Response to Treatment. Gene Expr 2020; 20:53-65. [PMID: 32340652 PMCID: PMC7284108 DOI: 10.3727/105221620x15880179864121] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy worldwide and a leading cause of death worldwide. Its incidence continues to increase in the US due to hepatitis C infection and nonalcoholic steatohepatitis. Liver transplantation and resection remain the best therapeutic options for cure, but these are limited by the shortage of available organs for transplantation, diagnosis at advanced stage, and underlying chronic liver disease found in most patients with HCC. Immune checkpoint inhibitors (ICIs) have been shown to be an evolving novel treatment option in certain advanced solid tumors and have been recently approved for inoperable, advanced, and metastatic HCC. Unfortunately, a large cohort of patients with HCC fail to respond to immunotherapy. In this review, we discuss the ICIs currently approved for HCC treatment and their various mechanisms of action. We will highlight current understanding of mechanism of resistance and limitations to ICIs. Finally, we will describe emerging biomarkers of response to ICIs and address future direction on overcoming resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Amblessed E. Onuma
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hongji Zhang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- †Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Huang
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Terence M. Williams
- ‡Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anne Noonan
- §Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Allan Tsung
- *Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
28
|
Xu WH, Guo HH, Chen SJ, Wang YZ, Lin ZH, Huang XD, Tang HJ, He YH, Sun JJ, Gan L. Transcriptome analysis revealed changes of multiple genes involved in muscle hardness in grass carp (Ctenopharyngodon idellus) fed with faba bean meal. Food Chem 2020; 314:126205. [PMID: 31968291 DOI: 10.1016/j.foodchem.2020.126205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/24/2019] [Accepted: 01/11/2020] [Indexed: 11/26/2022]
Abstract
An 8-week feeding trial and transcriptome analysis were conducted to investigate the potential mechanism of muscle-hardening caused by faba bean in grass carp (Ctenopharyngodon idellus). Ordinary grass carp (fed with practical diet) and crisp grass carp (fed with faba bean meal) groups were designed. Lower water holding capacity and higher some texture parameters were observed in the muscle of crisp grass carp compared with another group. 19.62 GB clean reads were generated, and total 1354 genes exhibiting differentially expression were identified (FDR < 0.05). Genes function enrichment revealed up-regulated genes in crisp grass carp mainly in response to myofibroblast proliferation, while down-regulated genes in response to immune regulation. Consistent with this, the tight junction pathway and the NF-κB signaling pathway were likewise significantly enriched. In summary, this study identified several candidate genes and putative signaling pathways deserving further investigation to the mechanism of muscle-hardening in fish fed with faba bean.
Collapse
Affiliation(s)
- Wei-Hua Xu
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Hong Guo
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, GuangZhou 510275, China
| | - Shi-Jun Chen
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Zhi Wang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, GuangZhou 510275, China
| | - Zhuo-Heng Lin
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, GuangZhou 510275, China
| | - Xian-De Huang
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Juan Tang
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Hui He
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Jia Sun
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China
| | - Lian Gan
- College of Marine Science, South China Agricultural University, Guangzhou 510642, China; School of Marine Sciences & Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
de Sousa LM, Dos Santos Alves JM, da Silva Martins C, Pereira KMA, Goes P, Gondim DV. Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats. Inflamm Res 2019; 68:889-900. [PMID: 31372663 DOI: 10.1007/s00011-019-01274-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the participation of canonical Wnt and NF-κB signaling pathways in an experimental model of chronic arthritis induced by methylated bovine serum albumin (mBSA) in rat temporomandibular joint (TMJ). MATERIALS AND METHODS Wistar rats were sensitized by mBSA+Complete Freund Adjuvant (CFA)/Incomplete Freund Adjuvant (IFA) on the first 14 days (1 ×/week). Subsequently, they received 1, 2 or 3 mBSA or saline solution injections into the TMJ (1 ×/week). Hypernociceptive threshold was assessed during the whole experimental period. 24 h after the mBSA injections, the TMJs were removed for histopathological and immunohistochemical analyses for TNF-α, IL-1β, NF-κB, RANKL, Wnt-10b, β-catenin and DKK1. RESULTS The nociceptive threshold was significantly reduced after mBSA injections. An inflammatory infiltrate and thickening of the synovial membrane were observed only after mBSA booster injections. Immunolabeling of TNF-α, IL-1β and Wnt-10b was increased in the synovial membrane in arthritic groups. The immunoexpression of nuclear β-catenin was significantly higher only in the group that received 2 booster TMJ injections. However, NF-κB, RANKL and DKK1 immunoexpression were increased only in animals with 3 mBSA intra-articular injections. CONCLUSION Our results suggest that canonical Wnt and NF-κB signaling pathways participate in the hypernociception and inflammatory response in TMJ synovial membrane during the development of rheumatoid arthritis in rats.
Collapse
Affiliation(s)
- Luane Macêdo de Sousa
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Joana Maria Dos Santos Alves
- Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição da Silva Martins
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil
| | - Karuza Maria Alves Pereira
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil.,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Viana Gondim
- Post Graduate Program in Morphofunctional Sciences, Department of Morphology, Federal University of Ceará, Rua Delmiro de Farias, S/N, Rodolfo Teófilo, Fortaleza, CE, CEP 60416-030, Brazil. .,Post Graduate Program in Dentistry, Department of Clinical Dentistry, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
30
|
Modulation of GSK - 3β/β - catenin cascade by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers in response to LPS or non-physiological concentrations of fructose: An in vitro study. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Controlling Nuclear NF-κB Dynamics by β-TrCP-Insights from a Computational Model. Biomedicines 2019; 7:biomedicines7020040. [PMID: 31137887 PMCID: PMC6631534 DOI: 10.3390/biomedicines7020040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
The canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway regulates central processes in mammalian cells and plays a fundamental role in the regulation of inflammation and immunity. Aberrant regulation of the activation of the transcription factor NF-κB is associated with severe diseases such as inflammatory bowel disease and arthritis. In the canonical pathway, the inhibitor IκB suppresses NF-κB’s transcriptional activity. NF-κB becomes active upon the degradation of IκB, a process that is, in turn, regulated by the β-transducin repeat-containing protein (β-TrCP). β-TrCP has therefore been proposed as a promising pharmacological target in the development of novel therapeutic approaches to control NF-κB’s activity in diseases. This study explores the extent to which β-TrCP affects the dynamics of nuclear NF-κB using a computational model of canonical NF-κB signaling. The analysis predicts that β-TrCP influences the steady-state concentration of nuclear NF-κB, as well as changes characteristic dynamic properties of nuclear NF-κB, such as fold-change and the duration of its response to pathway stimulation. The results suggest that the modulation of β-TrCP has a high potential to regulate the transcriptional activity of NF-κB.
Collapse
|
32
|
Andrographolide derivative ameliorates dextran sulfate sodium-induced experimental colitis in mice. Biochem Pharmacol 2019; 163:416-424. [DOI: 10.1016/j.bcp.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 01/05/2023]
|
33
|
Park J, Hwang JY, Thore A, Kim S, Togano T, Hagiwara S, Park JW, Tse W. AF1q inhibited T cell attachment to breast cancer cell by attenuating Intracellular Adhesion Molecule-1 expression. ACTA ACUST UNITED AC 2019; 5. [PMID: 31297450 PMCID: PMC6623974 DOI: 10.20517/2394-4722.2018.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aim: To investigate whether AF1q, overexpressed in metastatic cells compared with the primary tumor cells, plays a pivotal role in breast cancer metastasis. Methods: To investigate whether AF1q has a responsibility in the acquisition of a metastatic phenotype, we performed RNA-sequencing (RNA-Seq) to identify the gene signature and applied the Metacore direct interactions network building algorithm with the top 40 amplicons of RNA-Seq. Results: Most genes were directly linked with intercellular adhesion molecule-1 (ICAM-1). Likewise, we identified that ICAM-1 expression is attenuated in metastatic cells compared to primary tumor cells. Moreover, overexpression of AF1q attenuated ICAM-1 expression, whereas suppression of AF1q elicited the opposite effect. AF1q had an effect on ICAM-1 promoter region and regulated its transcription. Decreased ICAM-1 expression affected the attachment of T cells to a breast cancer cell monolayer. We confirmed the finding by performing the analysis on Burkitt’s lymphoma. Conclusion: Attenuation of ICAM-1 by AF1q on tumor cells disadvantages host anti-tumor defenses through the trafficking of lymphocytes, which affects tumor progression and metastasis.
Collapse
Affiliation(s)
- Jino Park
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jae Yeon Hwang
- Department of Computer Science and Computer Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Alexandra Thore
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Soojin Kim
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Tomiteru Togano
- Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Haematology, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shotaro Hagiwara
- Division of Haematology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Juw Won Park
- Department of Computer Science and Computer Engineering, University of Louisville, Louisville, KY 40292, USA
| | - William Tse
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.,Division of Blood and Bone Marrow Transplantation, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
34
|
Shukla V, Kaushal JB, Sankhwar P, Manohar M, Dwivedi A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J Endocrinol 2019; 240:417-429. [PMID: 30667362 DOI: 10.1530/joe-18-0459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
35
|
Saggi H, Maitra D, Jiang A, Zhang R, Wang P, Cornuet P, Singh S, Locker J, Ma X, Dailey H, Abrams M, Omary MB, Monga SP, Nejak-Bowen K. Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. J Hepatol 2019; 70:108-117. [PMID: 30287339 PMCID: PMC6459193 DOI: 10.1016/j.jhep.2018.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Porphyrias result from anomalies of heme biosynthetic enzymes and can lead to cirrhosis and hepatocellular cancer. In mice, these diseases can be modeled by administration of a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which causes accumulation of porphyrin intermediates, resulting in hepatobiliary injury. Wnt/β-catenin signaling has been shown to be a modulatable target in models of biliary injury; thus, we investigated its role in DDC-driven injury. METHODS β-Catenin (Ctnnb1) knockout (KO) mice, Wnt co-receptor KO mice, and littermate controls were fed a DDC diet for 2 weeks. β-Catenin was exogenously inhibited in hepatocytes by administering β-catenin dicer-substrate RNA (DsiRNA), conjugated to a lipid nanoparticle, to mice after DDC diet and then weekly for 4 weeks. In all experiments, serum and livers were collected; livers were analyzed by histology, western blotting, and real-time PCR. Porphyrin was measured by fluorescence, quantification of polarized light images, and liquid chromatography-mass spectrometry. RESULTS DDC-fed mice lacking β-catenin or Wnt signaling had decreased liver injury compared to controls. Exogenous mice that underwent β-catenin suppression by DsiRNA during DDC feeding also showed less injury compared to control mice receiving lipid nanoparticles. Control livers contained extensive porphyrin deposits which were largely absent in mice lacking β-catenin signaling. Notably, we identified a network of key heme biosynthesis enzymes that are suppressed in the absence of β-catenin, preventing accumulation of toxic protoporphyrins. Additionally, mice lacking β-catenin exhibited fewer protein aggregates, improved proteasomal activity, and reduced induction of autophagy, all contributing to protection from injury. CONCLUSIONS β-Catenin inhibition, through its pleiotropic effects on metabolism, cell stress, and autophagy, represents a novel therapeutic approach for patients with porphyria. LAY SUMMARY Porphyrias are disorders resulting from abnormalities in the steps that lead to heme production, which cause build-up of toxic by-products called porphyrins. Liver is commonly either a source or a target of excess porphyrins, and complications can range from minor abnormalities to liver failure. In this report, we inhibited Wnt/β-catenin signaling in an experimental model of porphyria, which resulted in decreased liver injury. Targeting β-catenin affected multiple components of the heme biosynthesis pathway, thus preventing build-up of porphyrin intermediates. Our study suggests that drugs inhibiting β-catenin activity could reduce the amount of porphyrin accumulation and help alleviate symptoms in patients with porphyria.
Collapse
Affiliation(s)
- Harvinder Saggi
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - An Jiang
- 2nd Affilitated Hospital, Xi’an Jiaotong University, Xi’an, Chin
| | - Rong Zhang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pengcheng Wang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pamela Cornuet
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Xiaochao Ma
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Harry Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Marc Abrams
- Dicerna Pharmaceuticals, Inc, Cambridge, MA, United States
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States,Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| |
Collapse
|
36
|
Li Z, Liu S, Lou J, Mulholland M, Zhang W. LGR4 protects hepatocytes from injury in mouse. Am J Physiol Gastrointest Liver Physiol 2019; 316:G123-G131. [PMID: 30406697 PMCID: PMC6383381 DOI: 10.1152/ajpgi.00056.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leucine-rich repeat G protein-coupled receptors (LGRs) and their endogenous ligands R-spondin1-4 (Rspo) are critical in embryonic development and in maintenance of stem cells. The functions of the Rspo-LGR system in differentiated cells remain uncharacterized. In this study, the expression profiles of LGRs and Rspos were characterized in mature hepatocytes. A liver-specific knockout of LGR4 in mouse was generated and used to study hepatic ischemia/reperfusion-induced injury (HIRI) as well as lipopolysaccharide/ D- galactosamine (LPS/D-Gal)-induced liver injury. We have demonstrated that, in adult liver, LGR4 is expressed in hepatocytes and responds to Rspo1 with internalization. Rspo1 is responsive to various nutritional states and to mTOR signaling. Activation of LGR4 by Rspo1 significantly reduced tumor necrosis factor-α (TNFα)-induced cell death, and levels of NF-κB-p65 and caspase-3 in cultured hepatocytes. Knockdown of hepatic LGR4 rendered hepatocytes more vulnerable to TNFα-induced damage in cultured primary cells and in the setting of HIRI and LPS/D-Gal-induced liver injury. Rspo1 potentiated both basal and Wnt3a-induced stabilization of β-catenin. Disruption of β-catenin signaling reversed the protective effects of Rspo1 on TNFα-induced hepatocyte toxicity. LGR4 knockdown increased nuclear translocation of NF-κB-p65 in response to acute injury. Overexpression of IKKβ attenuated the protective effects of Rspo1 on TNFα-induced cell death. In conclusion, the Rspo1-LGR4 system represents a novel pathway for cytoprotection and modulation of stress-induced tissue damage. NEW & NOTEWORTHY Functional LGR4 is present in mature hepatocytes. R-spodin1 protects hepatocytes from tumor necrosis factor-α-induced cell death. Liver-specific knockdown of LGR4 renders liver more susceptible to acute injury. LGR4 protects hepatocytes from injury by inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ziru Li
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Shiying Liu
- 2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jianing Lou
- 3Department of Stomatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Michael Mulholland
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Weizhen Zhang
- 1Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan,2Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
37
|
RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res 2018; 6:34. [PMID: 30510839 PMCID: PMC6255918 DOI: 10.1038/s41413-018-0035-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
RANKL signaling is essential for osteoclastogenesis. Its role in osteoblastic differentiation and bone formation is unknown. Here we demonstrate that RANK is expressed at an early stage of bone marrow mesenchymal stem cells (BMSCs) during osteogenic differentiation in both mice and human and decreased rapidly. RANKL signaling inhibits osteogenesis by promoting β-catenin degradation and inhibiting its synthesis. In contrast, RANKL signaling has no significant effects on adipogenesis of BMSCs. Interestingly, conditional knockout of rank in BMSCs with Prx1-Cre mice leads to a higher bone mass and increased trabecular bone formation independent of osteoclasts. In addition, rankflox/flox: Prx1-Cre mice show resistance to ovariectomy-(OVX) induced bone loss. Thus, our results reveal that RANKL signaling regulates both osteoclasts and osteoblasts by inhibition of osteogenic differentiation of BMSCs and promotion of osteoclastogenesis. Researchers in China have shown that a gene known for breaking bones down is also involved in making new bone. Bones are constantly repaired and reshaped by cells which break down bone tissue, osteoclasts, and those which create new bone, osteoblasts. The RANKL gene is known to play an important role in osteoclast development, but Jiacan Su of the Second Military Medical University has shown that it is also important for osteoblasts. Su’s team detected high expression of RANKL and its receptor, RANK, in bone marrow stem cells, and the levels decreased as the stem cells differentiated into osteoblasts. Artificially increasing RANK expression decreased osteoblast differentiation, while reducing its expression increased osteoblast differentiation and bone mass. By showing that RANKL regulates osteoblasts as well as osteoclasts, these findings open new avenues for understanding bones development.
Collapse
|
38
|
Huang GR, Wei SJ, Huang YQ, Xing W, Wang LY, Liang LL. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway. World J Gastroenterol 2018; 24:4178-4185. [PMID: 30271082 PMCID: PMC6158481 DOI: 10.3748/wjg.v24.i36.4178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To reveal the protective mechanism of the combined use of vitamin D and puerarin in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl4).
METHODS Eight-week-old male Wistar rats were randomly divided into a normal control group (C group), a CCl4 group (CCl4 group), a vitamin D group (V group), a puerarin group (P group), and a combined group of vitamin D and puerarin (V + P group), each of which contained ten rats. In this way, we built a rat model of CCl4-induced hepatic fibrosis with intervention by vitamin D, puerarin, or a combination of the two. After eight weeks, the mice were sacrificed to collect serum and liver specimens. Blood was collected to detect the hyaluronic acid (HA). We also measured hydroxyproline (Hyp) and prepared paraffin sections of liver. After Sirius red staining, the liver specimens were observed under a microscope. RT-PCR and western blot analysis were adopted to detect the mRNA and the protein levels of Collagen I, Collagen III, Wnt1, and β-catenin in the liver tissues, respectively.
RESULTS Hepatic fibrosis was observed in the CCl4 group. In comparison, hepatic fibrosis was attenuated in the V, P, and V + P groups: the HA level in blood and the Hyp level in liver were reduced, and the mRNA levels of Collagen I, Collagen III, Wnt, and β-catenin in liver were also decreased, as well as the protein levels of Wnt1 and β-catenin. Among these groups, the V + P group demonstrated the greatest amelioration of hepatic fibrosis.
CONCLUSION The combined application of vitamin D and puerarin is capable of alleviating CCl4-induced hepatic fibrosis of rats. As to the mechanism, it is probably because the combined use is able to silence the Wnt1/β-catenin pathway, suppress the activation of hepatic stellate cells, and reduce the secretion of collagen fibers, therefore improving the anti-hepatic fibrosis effect.
Collapse
Affiliation(s)
- Gan-Rong Huang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Si-Jun Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Yan-Qiang Huang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Wei Xing
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Lu-Yao Wang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Ling-Ling Liang
- Youjiang Medical University for Nationalities, School of Basic Medical Sciences, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
39
|
Wang F, Liu Z, Park SH, Gwag T, Lu W, Ma M, Sui Y, Zhou C. Myeloid β-Catenin Deficiency Exacerbates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice. Arterioscler Thromb Vasc Biol 2018; 38:1468-1478. [PMID: 29724817 PMCID: PMC6023740 DOI: 10.1161/atvbaha.118.311059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— The Wnt/β-catenin signaling is an ancient and evolutionarily conserved pathway that regulates essential aspects of cell differentiation, proliferation, migration and polarity. Canonical Wnt/β-catenin signaling has also been implicated in the pathogenesis of atherosclerosis. Macrophage is one of the major cell types involved in the initiation and progression of atherosclerosis, but the role of macrophage β-catenin in atherosclerosis remains elusive. This study aims to investigate the impact of β-catenin expression on macrophage functions and atherosclerosis development. Approach and Results— To investigate the role of macrophage canonical Wnt/β-catenin signaling in atherogenesis, we generated β-cateninΔmyeLDLR−/− mice (low-density lipoprotein receptor–deficient mice with myeloid-specific β-catenin deficiency). As expected, deletion of β-catenin decreased macrophage adhesion and migration properties in vitro. However, deficiency of β-catenin significantly increased atherosclerotic lesion areas in the aortic root of LDLR−/− (low-density lipoprotein receptor–deficient) mice without affecting the plasma lipid levels and atherosclerotic plaque composition. Mechanistic studies revealed that β-catenin can regulate activation of STAT (signal transducer and activator of transcription) pathway in macrophages, and ablation of β-catenin resulted in STAT3 downregulation and STAT1 activation, leading to elevated macrophage inflammatory responses and increased atherosclerosis. Conclusions— This study demonstrates a critical role of myeloid β-catenin expression in atherosclerosis by modulating macrophage inflammatory responses.
Collapse
Affiliation(s)
- Fang Wang
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Zun Liu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Se-Hyung Park
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Taesik Gwag
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Weiwei Lu
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Murong Ma
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Yipeng Sui
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
| | - Changcheng Zhou
- From the Department of Pharmacology and Nutritional Sciences (F.W., Z.L., S.-H.P., T.G., W.L., M.M., Y.S., C.Z.)
- Saha Cardiovascular Research Center (C.Z.), University of Kentucky, Lexington
| |
Collapse
|
40
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cell Mol Neurobiol 2018; 38:783-795. [PMID: 28905149 DOI: 10.1007/s10571-017-0550-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/09/2017] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is marked by neuroinflammation and demyelination with loss of oligodendrocytes in the central nervous system. The immune response is regulated by WNT/beta-catenin pathway in MS. Activated NF-kappaB, a major effector of neuroinflammation, and upregulated canonical WNT/beta-catenin pathway positively regulate each other. Demyelinating events present an upregulation of WNT/beta-catenin pathway, whereas proper myelinating phases show a downregulation of WNT/beta-catenin pathway essential for the promotion of oligodendrocytes precursors cells proliferation and differentiation. The activation of WNT/beta-catenin pathway results in differentiation failure and impairment in remyelination. However, PI3K/Akt pathway and TCF7L2, two downstream targets of WNT/beta-catenin pathway, are upregulated and promote proper remyelination. The interactions of these signaling pathways remain unclear. PPAR gamma activation can inhibit NF-kappaB, and can also downregulate the WNT/beta-catenin pathway. PPAR gamma and canonical WNT/beta-catenin pathway act in an opposite manner. PPAR gamma agonists appear as a promising treatment for the inhibition of demyelination and the promotion of proper remyelination through the control of both NF-kappaB activity and canonical WNT/beta-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
41
|
Thompson MD, Moghe A, Cornuet P, Marino R, Tian J, Wang P, Ma X, Abrams M, Locker J, Monga SPS, Nejak-Bowen K. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis. Hepatology 2018; 67:955-971. [PMID: 28714273 PMCID: PMC5771988 DOI: 10.1002/hep.29371] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/β-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific β-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for β-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that β-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of β-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of β-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of β-catenin expression during cholestatic injury reduces β-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. CONCLUSION We have identified an FXR/β-catenin interaction whose modulation through β-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).
Collapse
Affiliation(s)
- Michael D. Thompson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Akshata Moghe
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Pamela Cornuet
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Rebecca Marino
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Jianmin Tian
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Pengcheng Wang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Xiaochao Ma
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | | | - Joseph Locker
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Satdarshan P. S. Monga
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
42
|
Osawa Y, Kojika E, Hayashi Y, Kimura M, Nishikawa K, Yoshio S, Doi H, Kanto T, Kimura K. Tumor necrosis factor-α-mediated hepatocyte apoptosis stimulates fibrosis in the steatotic liver in mice. Hepatol Commun 2018; 2:407-420. [PMID: 29619419 PMCID: PMC5880193 DOI: 10.1002/hep4.1158] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte apoptosis has been implicated in the progression of nonalcoholic steatohepatitis. However, it is unclear whether the induction of tumor necrosis factor (TNF)‐α‐mediated hepatocyte apoptosis in the simple fatty liver triggers liver fibrosis. To address this question, high‐fat diet‐fed mice were repeatedly administered D‐galactosamine, which increases the sensitivity of hepatocytes to TNF‐α‐mediated apoptosis. In mice treated with a high‐fat diet plus D‐galactosamine, hepatocyte apoptosis and liver fibrosis were induced, whereas both apoptosis and fibrosis were inhibited in these mice following gut sterilization with antimicrobials or knockout of TNF‐α. Furthermore, liver fibrosis was diminished when hepatocyte apoptosis was inhibited by expressing a constitutively active inhibitor of nuclear factor κB kinase subunit β. Thus, hepatocyte apoptosis induced by intestinal dysbiosis or TNF‐α up‐regulation in the steatotic liver caused fibrosis. Organ fibrosis, including liver fibrosis, involves the interaction of cyclic adenosine monophosphate‐response element‐binding protein‐binding protein (CBP) and β‐catenin. Here, hepatocyte‐specific CBP‐knockout mice showed reduced liver fibrosis accompanied by hepatocyte apoptosis diminution; notably, liver fibrosis was also decreased in mice in which CBP was specifically knocked out in collagen‐producing cells because the activation of these cells was now suppressed. Conclusion: TNF‐α‐mediated hepatocyte apoptosis induced fibrosis in the steatotic liver, and inhibition of CBP/β‐catenin signaling attenuated the liver fibrosis due to the reduction of hepatocyte apoptosis and suppression of the activation of collagen‐producing cells. Thus, targeting CBP/β‐catenin may represent a new therapeutic strategy for treating fibrosis in nonalcoholic steatohepatitis. (Hepatology Communications 2018;2:407‐420)
Collapse
Affiliation(s)
- Yosuke Osawa
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan.,The Research Center for Hepatitis and Immunology National Center for Global Health and Medicine Chiba Japan
| | - Ekumi Kojika
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
| | - Yukiko Hayashi
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
| | - Masamichi Kimura
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
| | - Koji Nishikawa
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology National Center for Global Health and Medicine Chiba Japan
| | - Hiroyoshi Doi
- The Research Center for Hepatitis and Immunology National Center for Global Health and Medicine Chiba Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology National Center for Global Health and Medicine Chiba Japan
| | - Kiminori Kimura
- Department of Hepatology Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital Tokyo Japan
| |
Collapse
|
43
|
Vallée A, Lecarpentier Y, Vallée JN. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. Int J Mol Sci 2017; 18:ijms18122537. [PMID: 29186898 PMCID: PMC5751140 DOI: 10.3390/ijms18122537] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β) signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 77100 Meaux, France.
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), DACTIM, UMR CNRS 7348, CHU de Poitiers and University of Poitiers, 86021 Poitiers, France.
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), 80025 Amiens, France.
| |
Collapse
|
44
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget 2017; 8:90579-90604. [PMID: 29163854 PMCID: PMC5685775 DOI: 10.18632/oncotarget.21234] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can contract and relax. Myofibroblasts evolve towards irreversible retraction during fibrosis process. In this review, we discussed the interplays between transforming growth factor-β1 (TGF-β1), canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPAR γ) in regulating the molecular mechanisms underlying the radiation-induced fibrosis, and the potential role of PPAR γ agonists. Overexpression of TGF-β and canonical WNT/β-catenin pathway stimulate fibroblasts accumulation and myofibroblast differentiation whereas PPAR γ expression decreases due to the opposite interplay of canonical WNT/β-catenin pathway. Both TGF-β1 and canonical WNT/β-catenin pathway stimulate each other through the Smad pathway and non-Smad pathways such as phosphatidylinositol 3-kinase/serine/threonine kinase (PI3K/Akt) signaling. WNT/β-catenin pathway and PPAR γ interact in an opposite manner. PPAR γ agonists decrease β-catenin levels through activation of inhibitors of the WNT pathway such as Smad7, glycogen synthase kinase-3 (GSK-3 β) and dickkopf-related protein 1 (DKK1). PPAR γ agonists also stimulate phosphatase and tensin homolog (PTEN) expression, which decreases both TGF-β1 and PI3K/Akt pathways. PPAR γ agonists by activating Smad7 decrease Smads pathway and then TGF-β signaling leading to decrease radiation-induced fibrosis. TGF-β1 and canonical WNT/β-catenin pathway promote radiation-induced fibrosis whereas PPAR γ agonists can prevent radiation-induced fibrosis.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.,Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA), UMR CNRS 7348, University of Poitiers, Poitiers, France.,CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
45
|
Preziosi ME, Singh S, Valore EV, Jung CL, Popovic B, Poddar M, Nagarajan S, Ganz T, Monga SP. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. J Hepatol 2017; 67:360-369. [PMID: 28341391 PMCID: PMC5515705 DOI: 10.1016/j.jhep.2017.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. METHODS Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. RESULTS KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. CONCLUSIONS The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. LAY SUMMARY Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked human disease. Administration of an antioxidant prevented hepatic injury in this model.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Sucha Singh
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Erika V. Valore
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Chun-Ling Jung
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | | | - Minakshi Poddar
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Shanmugam Nagarajan
- Department of Pathology (Division of Experimental Pathology),Pittsburgh Liver Research Center
| | - Tomas Ganz
- Department of Medicine and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA,Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA
| | - Satdarshan P Monga
- Department of Pathology (Division of Experimental Pathology), University of Pittsburgh, Pennsylvania, United States; Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania, United States; Department of Medicine (Division of Gastroenterology, Hepatology and Nutrition), University of Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
46
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. J Mol Neurosci 2017; 62:368-379. [PMID: 28689265 DOI: 10.1007/s12031-017-0947-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Exudative age-related macular degeneration (AMD) is characterized by molecular mechanisms responsible for the initiation of choroidal neovascularization (CNV). Inflammatory processes are associated with upregulation of the canonical WNT/beta-catenin pathway in exudative AMD. We focus this review on the link between WNT/beta-catenin pathway activation and neovascular progression in exudative AMD through activation of aerobic glycolysis for production of angiogenic factors. Increased WNT/beta-catenin pathway involves hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). WNT/beta-catenin pathway stimulates PI3K/Akt pathway and then HIF-1alpha which activates glycolytic enzymes: glucose transporter (Glut), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDH-A), and monocarboxylate lactate transporter (MCT-1). This phenomenon is called aerobic glycolysis or the Warburg effect. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. Cytosolic pyruvate is converted into lactate through the action of LDH-A. In exudative AMD, high level of cytosolic lactate is correlated with increase of VEGF expression, the angiogenic factor of CNV. Photoreceptors in retina cells can metabolize glucose through aerobic glycolysis to protect them against oxidative damage, as cancer cells do.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR CNRS 7348, SP2MI Futuroscope, Chasseneuil-du-Poitou, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
47
|
Nejak-Bowen K, Moghe A, Cornuet P, Preziosi M, Nagarajan S, Monga SP. Role and Regulation of p65/β-Catenin Association During Liver Injury and Regeneration: A "Complex" Relationship. Gene Expr 2017; 17:219-235. [PMID: 28474571 PMCID: PMC5700461 DOI: 10.3727/105221617x695762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An important role for β-catenin in regulating p65 (a subunit of NF-κB) during acute liver injury has recently been elucidated through use of conditional β-catenin knockout mice, which show protection from apoptosis through increased activation of p65. Thus, we hypothesized that the p65/β-catenin complex may play a role in regulating processes such as cell proliferation during liver regeneration. We show through in vitro and in vivo studies that the p65/β-catenin complex is regulated through the TNF-α pathway and not through Wnt signaling. However, this complex is unchanged after partial hepatectomy (PH), despite increased p65 and β-catenin nuclear translocation as well as cyclin D1 activation. We demonstrate through both in vitro silencing experiments and chromatin immunoprecipitation after PH that β-catenin, and not p65, regulates cyclin D1 expression. Conversely, using reporter mice we show p65 is activated exclusively in the nonparenchymal (NPC) compartment during liver regeneration. Furthermore, stimulation of macrophages by TNF-α induces activation of NF-κB and subsequent secretion of Wnts essential for β-catenin activation in hepatocytes. Thus, we show that β-catenin and p65 are activated in separate cellular compartments during liver regeneration, with p65 activity in NPCs contributing to the activation of hepatocyte β-catenin, cyclin D1 expression, and subsequent proliferation.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Akshata Moghe
- ‡Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela Cornuet
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Preziosi
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shanmugam Nagarajan
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- *Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- †Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- ‡Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7:378. [PMID: 27713747 PMCID: PMC5031610 DOI: 10.3389/fimmu.2016.00378] [Citation(s) in RCA: 428] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.
Collapse
Affiliation(s)
- Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich , Zurich , Switzerland
| |
Collapse
|
49
|
Abstract
Under normal homeostatic conditions, hepatocyte renewal is a slow process and complete turnover likely takes at least a year. Studies of hepatocyte regeneration after a two-thirds partial hepatectomy (2/3 PH) have strongly suggested that periportal hepatocytes are the driving force behind regenerative re-population, but recent murine studies have brought greater complexity to the issue. Although periportal hepatocytes are still considered pre-eminent in the response to 2/3 PH, new studies suggest that normal homeostatic renewal is driven by pericentral hepatocytes under the control of Wnts, while pericentral injury provokes the clonal expansion of a subpopulation of periportal hepatocytes expressing low levels of biliary duct genes such as
Sox9 and
osteopontin. Furthermore, some clarity has been given to the debate on the ability of biliary-derived hepatic progenitor cells to generate physiologically meaningful numbers of hepatocytes in injury models, demonstrating that under appropriate circumstances these cells can re-populate the whole liver.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Tumour Biology, Barts and The London School of Medicine and Dentistry, London, UK
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
50
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|