1
|
Chen SY, Chen X, Zhu S, Xu JJ, Li XF, Yin NN, Xiao YY, Huang C, Li J. miR-324-3p Suppresses Hepatic Stellate Cell Activation and Hepatic Fibrosis Via Regulating SMAD4 Signaling Pathway. Mol Biotechnol 2025; 67:673-688. [PMID: 38407690 PMCID: PMC11711260 DOI: 10.1007/s12033-024-01078-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
In hepatic fibrosis (HF), hepatic stellate cells (HSCs) form the extracellular matrix (ECM), and the pathological accumulation of ECM in the liver leads to inflammation. Our previous research found that miR-324-3p was down-regulated in culture-activated human HSCs. However, the precise effect of miR-324-3p on HF has not been elucidated. In this study, the HF mouse models were induced through directly injecting carbon tetrachloride (CCl4) into mice; the HF cell models were constructed using TGF-β1-treated LX-2 cells. Next, real-time-quantitative polymerase chain reaction (RT-qPCR), western blot (WB) and immunohistochemistry (IHC) were applied to assess the expression levels of miR-324-3p, α-smooth muscle actin (α-SMA), Vimentin or SMAD4; hematoxylin and eosin (H&E), Masson' s trichrome and Sirius red staining to evaluate the liver injury; luciferase reporter assay to verify the targeting relationship between miR-324-3p and SMAD4; enzyme-linked immunosorbent assay (ELISA) to determine the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and cell counting kit-8 (CCK-8) and flow cytometry to evaluate the effects of miR-324-3p on cell proliferation and cycle/apoptosis, respectively. The experimental results showed a reduction in miR-324-3p level in CCl4-induced HF mice as well as transforming growth factor (TGF)-β1-activated HSCs. Interestingly, the miR-324-3p level was rescued following the HF recovery process. In HF mice induced by CCl4, miR-324-3p overexpression inhibited liver tissue damage, decreased serum ALT and AST levels, and inhibited fibrosis-related biomarkers (α-SMA, Vimentin) expression, thereby inhibiting HF. Similarly, miR-324-3p overexpression up-regulated α-SMA and Vimentin levels in HF cells, while knockdown of miR-324-3p had the opposite effect. Besides, miR-324-3p played an antifibrotic role through inhibiting the proliferation of hepatocytes. Further experiments confirmed that miR-324-3p targeted and down-regulated SMAD4 expression. SMAD4 was highly expressed in HF cells, and silencing SMAD4 significantly decreased the α-SMA and Vimentin levels in HF cells. Collectively, the miR-324-3p may suppress the activation of HSCs and HF by targeting SMAD4. Therefore, miR-324-3p is identified as a potential and novel therapeutic target for HF.
Collapse
Affiliation(s)
- Si-Yu Chen
- Department of Pharmacy, Hefei BOE Hospital, Intersection of Dongfang Avenue and Wenzhong Road, Hefei, China
| | - Xin Chen
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Sai Zhu
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jin-Jin Xu
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Na-Na Yin
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Yan-Yan Xiao
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Mei Shan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Ao N, Du J, Jin S, Suo L, Yang J. The cellular and molecular mechanisms mediating the protective effects of sodium-glucose linked transporter 2 inhibitors against metabolic dysfunction-associated fatty liver disease. Diabetes Obes Metab 2025; 27:457-467. [PMID: 39508115 DOI: 10.1111/dom.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a common, highly heterogeneous condition that affects about a quarter of the world's population, with no approved drug therapy. Current evidence from preclinical research and a number of small clinical trials indicates that SGLT2 inhibitors could also be effective for MAFLD. MAFLD is associated with a higher risk of chronic liver disease and multiple extrahepatic events, especially cardiovascular disease (CVD) and chronic kidney disease (CKD). MAFLD is considered a more appropriate terminology than NAFLD because it captures the complex bidirectional interplay between fatty liver and metabolic dysfunctions associated with disease progression, such as obesity and type 2 diabetes mellitus (T2DM). SGLT2 inhibitors are antidiabetic drugs that block glucose reabsorption in the kidney proximal tubule. In this article, we reviewed current clinical evidence supporting the potential use of SGLT2 inhibitors as a drug therapy for MAFLD and discussed the possible cellular and molecular mechanisms involved. We also reviewed the clinical benefits of SGLT2 inhibitors against MAFLD-related comorbidities, especially CVD, CKD and cardiovascular-kidney-metabolic syndrome (CKM). The broad beneficial effects of SGLT2 inhibitors support their use, likely in combination with other drugs, as a therapy for MAFLD.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Suo
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Teo JMN, Ling GS. Sphingosine Kinase 1 - A Therapeutic Opportunity for Alleviating Liver Fibrosis? Cell Mol Gastroenterol Hepatol 2024; 19:101430. [PMID: 39642919 DOI: 10.1016/j.jcmgh.2024.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Wang J, Chen R, Wu K, Mo J, Li M, Chen Z, Wang G, Zhou P, Lan T. Establishment and optimization of a novel mouse model of hyperuricemic nephropathy. Ren Fail 2024; 46:2427181. [PMID: 39540397 PMCID: PMC11565683 DOI: 10.1080/0886022x.2024.2427181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Hyperuricemia is a metabolic disorder characterized by elevated serum uric acid levels. Soluble urate can activate immune responses, and the excessive accumulation of urate in the kidneys results in hyperuricemic nephropathy (HN). However, the lack of an established HN model is a major obstacle to advancing research into the pathogenesis of HN and the development of novel drugs. In this study, we generated and evaluated an optimized mouse model of HN by the combined administration of potassium oxonate and hypoxanthine at various dosages. Our results demonstrated that intraperitoneal injection of 200 mg/kg potassium oxonate with gavage of 500 mg/kg hypoxanthine caused renal injury in mice, as evidenced by the elevation in serum uric acid, serum creatinine, and 24 h albuminuria levels, as well as pathological changes in renal histology. Intraperitoneal injection of 200 mg/kg potassium oxonate with gavage of 500 mg/kg hypoxanthine markedly increased the production of uric acid, inhibited uricase activity, and disrupted uric acid transporters. This led to supersaturated urate deposition in the kidneys, triggering renal inflammation and fibrosis, thereby promoting HN progression. In conclusion, we successfully established a stable and efficient mouse model that can mimic the pathogenesis of HN. This novel model may facilitate the discovery of therapeutic targets and the development of new drugs for the treatment of HN.
Collapse
Affiliation(s)
- Jiamin Wang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rong Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kaireng Wu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Juxian Mo
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Minghui Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhe Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guixiang Wang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ping Zhou
- Department of Pediatric Nephrology and Rheumatology, Sichuan Provincial Maternity and Child Health Care Hospital, Sichuan Clinical Research Center for Pediatric Nephrology, Chengdu, Sichuan, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Zhang L, Song YH, Liu J, Zhao YX, Zhou RR, Xu JC, He J, Lu YL, Gan WJ, Lu XS, Li M, Zhou P, Wang L, Han QZ. Hepatitis B Virus Increases SphK1-S1P Synthesis by Promoting the Availability of the Transcription Factor USF1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1499-1507. [PMID: 39400236 PMCID: PMC11533153 DOI: 10.4049/jimmunol.2400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Hepatitis B virus (HBV) is the most common chronic viral infection globally, affecting ∼360 million people and causing about 1 million deaths annually due to end-stage liver disease or hepatocellular carcinoma. Current antiviral treatments rarely achieve a functional cure for chronic hepatitis B, highlighting the need for improved monitoring and intervention strategies. This study explores the role of the sphingosine kinase 1 (SphK1)-sphingosine-1-phosphate (S1P) axis in HBV-related liver injury. We investigated the association between serum S1P concentration and HBV DNA levels in chronic hepatitis B patients, finding a significant positive correlation. Additionally, SphK1 was elevated in liver tissues of HBV-positive hepatocellular carcinoma patients, particularly in HBsAg-positive regions. HBV infection models in HepG2-sodium taurocholate cotransporting polypeptide cells confirmed that HBV enhances SphK1 expression and S1P production. Inhibition of HBV replication through antiviral agents and the CRISPR-Cas9 system reduced SphK1 and S1P levels. Further, we identified the transcription factor USF1 as a key regulator of SphK1 expression during HBV infection. USF1 binds to the SphK1 promoter, increasing its transcriptional activity, and is upregulated in response to HBV infection. In vivo studies in mice demonstrated that HBV exposure promotes the expression of USF1 and SphK1-S1P. These findings suggest that the SphK1-S1P axis, regulated by HBV-induced USF1, could serve as a potential biomarker and therapeutic target for HBV-related liver injury.
Collapse
Affiliation(s)
- Lu Zhang
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
- Department of Laboratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Hui Song
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Juan Liu
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Yin-Xia Zhao
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan–Xuhui Hospital, Fudan University, Shanghai, China
| | - Ruo-Ran Zhou
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jun-Chi Xu
- Fifth People’s Hospital of Suzhou, Suzhou, People’s Republic of China
| | - Jun He
- Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - You-Li Lu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan–Xuhui Hospital, Fudan University, Shanghai, China
| | - Wen-Juan Gan
- Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Xing-Sheng Lu
- Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Peng Zhou
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Qing-Zhen Han
- Center of Clinical Laboratory and Translational Medicine, Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Baek JS, Lee JH, Kim JH, Cho SS, Kim YS, Yang JH, Shin EJ, Kang HG, Kim SJ, Ahn SG, Park EY, Baek DJ, Yim SK, Kang KW, Ki SH, Kim KM. An inducible sphingosine kinase 1 in hepatic stellate cells potentiates liver fibrosis. Biochem Pharmacol 2024; 229:116520. [PMID: 39236934 DOI: 10.1016/j.bcp.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hepatic stellate cells (HSCs) play a role in hepatic fibrosis and sphingosine kinase (SphK) is involved in biological processes. As studies on the regulatory mechanisms and functions of SphK in HSCs during liver fibrosis are currently limited, this study aimed to elucidate the regulatory mechanism and connected pathways of SphK upon HSC activation. The expression of SphK1 was higher in HSCs than in hepatocytes, and upregulated in activated primary HSCs. SphK1 was also increased in liver homogenates of carbon tetrachloride-treated or bile duct ligated mice and in transforming growth factor-β (TGF-β)-treated LX-2 cells. TGF-β-mediated SphK1 induction was due to Smad3 signaling in LX-2 cells. SphK1 modulation altered the expression of liver fibrogenesis-related genes. This SphK1-mediated profibrogenic effect was dependent on SphK1/sphingosine-1-phosphate/sphingosine-1-phosphate receptor signaling through ERK. Epigallocatechin gallate blocked TGF-β-induced SphK1 expression and hepatic fibrogenesis by attenuating Smad and MAPK activation. SphK1 induced by TGF-β facilitates HSC activation and liver fibrogenesis, which is reversed by epigallocatechin gallate. Accordingly, SphK1 and related signal transduction may be utilized to treat liver fibrosis.
Collapse
Affiliation(s)
- Jin Sol Baek
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hyun Lee
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Ji Hye Kim
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Sam Seok Cho
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea; Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-do 58245, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Hyeon-Gu Kang
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea
| | - Seok-Jun Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Dong Jae Baek
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| | - Sung-Kun Yim
- Marine Biotechnology Research Center, Jeonnam Bioindustry Foundation, 21-7, Nonggongdanji 4Gil, Wando-eup, Wando-gun, Jeollanam-do 59108, Republic of Korea
| | - Keon Wook Kang
- Department of Pharmacy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Hwan Ki
- MRC-OSTRC, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju 61452, South Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju 61452, Republic of Korea; Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea; Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
7
|
Dhanabalan AK, Devadasan V, Haribabu J, Krishnasamy G. Machine learning models to identify lead compound and substitution optimization to have derived energetics and conformational stability through docking and MD simulations for sphingosine kinase 1. Mol Divers 2024:10.1007/s11030-024-10997-4. [PMID: 39417979 DOI: 10.1007/s11030-024-10997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sphingosine kinases (SphKs) are a group of important enzymes that circulate at low micromolar concentrations in mammals and have received considerable attention due to the roles they play in a broad array of biological processes including apoptosis, mutagenesis, lymphocyte migration, radio- and chemo-sensitization, and angiogenesis. In the present study, we constructed three classification models by four machine learning (ML) algorithms including naive bayes (NB), support vector machine (SVM), logistic regression, and random forest from 395 compounds. The generated ML models were validated by fivefold cross validation. Five different scaffold hit fragments resulted from SVM model-based virtual screening and docking results indicate that all the five fragments exhibit common hydrogen bond interaction a catalytic residue of SphK1. Further, molecular dynamics (MD) simulations and binding free energy calculation had been carried out with the identified five fragment leads and three cocrystal inhibitors. The best 15 fragments were selected. Molecular dynamics (MD) simulations showed that among these compounds, 7 compounds have favorable binding energy compared with cocrystal inhibitors. Hence, the study showed that the present lead fragments could act as potential inhibitors against therapeutic target of cancers and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anantha Krishnan Dhanabalan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Velmurugan Devadasan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapó, Chile
- Chennai Institute of Technology (CIT), Chennai, Tamil Nadu, 600069, India
| | - Gunasekaran Krishnasamy
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600025, India.
| |
Collapse
|
8
|
Ding X, Zhang X, Cao J, Chen S, Chen Y, Yuan K, Chen B, Yang G, Li S, Yang J, Wang G, Tacke F, Lan T. Sphingosine Kinase 1 Aggravates Liver Fibrosis by Mediating Macrophage Recruitment and Polarization. Cell Mol Gastroenterol Hepatol 2024; 18:101406. [PMID: 39305988 PMCID: PMC11541818 DOI: 10.1016/j.jcmgh.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND & AIMS Sphingosine kinase 1 (SphK1) has distinct roles in the activation of Kupffer cells and hepatic stellate cells in liver fibrosis. Here, we aim to investigate the roles of SphK1 on hepatic macrophage recruitment and polarization in liver fibrosis. METHODS Liver fibrosis was induced by carbon tetrachloride in wild-type and SphK1-/- mice to study the recruitment and polarization of macrophages. The effects of SphK1 originated from macrophages or other liver cell types on liver fibrosis were further strengthened by bone marrow transplantation. The direct effects of SphK1 on macrophage polarization were also investigated in vitro. Expression analysis of SphK1 and macrophage polarization index was conducted with human liver samples. RESULTS SphK1 deletion attenuated the recruitment of hepatic macrophages along with reduced M1 and M2 polarization in mice induced by carbon tetrachloride. SphK1 deficiency in endogenous liver cells attenuated macrophage recruitment via C-C motif chemokine ligand 2. Macrophage SphK1 activated the ASK1-JNK1/2-p38 signaling pathway to promote M1 polarization. Furthermore, macrophage SphK1 downregulated small ubiquitin-like modifier-specific peptidase1 to decrease de-SUMOylation of Kruppel-like factor 4 to promote M2 polarization. Finally, we confirmed that SphK1 expression was elevated and positively correlated with macrophage M1 and M2 polarization in human fibrosis livers. CONCLUSIONS Our findings demonstrated that SphK1 aggravated liver fibrosis by promoting macrophage recruitment and M1/M2 polarization. SphK1 in macrophages is a potential therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xin Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiang Zhang
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and the Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiafan Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yinghua Chen
- Organ Transplant, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai Yuan
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease and the Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guizhi Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengwen Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jundong Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Tian Lan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
9
|
Wen M, Sun X, Pan L, Jing S, Zhang X, Liang L, Xiao H, Liu P, Xu Z, Zhang Q, Huang H. Dihydromyricetin ameliorates diabetic renal fibrosis via regulating SphK1 to suppress the activation of NF-κB pathway. Eur J Pharmacol 2024; 978:176799. [PMID: 38945289 DOI: 10.1016/j.ejphar.2024.176799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
Dihydromyricetin (DHM) is a flavonoid from vine tea with broad pharmacological benefits, which improve inflammation by blocking the NF-κB pathway. A growing body of research indicates that chronic kidney inflammation is vital to the pathogenesis of diabetic renal fibrosis. Sphingosine kinase-1 (SphK1) is a key regulator of diabetic renal inflammation, which triggers the NF-κB pathway. Hence, we evaluated whether DHM regulates diabetic renal inflammatory fibrosis by acting on SphK1. Here, we demonstrated that DHM effectively suppressed the synthesis of fibrotic and inflammatory adhesion factors like ICAM-1, and VCAM-1 in streptozotocin-treated high-fat diet-induced diabetic mice and HG-induced glomerular mesangial cells (GMCs). Moreover, DHM significantly suppressed NF-κB pathway activation and reduced SphK1 activity and protein expression under diabetic conditions. Mechanistically, the results of molecular docking, molecular dynamics simulation, and cellular thermal shift assay revealed that DHM stably bound to the binding pocket of SphK1, thereby reducing sphingosine-1-phosphate content and SphK1 enzymatic activity, which ultimately inhibited NF-κB DNA binding, transcriptional activity, and nuclear translocation. In conclusion, our data suggested that DHM inhibited SphK1 phosphorylation to prevent NF-κB activation thus ameliorating diabetic renal fibrosis. This supported the clinical use and further drug development of DHM as a potential candidate for treating diabetic renal fibrosis.
Collapse
Affiliation(s)
- Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Linjie Pan
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shujin Jing
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhanchi Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510801, China.
| |
Collapse
|
10
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Liu W, Xu H, Zhang H, Xie M, Liu Y, Wang L, Wu X, Feng Y, Chen K. Noninvasive assessment of liver fibrosis in mini pigs using an 18F-AlF-NOTA-RGD2 PET/CT molecular probe. Heliyon 2024; 10:e35502. [PMID: 39170113 PMCID: PMC11336738 DOI: 10.1016/j.heliyon.2024.e35502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
To evaluate the efficacy of the 18F-AlF-NOTA-RGD2 positron emission tomography (PET)/computed tomography (CT) molecular probe for the noninvasive staging of liver fibrosis in mini pigs, a potential alternative to invasive diagnostic methods was revealed. This study used 18F-AlF-NOTA-RGD2 PET/CT imaging of mini pigs to assess liver fibrosis. The methods included synthesis and quality control of the molecular probe, establishment of an animal model of liver fibrosis, blood serum enzymatic tests, histopathological examination, PET/CT imaging, collagen content and expression, and mitochondrial reserve function assessment. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe effectively differentiated various stages of liver fibrosis in mini pigs. Blood serum enzymatic tests revealed distinct stages of liver fibrosis, revealing significant increases in AST, ALT, TBIL, and DBIL levels as fibrosis advanced. Notably, ALT levels increased markedly in severe fibrosis patients. A gradual increase in collagen deposition and increasing α-SMA RNA expression and protein levels effectively differentiated between mild and severe fibrosis stages. Pathological examinations and Sirius Red staining confirmed these findings, highlighting substantial increases in collagen accumulation. PET/CT imaging results aligned with histopathological findings, showing that increased radiotracer uptake correlated with fibrosis severity. Assessments of mitochondrial function revealed a decrease in total liver glutathione content and mitochondrial reserve capacity, especially in patients with severe fibrosis. The 18F-AlF-NOTA-RGD2 PET/CT molecular probe is a promising tool for the noninvasive assessment of liver fibrosis, offering potential benefits over traditional diagnostic methods in hepatology.
Collapse
Affiliation(s)
- Wenrui Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haili Zhang
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Maodi Xie
- Laboratory of Mitochondria and Metabolis, Wmest China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yundi Liu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Li Wang
- Jiangsu Xinrui Pharmaceutical Co., Ltd, Jiangsu, 226500, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinrui Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
| | - Kefei Chen
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
13
|
Xue Y, Zhu W, Qiao F, Yang Y, Qiu J, Zou C, Gao Y, Zhang X, Li M, Shang Z, Gao Y, Huang L. Ba-Qi-Rougan formula alleviates hepatic fibrosis by suppressing hepatic stellate cell activation via the MSMP/CCR2/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118169. [PMID: 38621463 DOI: 10.1016/j.jep.2024.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wanchun Zhu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fengjie Qiao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaohao Qiu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lingying Huang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Wang F, Gan J, Li R, Yang R, Mao X, Liu S, Chen Y, Duan Z, Li J. Naringin from Ganshuang granule inhibits inflammatory to relieve liver fibrosis through TGF-β-Smad signaling pathway. PLoS One 2024; 19:e0304185. [PMID: 38857261 PMCID: PMC11164354 DOI: 10.1371/journal.pone.0304185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE The present study aims to investigate the specific protective effects and underlying mechanisms of Ganshuang granule (GSG) on dimethylnitrosamine (DMN)-induced hepatic fibrosis in rat models. METHODS Hepatic fibrosis was experimentally evoked in rats by DMN administration, and varying dosages of GSG were employed as an intervention. Hepatocellular damage was assessed by measuring serum levels of aminotransferase and bilirubin, accompanied by histopathological examinations of hepatic tissue. The hepatic concentrations of platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1) were quantitated via enzyme-linked immunosorbent assay (ELISA). The expression of α-smooth muscle actin (α-SMA) within hepatic tissue was evaluated using immunohistochemical techniques. The levels of hepatic interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and a spectrum of interleukins (IL-2, IL-4, IL-6, IL-10) were quantified by quantitative real-time PCR (qRT-PCR). Additionally, hepatic stellate cells (HSCs) were cultured in vitro and exposed to TNF-α in the presence of naringin, a principal component of GSG. The gene expression levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metallopeptidase-1 (MMP-1) in these cells were also quantified by qRT-PCR. Proliferative activity of HSCs was evaluated by the Cell Counting Kit-8 assay. Finally, alterations in Smad protein expression were analyzed through Western blotting. RESULTS Administration of GSG in rats with fibrosis resulted in reduced levels of serum aminotransferases and bilirubin, along with alleviation of histopathological liver injury. Furthermore, the fibrosis rats treated with GSG exhibited significant downregulation of hepatic TGF-β1, PDGF, and TNF-α levels. Additionally, GSG treatment led to increased mRNA levels of IFN-γ, IL-2, and IL-4, as well as decreased expression of α-SMA in the liver. Furthermore, treatment with naringin, a pivotal extract of GSG, resulted in elevated expression of MMP-1 and decreased levels of TIMP-1 in TNF-α-stimulated HSCs when compared to the control group. Additionally, naringin administration led to a reduction in Smad expression within the HSCs. CONCLUSION GSG has the potential to mitigate fibrosis induced by DMN in rat models through the regulation of inflammatory and fibrosis factors. Notably, naringin, the primary extract of GSG, may exert a pivotal role in modulating the TGF-β-Smad signaling pathway.
Collapse
Affiliation(s)
- Fuchun Wang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Gan
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Rui Li
- Department of Obstetrics and Gynecology, Baiyin Pingchuan District People’s Hospital, Baiyin, Gansu, China
| | - Rui Yang
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Shuang Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junfeng Li
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Infectious Disease Research Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Yao Y, Zuo X, Shao F, Yu K, Liang Q. Jaceosidin attenuates the progression of hepatic fibrosis by inhibiting the VGLL3/HMGB1/TLR4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155502. [PMID: 38489889 DOI: 10.1016/j.phymed.2024.155502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Jaceosidin (JA) is a natural flavone extracted from Artemisia that is used as a food and traditional medicinal herb. It has been reported to possess numerous biological activities. However, the regulatory mechanisms underlying amelioration of hepatic fibrosis remain unclear. HYPOTHESIS/PURPOSE We hypothesized that jaceosidin acid (JA) modulates hepatic fibrosis and inflammation. METHODS Thioacetamide (TAA) was used to establish an HF mouse model. In vitro, mouse primary hepatocytes and HSC-T6 cells were induced by TGF-β, whereas mouse peritoneal macrophages received a treatment lipopolysaccharide (LPS)/ATP. RESULTS JA decreased serum transaminase levels and improved hepatic histological pathology in TAA-treated mice stimulated by TAA. Moreover, the expression of pro-fibrogenic biomarkers associated with the activation of liver stellate cells was downregulated by JA. Likewise, JA down-regulated the expression of vestigial-like family member 3 (VGLL3), high mobility group protein B1 (HMGB1), toll-like receptors 4 (TLR4), and nucleotide-binding domain-(NOD-) like receptor protein 3 (NLRP3), thereby inhibiting the inflammatory response and inhibiting the release of mature-IL-1β in TAA-stimulated mice. Additionally, JA suppressed HMGB1 release and NLRP3/ASC inflammasome activation in LPS/ATP-stimulated murine peritoneal macrophages. JA decreases the expression of pro-fibrogenic biomarkers related to liver stellate cell activation and inhibits inflammasome activation in mouse primary hepatocytes. It also down-regulated α-SMA and VGLL3 expressions and also suppressed inflammasome activation in HSC-T6 cells. VGLL3 and α-SMA expression levels were decreased in TGF-β-stimulated HSC-T6 cells following Vgll3 knockdown. In addition, the expression levels of NLRP3 and cleaved-caspase-1 were decreased in Vgll3-silenced HSC-T6 cells. JA enhanced the inhibitory effects on Vgll3-silenced HSC-T6 cells. Finally, Vgll3 overexpression in HSC-T6 cells affected the expression levels of α-SMA, NLRP3, and cleaved-caspase-1. CONCLUSION JA effectively modulates hepatic fibrosis by suppressing fibrogenesis and inflammation via the VGLL3/HMGB1/TLR4 axis. Therefore, JA may be a candidate therapeutic agent for the management of hepatic fibrosis. Understanding the mechanism of action of JA is a novel approach to hepatic fibrosis therapy.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Xiaoling Zuo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Feng Shao
- Qingdao Jinmotang Biotechnology Co., Ltd, Qingdao, Shandong Province 266000, China
| | - Kexin Yu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China
| | - Quanquan Liang
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
16
|
曹 家, 孙 跃, 丁 鑫, 李 盛, 陈 博, 兰 天. [Arbutin ameliorates liver fibrosis in mice by inhibiting macrophage recruitment and regulating the Akt/NF-κB and Smad signaling pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:652-659. [PMID: 38708497 PMCID: PMC11073939 DOI: 10.12122/j.issn.1673-4254.2024.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To investigate the protective effect of arbutin against CCl4-induced hepatic fibrosis in mice and explore the underlying mechanisms. METHODS Twenty-four C57BL/6 mice were randomly divided into control group, model group, and low- and high-dose arbutin treatment (25 and 50 mg/kg, respectively) groups. Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4, and arbutin was administered daily via gavage for 6 weeks. After the treatments, serum biochemical parameters of the mice were tested, and liver tissues were taken for HE staining, Sirius Red staining and immunohistochemical staining. RT-qPCR was used to detect the mRNA levels of α-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a, and Western blotting was performed to detect α-SMA protein expression in the liver tissues. In the cell experiment, the effect of arbutin treatment for 24 h on THP-1 and RAW264.7 cell migration and recruitment was examined using Transwell migration assay and DAPI staining; The changes in protein levels of Akt, p65, Smad3, p-Akt, p-p65, p-Smad3 and α-SMA in arbutintreated LX-2 cells were detected with Western blotting. RESULTS Arbutin treatment significantly lowered serum alanine aminotransferase and aspartate aminotransferase levels, alleviated liver tissue damage and collagen deposition, and reduced macrophage infiltration and α-SMA protein expression in the liver of the mouse models (P < 0.05 or 0.001). Arbutin treatment also significantly reduced CCl4-induced elevation of a-SMA, Pdgfb, Col1α1, Timp-1, Ccl2 and Tnf-a mRNA levels in mice (P < 0.05). In the cell experiment, arbutin treatment obviously inhibited migration and recruitment of THP-1 and RAW264.7 cells and lowered the phosphorylation levels of Akt, p65 and Smad3 and the protein expression level of α-SMA in LX-2 cells. CONCLUSION Arbutin ameliorates liver inflammation and fibrosis in mice by inhibiting hepatic stellate cell activation via reducing macrophage recruitment and infiltration and suppressing activation of the Akt/NF-κB and Smad signaling pathways.
Collapse
Affiliation(s)
- 家樊 曹
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - 跃 孙
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学中医药研究院,广东 广州 510006Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学糖脂代谢病教育部重点实验室,广东 广州 510006Key Laboratory of Glucolipid Metabolic Disorder of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学广东省代谢性疾病中医药防治重点实验室,广东 广州 510006Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - 鑫 丁
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学中医药研究院,广东 广州 510006Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学糖脂代谢病教育部重点实验室,广东 广州 510006Key Laboratory of Glucolipid Metabolic Disorder of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学广东省代谢性疾病中医药防治重点实验室,广东 广州 510006Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - 盛文 李
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学中医药研究院,广东 广州 510006Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学糖脂代谢病教育部重点实验室,广东 广州 510006Key Laboratory of Glucolipid Metabolic Disorder of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学广东省代谢性疾病中医药防治重点实验室,广东 广州 510006Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - 博 陈
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学中医药研究院,广东 广州 510006Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学糖脂代谢病教育部重点实验室,广东 广州 510006Key Laboratory of Glucolipid Metabolic Disorder of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学广东省代谢性疾病中医药防治重点实验室,广东 广州 510006Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - 天 兰
- 广东药科大学药学院,广东 广州 510006School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学中医药研究院,广东 广州 510006Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学糖脂代谢病教育部重点实验室,广东 广州 510006Key Laboratory of Glucolipid Metabolic Disorder of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 广东药科大学广东省代谢性疾病中医药防治重点实验室,广东 广州 510006Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
17
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
18
|
Lan T, Chen B, Hu X, Cao J, Chen S, Ding X, Li S, Fu Y, Liu H, Luo D, Rong X, Guo J. Tianhuang formula ameliorates liver fibrosis by inhibiting CCL2-CCR2 axis and MAPK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117516. [PMID: 38042390 DOI: 10.1016/j.jep.2023.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the progression of chronic liver diseases, liver fibrosis is a reversible pathophysiologic event for liver diseases prognosis and risk of cirrhosis. Liver injury factors of different etiologies mediate this process. There is still a lack of effective medications for treating liver fibrosis. Additionally, the ameliorative effects of traditional herbs on liver fibrosis have been commonly reported. Tianhuang formula (THF) is a drug combination consisting of 2 traditional Chinese herbs, which has been showing significant improvement in metabolic liver diseases. However, the hepatoprotective effect and mechanism of THF in ameliorating liver fibrosis are still unclear. AIM OF THE STUDY This study aimed to investigate the effects of THF on carbon tetrachloride (CCl4)-induced and methionine-choline-deficient (MCD) diet-induced liver fibrosis model and to reveal the potential mechanisms. It can provide experimental evidence for THF as a therapeutic candidate for liver fibrosis. MATERIALS AND METHODS In this study, CCl4-induced mice were treated with THF (80 mg/kg, 160 mg/kg) or Fuzheng Huayu (FZHY) capsules (4.8 g/kg) for 6 weeks. MCD-induced mice received the same doses of THF or FZHY for 4 weeks. FZHY is used as a comparative study in these two models. Following that, using kit reagents detected changes in relevant serum and liver biochemical indicators. Histological changes in mouse liver were measured by staining of H&E and Sirius Red. The markers expression of liver fibrosis and inflammation were detected using qRT-PCR, western blotting and immunohistochemical staining analysis. The potential regulatory mechanism of THF to ameliorate liver fibrosis was performed by RNA-sequencing analysis. Finally, the analysis results were verified by immunofluorescence co-staining, qRT-PCR and western blotting. RESULTS Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic triglyceride (TG) levels in CCl4 and MCD-induced liver fibrosis mice were significantly improved after THF treatment. Meanwhile, the expression of fibrosis and inflammation markers were significantly suppressed. Furthermore, THF downregulated the expression of the macrophage marker CD68. According to RNA-sequencing analysis, we found the CCL2-CCR2 axis and MAPK/NF-κB as the potential signaling pathway for THF against liver fibrosis. CONCLUSION This study revealed that THF ameliorated liver injury, inflammation and fibrotic process by inhibiting CCL2-CCR2 axis and its downstream MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tian Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bo Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianzhe Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiafan Cao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xin Ding
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Shengwen Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Yanfang Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Huanle Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou Higher Education Mega Center, Institute of Chinese Medicine, Guangdong Pharmaceutical University, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Salama YA, Hassan HM, El-Gayar AM, Abdel-Rahman N. Combined quercetin and simvastatin attenuate hepatic fibrosis in rats by modulating SphK1/NLRP3 pathways. Life Sci 2024; 337:122349. [PMID: 38128755 DOI: 10.1016/j.lfs.2023.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis involves several signalling pathways working in concert regulating the deposition of extracellular matrix. In this study, we evaluated the effect of quercetin and simvastatin alone and their combination on the treatment of experimentally induced hepatic fibrosis in rats. To decipher the potential mechanisms involved, liver fibrosis was induced in rats by administration of 40 % carbon tetrachloride (CCl4) (1 μl/g rat, i.p., twice weekly) for 6 weeks. Quercetin (50 mg/kg, orally), simvastatin (40 mg/kg, orally) either individually or combined were administered for another 4 weeks. The three treatment groups ameliorated hepatic dysfunction and altered parameters of sphingolipid and pyroptosis pathways. Yet, the combined group showed a more pronounced effect. Treatments lowered serum levels of GOT, GPT, ALP and elevated albumin and total protein levels. Histopathological and electron microscope examination of liver tissue revealed diminished fibrosis and inflammation. Protein expression levels of α-SMA, IL-1β, PPAR-γ, TGF-β1, caspase-1 and caspase-3 expression in liver tissues were reduced. Additionally, hepatic mRNA levels of SphK1 and NLRP3 decreased after treatment. Furthermore, the three groups lowered MDA levels and elevated total antioxidant capacity, GSH and Nrf2 expression levels. Treatments downregulated sphingolipid pathway and NLRP3-mediated pyroptosis and stimulated an anti-apoptotic, anti-proliferative and antioxidant activity. This suggests that targeting the SphK1/NLRP3 pathway could be a prospective therapeutic strategy against liver fibrosis.
Collapse
Affiliation(s)
- Yasmin A Salama
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Amal M El-Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| |
Collapse
|
20
|
Kishinaka S, Kawashita E, Nishizaki T, Ishihara K, Akiba S. Group IVA Phospholipase A 2 in Collagen-Producing Cells Promotes High-Fat Diet-Induced Infiltration of Inflammatory Cells into the Liver by Upregulating the Expression of MCP-1. Biol Pharm Bull 2024; 47:1058-1065. [PMID: 38825533 DOI: 10.1248/bpb.b24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.
Collapse
Affiliation(s)
- Saki Kishinaka
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Eri Kawashita
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Taichi Nishizaki
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Keiichi Ishihara
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Laboratory of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
21
|
Chen N, Liu S, Qin D, Guan D, Chen Y, Hou C, Zheng S, Wang L, Chen X, Chen W, Zhang L. Fate tracking reveals differences between Reelin + hepatic stellate cells (HSCs) and Desmin + HSCs in activation, migration and proliferation. Cell Prolif 2023; 56:e13500. [PMID: 37246473 PMCID: PMC10693182 DOI: 10.1111/cpr.13500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
The activation of hepatic stellate cells (HSCs) is the main cause of liver fibrogenesis in response to different etiologies of chronic liver injuries. HSCs are heterogeneous, but the lack of specific markers to distinguish different HSC subset hinders the development of targeted therapy for liver fibrosis. In this study, we aim to reveal new HSC subsets by cell fate tracking. We constructed a novel ReelinCreERT2 transgenic mouse model to track the fate of cells expressing Reelin and their progeny (Reelin+ cells). And we investigated the property of Reelin+ cells, such as differentiation and proliferation, in hepatotoxic (carbon tetrachloride; CCl4 ) or cholestatic (bile duct ligation; BDL) liver injury models by immunohistochemistry. Our study revealed that Reelin+ cells were a new HSC subset. In terms of activation, migration, and proliferation, Reelin+ HSCs displayed different properties from Desmin+ HSCs (total HSCs) in cholestatic liver injury model but shared similar properties to total HSCs in hepatotoxic liver injury model. Besides, we did not find evidence that Reelin+ HSCs transdifferentiated into hepatocytes or cholangiocytes through mesenchymal-epithelial transition (MET). In this study, our genetic cell fate tracking data reveal that ReelinCreERT2-labelled cells are a new HSC subset, which provides new insights into targeted therapy for liver fibrosis.
Collapse
Affiliation(s)
- Ning Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Dian Guan
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Yaqing Chen
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Chenjiao Hou
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| | - Songyun Zheng
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesBeijingChina
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical Center/Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
Shu G, Lei X, Li G, Zhang T, Wang C, Song A, Yu H, Wang X, Deng X. Ergothioneine suppresses hepatic stellate cell activation via promoting Foxa3-dependent potentiation of the Hint1/Smad7 cascade and improves CCl 4-induced liver fibrosis in mice. Food Funct 2023; 14:10591-10604. [PMID: 37955610 DOI: 10.1039/d3fo03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ergothioneine (EGT) is a bioactive compound derived from certain edible mushrooms. The activation of hepatic stellate cells (HSCs) is critically involved in the etiology of liver fibrosis (LF). Here, we report that in LX-2 HSCs, EGT upregulates the expression of Hint1 and Smad7 and suppresses their activation provoked by TGFβ1. The EGT-triggered inhibition of HSC activation is abolished by knocking down the expression of Hint1. Overexpression of Hint1 increases Smad7 and represses TGFβ1-provoked activation of LX-2 HSCs. In silico predictions unveiled that in the promoter region of the human Hint1 gene, there are two conserved cis-acting elements that have the potential to interact with the transcription factor Foxa3 termed hFBS1 and hFBS2, respectively. The knockdown of Foxa3 obviously declined Hint1 expression at both mRNA and protein levels. Transfection of Foxa3 or EGT treatment increased the activity of the luciferase reporter driven by the Hint1 promoter in an hFBS2-dependent manner. The knockdown of Foxa3 eliminated EGT-mediated upregulation of Hint1 promoter activity. Additionally, EGT triggered the nuclear translocation of Foxa3 without obviously affecting its expression level. Molecular docking analysis showed that EGT has the potential to directly interact with the Foxa3 protein. Moreover, Foxa3 played a critical role in EGT-mediated hepatoprotection. EGT modulated the Foxa3/Hint1/Smad7 signaling in mouse primary HSCs and inhibited their activation. The gavage of EGT considerably relieved CCl4-induced LF in mice. Our data provide new insights into the anti-LF activity of EGT. Mechanistically, EGT triggers the nuclear translocation of Foxa3 in HSCs, which promotes Hint1 transcription and subsequently elevates Smad7.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Chang YC, Liu HP, Chuang HL, Liao JW, Kao PL, Chan HL, Chen TH, Wang YC. Feline mammary carcinoma-derived extracellular vesicle promotes liver metastasis via sphingosine kinase-1-mediated premetastatic niche formation. Lab Anim Res 2023; 39:27. [PMID: 37941082 PMCID: PMC10634095 DOI: 10.1186/s42826-023-00180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized. RESULTS Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abolished hepatic colonization of FMC cells. CONCLUSIONS Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metastasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Medical Laboratory Science & Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Pei-Ling Kao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsun-Lung Chan
- Veterinary Research Institute, Ministry of Agriculture, Zhunan, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
24
|
Li X, Jiang F, Hu Y, Lang Z, Zhan Y, Zhang R, Tao Q, Luo C, Yu J, Zheng J. Schisandrin B Promotes Hepatic Stellate Cell Ferroptosis via Wnt Pathway-Mediated Ly6C lo Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922022 DOI: 10.1021/acs.jafc.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
A key event in liver fibrosis is the activation of the hepatic stellate cell (HSC). Schisandrin B (Sch B), a major component extracted from Schisandra chinensis, has been shown to inhibit HSC activation. Recently, ferroptosis (FPT) has been reported to be involved in HSC activation. However, whether Sch B has an effect on the HSC FPT remains unclear. Herein, we explored the effects of Sch B on liver fibrosis in vivo and in vitro and the roles of Wnt agonist 1 and ferrostatin-1 in the antifibrotic effects of Sch B. Sch B effectively alleviated CCl4-induced liver fibrosis, with decreased collagen deposition and α-SMA level. Additionally, Sch B resulted in an increase in lymphocyte antigen 6 complex locus C low (Ly6Clo) macrophages, contributing to a reduced level of TIMP1 and increased MMP2. Notably, the Wnt pathway was involved in Sch B-mediated Ly6C macrophage phenotypic transformation. Further studies demonstrated that Sch B-treated macrophages had an inhibitory effect on HSC activation, which was associated with HSC FPT. GPX4, a negative regulator of FPT, was induced by Sch B and found to be involved in the crosstalk between macrophage and HSC FPT. Furthermore, HSC inactivation as well as FPT induced by Sch B-treated macrophages was blocked down by Wnt pathway agonist 1. Collectively, we demonstrate that Sch B inhibits liver fibrosis, at least partially, through mediating Ly6Clo macrophages and HSC FPT. Sch B enhances Wnt pathway inactivation, leading to the increase in Ly6Clo macrophages, which contributes to HSC FPT. Sch B may be a promising drug for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feng Jiang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengchu Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinglu Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Laboratory Medicine, Lishui Municipal Central Hospital,Lishui 323020, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
25
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
26
|
Mela V, Agüera Z, Alvarez-Bermudez MD, Martín-Reyes F, Granero R, Sánchez-García A, Oliva-Olivera W, Tomé M, Moreno-Ruiz FJ, Soler-Humanes R, Fernández-Serrano JL, Sánchez-Gallegos P, Martínez-Moreno JM, Sancho-Marín R, Fernández-Aranda F, García-Fuentes E, Tinahones FJ, Garrido-Sánchez L. The Relationship between Depressive Symptoms, Quality of Life and miRNAs 8 Years after Bariatric Surgery. Nutrients 2023; 15:4109. [PMID: 37836393 PMCID: PMC10574314 DOI: 10.3390/nu15194109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: There are conflicting results on whether weight loss after bariatric surgery (BS) might be associated with quality of life (QoL)/depressive symptomatology. We aim to determine whether BS outcomes are associated with QoL/depressive symptomatology in studied patients at the 8-year follow-up after BS, as well as their relationship with different serum proteins and miRNAs. (2) Methods: A total of 53 patients with class III obesity who underwent BS, and then classified into "good responders" and "non-responders" depending on the percentage of excess weight lost (%EWL) 8 years after BS (%EWL ≥ 50% and %EWL < 50%, respectively), were included. Basal serum miRNAs and different proteins were analysed, and patients completed tests to evaluate QoL/depressive symptomatology at 8 years after BS. (3) Results: The good responders group showed higher scores on SF-36 scales of physical functioning, role functioning-physical, role functioning-emotional, body pain and global general health compared with the non-responders. The expression of hsa-miR-101-3p, hsa-miR-15a-5p, hsa-miR-29c-3p, hsa-miR-144-3p and hsa-miR-19b-3p were lower in non-responders. Hsa-miR-19b-3p was the variable associated with the response to BS in a logistic regression model. (4) Conclusions: The mental health of patients after BS is limited by the success of the intervention. In addition, the expression of basal serum miRNAs related to depression/anxiety could predict the success of BS.
Collapse
Affiliation(s)
- Virginia Mela
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Zaida Agüera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Departament d’Infermeria de Salut Pública, Salut Mental i Maternoinfantil, Escola d’Infermeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Maria D. Alvarez-Bermudez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Roser Granero
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Ana Sánchez-García
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Wilfredo Oliva-Olivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Monica Tomé
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Malaga, Spain;
| | - Francisco J. Moreno-Ruiz
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain;
| | - Rocío Soler-Humanes
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Jose L. Fernández-Serrano
- Unidad de Gestión Clínica de Cirugía General y Digestiva, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain; (R.S.-H.); (J.L.F.-S.)
| | - Pilar Sánchez-Gallegos
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Jose M. Martínez-Moreno
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Raquel Sancho-Marín
- Department of Surgical Specialities, Biochemistry and Immunology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain; (P.S.-G.); (J.M.M.-M.); (R.S.-M.)
| | - Fernando Fernández-Aranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
- Department of Psychiatry, University Hospital of Bellvitge, 08907 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| | - Lourdes Garrido-Sánchez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Malaga, Spain; (V.M.); (M.D.A.-B.); (F.M.-R.); (A.S.-G.); (W.O.-O.); (L.G.-S.)
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain; (Z.A.); (R.G.); (F.F.-A.)
| |
Collapse
|
27
|
Huang L, Han F, Huang Y, Liu J, Liao X, Cao Z, Li W. Sphk1 deficiency induces apoptosis and developmental defects and premature death in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:737-750. [PMID: 37464180 DOI: 10.1007/s10695-023-01215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ying Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China.
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
28
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
29
|
Yan M, Li H, Xu S, Wu J, Li J, Xiao C, Mo C, Ding BS. Targeting Endothelial Necroptosis Disrupts Profibrotic Endothelial-Hepatic Stellate Cells Crosstalk to Alleviate Liver Fibrosis in Nonalcoholic Steatohepatitis. Int J Mol Sci 2023; 24:11313. [PMID: 37511074 PMCID: PMC10379228 DOI: 10.3390/ijms241411313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic liver diseases affect over a billion people worldwide and often lead to fibrosis. Nonalcoholic steatohepatitis (NASH), a disease paralleling a worldwide surge in metabolic syndromes, is characterized by liver fibrosis, and its pathogenesis remains largely unknown, with no effective treatment available. Necroptosis has been implicated in liver fibrosis pathogenesis. However, there is a lack of research on necroptosis specific to certain cell types, particularly the vascular system, in the context of liver fibrosis and NASH. Here, we employed a mouse model of NASH in combination with inducible gene knockout mice to investigate the role of endothelial necroptosis in NASH progression. We found that endothelial cell (EC)-specific knockout of mixed lineage kinase domain-like protein (MLKL), a critical executioner involved in the disruption of cell membranes during necroptosis, alleviated liver fibrosis in the mouse NASH model. Mechanistically, EC-specific deletion of Mlkl mitigated the activation of TGFβ/Smad 2/3 pathway, disrupting the pro-fibrotic crosstalk between endothelial cells and hepatic stellate cells (HSCs). Our findings highlight endothelial MLKL as a promising molecular target for developing therapeutic interventions for NASH.
Collapse
Affiliation(s)
- Mengli Yan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Hui Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Shiyu Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Jinyan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Jiachen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Chengju Xiao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610064, China
- Fibrosis Research Program, Division of Pulmonary and Critical Care Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
30
|
Ma H, Wang L, Sun H, Yu Q, Yang T, Wang Y, Niu B, Jia Y, Liu Y, Liang Z, An M, Guo J. MIR-107/HMGB1/FGF-2 axis responds to excessive mechanical stretch to promote rapid repair of vascular endothelial cells. Arch Biochem Biophys 2023:109686. [PMID: 37406794 DOI: 10.1016/j.abb.2023.109686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The increase of vascular wall tension can lead to endothelial injury during hypertension, but its potential mechanism remains to be studied. Our results of previous study showed that HUVECs could induce changes in HMGB1/RAGE to resist abnormal mechanical environments in pathological mechanical stretching. In this study, we applied two different kinds of mechanical tension to endothelial cells using the in vitro mechanical loading system FlexCell-5000T and focused on exploring the expression of miR-107 related pathways in HUVECs with excessive mechanical tension. The results showed that miR-107 negatively regulated the expression of the HMGB1/RAGE axis under excessive mechanical tension. Excessive mechanical stretching reduced the expression of miR-107 in HUVECs, and increased the expression of the HMGB1/RAGE axis. When miR-107 analog was transfected into HUVECs with lipo3000 reagent, the overexpression of miR-107 slowed down the increase of the HMGB1/RAGE axis caused by excessive mechanical stretching. At the same time, the overexpression of miR-107 inhibited the proliferation and migration of HUVECs to a certain extent. On the contrary, when miR-107 was silent, the proliferation and migration of HUVECs showed an upward trend. In addition, the study also showed that under excessive mechanical tension, miR-107 could regulate the expression of FGF-2 by HMGB1. In conclusion, these findings suggest that pathological mechanical stretching promote resistance to abnormal mechanical stimulation on HUVECs through miR-107/HMGB1/RAGE/FGF-2 pathway, thus promote vascular repair after endothelial injury. The suggest that miR-107 is a potential therapeutic target for hypertension.
Collapse
Affiliation(s)
- Haiyang Ma
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Haoyu Sun
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Tiantian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Yajing Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Bin Niu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Yaru Jia
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Ziwei Liang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China.
| | - Jiqiang Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, PR China.
| |
Collapse
|
31
|
Fan JH, Luo N, Liu GF, Xu XF, Li SQ, Lv XP. Mechanism of annexin A1/N-formylpeptide receptor regulation of macrophage function to inhibit hepatic stellate cell activation through Wnt/β-catenin pathway. World J Gastroenterol 2023; 29:3422-3439. [PMID: 37389234 PMCID: PMC10303517 DOI: 10.3748/wjg.v29.i22.3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is a common pathological process of chronic liver diseases with various causes, which can progress to cirrhosis.
AIM To evaluate the effect and mechanism of action annexin (Anx)A1 in liver fibrosis and how this could be targeted therapeutically.
METHODS CCl4 (20%) and active N-terminal peptide of AnxA1 (Ac2-26) and N-formylpeptide receptor antagonist N-Boc-Phe-Leu-Phe-Leu-Phe (Boc2) were injected intraperitoneally to induce liver fibrosis in eight wild-type mice/Anxa1 knockout mice, and to detect expression of inflammatory factors, collagen deposition, and the role of the Wnt/β-catenin pathway in hepatic fibrosis.
RESULTS Compared with the control group, AnxA1, transforming growth factor (TGF)-β1, interleukin (IL)-1β and IL-6 expression in the liver of mice with hepatic fibrosis induced by CCl4 was significantly increased, which promoted collagen deposition and expression of α-smooth muscle actin (α-SMA), collagen type I and connective tissue growth factor (CTGF), and increased progressively with time. CCl4 induced an increase in TGF-β1, IL-1β and IL-6 in liver tissue of AnxA1 knockout mice, and the degree of liver inflammation and fibrosis and expression of α-SMA, collagen I and CTGF were significantly increased compared with in wild-type mice. After treatment with Ac2-26, expression of liver inflammatory factors, degree of collagen deposition and expression of a-SMA, collagen I and CTGF were decreased compared with before treatment. Boc2 inhibited the anti-inflammatory and antifibrotic effects of Ac2-26. AnxA1 downregulated expression of the Wnt/β-catenin pathway in CCl4-induced hepatic fibrosis. In vitro, lipopolysaccharide (LPS) induced hepatocyte and hepatic stellate cell (HSC) expression of AnxA1. Ac2-26 inhibited LPS-induced RAW264.7 cell activation and HSC proliferation, decreased expression of α-SMA, collagen I and CTGF in HSCs, and inhibited expression of the Wnt/β-catenin pathway after HSC activation. These therapeutic effects were inhibited by Boc2.
CONCLUSION AnxA1 inhibited liver fibrosis in mice, and its mechanism may be related to inhibition of HSC Wnt/β-catenin pathway activation by targeting formylpeptide receptors to regulate macrophage function.
Collapse
Affiliation(s)
- Jun-Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Na Luo
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Geng-Feng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Fang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shi-Quan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Ping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
32
|
Lee M, Lee SY, Bae YS. Functional roles of sphingolipids in immunity and their implication in disease. Exp Mol Med 2023; 55:1110-1130. [PMID: 37258585 PMCID: PMC10318102 DOI: 10.1038/s12276-023-01018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/02/2023] Open
Abstract
Sphingolipids, which are components of cellular membranes and organ tissues, can be synthesized or degraded to modulate cellular responses according to environmental cues, and the balance among the different sphingolipids is important for directing immune responses, regardless of whether they originate, as intra- or extracellular immune events. Recent progress in multiomics-based analyses and methodological approaches has revealed that human health and diseases are closely related to the homeostasis of sphingolipid metabolism, and disease-specific alterations in sphingolipids and related enzymes can be prognostic markers of human disease progression. Accumulating human clinical data from genome-wide association studies and preclinical data from disease models provide support for the notion that sphingolipids are the missing pieces that supplement our understanding of immune responses and diseases in which the functions of the involved proteins and nucleotides have been established. In this review, we analyze sphingolipid-related enzymes and reported human diseases to understand the important roles of sphingolipid metabolism. We discuss the defects and alterations in sphingolipid metabolism in human disease, along with functional roles in immune cells. We also introduce several methodological approaches and provide summaries of research on sphingolipid modulators in this review that should be helpful in studying the roles of sphingolipids in preclinical studies for the investigation of experimental and molecular medicines.
Collapse
Affiliation(s)
- Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
33
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
34
|
Ozdogan E, Arikan C. Liver fibrosis in children: a comprehensive review of mechanisms, diagnosis, and therapy. Clin Exp Pediatr 2023; 66:110-124. [PMID: 36550776 PMCID: PMC9989719 DOI: 10.3345/cep.2022.00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease incidence is increasing among children worldwide due to a multitude of epidemiological changes. Most of these chronic insults to the pediatric liver progress to fibrosis and cirrhosis to different degrees. Liver and immune physiology differs significantly in children from adults. Because most of pediatric liver diseases have no definitive therapy, a better understanding of population and disease-specific fibrogenesis is mandatory. Furthermore, fibrosis development has prognostic significance and often guide treatment. Evaluation of liver fibrosis continues to rely on the gold-standard liver biopsy. However, many high-quality studies put forward the high diagnostic accuracy of numerous diagnostic modalities in this setting. Herein, we summarize and discuss the recent literature on fibrogenesis with an emphasis on pediatric physiology along with a detailed outline of disease-specific signatures, noninvasive diagnostic modalities, and the potential for antifibrotic therapies.
Collapse
Affiliation(s)
- Elif Ozdogan
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Cigdem Arikan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
35
|
Li S, Zhou B, Xue M, Zhu J, Tong G, Fan J, Zhu K, Hu Z, Chen R, Dong Y, Chen Y, Lee KY, Li X, Jin L, Cong W. Macrophage-specific FGF12 promotes liver fibrosis progression in mice. Hepatology 2023; 77:816-833. [PMID: 35753047 DOI: 10.1002/hep.32640] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Chronic liver diseases are associated with the development of liver fibrosis. Without treatment, liver fibrosis commonly leads to cirrhosis and HCC. FGF12 is an intracrine factor belonging to the FGF superfamily, but its role in liver homeostasis is largely unknown. This study aimed to investigate the role of FGF12 in the regulation of liver fibrosis. APPROACH AND RESULTS FGF12 was up-regulated in bile duct ligation (BDL)-induced and CCL 4 -induced liver fibrosis mouse models. Expression of FGF12 was specifically up-regulated in nonparenchymal liver cells, especially in hepatic macrophages. By constructing myeloid-specific FGF12 knockout mice, we found that deletion of FGF12 in macrophages protected against BDL-induced and CCL 4 -induced liver fibrosis. Further results revealed that FGF12 deletion dramatically decreased the population of lymphocyte antigen 6 complex locus C high macrophages in mouse fibrotic liver tissue and reduced the expression of proinflammatory cytokines and chemokines. Meanwhile, loss-of-function and gain-of-function approaches revealed that FGF12 promoted the proinflammatory activation of macrophages, thus inducing HSC activation mainly through the monocyte chemoattractant protein-1/chemokine (C-C motif) receptor 2 axis. Further experiments indicated that the regulation of macrophage activation by FGF12 was mainly mediated through the Janus kinase-signal transducer of activators of transcription pathway. Finally, the results revealed that FGF12 expression correlates with the severity of fibrosis across the spectrum of fibrogenesis in human liver samples. CONCLUSIONS FGF12 promotes liver fibrosis progression. Therapeutic approaches to inhibit macrophage FGF12 may be used to combat liver fibrosis in the future.
Collapse
Affiliation(s)
- Santie Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Bin Zhou
- Department of Hepatobiliary Surgery , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Mei Xue
- Central Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Junjie Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Gaozan Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Junfu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Kunxuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Zijing Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Rui Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Yonggan Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Yiming Chen
- Department of Hepatobiliary Surgery , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,Haihe Laboratory of Cell Ecosystem , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Litai Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Weitao Cong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,Haihe Laboratory of Cell Ecosystem , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| |
Collapse
|
36
|
Liu N, Liu M, Jiang M, Li Z, Chen W, Wang W, Fu X, Qi M, Ali MH, Zou N, Liu Q, Tang H, Chu S. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2. Biomed Pharmacother 2023; 159:114173. [PMID: 36680814 DOI: 10.1016/j.biopha.2022.114173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
The study aimed to investigate the effect of isoliquiritigenin (ISL) on model of alcoholic liver fibrosis (ALF). C57BL/6 mice were used to establish animal model of ALF, HSC-T6 cells were used to establish alcohol-activated cell model, and tandem mass tag (TMT) assays were used to analyze the proteome. The results showed that ISL obviously alleviated hepatic fibrosis in model mice. ISL visually improved the area of liver pathological stasis and deposition of fibrillar collagen (Sirius Red staining, Masson staining), inhibited the mRNA expression levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) in liver tissues. ISL down-regulated the mRNA expression levels of IL-6 and transforming growth factor-β1(TGF-β1) in activated hepatic stellate cells (HSCs). And ISL significantly reduced annexin A2 (ANXA2) in vitro detected by TMT proteomics technology. Interestingly, it was found for the first time that ISL could inhibit ANXA2 expression both in vivo and in vitro, block the sphingosine kinases (SPHKs)/sphingosine-1-phosphate (S1P)/interleukin 17 (IL-17) signaling pathway and regulate the expression of α-smooth muscle actin (α-SMA) by inhibiting the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at the downstream signal to finally reverse HSCs activation and hepatic fibrosis. Thus, we demonstrated that ISL is a drug monomer with notable anti-hepatic fibrosis activity.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jiang
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
| | - Zhenwei Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Weijun Chen
- School of Traditional Chinese Medicine, Xinjiang Second Medical College, Shengli Road 12, Karamay, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Nan Zou
- First Affiliated Hospital, School of Medicine, Shihezi University, North 2nd Road 107, Shihezi, China
| | - Qingguang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
37
|
Wu J, Sun X, Wu C, Hong X, Xie L, Shi Z, Zhao L, Du Q, Xiao W, Sun J, Wang J. Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cell Mol Biol Lett 2023; 28:11. [PMID: 36739397 PMCID: PMC9898913 DOI: 10.1186/s11658-023-00426-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glyphosate (GLY), as the active ingredient of the most widely used herbicide worldwide, is commonly detected in the environment and living organisms, including humans. Its toxicity and carcinogenicity in mammals remain controversial. Several studies have demonstrated the hepatotoxicity of GLY; however, the underlying cellular and molecular mechanisms are still largely unknown. METHODS Using single-cell RNA sequencing (scRNA-seq), immunofluorescent staining, and in vivo animal studies, we analyzed the liver tissues from untreated and GLY-treated mice. RESULTS We generated the first scRNA-seq atlas of GLY-exposed mouse liver. GLY induced varied cell composition, shared or cell-type-specific transcriptional alterations, and dysregulated cell-cell communication and thus exerted hepatotoxicity effects. The oxidative stress and inflammatory response were commonly upregulated in several cell types. We also observed activation and upregulated phagocytosis in macrophages, as well as proliferation and extracellular matrix overproduction in hepatic stellate cells. CONCLUSIONS Our study provides a comprehensive single-cell transcriptional picture of the toxic effect of GLY in the liver, which offers novel insights into the molecular mechanisms of the GLY-associated hepatotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiuping Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chunyi Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zixu Shi
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
| | - Jichao Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
38
|
Chen L, Lin B, Yang J, Zhong L, Xiong X, Wang X. Hydrogen sulfide alleviates ischemia induced liver injury by repressing the SPHK1/S1P pathway. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:73. [PMID: 36819566 PMCID: PMC9929751 DOI: 10.21037/atm-22-6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Background Ischemia/reperfusion (I/R) induced liver injury is a severe pathological process which frequently occurs during clinical hepatic operations. The current study investigated the protective function and underlying mechanisms of hydrogen sulfide (H2S) in I/R induced liver injury. Methods The effects of H2S were examined using the fibroblast-like rat liver cell line BRL-3A (the name of normal hepatocytes in rats) cultured under hypoxic conditions and an I/R rat model. The viability of BRL-3A cells was assessed using the methylthiazolyldiphenyl-tetrazolium (MTT) assay and Hoechst analysis. The expression of C/EBP homologous protein (CHOP), sphingosine kinase 1 (SPHK1), and sphingosine 1-phosphate (S1P) were determined in hypoxic BRL-3A cells with or without H2S treatment. CHOP was overexpressed in hypoxic BRL-3A cells to further evaluate whether H2S protected the liver against I/R injury by decreasing endoplasmic reticulum (ER) stress. Finally, the inflammation levels in the serum and the histopathological changes of liver were examined in the I/R rat model to evaluate the therapeutic function of H2S on I/R induced liver injury in vivo. Results H2S alleviated hypoxic damage in BRL-3A cells. In addition, hypoxia increased the expression of CHOP, SPHK1, and S1P in BRL-3A cells, and this was abolished by H2S pretreatment. Notably, overexpression of CHOP significantly inhibited the effect of H2S on the viability of BRL-3A cells during hypoxia. Overall, H2S effectively protected against I/R induced liver injury, decreased the inflammatory responses, and attenuated apoptosis of hepatocyte via inhibiting the ER stress response. Conclusions These findings demonstrated that pre-treatment of H2S protected against I/R induced liver injury by repressing the SPHK1/S1P pathway via inhibition of ER stress, suggesting an effective therapeutic method for the treatment of I/R induced liver injury.
Collapse
Affiliation(s)
- Liang Chen
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Bo Lin
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Jianrong Yang
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Lin Zhong
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaolan Xiong
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Xiaolong Wang
- Department of General Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| |
Collapse
|
39
|
Chen Y, Lin L, Yang C, Li T, Li Y, Wang J, Wu Y, Zhao Y, Su G. Ginsenoside AD-2 Ameliorating Lipopolysaccharide-Induced Activation in HSC-T6 Cells and Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice via Regulation of VD-VDR Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3459-3471. [PMID: 36644954 DOI: 10.1021/acs.jafc.2c06804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ginsenoside 25-hydroxy protopanaxadiol (AD-2) isolated from ginseng was proved to have anti-hepatic fibrosis (HF) effect in our previous study. But the mechanism is unknown. The present study investigated the anti-HF effects and mechanisms of AD-2 on the lipopolysaccharide (LPS)-induced activation in HSC-T6 cells and carbon tetrachloride (CCl4)-induced hepatic fibrosis (HF) in mice. Results showed that AD-2 significantly inhibited the LPS-induced activated HSC-T6 cells in vitro and markedly reduced the serum transaminase and hydroxyproline levels, pathological changes, and hepatic body ratio in CCl4-induced HF mice, indicating AD-2 ameliorated liver injury and reversed HF notably. Moreover, AD-2 decreased the expression of TGF-β1, α-SMA, and MMP2, and maintained TIMP1/MMP9 in balance with the level of vitamin D (VD) and the expression of VD nuclear receptor (VDR) and Sirt3 increased. In conclusion, the anti-HF mechanism of AD-2 is related to the inhibition of HSC activation, promotion of collagen degradation, and regulation of the VD/VDR axis.
Collapse
Affiliation(s)
- Yu Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lizhen Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunhong Yang
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tao Li
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yuan Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Basic Medical Teaching and Research Department, Liaoning Vocational College of Medicine, Shenyang 110101, China
| | - Jian Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanling Wu
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yuqing Zhao
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
40
|
Qinggan Huoxue Recipe Protects against Experimental Alcoholic Liver Fibrosis through CXCL16 Inhibition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5642713. [PMID: 36636609 PMCID: PMC9831707 DOI: 10.1155/2023/5642713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Background Qinggan Huoxue recipe (QGHXR), a traditional Chinese medicinal formula, has a protective effect against liver fibrosis. However, the underlying mechanisms remain unclear. Objective This study investigated the antifibrotic role of QGHXR and its underlying mechanisms. Methods The composition of QGHXR was determined using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Female C57BL/6J mice were fed either a Lieber-DeCarli liquid diet or pair-fed control diet and intraperitoneally injected with CCl4 for 8 weeks (n = 8). In week 5, the mice were administered 100, 200, and 400 mg/kg QGHXR via oral gavage daily for 4 weeks. Results UPLC-MS result showed that QGHXR contained 45 compounds including salvianolic acid A, scutellarin, baicalin, rutin, and chai saponin D. QGHXR alleviated pathological alterations in the liver. The alanine aminotransferase (ALT) level was reduced to 44.88 ± 4.39 U/L, aspartate aminotransferase (AST) to 76.25 ± 4.17 U/L, alkaline phosphatase (ALP) to 60.75 ± 5.41 U/L, and acetaldehyde to 38.54 ± 1.01 U/L compared with that of the control group (ALT 72.38 ± 5.19 U/L, AST 119.63 ± 9.82 U/L, and ALP 98.63 ± 6.71 U/L and acetaldehyde 64.86 ± 4.70 U/L). QGHXR inhibited lipid overproduction and fibrotic gene expression. The serum concentration of chemokine C-X-C ligand 16 (CXCL16) was reduced to 62.83 ± 6.80 pg/ml compared with that of the control group (130.91 ± 13.72 pg/mL). QGHXR downregulated CXCL16 mRNA and protein expressions. Pharmacological CXCL16 treatment reversed the QGHXR-induced protective effects in ethanol plus CCl4 fed mice. QGHXR reduced CXCL16 levels (91.97 ± 5.86 pg/ml) in LPS-stimulated RAW264.7 cells compared with that of the control group (148.68 ± 8.62 pg/ml) and inhibited toll-like receptor 4 and nuclear factor-kappa B phosphorylation. Conclusions This study demonstrated that QGHXR mitigates experimental alcoholic liver fibrosis by CXCL16 inhibition, and may be considered a potential therapeutic agent for treating liver fibrosis.
Collapse
|
41
|
Sakai N, Kamimura K, Miyamoto H, Ko M, Nagoya T, Setsu T, Sakamaki A, Yokoo T, Kamimura H, Soki H, Tokunaga A, Inamine T, Nakashima M, Enomoto H, Kousaka K, Tachiki H, Ohyama K, Terai S. Letrozole ameliorates liver fibrosis through the inhibition of the CTGF pathway and 17β-hydroxysteroid dehydrogenase 13 expression. J Gastroenterol 2023; 58:53-68. [PMID: 36301364 DOI: 10.1007/s00535-022-01929-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-β, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan. .,Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata, 951-8510, Japan.
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takuro Nagoya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Toru Setsu
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Hiroyuki Soki
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Ayako Tokunaga
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, 852-8588, Japan.,Organization for Research Promotion, University of the Ryukyus, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Mikiro Nakashima
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Hatsune Enomoto
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kazuki Kousaka
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Hidehisa Tachiki
- Scientific Research and Business Development Department, Towa Pharmaceutical Co., Ltd., Kadoma, Osaka, 571-8580, Japan
| | - Kaname Ohyama
- Unit of Medical Pharmacy, Department of Pharmacy Practice, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan.,Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Nagasaki, 852-8501, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| |
Collapse
|
42
|
Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C, Li Y. microRNAs-based diagnostic and therapeutic applications in liver fibrosis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022:e1773. [PMID: 36585388 DOI: 10.1002/wrna.1773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Cui
- College Science and Technology, Southwest University, Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Shao J. Discovery of FOCAD: An Important Gene in Liver Cirrhosis. Glob Med Genet 2022; 9:263-264. [DOI: 10.1055/s-0042-1758351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinjin Shao
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Tai C, Xie Z, Li Y, Feng Y, Xie Y, Yang H, Wang L, Wang B. Human skin dermis-derived fibroblasts are a kind of functional mesenchymal stromal cells: judgements from surface markers, biological characteristics, to therapeutic efficacy. Cell Biosci 2022; 12:105. [PMID: 35831878 PMCID: PMC9277801 DOI: 10.1186/s13578-022-00842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Human mesenchymal stromal cells (MSCs) have been widely advocated to clinical use. Human skin dermis-derived fibroblasts shared similar cellular morphology and biological characteristics to MSCs, while it still keeps elusive whether fibroblasts are functionally equivalent to MSCs for therapeutic use.
Methods
We isolated various fibroblasts derived from human foreskins (HFFs) and human double-fold eyelids (HDF) and MSCs derived from human umbilical cords (UC-MSCs), and then comprehensively investigated their similarities and differences in morphology, surface markers, immunoregulation, multilineage differentiation, transcriptome sequencing, and metabolomics, and therapeutic efficacies in treating 2,4,6-Trinitrobenzenesulfonic acid (TNBS) induced colitis and carbontetrachloride (CCL4) induced liver fibrosis.
Results
Fibroblasts and UC-MSCs shared similar surface markers, strong multilineage differentiation capacity, ability of inhibiting Th1/Th17 differentiation and promoting Treg differentiation in vitro, great similarities in mRNA expression profile and metabolites, and nearly equivalent therapeutic efficacy on TNBS-induced colitis and CCL4-induced hepatic fibrosis.
Conclusion
Human skin dermis-derived fibroblasts were a kind of functional MSCs with functionally equivalent therapeutic efficacy in treating specific complications, indicating fibroblasts potentially had the same lineage hierarchy of origin as MSCs and had a remarkable potential as an alternative to MSCs in the treatment of a variety of diseases.
Collapse
|
45
|
Wang R, Li S, Chen P, Yue X, Wang S, Gu Y, Yuan Y. Salvianolic acid B suppresses hepatic stellate cell activation and liver fibrosis by inhibiting the NF-κB signaling pathway via miR-6499-3p/LncRNA-ROR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154435. [PMID: 36155216 DOI: 10.1016/j.phymed.2022.154435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNAs) have been reported to play an important role in liver fibrosis and are closely associated with hepatic stellate cell (HSC) activation. We previously found that salvianolic acid B (Sal B) improves liver fibrosis by regulating the NF-κB signaling pathway. However, whether the LncRNA, regulator of reprogramming (LncRNA-ROR) plays a role in Sal B-mediated anti-fibrosis effects via the NF-κB signaling pathway remain unclear. PURPOSE This study aimed to evaluate the effects of Sal B on HSC activation and liver fibrosis and investigate its mechanism from the perspective of LncRNA-ROR-mediated NF-κB signaling pathways. METHODS LX-2 and T6 cell lines were cultured. Animal models of liver fibrosis were established using CCl4 in male BALB/c mice. Primary HSCs were isolated from mice and cultured. Serum biochemical and liver histological analyses were performed to evaluate the effects of Sal B on liver fibrosis. The index of HSC activation and the expression of LncRNA-ROR, microRNAs (miRNAs), and inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) or immunofluorescence staining. Cell proliferation was measured by a Cell Counting Kit-8 (CCK-8). NF-κB signaling-associated protein levels were assessed using western blotting or immunofluorescence staining. A luciferase reporter assay was used to detect transcription activity. RESULTS In this study, a lower level of LncRNA-ROR was found during Sal B attenuating HSC activation in HSCs. Mechanistically, Sal B impeded the NF-κB signaling pathway to inhibit HSC proliferation and activation by downregulating LncRNA-ROR. Additionally, Sal B upregulated miR-6499-3p to target LncRNA-ROR for degradation. Functionally, Sal B treatment ameliorated CCl4-induced liver fibrosis in mice by inhibiting HSC activation. CONCLUSION Sal B suppresses HSC activation and liver fibrosis via regulation of miR-6499-3p/LncRNA-ROR-mediated NF-κB signaling pathway. These results reveal a new molecular mechanism of Sal B on liver fibrosis from the insight of LncRNAs.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shaozhan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
46
|
Li MH, Guan J, Chen Z, Mo JX, Wu KR, Hu XG, Lan T, Guo J. Fufang Zhenzhu Tiaozhi capsule ameliorates hyperuricemic nephropathy by inhibition of PI3K/AKT/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115644. [PMID: 35987412 DOI: 10.1016/j.jep.2022.115644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive serum uric acid (SUA) causes hyperuricemic nephropathy (HN), characterized by inflammatory infiltration and tubulointerstitial fibrosis. Most recently, we demonstrated that Fufang Zhenzhu Tiaozhi (FTZ) capsule attenuated diabetic nephropathy through inhibition of renal inflammation and fibrosis. However, whether FTZ ameliorates HN is still unclear. AIM OF THE STUDY To determine the protective roles and mechanism of FTZ in mouse renal injury and fibrosis under hyperuricemic condition. MATERIALS AND METHODS HN mice, induced by potassium oxonate and hypoxanthine, were administrated with 600 and 1200 mg/kg FTZ (intragastrically) daily for three weeks. SUA levels, renal functions and histological changes were analyzed. Western blotting, quantitative real-time PCR (q-PCR) and RNA sequencing were used to identify the roles and underlying mechanism of FTZ in HN mice. RESULTS We demonstrated that FTZ treatment mitigated renal injury in mice, as evidenced by the decrease in SUA, serum creatinine (SCr) and cystatin C (Cys C) levels, as well as improved renal histology. FTZ markedly attenuates inflammasome activation, collagen deposition and the imbalance of uric acid transporters. RNA-sequencing revealed a key mechanism involved in the protective effects on HN mice was related to PI3K/AKT/NF-κB pathway. Western blot also confirmed that FTZ diminished the phosphorylation of AKT and p65 in HN mice. CONCLUSIONS FTZ prevents renal injury, inflammation and fibrosis in HN mice via promoting uric acid excretion and inhibiting PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ming-Hui Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jin Guan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| | - Zhe Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| | - Ju-Xian Mo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Kai-Reng Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China.
| | - Xu-Guang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tian Lan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
48
|
Luo Q, Ling Y, Li Y, Qu X, Shi Q, Zheng S, Li Y, Huang Y, Zhou X. Phosphatidylethanolamine-binding protein 4 deficiency exacerbates carbon tetrachloride-induced liver fibrosis by regulating the NF-κB signaling pathway. Front Pharmacol 2022; 13:964829. [PMID: 36120358 PMCID: PMC9478609 DOI: 10.3389/fphar.2022.964829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a pathological process which can progress to hepatocirrhosis, even hepatocellular carcinoma. Phosphatidylethanolamine-binding protein 4 (PEBP4) is a secreted protein involved in regulating many molecular pathways, whereas its roles in diseases including hepatic fibrosis remain undefined. The nuclear factor-κappa B (NF-κB) signaling pathway has been found to be involved in the development of liver fibrosis. In this study, we generated a hepatocyte-conditional knockout (CKO) mouse model of PEBP4, and explored the potential functions of PEBP4 on liver fibrosis and the NF-κB signaling pathway in a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. We demonstrated that PEBP4 CKO aggravated CCl4-triggered liver fibrosis, as evidenced by altered histopathology, an increase in the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and hydroxyproline (HYP) levels, and more collagen deposition, as well as by enhanced expression of fibrotic markers including α-smooth muscle actin (α-SMA), collagen I and collagen III. Mechanistically, PEBP4 deficiency activated the NF-κB signaling pathway, as indicated by increased phosphorylation of NF-κB p65 and inhibitor protein κB inhibitor-α (IκB-α), and nuclear NF-κB p65 expression in the fibrotic liver. Notably, the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) partially blocked the activation of the NF-κB pathway, and reversed the pro-fibrotic effect of PEBP4 deletion in CCl4-treated mice. Together, these results suggest that PEBP4 deficiency results in aggravation of liver fibrosis and activation of the NF-κB signaling pathway, supporting a novel concept that PEBP4 is a crucial player in hepatic fibrosis, but also might be a negative regulator of the NF-κB signaling in liver fibrosis.
Collapse
Affiliation(s)
- Qianqian Luo
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Yuanyi Ling
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Nanchang Joint Program, Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Yufei Li
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Xiaoqin Qu
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Qiaoqing Shi
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
| | - Shuangyan Zheng
- The Center of Laboratory Animal Science, Nanchang University, Nanchang, China
| | - Yanhong Li
- Department of Forensic Medicine, Medical College of Nanchang University, Nanchang, China
| | - Yonghong Huang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang, China
- *Correspondence: Yonghong Huang, ; Xiaoyan Zhou,
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang, China
- *Correspondence: Yonghong Huang, ; Xiaoyan Zhou,
| |
Collapse
|
49
|
Inhibition of SphK1/S1P Signaling Pathway Alleviates Fibrosis and Inflammation of Rat Myocardium after Myocardial Infarction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5985375. [PMID: 35872958 PMCID: PMC9300330 DOI: 10.1155/2022/5985375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
Objective The sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway is involved in fibrosis and inflammatory responses of myocardial tissue after myocardial infarction (MI). The purpose of our study was to explore the role of SphK1/S1P signaling pathway in myocardial injury after MI. Materials and Methods We used Sprague-Dawley (SD) rats to make MI models and detected the changes of SphK1 and S1P in rats at 1, 7, and 14 days after MI. SphK1 inhibitor PF543 was used to treat MI rats, and we detected the changes in myocardial function and structure in rats by cardiac function test, 2,3,5-triphenyl tetrazolium staining, and histological staining. In addition, we used H2O2 to induce H9c2 cell injury to investigate the effect of PF543 on the viability of myocardial cells. Results Myocardial tissue lesions and fibrosis were observed at 7 and 14 days after MI, and the expressions of SphK1 and S1P in the injured myocardial tissues increased significantly in day 7 and day 14 in comparison to the control group. After treatment of MI rats with PF543, the structure of rat myocardial tissue was significantly improved and the degree of fibrosis was reduced. After MI, the expression of α-SMA and collagen I in the myocardium of rats was significantly increased while PF543 decreased their expression. PF543 also improved the cardiac function of MI rats and reduced the expression of IL-1β, IL-6, and TNF-α in the serum. PF543 also increased the viability of H9c2 cells in vitro. Conclusions The inhibition of the SphK1/S1P signaling pathway contributed to the relief of myocardial injury in MI rats. PF543 improved the myocardial structure and function of MI rats and reduced the level of fibrosis and inflammation in MI rats.
Collapse
|
50
|
Fu R, Zu SJ, Liu YJ, Li JC, Dang WZ, Liao LP, Liu LP, Chen PY, Huang HM, Wu KH, Zhou B, Pan Q, Luo C, Zhang YY, Li GM. Selective bromodomain and extra-terminal bromodomain inhibitor inactivates macrophages and hepatic stellate cells to inhibit liver inflammation and fibrosis. Bioengineered 2022; 13:10914-10930. [PMID: 35499161 PMCID: PMC9278415 DOI: 10.1080/21655979.2022.2066756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis occurs following inflammation triggered by the integrated actions of activated liver-resident macrophages (Kupffer cells) and hepatic stellate cells (HSCs), and the multiplicity of these mechanisms complicates drug therapy. Here, we demonstrate that the selective bromodomain and extra-terminal (BET) bromodomain inhibitor compound38 can block both the Janus kinase-signal transducer and activator of transcription and mitogen-activated protein kinase signaling pathways in macrophages, which decreased their secretion of proinflammatory cytokines in a dose-dependent manner. The inactivation of macrophages attenuated lipopolysaccharide-induced injurious inflammation concurrent with a reduction in F4/80+ cells, proinflammatory cytokine levels, and neutrophil infiltration. Moreover, compound 38 inhibited the Wnt/β-catenin and transforming growth factor-beta/SMAD signaling pathways to abolish the activation of HSCs. In vivo, compound 38 significantly decreased the collagen deposition and fibrotic area of a CCl4-induced liver fibrosis model, and restored the deficiency of activated HSCs and the upregulation of liver inflammation. These results highlight the potential role of compound 38 in treating liver fibrosis considering its simultaneous inhibitory effects on liver inflammation and related fibrosis.
Collapse
Affiliation(s)
- Rong Fu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Shi-Jia Zu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
| | - Yan-Jun Liu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Jia-Cheng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Wen-Zhen Dang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Li-Ping Liao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Li-Ping Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Pan-Yu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - He-Ming Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Kang-Hui Wu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
- Research center, Zhoupu Hospital affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, Zhouyuan District, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesCAS, Hangzhou, Zhejiang, China
| | - Yuan-Yuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, Zuchongzhi District, Shanghai, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of SciencesCAS, Hangzhou, Zhejiang, China
| | - Guang-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, Yangpu District, China
| |
Collapse
|