1
|
Fernández-Pérez L, Guerra B, Recio C, Cabrera-Galván JJ, García I, De La Rosa JV, Castrillo A, Iglesias-Gato D, Díaz M. Transcriptomic and lipid profiling analysis reveals a functional interplay between testosterone and growth hormone in hypothyroid liver. Front Endocrinol (Lausanne) 2023; 14:1266150. [PMID: 38144555 PMCID: PMC10748415 DOI: 10.3389/fendo.2023.1266150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Preclinical and clinical studies suggest that hypothyroidism might cause hepatic endocrine and metabolic disturbances with features that mimic deficiencies of testosterone and/or GH. The absence of physiological interactions between testosterone and GH can be linked to male differentiated liver diseases. Testosterone plays relevant physiological effects on somatotropic-liver axis and liver composition and the liver is a primary organ of interactions between testosterone and GH. However, testosterone exerts many effects on liver through complex and poorly understood mechanisms. Testosterone impacts liver functions by binding to the Androgen Receptor, and, indirectly, through its conversion to estradiol, and cooperation with GH. However, the role of testosterone, and its interaction with GH, in the hypothyroid liver, remains unclear. In the present work, the effects of testosterone, and how they impact on GH-regulated whole transcriptome and lipid composition in the liver, were studied in the context of adult hypothyroid-orchiectomized rats. Testosterone replacement positively modulated somatotropic-liver axis and impacted liver transcriptome involved in lipid and glucose metabolism. In addition, testosterone enhanced the effects of GH on the transcriptome linked to lipid biosynthesis, oxidation-reduction, and metabolism of unsaturated and long-chain fatty acids (FA). However, testosterone decreased the hepatic content of cholesterol esters and triacylglycerols and increased fatty acids whereas GH increased neutral lipids and decreased polar lipids. Biological network analysis of the effects of testosterone on GH-regulated transcriptome confirmed a close connection with crucial proteins involved in steroid and fatty acid metabolism. Taken together, this comprehensive analysis of gene expression and lipid profiling in hypothyroid male liver reveals a functional interplay between testosterone and pulsed GH administration.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan José Cabrera-Galván
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Irma García
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| | - Juan Vladimir De La Rosa
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unidad de Biomedicina del Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) Asociada al Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid, Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), Centro Mixto CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Iglesias-Gato
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Díaz
- Departmento de Física Básica, Grupo de Fisiología y Biofísica de Membranas, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
Thomsen KL, Eriksen PL, Kerbert AJC, De Chiara F, Jalan R, Vilstrup H. Role of ammonia in NAFLD: An unusual suspect. JHEP Rep 2023; 5:100780. [PMID: 37425212 PMCID: PMC10326708 DOI: 10.1016/j.jhepr.2023.100780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 07/11/2023] Open
Abstract
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease (NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea synthesis is an exclusive hepatic function and is the body's only on-demand and definitive pathway to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in both animal models and patients with NAFLD. The problem may be augmented by parallel changes in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflammation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an important mechanism for the transition of bland steatosis to steatohepatitis and further to cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative effects on other organs. Best known are the cerebral consequences that manifest as cognitive disturbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a negative muscle protein balance leading to sarcopenia, compromised immune function and increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle activity but there are promising animal and human reports of ammonia-lowering strategies correcting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-lowering strategies to control the symptoms and prevent the progression of NAFLD should be explored in clinical trials.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| | - Annarein JC. Kerbert
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Francesco De Chiara
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute of Liver and Digestive Health, University College London, United Kingdom
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Denmark
| |
Collapse
|
3
|
Hou X, Chen S, Zhang P, Guo D, Wang B. Targeted Arginine Metabolism Therapy: A Dilemma in Glioma Treatment. Front Oncol 2022; 12:938847. [PMID: 35898872 PMCID: PMC9313538 DOI: 10.3389/fonc.2022.938847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Efforts in the treatment of glioma which is the most common primary malignant tumor of the central nervous system, have not shown satisfactory results despite a comprehensive treatment model that combines various treatment methods, including immunotherapy. Cellular metabolism is a determinant of the viability and function of cancer cells as well as immune cells, and the interplay of immune regulation and metabolic reprogramming in tumors has become an active area of research in recent years. From the perspective of metabolism and immunity in the glioma microenvironment, we elaborated on arginine metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in the tumor microenvironment. Reduced arginine availability significantly inhibits the proliferation, activation, and function of T cells, thereby promoting the establishment of an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to enhance the anti-tumor activity of T cells is a promising strategy for the treatment of glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are unable to synthesize arginine; thus, they are highly dependent on the availability of arginine in the extracellular environment. This metabolic weakness of glioma has been utilized by researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by consuming large amounts of arginine in circulation. Although it has shown good results, this treatment modality that targets arginine metabolism in glioma is controversial. Exploiting a suitable strategy that can not only enhance the antitumor immune response, but also “starve” tumor cells by regulating arginine metabolism to cure glioma will be promising.
Collapse
|
4
|
Recombinant Human Growth Hormone Inhibits Lipotoxicity, Oxidative Stress, and Apoptosis in a Mouse Model of Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3899356. [PMID: 34925693 PMCID: PMC8677382 DOI: 10.1155/2021/3899356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022]
Abstract
Recombinant human growth hormone (rhGH), widely used in clinical studies, exerts protective effects against cardiac damage. Here, we investigated the effects and mechanisms underlying the effects of rhGH on cardiac functions in db/db mice. C57BL/6J and db/db mice were subjected to rhGH treatment. Metabolic parameters, cardiac function and morphology, oxidative stress, lipid metabolism, and apoptosis were evaluated 16 weeks after rhGH treatment. Although rhGH did not significantly affect fasting blood glucose levels in db/db mice, it protected against diabetic cardiomyopathy, by improving cardiac function and reducing oxidative stress in the heart. In addition, rhGH treatment exhibited anti-apoptotic effects in the heart of db/db mice. The rhGH treatment, besides inhibiting oxidative stress and apoptosis, ameliorated cardiac dysfunction by inhibiting lipotoxicity in mice with type 2 diabetes. These findings suggest that rhGH is a promising therapeutic agent for diabetic cardiomyopathy.
Collapse
|
5
|
Mikkelsen ACD, Thomsen KL, Vilstrup H, Aamann L, Jones H, Mookerjee RP, Hamilton-Dutoit S, Frystyk J, Aagaard NK. Potassium deficiency decreases the capacity for urea synthesis and markedly increases ammonia in rats. Am J Physiol Gastrointest Liver Physiol 2021; 320:G474-G483. [PMID: 33404376 DOI: 10.1152/ajpgi.00136.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Our study provides novel findings of experimental hypokalemia reducing urea cycle functionality and thereby severely increasing plasma ammonia. This is pathophysiologically interesting because plasma ammonia increases during hypokalemia by a hitherto unknown mechanism, which may be particular important in relation to the unexplained link between hypokalemia and hepatic encephalopathy. Potassium deficiency decreases gene expression, protein synthesis, and growth. The urea cycle maintains body nitrogen homeostasis including removal of toxic ammonia. Hyperammonemia is an obligatory trait of liver failure, increasing the risk for hepatic encephalopathy, and hypokalemia is reported to increase ammonia. We aimed to clarify the effects of experimental hypokalemia on the in vivo capacity of the urea cycle, on the genes of the enzymes involved, and on ammonia concentrations. Female Wistar rats were fed a potassium-free diet for 13 days. Half of the rats were then potassium repleted. Both groups were compared with pair- and free-fed controls. The following were measured: in vivo capacity of urea-nitrogen synthesis (CUNS); gene expression (mRNA) of urea cycle enzymes; plasma potassium, sodium, and ammonia; intracellular potassium, sodium, and magnesium in liver, kidney, and muscle tissues; and liver sodium/potassium pumps. Liver histology was assessed. The diet induced hypokalemia of 1.9 ± 0.4 mmol/L. Compared with pair-fed controls, the in vivo CUNS was reduced by 34% (P < 0.01), gene expression of argininosuccinate synthetase 1 (ASS1) was decreased by 33% (P < 0.05), and plasma ammonia concentrations were eightfold elevated (P < 0.001). Kidney and muscle tissue potassium contents were markedly decreased but unchanged in liver tissue. Protein expressions of liver sodium/potassium pumps were unchanged. Repletion of potassium reverted all the changes. Hypokalemia decreased the capacity for urea synthesis via gene effects. The intervention led to marked hyperammonemia, quantitatively explainable by the compromised urea cycle. Our findings motivate clinical studies of patients with liver disease.
Collapse
Affiliation(s)
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Luise Aamann
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Helen Jones
- UCL Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | - Rajeshwar P Mookerjee
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- UCL Institute of Liver and Digestive Health, University College London, London, United Kingdom
| | | | - Jan Frystyk
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Kristian Aagaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Schütten MT, Kusters YH, Houben AJ, Niessen HE, Op 't Roodt J, Scheijen JL, van de Waardenburg MP, Schalkwijk CG, de Leeuw PW, Stehouwer CDA. Glucocorticoids affect metabolic but not muscle microvascular insulin sensitivity following high versus low salt intake. JCI Insight 2020; 5:127530. [PMID: 32107343 DOI: 10.1172/jci.insight.127530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/20/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUNDSalt-sensitive hypertension is often accompanied by insulin resistance in obese individuals, but the underlying mechanisms are obscure. Microvascular function is known to affect both salt sensitivity of blood pressure and metabolic insulin sensitivity. We hypothesized that excessive salt intake increases blood pressure and decreases insulin-mediated glucose disposal, at least in part by impairing insulin-mediated muscle microvascular recruitment (IMMR).METHODSIn 20 lean and 20 abdominally obese individuals, we assessed mean arterial pressure (MAP; 24-hour ambulatory blood pressure measurements), insulin-mediated whole-body glucose disposal (M/I value; hyperinsulinemic-euglycemic clamp technique), IMMR (contrast-enhanced ultrasound), osmolyte and water balance, and excretion of mineralocorticoids, glucocorticoids, and amino and organic acids after a low- and high-salt diet during 7 days in a randomized, double-blind, crossover design.RESULTSOn a low-, as compared with a high-salt, intake, MAP was lower, M/I value was lower, and IMMR was greater in both lean and abdominally obese individuals. In addition, natural logarithm IMMR was inversely associated with MAP in lean participants on a low-salt diet only. On a high-salt diet, free water clearance decreased, and excretion of glucocorticoids and of amino acids involved in the urea cycle increased.CONCLUSIONOur findings imply that hemodynamic and metabolic changes resulting from alterations in salt intake are not necessarily associated. Moreover, they are consistent with the concept that a high-salt intake increases muscle glucose uptake as a response to high salt-induced, glucocorticoid-driven muscle catabolism to stimulate urea production and thereby renal water conservation.TRIAL REGISTRATIONClinicalTrials.gov, NCT02068781.
Collapse
|
7
|
Lam T, McLean M, Hayden A, Poljak A, Cheema B, Gurney H, Stone G, Bahl N, Reddy N, Shahidipour H, Birzniece V. A potent liver-mediated mechanism for loss of muscle mass during androgen deprivation therapy. Endocr Connect 2019; 8:605-615. [PMID: 30991356 PMCID: PMC6510709 DOI: 10.1530/ec-19-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Androgen deprivation therapy (ADT) in prostate cancer results in muscular atrophy, due to loss of the anabolic actions of testosterone. Recently, we discovered that testosterone acts on the hepatic urea cycle to reduce amino acid nitrogen elimination. We now hypothesize that ADT enhances protein oxidative losses by increasing hepatic urea production, resulting in muscle catabolism. We also investigated whether progressive resistance training (PRT) can offset ADT-induced changes in protein metabolism. OBJECTIVE To investigate the effect of ADT on whole-body protein metabolism and hepatic urea production with and without a home-based PRT program. DESIGN A randomized controlled trial. PATIENTS AND INTERVENTION Twenty-four prostate cancer patients were studied before and after 6 weeks of ADT. Patients were randomized into either usual care (UC) (n = 11) or PRT (n = 13) starting immediately after ADT. MAIN OUTCOME MEASURES The rate of hepatic urea production was measured by the urea turnover technique using 15N2-urea. Whole-body leucine turnover was measured, and leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, was calculated. RESULTS ADT resulted in a significant mean increase in hepatic urea production (from 427.6 ± 18.8 to 486.5 ± 21.3; P < 0.01) regardless of the exercise intervention. Net protein loss, as measured by Lox/Lra, increased by 12.6 ± 4.9% (P < 0.05). PRT preserved lean body mass without affecting hepatic urea production. CONCLUSION As early as 6 weeks after initiation of ADT, the suppression of testosterone increases protein loss through elevated hepatic urea production. Short-term PRT was unable to offset changes in protein metabolism during a state of profound testosterone deficiency.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- Correspondence should be addressed to T Lam:
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Amy Hayden
- Department of Radiation Oncology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility and School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Birinder Cheema
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glenn Stone
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales, Australia
| | - Neha Bahl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Haleh Shahidipour
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| |
Collapse
|
8
|
Wei L, Chang J, Han Z, Wang R, Song L. Recombinant human growth hormone (rhGH) treatment of MKN-45 xenograft mice improves nutrition status and strengthens immune function without promoting tumor growth. PLoS One 2019; 14:e0210613. [PMID: 30673747 PMCID: PMC6343934 DOI: 10.1371/journal.pone.0210613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/30/2018] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to clarify the combined effects and dose-effect relationships of rhGH on tumor growth, nutrition status, and immune function in MKN-45 xenograft mice. In this study, animal models were induced in nude mice using the subcutaneous transplantation of MKN-45 cells, and rhGH was injected daily for 14 days. Three rhGH treatment dosages were set with reference to the equivalent dosage converted from human clinical dosage, including 2 IU (0.67 mg), 10 IU (3.35 mg) and 50 IU (16.75 mg) per kg body weight. The tumor volume, body weight and food intake were measured every two or three days. After 14 days of rhGH treatment, the tumors were isolated and weighed. The expression levels of Ki-67, vascular endothelial growth factor (VEGF) and CD31in tumor tissues were detected by immunohistochemistry (IHC). The protein expression levels of pJAK2, JAK2, pSTAT3, STAT3, pAKT, AKT, pERK and ERK were measured by western blotting. The percentage of active NK cells in peripheral blood mononuclear cells (PBMCs) was detected by fluorescence-activated cell sorting (FACS). The results showed that rhGH had improved the food intake, increased the body weight and strengthened the immune function of MKN-45 xenograft mice but had not promote tumor growth. MKN-45 xenograft mice treated with rhGH at a higher dosage gained more weight, while those treated with rhGH at a lower dosage showed stronger immune function and smaller tumor volume.
Collapse
Affiliation(s)
- Lianping Wei
- College of Life Science, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Jianrong Chang
- Scientific research center, Benbu Medical college, Benbu, Anhui Province, People’s Republic of China
| | - Zhen Han
- College of Life Science, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
| | - Ronghai Wang
- AnHui Anke Biotechnology (Group) Co.,Ltd. Hefei, Anhui Province, People’s Republic of China
| | - Lihua Song
- College of Life Science, Anhui Agricultural University, Hefei, Anhui Province, People’s Republic of China
- AnHui Anke Biotechnology (Group) Co.,Ltd. Hefei, Anhui Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
9
|
Abstract
Urea is generated by the urea cycle enzymes, which are mainly in the liver but are also ubiquitously expressed at low levels in other tissues. The metabolic process is altered in several conditions such as by diets, hormones, and diseases. Urea is then eliminated through fluids, especially urine. Blood urea nitrogen (BUN) has been utilized to evaluate renal function for decades. New roles for urea in the urinary system, circulation system, respiratory system, digestive system, nervous system, etc., were reported lately, which suggests clinical significance of urea.
Collapse
|
10
|
Thomsen KL, Grønbæk H, Glavind E, Hebbard L, Jessen N, Clouston A, George J, Vilstrup H. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function. Am J Physiol Gastrointest Liver Physiol 2014; 307:G295-301. [PMID: 24924745 DOI: 10.1152/ajpgi.00036.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is increasing in prevalence, yet its consequences for liver function are unknown. We studied ureagenesis, an essential metabolic liver function of importance for whole body nitrogen homeostasis, in a rodent model of diet-induced NASH. Rats were fed a high-fat, high-cholesterol diet for 4 and 16 wk, resulting in early and advanced experimental NASH, respectively. We examined the urea cycle enzyme mRNAs in liver tissue, the hepatocyte urea cycle enzyme proteins, and the in vivo capacity of urea-nitrogen synthesis (CUNS). Early NASH decreased all of the urea cycle mRNAs to an average of 60% and the ornithine transcarbamylase protein to 10%, whereas the CUNS remained unchanged. Advanced NASH further decreased the carbamoyl phosphate synthetase protein to 63% and, in addition, decreased the CUNS by 20% [from 5.65 ± 0.23 to 4.58 ± 0.30 μmol × (min × 100 g)(-1); P = 0.01]. Early NASH compromised the genes and enzyme proteins involved in ureagenesis, whereas advanced NASH resulted in a functional reduction in the capacity for ureagenesis. The pattern of urea cycle perturbations suggests a prevailing mitochondrial impairment by NASH. The decrease in CUNS has consequences for the ability of the body to adjust to changes in the requirements for nitrogen homeostasis e.g., at stressful events. NASH, thus, in terms of metabolic consequences, is not an innocuous lesion, and the manifestations of the damage seem to be a continuum with increasing disease severity.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark;
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Glavind
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lionel Hebbard
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, Australia
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark; The Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; and
| | - Andrew Clouston
- Centre for Liver Disease Research, School of Medicine, University of Queensland, Brisbane, Australia
| | - Jacob George
- Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney, Westmead, Australia
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Fernández-Pérez L, Santana-Farré R, de Mirecki-Garrido M, García I, Guerra B, Mateo-Díaz C, Iglesias-Gato D, Díaz-Chico JC, Flores-Morales A, Díaz M. Lipid profiling and transcriptomic analysis reveals a functional interplay between estradiol and growth hormone in liver. PLoS One 2014; 9:e96305. [PMID: 24816529 PMCID: PMC4015979 DOI: 10.1371/journal.pone.0096305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/05/2014] [Indexed: 01/21/2023] Open
Abstract
17β-estradiol (E2) may interfere with endocrine, metabolic, and gender-differentiated functions in liver in both females and males. Indirect mechanisms play a crucial role because of the E2 influence on the pituitary GH secretion and the GHR-JAK2-STAT5 signaling pathway in the target tissues. E2, through its interaction with the estrogen receptor, exerts direct effects on liver. Hypothyroidism also affects endocrine and metabolic functions of the liver, rendering a metabolic phenotype with features that mimic deficiencies in E2 or GH. In this work, we combined the lipid and transcriptomic analysis to obtain comprehensive information on the molecular mechanisms of E2 effects, alone and in combination with GH, to regulate liver functions in males. We used the adult hypothyroid-orchidectomized rat model to minimize the influence of internal hormones on E2 treatment and to explore its role in male-differentiated functions. E2 influenced genes involved in metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, immune, and male-specific responses. E2 induced a female-pattern of gene expression and inhibited GH-regulated STAT5b targeted genes. E2 did not prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. The combination of E2 and GH decreased transcriptional immune responses. E2 decreased the hepatic content of saturated fatty acids and induced a transcriptional program that seems to be mediated by the activation of PPARα. In contrast, GH inhibited fatty acid oxidation. Both E2 and GH replacements reduced hepatic CHO levels and increased the formation of cholesterol esters and triacylglycerols. Notably, the hepatic lipid profiles were endowed with singular fingerprints that may be used to segregate the effects of different hormonal replacements. In summary, we provide in vivo evidence that E2 has a significant impact on lipid content and transcriptome in male liver and that E2 exerts a marked influence on GH physiology, with implications in human therapy.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
- * E-mail:
| | - Ruymán Santana-Farré
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
| | - Mercedes de Mirecki-Garrido
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
| | - Irma García
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Animal Biology, University of La Laguna, Laboratory of Membrane Physiology and Biophysics, La Laguna, Spain
| | - Borja Guerra
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Carlos Mateo-Díaz
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Diego Iglesias-Gato
- Molecular Endocrinology group, University of Copenhagen - Novo Nordisk Center for Protein Research, Copenhagen, Denmark
| | - Juan Carlos Díaz-Chico
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria - Biomedical and Health Research Institute (IUIBS), Molecular and Translational Endocrinology Group, Las Palmas de Gran Canaria, Spain
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Amilcar Flores-Morales
- Molecular Endocrinology group, University of Copenhagen - Novo Nordisk Center for Protein Research, Copenhagen, Denmark
| | - Mario Díaz
- Cancer Research Institute of The Canary Islands (ICIC), Las Palmas de Gran Canaria, Canary Islands, Spain
- Department of Animal Biology, University of La Laguna, Laboratory of Membrane Physiology and Biophysics, La Laguna, Spain
| |
Collapse
|
12
|
Abstract
Inflammatory bowel disease, particularly Crohn's disease (CD), can potentially cause growth failure during childhood as well as a reduction in final adult height. The underlying mechanism is multifactorial and includes poor nutrition, chronic inflammation, and the prolonged use of steroids. Despite major advances in the treatment of CD, current cohorts of children continue to display a deficit in linear growth and may qualify for growth-promoting hormonal therapy. However, currently there is limited evidence to support the use of endocrine therapy directed primarily at improving growth. This review is aimed at summarising the current evidence for growth impairment in inflammatory bowel disease and discusses the rationale for using growth promoting therapy.
Collapse
|
13
|
Thomsen KL, Jessen N, Møller AB, Aagaard NK, Grønbæk H, Holst JJ, Vilstrup H. Regulation of urea synthesis during the acute-phase response in rats. Am J Physiol Gastrointest Liver Physiol 2013; 304:G680-6. [PMID: 23392238 DOI: 10.1152/ajpgi.00416.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The acute-phase response is a catabolic event involving increased waste of amino-nitrogen (N) via hepatic urea synthesis, despite an increased need for amino-N incorporation into acute-phase proteins. This study aimed to clarify the regulation of N elimination via urea during different phases of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained essentially unchanged over time. The CUNS rose after 3 h and then normalized. The acute-phase response was fully activated at 24 h with markedly increased serum levels of the acute-phase proteins. TNF-α acutely upregulated the CUNS. Later, despite the fully established 24-h acute-phase response and the decreased activity of the urea cycle enzyme genes, there was no change in the urea cycle enzyme proteins or the CUNS. Thus in no phase after the initiation of the acute-phase response was in vivo urea synthesis orchestrated in combination with acute-phase protein synthesis so as to limit N waste.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 44 Norrebrogade, DK-8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
14
|
Blumenthal S, Morgan-Boyd R, Nelson R, Garshelis DL, Turyk ME, Unterman T. Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus). Am J Physiol Endocrinol Metab 2011; 301:E628-36. [PMID: 21730258 DOI: 10.1152/ajpendo.00082.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den.
Collapse
Affiliation(s)
- Stanley Blumenthal
- Department of Medicine, University of Illinois at Chicago College of Medicine, USA
| | | | | | | | | | | |
Collapse
|
15
|
Birzniece V, Meinhardt UJ, Umpleby MA, Handelsman DJ, Ho KKY. Interaction between testosterone and growth hormone on whole-body protein anabolism occurs in the liver. J Clin Endocrinol Metab 2011; 96:1060-7. [PMID: 21239519 DOI: 10.1210/jc.2010-2521] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT GH and testosterone both exert protein-anabolic effects and may act synergistically. Liver and muscle are major sites of protein metabolism. OBJECTIVE Our objective was to determine whether the site of GH and testosterone interaction on protein metabolism is primarily hepatic or extrahepatic. DESIGN In this open-label randomized crossover study, the impact on whole-body protein metabolism of oral (solely hepatic testosterone exposure) and transdermal (systemic testosterone exposure) testosterone replacement in the presence or absence of GH was compared. PATIENTS AND INTERVENTION Eleven hypopituitary men with GH and testosterone deficiency were randomized to 2-wk treatments with transdermal testosterone (10 mg) or oral testosterone (40 mg), with or without GH replacement (0.6 mg/d). The dose of testosterone administered orally achieves physiological portal testosterone concentrations without spillover into the systemic circulation. MAIN OUTCOME MEASURES Whole-body leucine turnover was measured, from which leucine rate of appearance (LRa), an index of protein breakdown, and leucine oxidation (Lox), a measure of irreversible protein loss, were estimated at the end of each treatment. RESULTS In the absence of GH, neither transdermal nor oral testosterone affected LRa or Lox. GH therapy significantly increased LRa, an effect equally reduced by transdermal and oral testosterone administration. GH replacement alone did not significantly change Lox, whereas addition of testosterone treatment reduced Lox, with the effect not significantly different between transdermal and oral testosterone. CONCLUSIONS In the doses used, testosterone stimulates protein anabolism by reducing protein breakdown and oxidation only in the presence of GH. Because the net effect on protein metabolism during GH therapy is not different between systemic and solely hepatic testosterone administration, we conclude that the liver is the primary site of this hormonal interaction.
Collapse
Affiliation(s)
- Vita Birzniece
- Garvan Institute of Medical Research and Department of Endocrinology, St Vincent’s Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | | | |
Collapse
|
16
|
Thomsen KL, Aagaard NK, Nielsen SS, Grønbaek H, Jessen N, Frystyk J, Vilstrup H. Unchanged capacity of urea synthesis during acute phase response in rats. Eur J Clin Invest 2011; 41:16-22. [PMID: 20731702 DOI: 10.1111/j.1365-2362.2010.02369.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The acute phase response presents a catabolic event related to increased waste of amino-N via hepatic urea synthesis despite an increased need for amino-N incorporation into acute phase proteins. In our previous studies, tumour necrosis factor-α (TNF-α) acutely up-regulated the in vivo capacity of urea-nitrogen synthesis (CUNS) in rats before the hepatic acute phase response was established. To extend these observations, this study aimed to clarify the regulation of N elimination via urea during the later stages of the acute phase response. METHODS Twenty-four hours after i.v. injection of 25 μg kg(-1) TNF-α or placebo, we determined the in vivo CUNS, hepatocyte urea cycle enzyme protein levels and mRNA levels of the urea cycle enzyme genes in pair-fed rats. In addition, serum acute phase proteins and their liver mRNA levels were measured. RESULTS After TNF-α, CUNS and hepatocyte urea cycle enzyme protein expressions were unchanged while urea cycle enzyme mRNA levels decreased. Liver mRNA levels of α2MG, haptoglobin and α1AGP rose and their serum levels increased equally. CONCLUSION Despite a fully established 24-h acute phase response, there was no change in the in vivo capacity for disposal of amino-N by urea synthesis or in the urea cycle enzyme proteins, although the expression of the urea cycle enzyme genes was decreased. Thus, in vivo urea synthesis was not orchestrated together with acute phase protein synthesis so as to limit N waste despite genetic regulation to this effect. This may contribute towards catabolism of inflammation.
Collapse
Affiliation(s)
- Karen L Thomsen
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sandahl TD, Aagaard NK, Thomsen KL, Grøfte T, Greisen J, Christiansen JS, Vilstrup H. Effects of insulin-like growth factor-I administration on in vivo regulation of urea synthesis in normal subjects and patients with cirrhosis. Liver Int 2011; 31:132-7. [PMID: 21040412 DOI: 10.1111/j.1478-3231.2010.02362.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND The anabolic effects of insulin-like growth factor-I (IGF-I) may involve a decrease of hepatic nitrogen (N) clearance, but this has never been studied in humans. Patients with cirrhosis have low levels of IGF-I and might benefit from IGF-I therapy. Conversely, a possible decrease in hepatic N clearance by IGF-I could increase the risk of hepatic encephalopathy. AIMS To examine the effects of 1-week IGF-I administration on the functional hepatic N clearance (FHNC), viz. the linear slope of the relationship between blood-α-amino-N concentration and urea-N synthesis rate as controlled by an infusion of alanine. METHODS A randomized sequence-crossover placebo-controlled study. Eight healthy volunteers and eight patients with alcoholic cirrhosis received injections of saline or IGF-I twice daily (50 μg/kg) for 7 days. RESULTS IGF-I levels at baseline were lower in the patients than those in the controls. The IGF-I treatment normalized patient levels and caused an increase in the controls to supra-physiological levels. FHNC was lower in patients compared with healthy subjects (23.0 vs 36.5 L/h, P=0.03). IGF-I treatment reduced FHNC by 30% in healthy subjects (from 36.5 to 25.7 L/h, P = 0.02), whereas no effect was found in the patients. CONCLUSION IGF-I downregulates urea synthesis in normal subjects. This may be part of the explanation behind the anabolic effects of IGF-I. The normalization of IGF-I in cirrhosis patients without an effect on urea synthesis implies that the patients were resistant to IGF-I with regard to reduction of hepatic amino-N elimination. IGF-I treatment of cirrhosis patients evidently carries no risk of N accumulation.
Collapse
Affiliation(s)
- Thomas D Sandahl
- Department of Medicine V, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Thomsen KL, Nielsen SS, Aagaard NK, Sandahl TD, Grønbæk H, Frystyk J, Flyvbjerg A, Vilstrup H. Tumor necrosis factor-α acutely up-regulates urea synthesis in vivo in rats – a hepatic component of inflammatory catabolism? Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:151-7. [DOI: 10.3109/00365511003599537] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Karen L. Thomsen
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| | - Susanne S. Nielsen
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| | - Niels K. Aagaard
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| | - Thomas D. Sandahl
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| | - Henning Grønbæk
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| | - Jan Frystyk
- The Medical Research Laboratories, Clinical Institute, Aarhus University Hospital, Aarhus C, Denmark
| | - Allan Flyvbjerg
- The Medical Research Laboratories, Clinical Institute, Aarhus University Hospital, Aarhus C, Denmark
| | - Hendrik Vilstrup
- Department of Medicine V (Hepatology & Gastroenterology), Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
19
|
Aagaard NK, Grøfte T, Greisen J, Malmlöf K, Johansen PB, Grønbaek H, Ørskov H, Tygstrup N, Vilstrup H. Growth hormone and growth hormone secretagogue effects on nitrogen balance and urea synthesis in steroid treated rats. Growth Horm IGF Res 2009; 19:426-431. [PMID: 19231263 DOI: 10.1016/j.ghir.2009.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/06/2009] [Accepted: 01/11/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Growth hormone (GH) reduces the catabolic side effects of steroid treatment via effects on the amino-nitrogen metabolism. Ipamorelin is a synthetic peptide with GH releasing properties. We wished to study the metabolic effects of Ipamorelin and GH on selected hepatic measures of alpha-amino-nitrogen conversion during steroid-induced catabolism. DESIGN Five groups of rats were included: (1) free-fed controls (2) pair-fed controls (3) prednisolone (delcortol, 4 mg x kg(-1) x day(-1)) (4) prednisolone and GH (1 mg x kg(-1) x day(-1)) (5) prednisolone and Ipamorelin (0.5 mg x kg(-1) x day(-1)). After seven days the hepatic capacity of urea-N synthesis (CUNS) was determined in parallel with measurements of liver mRNA levels of urea cycle enzymes, whole-body N-balance, and N-contents of various organs. RESULTS Compared to pair-fed controls, prednisolone increased CUNS (p<0.01) as well as the expression of urea cycle genes (p<0.01), and decreased N-balance (p<0.01) as well as organ N-contents (p<0.05). Compared to prednisolone treated animals, co-administration of GH reduced CUNS by 33% (p<0.01), normalized urea cycle gene expression, improved N-balance 2.5-fold, and normalized or improved organ N-contents. In prednisolone treated rats Ipamorelin reduced CUNS by 20% (p<0.05), decreased the expression of urea cycle enzymes, neutralised N-balance, and normalized or improved organ N-contents. CONCLUSION Accelerated nitrogen wasting in the liver and other organs caused by prednisolone treatment was counteracted by treatment with either GH or its secretagogue Ipamorelin, though at the doses given less efficiently by the latter. This functional study of animals confirms that the GH secretagogue exerts GH related metabolic effects and may be useful in the treatment of steroid-induced catabolism.
Collapse
Affiliation(s)
- Niels Kristian Aagaard
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
It has been emphasized that the assessment of residual liver function is of paramount importance to determine the following: severity of acute or chronic liver diseases independent of etiology; long-term prognosis; step-by-step disease progression; surgical risk; and efficacy of antiviral treatment. The most frequently used tools are the galactose elimination capacity to asses hepatocyte cytosol activity, plasma clearance of indocyanine green to assess excretory function, and antipyrine clearance to estimate microsomal activity. However, a widely accepted liver test (not necessarily a laboratory one) to assess quantitative functional hepatic reserve still needs to be established, although there have been various proposals. Furthermore, who are the operators that should order these tests? Advances in analytic methods are expected to allow quantitative liver function tests to be used in clinical practice.
Collapse
|
21
|
Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 2008; 14:1049-57. [PMID: 18473854 PMCID: PMC3096551 DOI: 10.2174/138161208784246199] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Certain cancers may be auxotrophic for a particular amino acid, and amino acid deprivation is one method to treat these tumors. Arginine deprivation is a novel approach to target tumors which lack argininosuccinate synthetase (ASS) expression. ASS is a key enzyme which converts citrulline to arginine. Tumors which usually do not express ASS include melanoma, hepatocellular carcinoma, some mesotheliomas and some renal cell cancers. Arginine can be degraded by several enzymes including arginine deiminase (ADI). Although ADI is a microbial enzyme from mycoplasma, it has high affinity to arginine and catalyzes arginine to citrulline and ammonia. Citrulline can be recycled back to arginine in normal cells which express ASS, whereas ASS(-) tumor cells cannot. A pegylated form of ADI (ADI-PEG20) has been formulated and has shown in vitro and in vivo activity against melanoma and hepatocellular carcinoma. ADI-PEG20 induces apoptosis in melanoma cell lines. However, arginine deprivation can also induce ASS expression in certain melanoma cell lines which can lead to in vitro drug resistance. Phase I and II clinical trials with ADI-PEG20 have been conducted in patients with melanoma and hepatocellular carcinoma, and antitumor activity has been demonstrated in both cancers. This article reviews our laboratory and clinical experience as well as that from others with ADI-PEG20 as an antineoplastic agent. Future direction in utilizing this agent is also discussed.
Collapse
Affiliation(s)
- L Feun
- Hematology/Oncology, University of Miami School of Medicine, 1201 N.W. 16th Street, Miami, FL. 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
AIM In patients with cirrhosis, endotoxemia is frequent and the vitally important capacity for urea synthesis is impaired. The patients' mortality of infection is markedly increased, which could be related to adverse metabolic effects of endotoxins. The effects of endotoxins on in vivo urea synthesis and on urea cycle genes during cirrhosis are unknown. METHODS We examined the effects of a low dose of 0.5 mg/kg ip lipopolysaccharide (LPS) on the basal urea nitrogen synthesis rate (UNSR), the capacity of urea nitrogen synthesis (CUNS), liver tissue mRNA levels of urea cycle enzyme genes, and on the metabolic liver function measured by the galactose elimination capacity (GEC) in rats with cirrhosis induced by bile duct ligation and in control animals. RESULTS LPS and cirrhosis + LPS decreased UNSR by 40% (P < 0.05). Cirrhosis and LPS each tended to decrease CUNS and cirrhosis + LPS decreased CUNS by 40% (P < 0.05). Cirrhosis and LPS each decreased the mRNA level of the gene for the flux-generating urea cycle enzyme carbamoyl phosphate synthetase (CPS) and the mRNA for the rate-limiting urea cycle enzyme arginine succinate synthetase (ASS) (P < 0.05). Cirrhosis + LPS left the mRNA level of CPS unchanged and decreased that of ASS (P < 0.05). The GEC did not differ among the study groups. CONCLUSION Endotoxemia in rats with experimental cirrhosis markedly impaired the ability of the animals' livers to synthesize urea, suggesting a pathophysiological mechanism underlying the severe consequences of endotoxemia in human cirrhosis.
Collapse
Affiliation(s)
- Susanne Schouw Nielsen
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
23
|
Nielsen SS, Grøfte T, Grønbaek H, Tygstrup N, Vilstrup H. Opposite effects on regulation of urea synthesis by early and late uraemia in rats. Clin Nutr 2007; 26:245-51. [PMID: 17250930 DOI: 10.1016/j.clnu.2006.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 10/16/2006] [Accepted: 11/27/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIMS Acute and chronic kidney failure lead to catabolism with loss of lean body mass. Up-regulation of hepatic urea synthesis may play a role for the loss of body nitrogen and for the level of uraemia. The aims were to investigate the effects of early and late experimental renal failure on the regulation of hepatic urea synthesis and the expression of urea cycle enzyme genes in the liver. METHODS We examined the in vivo capacity of urea nitrogen synthesis, mRNA levels of urea cycle enzyme genes, and N-balances 6 days and 21 days after 5/6th partial nephrectomy in rats, and compared these data with pair- and free-fed control animals. RESULTS Compared with pair-fed animals, early uraemia halved the in vivo urea synthesis capacity and decreased urea gene expressions (P<0.05). In contrast, late uraemia up-regulated in vivo urea synthesis and expression of all urea genes (P<0.05), save that of the flux-generating enzyme carbamoyl phosphate synthetase. The N-balance in rats with early uraemia was markedly negative (P<0.05) and near zero in late uraemia. CONCLUSIONS Early uraemia down-regulated urea synthesis, so hepatic ureagenesis was not in itself involved in the negative N-balance. In contrast, late uraemia up-regulated urea synthesis, which probably contributed towards the reduced N-balance of this condition. These time-dependent, opposite effects on the uraemia-induced regulation of urea synthesis in vivo were not related to food restriction and probably mostly reflected regulation on gene level.
Collapse
Affiliation(s)
- Susanne Schouw Nielsen
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus University Hospital, 44 Noerrebrogade, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Nielsen SS, Grøfte T, Tygstrup N, Vilstrup H. Effect of lipopolysaccharide on in vivo and genetic regulation of rat urea synthesis. Liver Int 2005; 25:177-83. [PMID: 15698416 DOI: 10.1111/j.1478-3231.2005.01039.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND The acute phase response causes a negative nitrogen balance. It is unknown whether this involves regulation of hepatic urea synthesis. METHODS We examined the in vivo capacity of urea nitrogen synthesis (CUNS), mRNA levels of urea cycle enzyme genes and galactose elimination capacity (GEC) during moderate and severe acute phase response induced by low- and high-dose lipopolysaccharide (LPS) in rats. RESULTS Low-dose LPS doubled CUNS (P<0.05), decreased the mRNA level of the rate-limiting urea cycle enzyme (arginino succinate synthetase (ASS) by 26% (P<0.05) and did not change GEC. High-dose LPS did not change CUNS, decreased the mRNA level of the flux-generating enzyme carbamoyl phosphate synthetase (CPS) by 11% (P<0.05) and the rate-limiting urea cycle enzyme (ASS) by 27% (P<0.05) and almost halved GEC (P<0.05). CONCLUSION The moderate acute phase response up-regulated in vivo urea synthesis but had the opposite effect on gene level. The severe acute phase response decreased the functional liver mass that attenuated the increase in urea synthesis.
Collapse
|
25
|
Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1887-99. [PMID: 12709047 DOI: 10.1046/j.1432-1033.2003.03559.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Argininosuccinate synthetase (ASS, EC 6.3.4.5) catalyses the condensation of citrulline and aspartate to form argininosuccinate, the immediate precursor of arginine. First identified in the liver as the limiting enzyme of the urea cycle, ASS is now recognized as a ubiquitous enzyme in mammalian tissues. Indeed, discovery of the citrulline-NO cycle has increased interest in this enzyme that was found to represent a potential limiting step in NO synthesis. Depending on arginine utilization, location and regulation of ASS are quite different. In the liver, where arginine is hydrolyzed to form urea and ornithine, the ASS gene is highly expressed, and hormones and nutrients constitute the major regulating factors: (a) glucocorticoids, glucagon and insulin, particularly, control the expression of this gene both during development and adult life; (b) dietary protein intake stimulates ASS gene expression, with a particular efficiency of specific amino acids like glutamine. In contrast, in NO-producing cells, where arginine is the direct substrate in the NO synthesis, ASS gene is expressed at a low level and in this way, proinflammatory signals constitute the main factors of regulation of the gene expression. In most cases, regulation of ASS gene expression is exerted at a transcriptional level, but molecular mechanisms are still poorly understood.
Collapse
Affiliation(s)
- Annie Husson
- ADEN, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23 (IFRMP 23), Rouen, France.
| | | | | | | | | |
Collapse
|
26
|
Bush JA, Wu G, Suryawan A, Nguyen HV, Davis TA. Somatotropin-induced amino acid conservation in pigs involves differential regulation of liver and gut urea cycle enzyme activity. J Nutr 2002; 132:59-67. [PMID: 11773509 DOI: 10.1093/jn/132.1.59] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatotropin (ST) treatment promotes animal growth and allows for the conservation of amino acids by increasing nitrogen retention and reducing ureagenesis and amino acid oxidation. To determine whether the improvement in amino acid conservation with ST treatment involves regulation of urea cycle enzyme activities in both liver and intestine, growing swine were treated with either ST (150 microg x kg(-1) x d(-1)) or saline for 7 d. Fully fed pigs (n = 20) were infused intravenously for 2 h with NaH(13)CO(3) followed by a 4-h intraduodenal infusion of [1-(13)C]phenylalanine. Arterial and portal venous blood and breath samples were obtained at baseline and steady-state conditions for measurement of amino acid and blood urea nitrogen (BUN) concentrations and whole-body phenylalanine oxidation. Urea cycle enzyme activities were determined in liver and jejunum. ST decreased BUN (-46%), arterial (-34%) and portal venous (-43%) amino acid concentrations and whole-body phenylalanine oxidation (-30%). The activities of carbamoylphosphate synthase-I (-45%), argininosuccinate synthase (-38%), argininosuccinate lyase (-23%), arginase (-27%), and glutaminase (-18%), but not of ornithine carbamoyltransferase, ornithine aminotransferase, or glutamate dehydrogenase were reduced in liver of ST-treated pigs. ST slightly increased intestinal activity of glutaminase (+9%) but did not affect that of any other enzymes. ST decreased hepatic, but increased jejunal, N-acetylglutamate (an essential allosteric activator of carbamoylphosphate synthase-I; -26% and +32%, respectively) and carbamoylphosphate (a substrate for ornithine carbamoyltransferase; -20% and +28%, respectively) content. These results demonstrate that the reduced amino acid catabolism with ST treatment in growing pigs involves a reduction in hepatic urea cycle enzyme activities. The effect of ST treatment on porcine urea cycle enzymes is tissue-specific and is associated with a reduction in substrate availability for hepatic ureagenesis.
Collapse
Affiliation(s)
- Jill A Bush
- U.S. Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Grøfte T, Jensen DS, Greisen J, Tygstrup N, Vilstrup H. Growth hormone and insulin-like growth factor-I counteracts established steroid catabolism in rats by effects on hepatic amino-N degradation. J Hepatol 2001; 35:700-6. [PMID: 11738095 DOI: 10.1016/s0168-8278(01)00255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Long-term steroid treatment causes protein wasting. Liver contributes towards this by upregulating ureagenesis. Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are anabolic agents with specific hepatic effects. It is unknown whether IGF-I alone and/or in combination with GH have any effect on established hepatic amino-N catabolism during long-term glucocorticoid treatment. METHODS We measured the spontaneous (UNSR) and the substrate standardized rate of urea nitrogen synthesis (STUNSR), N-balance and mRNA levels of urea cycle enzymes in controls (placebo) and four longterm steroid treated groups given (1) prednisolone 4 mg/kg/day during 28 days (St) (2) +GH 1 mg/kg/day from day 21-28 (StGH) (3) +IGF-I 1.5 mg/kg/day 21-28 (StIGF) (4) GH +IGF-I (StGHIGF). RESULTS Steroid induced weight loss was stepwisely reversed by IGF-I, GH and both. UNSR, STUNSR and mRNA levels of urea cycle enzymes in the liver increased markedly after steroid treatment, and was normalized after co-administration of GH and IGF-I. N-balance improved after GH and IGF-I administration. CONCLUSIONS Our results expands the knowledge of beneficial effects of GH on short-term steroid catabolism to include effects of IGF-I and IGF-I combined with GH on long-term steroid catabolism. Both peptides prevent steroid induced hepatic protein wasting and thereby contribute towards whole body anabolism. The effect in vivo is probably due to an effect of the peptides on urea cycle enzyme mRNA.
Collapse
Affiliation(s)
- T Grøfte
- Department of Hepatology V, Aarhus University Hospital, DK-8000 C, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
29
|
Mashek DG, Ingvartsen KL, Andersen JB, Vestergaard M, Larsen T. Effects of a four-day hyperinsulinemic-euglycemic clamp in early and mid-lactation dairy cows on plasma concentrations of metabolites, hormones, and binding proteins. Domest Anim Endocrinol 2001; 21:169-85. [PMID: 11707363 DOI: 10.1016/s0739-7240(01)00112-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of insulin, using a 4 d hyperinsulinemic-euglycemic clamp, on plasma concentrations of hormone, metabolites, and binding proteins were evaluated in four Holstein dairy cows during wk 4 and 17 of lactation. Insulin was infused at 1 microg/kg/hr for 96 hr during the clamp period. Compared with the pre-clamp period, plasma insulin concentrations increased 7-fold and 4-fold during the clamp periods in early and mid-lactation, respectively. The total amount of glucose infused was higher (P < 0.05) during the clamp in early lactation. The clamp decreased plasma concentrations of non-esterified fatty acids (P < 0.001) during early lactation while differences in mid-lactation were minor. The clamp also decreased plasma concentration of beta-hydroxybutyrate (P < 0.001), plasma urea nitrogen (P < 0.001), and true protein (P < 0.01) although the patterns of decline differed between early and mid-lactation. Growth hormone (GH) concentrations decreased (P < 0.001) and insulin-like growth factor-1 (IGF-1) increased (P < 0.01) during the clamp period suggesting a direct effect of insulin on the un-coupling of the GH/IGF-1 axis. Levels of IGF binding protein-2 (IGFBP-2) decreased (P < 0.01) during the clamp period. The relative proportion of IGFBP-2 decreased (P < 0.001) and that of IGFBP-3 increased (P < 0.001) during the clamp period. There were no interactions between the clamp period and stage of lactation on GH, IGF-1, or IGFBPs. Overall, most plasma variables measured were affected in the same way during the two clamps, but the pattern of change often varied with stage of lactation.
Collapse
Affiliation(s)
- D G Mashek
- Danish Institute of Agricultural Sciences, Department of Animal Health and Welfare, Research Centre Foulum, P.O. Box 50, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
30
|
Flores-Morales A, Ståhlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, Quackenbush J, Lee NH, Norstedt G. Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology 2001; 142:3163-76. [PMID: 11416039 DOI: 10.1210/endo.142.7.8235] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complementary DNA microarrays containing 3000 different rat genes were used to study the consequences of severe hormonal deficiency (hypophysectomy) on the gene expression patterns in heart, liver, and kidney. Hybridization signals were seen from a majority of the arrayed complementary DNAs; nonetheless, tissue-specific expression patterns could be delineated. Hypophysectomy affected the expression of genes involved in a variety of cellular functions. Between 16-29% of the detected transcripts from each tissue changed expression level as a reaction to this condition. Chronic treatment of hypophysectomized animals with human GH also caused significant changes in gene expression patterns. The study confirms previous knowledge concerning certain gene expression changes in the above-mentioned situations and provides new information regarding hypophysectomy and chronic human GH effects in the rat. Furthermore, we have identified several new genes that respond to GH treatment. Our results represent a first step toward a more global understanding of gene expression changes in states of hormonal deficiency.
Collapse
Affiliation(s)
- A Flores-Morales
- Department of Molecular Medicine, Karolinska Institute, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ljungmann K, Grofte T, Kissmeyer-Nielsen P, Flyvbjerg A, Vilstrup H, Tygstrup N, Laurberg S. GH decreases hepatic amino acid degradation after small bowel resection in rats without enhancing bowel adaptation. Am J Physiol Gastrointest Liver Physiol 2000; 279:G700-6. [PMID: 11005756 DOI: 10.1152/ajpgi.2000.279.4.g700] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Growth hormone (GH) treatment in short bowel syndrome is controversial, and the mechanisms of a possible positive effect remain to be elucidated. Rats were randomly subjected to either an 80% jejunoileal resection or sham operation and were given either placebo (NaCl) or biosynthetic rat GH (brGH). The in vivo capacity of urea nitrogen synthesis (CUNS) and the expression of urea cycle enzymes were measured and related to changes in body weight and adaptive growth in ileal segments on days 7 and 14. Ileal segments were examined by unbiased stereological techniques. brGH treatment decreased CUNS among the resected rats by 19% (P<0.05) and 36% (P<0.05) on days 7 and 14, respectively. The mRNA levels of urea cycle enzyme genes were not influenced by brGH treatment. brGH treatment did not increase the adaptive growth in the ileal segments. In conclusion, we found that GH treatment decreased the accelerated postoperative hepatic amino acid degradation in experimental short bowel syndrome without enhancing the morphological intestinal adaptation.
Collapse
Affiliation(s)
- K Ljungmann
- Surgical Research Unit, Department of Surgery L, University Hospital of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Petersen KF, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann WC, Landau BR, Shulman GI. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E529-35. [PMID: 10070020 DOI: 10.1152/ajpendo.1999.276.3.e529] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Net hepatic glycogenolysis and gluconeogenesis were examined in normal (n = 4) and cirrhotic (n = 8) subjects using two independent methods [13C nuclear magnetic resonance spectroscopy (NMR) and a 2H2O method]. Rates of net hepatic glycogenolysis were calculated by the change in hepatic glycogen content before ( approximately 11:00 PM) and after ( approximately 7:00 AM) an overnight fast using 13C NMR and magnetic resonance imaging. Gluconeogenesis was calculated as the difference between the rates of glucose production determined with an infusion of [6,6-2H2]glucose and net hepatic glycogenolysis. In addition, the contribution of gluconeogenesis to glucose production was determined by the 2H enrichment in C-5/C-2 of blood glucose after intake of 2H2O (5 ml/kg body water). Plasma levels of total and free insulin-like growth factor I (IGF-I) and IGF-I binding proteins-1 and -3 were significantly decreased in the cirrhotic subjects (P < 0.01 vs. controls). Postprandial hepatic glycogen concentrations were 34% lower in the cirrhotic subjects (P = 0.007). Rates of glucose production were similar between the cirrhotic and healthy subjects [9.0 +/- 0.9 and 10.0 +/- 0.8 micromol. kg body wt-1. min-1, respectively]. Net hepatic glycogenolysis was 3.5-fold lower in the cirrhotic subjects (P = 0.01) and accounted for only 13 +/- 6% of glucose production compared with 40 +/- 10% (P = 0.03) in the control subjects. Gluconeogenesis was markedly increased in the cirrhotic subjects and accounted for 87 +/- 6% of glucose production vs. controls: 60 +/- 10% (P = 0.03). Gluconeogenesis in the cirrhotic subjects, as determined from the 2H enrichment in glucose C-5/C-2, was also increased and accounted for 68 +/- 3% of glucose production compared with 54 +/- 2% (P = 0.02) in the control subjects. In conclusion, cirrhotic subjects have increased rates of gluconeogenesis and decreased rates of net hepatic glycogenolysis compared with control subjects. These alterations are likely important contributing factors to their altered carbohydrate metabolism.
Collapse
Affiliation(s)
- K F Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Conneticut 06520-8020, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tovar AR, Santos A, Halhali A, Bourges H, Torres N. Hepatic histidase gene expression responds to protein rehabilitation in undernourished growing rats. J Nutr 1998; 128:1631-5. [PMID: 9772128 DOI: 10.1093/jn/128.10.1631] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied the effect of nutritional rehabilitation with a 6, 18 or 50% casein diet in undernourished rats on histidase (Hal) expression. Undernutrition was induced by feeding rats a 0.5% casein diet for 5 wk. Over this period, growth, serum total proteins and insulin-like growth factor-I (IGF-I) levels were significantly lower than those of rats that freely consumed an 18% casein diet. During this period, undernutrition also significantly reduced Hal activity and Hal-mRNA concentration. Nutritional rehabilitation for 21 d with a 6% casein diet did not change any of these variables. Nutritional rehabilitation with an 18 or 50% casein diet for 1 d initiated the restoration of Hal activity and mRNA concentration. After 10 d of consuming 18 or 50% casein diets, Hal activity was 5- and 14-fold, and mRNA concentration was 8.5- and 23-fold higher, respectively, than in the protein-undernourished group (PU). During this period, body weight, total serum proteins and IGF-I levels were also significantly (P < 0.05) higher than those of the PU group. At the end of 21 d of rehabilitation with an 18 or 50% casein diet, Hal activity was 14- and 31-fold higher and Hal mRNA concentration was 10- and 24-fold higher, respectively, than in the PU group. In conclusion, our data showed that rehabilitation of undernourished rats with a 6% casein diet was not sufficient to re-establish growth indicators, Hal activity or gene expression, and that nutritional rehabilitation with an 18 or 50% casein diet effectively re-established body weight , biochemical variables and the capacity of histidase gene expression to eliminate the excess of protein.
Collapse
Affiliation(s)
- A R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de la Nutrición,"Salvador Zubirán" México, D.F. México, 14000, USA
| | | | | | | | | |
Collapse
|
34
|
Grøfte T, Jensen DS, Grønbaek H, Wolthers T, Jensen SA, Tygstrup N, Vilstrup H. Effects of growth hormone on steroid-induced increase in ability of urea synthesis and urea enzyme mRNA levels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E79-86. [PMID: 9688877 DOI: 10.1152/ajpendo.1998.275.1.e79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth hormone (GH) reduces the catabolic side effects of steroid treatment due to its effects on tissue protein synthesis/degradation. Little attention is focused on hepatic amino acid degradation and urea synthesis. Five groups of rats were given 1) placebo, 2) prednisolone, 3) placebo, pair fed to the steroid group, 4) GH, and 5) prednisolone and GH. After 7 days, the in vivo capacity of urea N synthesis (CUNS) was determined by saturating alanine infusion, in parallel with measurements of liver mRNA levels of urea cycle enzymes, N contents of organs, N balance, and hormones. Prednisolone increased CUNS (micromol . min-1 . 100 g-1, mean +/- SE) from 9.1 +/- 1.0 (pair-fed controls) to 13.2 +/- 0.8 (P < 0.05), decreased basal blood alpha-amino N concentration from 4.2 +/- 0.5 to 3.1 +/- 0.3 mmol/l (P < 0.05), increased mRNA levels of the rate- and flux-limiting urea cycle enzymes by 20 and 65%, respectively (P < 0. 05), and decreased muscle N contents and N balance. In contrast, GH decreased CUNS from 6.1 +/- 0.9 (free-fed controls) to 4.2 +/- 0.5 (P < 0.05), decreased basal blood alpha-amino N concentration from 3. 8 +/- 0.3 to 3.2 +/- 0.2, decreased mRNA levels of the rate- and flux-limiting urea cycle enzymes to 60 and 40%, respectively (P < 0. 05), and increased organ N contents and N balance. Coadministration of GH abolished all steroid effects. We found that prednisolone increases the ability of amino N conversion into urea N and urea cycle gene expression. GH had the opposite effects and counteracted the N-wasting side effects of prednisolone.
Collapse
Affiliation(s)
- T Grøfte
- Department of Medicine V, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
35
|
Wolthers T, Grøfte T, Jørgensen JO, Vilstrup H. Growth hormone prevents prednisolone-induced increase in functional hepatic nitrogen clearance in normal man. J Hepatol 1997; 27:789-95. [PMID: 9382964 DOI: 10.1016/s0168-8278(97)80314-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Glucocorticoid treatment increases urea excretion and leads to negative nitrogen balance. This effect is presumed mainly to reflect actions on tissue protein metabolism, but has been shown in rats to involve an hepatic element in the form of upregulation of the kinetics of ureagenesis. Likewise, the anabolic action of growth hormone administration has been shown to involve an hepatic element, just as growth hormone administration has been shown to prevent the protein catabolic side effects of prednisolone. Whether glucocorticoids increase the ability of the liver to convert amino-N to urea-N in man, and whether growth hormone counteracts any possible effect of glucocorticoid has not been studied. METHODS We measured urea nitrogen synthesis rates and blood alpha-amino-N levels before, during, and after a 4-h constant i.v. infusion of alanine (2 mmol x kg BW(-1) x h(-1)). The urea nitrogen synthesis rate was estimated hourly as urinary excretion corrected for gut hydrolysis and accumulation in body water. The slope of the linear relationship between urea nitrogen synthesis rate and amino-N concentration represents the hepatic kinetics of conversion of amino- to urea-N, and is denoted the functional hepatic nitrogen clearance. Eight normal male subjects (aged 22-28 years; BMI 21.6-26.3 kg/m2) were randomly studied four times: i) after 4 days of s.c. saline injections, ii) after 4 days of s.c. growth hormone injections (0.1 IU x kg(-1) x day(-1)), iii) after 4 days of glucocorticoid administration (50 mg/d) and iv) after 4 days of growth hormone and glucocorticoid administration. All injections were given at 20 00 hours and 25 mg prednisolone was given morning and evening. RESULTS Growth hormone decreased functional hepatic nitrogen clearance (l/h) by 21% (from 38.8+/-1.8 l/h (control) to 30.5+/-2.7 l/h (4 d growth hormone) (mean+/-SE) (ANOVA; p<0.05)). Glucocorticoid increased functional hepatic nitrogen clearance by 23% (47.7+/-3.3 l/h, p<0.05), while growth hormone plus glucocorticoid offset any effect on functional hepatic nitrogen clearance (36.2+/-3.3 l/h, p=0.83). CONCLUSIONS Glucocorticoid administration leads to loss of nitrogen as urea, in part due to a specific hepatic mechanism, as shown by the increased functional hepatic nitrogen clearance. Growth hormone has the opposite effect, and also neutralises the glucocorticoid effect when given together with prednisolone. This adds to the understanding of the development and treatment possibilities of steroid catabolism.
Collapse
Affiliation(s)
- T Wolthers
- Department of Medicine M (Endocrinology and Diabetes), Aarhus University Hospital, Kommunehospitalet, Denmark
| | | | | | | |
Collapse
|