1
|
Luo J, Li J, Li P, Liang X, Hassan HM, Moreau R, Li J. Acute-on-chronic liver failure: far to go-a review. Crit Care 2023; 27:259. [PMID: 37393351 PMCID: PMC10315037 DOI: 10.1186/s13054-023-04540-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) has been recognized as a severe clinical syndrome based on the acute deterioration of chronic liver disease and is characterized by organ failure and high short-term mortality. Heterogeneous definitions and diagnostic criteria for the clinical condition have been proposed in different geographic regions due to the differences in aetiologies and precipitating events. Several predictive and prognostic scores have been developed and validated to guide clinical management. The specific pathophysiology of ACLF remains uncertain and is mainly associated with an intense systemic inflammatory response and immune-metabolism disorder based on current evidence. For ACLF patients, standardization of the treatment paradigm is required for different disease stages that may provide targeted treatment strategies for individual needs.
Collapse
Affiliation(s)
- Jinjin Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiaqi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital Affiliated of Hangzhou Medical College, Hangzhou, China
| | - Peng Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xi Liang
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF CLIF), Barcelona, Spain.
- Centre de Recherche Surl'Inflammation (CRI), Institut National de La Santé Et de La Recherche Médicale (INSERM) & Université Paris-Cité, Paris, France.
- Service d'Hépatologie, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Beaujon, Clichy, France.
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
2
|
Zhai H, Zhang J, Shang D, Zhu C, Xiang X. The progress to establish optimal animal models for the study of acute-on-chronic liver failure. Front Med (Lausanne) 2023; 10:1087274. [PMID: 36844207 PMCID: PMC9947362 DOI: 10.3389/fmed.2023.1087274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) defines a complicated and multifaceted syndrome characterized by acute liver dysfunction following an acute insult on the basis of chronic liver diseases. It is usually concurrent with bacterial infection and multi-organ failure resulting in high short-term mortality. Based on the cohort studies in ACLF worldwide, the clinical course of ACLF was demonstrated to comprise three major stages including chronic liver injury, acute hepatic/extrahepatic insult, and systemic inflammatory response caused by over-reactive immune system especially bacterial infection. However, due to the lack of optimal experimental animal models for ACLF, the progress of basic study on ACLF is limping. Though several experimental ACLF models were established, none of them can recapitulate and simulate the whole pathological process of ACLF patients. Recently, we have developed a novel mouse model for ACLF combining chronic liver injury [injection of carbon tetrachloride (CCl4) for 8 weeks], acute hepatic insult (injection of a double dose CCl4), and bacterial infection (intraperitoneal injection of Klebsiella pneumoniae), which could recapitulate the major clinical features of patients with ACLF worsened by bacterial infection.
Collapse
Affiliation(s)
- Hengben Zhai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, China,Chuanwu Zhu,
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiaogang Xiang,
| |
Collapse
|
3
|
Hassan HM, Li J. Prospect of Animal Models for Acute-on-chronic Liver Failure: A Mini-review. J Clin Transl Hepatol 2022; 10:995-1003. [PMID: 36304511 PMCID: PMC9547251 DOI: 10.14218/jcth.2022.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome that develops in patients with chronic liver diseases following a precipitating event and associated with a high mortality rate due to systemic multiorgan failure. Establishing a suitable and stable animal model to precisely elucidate the molecular basis of ACLF pathogenesis is essential for the development of effective early diagnostic and treatment strategies. In this context, this article provides a concise and inclusive review of breakthroughs in ACLF animal model development.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Correspondence to: Jun Li, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003. China. ORCID: https://orcid.org/0000-0002-7236-8088. Tel/Fax: +86-571-87236425, E-mail:
| |
Collapse
|
4
|
Hadjihambi A, Cudalbu C, Pierzchala K, Simicic D, Donnelly C, Konstantinou C, Davies N, Habtesion A, Gourine AV, Jalan R, Hosford PS. Abnormal brain oxygen homeostasis in an animal model of liver disease. JHEP Rep 2022; 4:100509. [PMID: 35865351 PMCID: PMC9293761 DOI: 10.1016/j.jhepr.2022.100509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 01/15/2023] Open
Abstract
Background & Aims Increased plasma ammonia concentration and consequent disruption of brain energy metabolism could underpin the pathogenesis of hepatic encephalopathy (HE). Brain energy homeostasis relies on effective maintenance of brain oxygenation, and dysregulation impairs neuronal function leading to cognitive impairment. We hypothesised that HE is associated with reduced brain oxygenation and we explored the potential role of ammonia as an underlying pathophysiological factor. Methods In a rat model of chronic liver disease with minimal HE (mHE; bile duct ligation [BDL]), brain tissue oxygen measurement, and proton magnetic resonance spectroscopy were used to investigate how hyperammonaemia impacts oxygenation and metabolic substrate availability in the central nervous system. Ornithine phenylacetate (OP, OCR-002; Ocera Therapeutics, CA, USA) was used as an experimental treatment to reduce plasma ammonia concentration. Results In BDL animals, glucose, lactate, and tissue oxygen concentration in the cerebral cortex were significantly lower than those in sham-operated controls. OP treatment corrected the hyperammonaemia and restored brain tissue oxygen. Although BDL animals were hypotensive, cortical tissue oxygen concentration was significantly improved by treatments that increased arterial blood pressure. Cerebrovascular reactivity to exogenously applied CO2 was found to be normal in BDL animals. Conclusions These data suggest that hyperammonaemia significantly decreases cortical oxygenation, potentially compromising brain energy metabolism. These findings have potential clinical implications for the treatment of patients with mHE. Lay summary Brain dysfunction is a serious complication of cirrhosis and affects approximately 30% of these patients; however, its treatment continues to be an unmet clinical need. This study shows that oxygen concentration in the brain of an animal model of cirrhosis is markedly reduced. Low arterial blood pressure and increased ammonia (a neurotoxin that accumulates in patients with liver failure) are shown to be the main underlying causes. Experimental correction of these abnormalities restored oxygen concentration in the brain, suggesting potential therapeutic avenues to explore.
Collapse
Key Words
- 1H-MRS, proton magnetic resonance spectroscopy
- AIT, Animal Imaging and Technology
- ALT, alanine transaminase
- ATZ, acetazolamide
- Ala, alanine
- Asc, ascorbate
- Asp, aspartate
- BDL, bile duct ligation
- BOLD, blood oxygen level dependent
- BP, blood pressure
- CBF, cerebral blood flow
- CIBM, Center for Biomedical Imaging
- CLD, chronic liver disease
- CMRO2, cerebral metabolic rate of oxygen
- CNS, central nervous system
- Chronic liver disease
- Cr, creatine
- EPFL, Ecole Polytechnique Fédérale de Lausanne
- GABA, γ-aminobutyric acid
- GPC, glycerophosphocholine
- GSH, glutathione
- Glc, glucose
- Gln, glutamine
- Glu, glutamate
- HE, hepatic encephalopathy
- Hyperammonaemia
- Ins, myo-inositol
- Lac, lactate
- MAP, mean arterial pressure
- NAA, N acetylaspartate
- NO, nitric oxide
- OP, ornithine phenylacetate
- Ornithine phenylacetate
- Oxygen
- PCho, phosphocholine
- PCr, phosphocreatine
- PE, phenylephrine
- Phenylephrine
- SPECIAL, spin echo full intensity acquired localised
- TE, echo time
- Tau, taurine
- VOI, volume of interest
- [18F]-FDG PET, [18F]-fluorodeoxyglucose positron emission tomography
- eNOS, endothelial nitric oxide synthase
- fMRI, functional magnetic resonance imaging
- hepatic encephalopathy
- mHE, minimal HE
- pCO2, partial pressure of carbon dioxide
- pO2, partial pressure of oxygen
- tCho, total choline
- tCr, total creatine
Collapse
Affiliation(s)
- Anna Hadjihambi
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chris Donnelly
- Institute of Sports Science and Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London, UK
- European Foundation for the Study of Chronic Liver Failure
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
5
|
Guth I, Matos-Pardal C, Ferreira-Lima R, Loureiro-Rebouças R, Sobral A, Moraes-Marques C, Kubrusly L. Caffeine attenuates liver damage and improves neurologic signs in a rat model of hepatic encephalopathy. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2022; 87:159-169. [DOI: 10.1016/j.rgmxen.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
|
6
|
Kronsten VT, Woodhouse CA, Zamalloa A, Lim TY, Edwards LA, Martinez-Llordella M, Sanchez-Fueyo A, Shawcross DL. Exaggerated inflammatory response to bacterial products in decompensated cirrhotic patients is orchestrated by interferons IL-6 and IL-8. Am J Physiol Gastrointest Liver Physiol 2022; 322:G489-G499. [PMID: 35195033 PMCID: PMC8993594 DOI: 10.1152/ajpgi.00012.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cirrhosis-associated immune dysfunction (CAID) contributes to disease progression and organ failure development. We interrogated immune system function in nonseptic compensated and decompensated cirrhotic patients using the TruCulture whole blood stimulation system, a novel technique that allows a more accurate representation than traditional methods, such as peripheral blood mononuclear cell culture, of the immune response in vivo. Thirty cirrhotics (21 decompensated and 9 compensated) and seven healthy controls (HCs) were recruited. Whole blood was drawn directly into three TruCulture tubes [unstimulated to preloaded with heat-killed Escherichia coli 0111:B4 (HKEB) or lipopolysaccharide (LPS)] and incubated in dry heat blocks at 37°C for 24 h. Cytokine analysis of the supernatant was performed by multiplex assay. Cirrhotic patients exhibited a robust proinflammatory response to HKEB compared with HCs, with increased production of interferon-γ-induced protein 10 (IP-10) and IFN-λ1, and to LPS, with increased production of IFN-λ1. Decompensated patients demonstrated an augmented immune response compared with compensated patients, orchestrated by an increase in type I, II, and III interferons, and higher levels of IL-1β, IL-6, and IL-8 post-LPS stimulation. IL-1β, TNF-α, and IP-10 post-HKEB stimulation and IP-10 post-LPS stimulation negatively correlated with biochemical markers of liver disease severity and liver disease severity scores. Cirrhotic patients exposed to bacterial products exhibit an exaggerated inflammatory response orchestrated by IFNs, IL-6, and IL-8. Poststimulation levels of a number of proinflammatory cytokines negatively correlate with markers of liver disease severity raising the possibility that the switch to an immunodeficient phenotype in CAID may commence earlier in the course of advanced liver disease. NEW & NOTEWORTHY Decompensated cirrhotic patients, compared with compensated patients, exhibit a greater exaggerated inflammatory response to bacterial products orchestrated by interferons, IL-6, and IL-8. Postbacterial product stimulation levels of a number of pro-inflammatory cytokines negatively correlate with liver disease severity biomarkers and liver disease severity scores raising the possibility that the switch to an immunodeficient phenotype in cirrhosis-associated immune dysfunction may commence earlier in the course of advanced liver disease.
Collapse
Affiliation(s)
- Victoria T. Kronsten
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Charlotte A. Woodhouse
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Tiong Yeng Lim
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lindsey A. Edwards
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Marc Martinez-Llordella
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Debbie L. Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Angelova PR, Kerbert AJ, Habtesion A, Hall A, Abramov AY, Jalan R. Hyperammonemia induces mitochondrial dysfunction and neuronal cell death. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100510. [PMID: 35845295 PMCID: PMC9278080 DOI: 10.1016/j.jhepr.2022.100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Background & Aims In cirrhosis, astrocytic swelling is believed to be the principal mechanism of ammonia neurotoxicity leading to hepatic encephalopathy (HE). The role of neuronal dysfunction in HE is not clear. We aimed to explore the impact of hyperammonaemia on mitochondrial function in primary co-cultures of neurons and astrocytes and in acute brain slices of cirrhotic rats using live cell imaging. Methods To primary cocultures of astrocytes and neurons, low concentrations (1 and 5 μM) of NH4Cl were applied. In rats with bile duct ligation (BDL)-induced cirrhosis, a model known to induce hyperammonaemia and minimal HE, acute brain slices were studied. One group of BDL rats was treated twice daily with the ammonia scavenger ornithine phenylacetate (OP; 0.3 g/kg). Fluorescence measurements of changes in mitochondrial membrane potential (Δψm), cytosolic and mitochondrial reactive oxygen species (ROS) production, lipid peroxidation (LP) rates, and cell viability were performed using confocal microscopy. Results Neuronal cultures treated with NH4Cl exhibited mitochondrial dysfunction, ROS overproduction, and reduced cell viability (27.8 ± 2.3% and 41.5 ± 3.7%, respectively) compared with untreated cultures (15.7 ± 1.0%, both p <0.0001). BDL led to increased cerebral LP (p = 0.0003) and cytosolic ROS generation (p <0.0001), which was restored by OP (both p <0.0001). Mitochondrial function was severely compromised in BDL, resulting in hyperpolarisation of Δψm with consequent overconsumption of adenosine triphosphate and augmentation of mitochondrial ROS production. Administration of OP restored Δψm. In BDL animals, neuronal loss was observed in hippocampal areas, which was partially prevented by OP. Conclusions Our results elucidate that low-grade hyperammonaemia in cirrhosis can severely impact on brain mitochondrial function. Profound neuronal injury was observed in hyperammonaemic conditions, which was partially reversible by OP. This points towards a novel mechanism of HE development. Lay summary The impact of hyperammonaemia, a common finding in patients with liver cirrhosis, on brain mitochondrial function was investigated in this study. The results show that ammonia in concentrations commonly seen in patients induces severe mitochondrial dysfunction, overproduction of damaging oxygen molecules, and profound injury and death of neurons in rat brain cells. These findings point towards a novel mechanism of ammonia-induced brain injury in liver failure and potential novel therapeutic targets. Low concentrations of ammonia induce mitochondrial dysfunction, overproduction of ROS, and cell death in primary neurons. Hyperammonaemia in cirrhotic rats leads to ROS and LP overproduction, which was prevented by the ammonia scavenger OP. In neurons from cirrhotic rats, hyperpolarisation of Δψm was observed, which was restored by OP treatment. In a rat model of cirrhosis, profound neuronal loss was observed in the hippocampus.
Collapse
|
8
|
Guth I, Matos-Pardal C, Ferreira-Lima R, Loureiro-Rebouças R, Sobral A, Moraes-Marques C, Kubrusly L. La cafeína atenúa daño hepático y mejora signos neurológicos en un modelo de encefalopatía hepática con ratas. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2022. [DOI: 10.1016/j.rgmx.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Kondo T, Macdonald S, Engelmann C, Habtesion A, Macnaughtan J, Mehta G, Mookerjee RP, Davies N, Pavesi M, Moreau R, Angeli P, Arroyo V, Andreola F, Jalan R. The role of RIPK1 mediated cell death in acute on chronic liver failure. Cell Death Dis 2021; 13:5. [PMID: 34921136 PMCID: PMC8683430 DOI: 10.1038/s41419-021-04442-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is characterized predominantly by non-apoptotic forms of hepatocyte cell death. Necroptosis is a form of programmed lytic cell death in which receptor interacting protein kinase (RIPK) 1, RIPK3 and phosphorylated mixed lineage kinase domain-like (pMLKL) are key components. This study was performed to determine the role of RIPK1 mediated cell death in ACLF. RIPK3 plasma levels and hepatic expression of RIPK1, RIPK3, and pMLKL were measured in healthy volunteers, stable patients with cirrhosis, and in hospitalized cirrhotic patients with acutely decompensated cirrhosis, with and without ACLF (AD). The role of necroptosis in ACLF was studied in two animal models of ACLF using inhibitors of RIPK1, necrostatin-1 (NEC-1) and SML2100 (RIPA56). Plasma RIPK3 levels predicted the risk of 28- and 90-day mortality (AUROC, 0.653 (95%CI 0.530–0.776), 0.696 (95%CI 0.593–0.799)] and also the progression of patients from no ACLF to ACLF [0.744 (95%CI 0.593–0.895)] and the results were validated in a 2nd patient cohort. This pattern was replicated in a rodent model of ACLF that was induced by administration of lipopolysaccharide (LPS) to bile-duct ligated rats and carbon tetrachloride-induced fibrosis mice administered galactosamine (CCL4/GalN). Suppression of caspase-8 activity in ACLF rodent model was observed suggesting a switch from caspase-dependent cell death to necroptosis. NEC-1 treatment prior to administration of LPS significantly reduced the severity of ACLF manifested by reduced liver, kidney, and brain injury mirrored by reduced hepatic and renal cell death. Similar hepato-protective effects were observed with RIPA56 in a murine model of ACLF induced by CCL4/GalN. These data demonstrate for the first time the importance of RIPK1 mediated cell death in human and rodent ACLF. Inhibition of RIPK1 is a potential novel therapeutic approach to prevent progression of susceptible patients from no ACLF to ACLF.
Collapse
Affiliation(s)
- Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Stewart Macdonald
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.,Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany.,Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Marco Pavesi
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Richard Moreau
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Inserm, U1149, Centre de Recherche sur l'Inflammation (CRI), Clichy, Paris, France.,UMRS1149, Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Beaujon, Clichy, France
| | - Paolo Angeli
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain.,Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED University of Padova, Padova, Italy
| | - Vicente Arroyo
- European Foundation of the study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
10
|
Chouhan MD, Fitzke HE, Bainbridge A, Atkinson D, Halligan S, Davies N, Lythgoe MF, Mookerjee RP, Menys A, Taylor SA. Cardiac-induced liver deformation as a measure of liver stiffness using dynamic imaging without magnetization tagging-preclinical proof-of-concept, clinical translation, reproducibility and feasibility in patients with cirrhosis. Abdom Radiol (NY) 2021; 46:4660-4670. [PMID: 34148103 DOI: 10.1007/s00261-021-03168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE MR elastography and magnetization-tagging use liver stiffness (LS) measurements to diagnose fibrosis but require physical drivers, specialist sequences and post-processing. Here we evaluate non-rigid registration of dynamic two-dimensional cine MRI images to measure cardiac-induced liver deformation (LD) as a measure of LS by (i) assessing preclinical proof-of-concept, (ii) clinical reproducibility and inter-reader variability, (iii) the effects of hepatic hemodynamic changes and (iv) feasibility in patients with cirrhosis. METHODS Sprague-Dawley rats (n = 21 bile duct ligated (BDL), n = 17 sham-operated controls) and fasted patients with liver cirrhosis (n = 11) and healthy volunteers (HVs, n = 10) underwent spoiled gradient-echo short-axis cardiac cine MRI studies at 9.4 T (rodents) and 3.0 T (humans). LD measurements were obtained from intrahepatic sub-cardiac regions-of-interest close to the diaphragmatic margin. One-week reproducibility and prandial stress induced hemodynamic changes were assessed in healthy volunteers. RESULTS Normalized LD was higher in BDL (1.304 ± 0.062) compared with sham-operated rats (1.058 ± 0.045, P = 0.0031). HV seven-day reproducibility Bland-Altman (BA) limits-of-agreement (LoAs) were ± 0.028 a.u. and inter-reader variability BA LoAs were ± 0.030 a.u. Post-prandial LD increases were non-significant (+ 0.0083 ± 0.0076 a.u., P = 0.3028) and uncorrelated with PV flow changes (r = 0.42, p = 0.2219). LD measurements successfully obtained from all patients were not significantly higher in cirrhotics (0.102 ± 0.0099 a.u.) compared with HVs (0.080 ± 0.0063 a.u., P = 0.0847). CONCLUSION Cardiac-induced LD is a conceptually reasonable approach from preclinical studies, measurements demonstrate good reproducibility and inter-reader variability, are less likely to be affected by hepatic hemodynamic changes and are feasible in patients with cirrhosis.
Collapse
Affiliation(s)
- Manil D Chouhan
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK.
| | - Heather E Fitzke
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
- Wingate Institute of Neurogastroenterology, Neuroscience and Trauma, Queen Mary University of London (QMUL), London, UK
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals NHS Trust, London, UK
| | - David Atkinson
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| | - Steve Halligan
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| | - Nathan Davies
- Division of Medicine, Institute for Liver and Digestive Health, University College London (UCL), London, UK
| | - Mark F Lythgoe
- Division of Medicine, Centre for Advanced Biomedical Imaging, University College London (UCL), London, UK
| | - Rajeshwar P Mookerjee
- Division of Medicine, Institute for Liver and Digestive Health, University College London (UCL), London, UK
| | - Alex Menys
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
- Motilent, London, UK
| | - Stuart A Taylor
- Division of Medicine, Centre for Medical Imaging, University College London (UCL), London, UK
| |
Collapse
|
11
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
12
|
Acute-on-chronic liver failure: update on pathogenesis, therapeutic targets, predictive models, and liver transplantation. Curr Opin Gastroenterol 2021; 37:173-178. [PMID: 33606401 DOI: 10.1097/mog.0000000000000722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Acute-on-chronic liver failure (ACLF) is a clinical syndrome in patients with chronic liver disease that is associated with multiple organ failures and a high short-term mortality. Systemic inflammation is suggested to play a key role in its pathogenesis, although the precise causative mechanism is unknown. The purpose of this review is to present and discuss new findings related to: mechanisms underlying ACLF, therapeutic targets, risk prediction models for developing ACLF, and liver transplantation for ACLF. RECENT FINDINGS Recent studies of ACLF pathophysiology classified the immunosuppressive phenotype in monocytes. Investigation of therapeutic strategies identified inhibition of toll-like receptor-4 (TLR-4) and glutamine synthetase (GLUL) as potential targets. Recent studies identified novel risk prediction models for developing ACLF and enhanced our understanding of liver transplantation for ACLF to guide clinicians in determining that patients will benefit from transplantation. SUMMARY Improved knowledge on the pathogenesis of ACLF and identification of TLR-4 and GLUL may lead to clinical trials to study the efficacy of these novel therapeutic targets for patients with ACLF. Liver transplantation is the only current treatment for ACLF. Given the limited availability of donor organs, recent studies have identified ACLF patients who may merit the highest waitlist priority.
Collapse
|
13
|
Bonalumi F, Crua C, Savina IN, Davies N, Habstesion A, Santini M, Fest-Santini S, Sandeman S. Bioengineering a cryogel-derived bioartificial liver using particle image velocimetry defined fluid dynamics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111983. [PMID: 33812611 DOI: 10.1016/j.msec.2021.111983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
Bioartificial Liver (BAL) devices are extracorporeal systems designed to support or recover hepatic function in patients with liver failure. The design of an effective BAL remains an open challenge since it requires a complex co-optimisation of cell colonisation, biomaterial scaffold and BAL fluid dynamics. Building on previous evidence of suitability as a blood perfusion device for detoxification, the current study investigated the use of RGD-containing p(HEMA)-alginate cryogels as BAL scaffolds. Cryogels were modified with alginate to reduce protein fouling and functionalised with an RGD-containing peptide to increase hepatocyte adhesion. A novel approach for characterisation of the internal flow through the porous matrix was developed by employing Particle Image Velocimetry (PIV) to visualise flow inside cryogels. Based on PIV results, which showed the laminar nature of flow inside cryogel pores, a multi-layered bioreactor composed of spaced cryogel discs was designed to improve blood/hepatocyte mass exchange. The stacked bioreactor showed a significantly higher production of albumin and urea compared to the column version, with improved cell colonisation and proliferation over time. The cell-free cryogel-based device was tested for safety in a bile-duct ligation model of liver cirrhosis. Thus, a stacked bioreactor prototype was developed based on a surface-engineered cryogel design with optimised fluid dynamics for BAL use.
Collapse
Affiliation(s)
- Flavia Bonalumi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Cyril Crua
- Advanced Engineering Centre, University of Brighton, Brighton, United Kingdom
| | - Irina N Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Nathan Davies
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Abeba Habstesion
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Maurizio Santini
- Department of Engineering and Applied Sciences, University of Bergamo, Bergamo, Italy
| | - Stephanie Fest-Santini
- Department of Management, Information and Production Engineering, University of Bergamo, Bergamo, Italy
| | - Susan Sandeman
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
14
|
Abstract
Biliary atresia (BA) is a fibro-obliterative condition of the biliary tree, presenting in infancy. The bilioenteric conduit formed at Kasai portoenterostomy (KPE), achieves restoration of bile flow in approximately 60% of infants. Even if the operation is successful, cirrhosis and its associated complications are, however, common. BA remains the leading cause for liver transplantation (LT) in children. Antibiotic, choleretic, and steroid therapy post-KPE have not convincingly reduced LT rates. Advances in molecular technology have enabled characterisation of the encoded genes of the gut microbiota (gut microbiome). The gut microbiome plays an important role in host metabolism, nutrition, and immune function, with alterations in its diversity and/or composition, known as dysbiosis, being described in disease states, including liver disease. Liver-gut microbiome exploration in adulthood largely focuses on nonalcoholic liver disease, cirrhosis (mainly alcohol- or viral-based aetiology) and cholestatic liver diseases (eg, primary sclerosing cholangitis), with microbial signatures correlating to disease severity. Investigation of the gut microbiota in BA had been limited to culture-based methodology, but molecular studies are emerging, and although in their infancy, highlight a potential pathogenic role for Enterobacteriaceae and Streptococcus, and a potential beneficial role for Bifidobacteria. Bacterial translocation, and the production of gut microbiome-derived metabolites, are key host-microbiome-mechanistic pathways in liver disease pathogenesis. Microbiome-targeted therapeutics for liver disease are in development, with faecal microbiota transplantation showing promise in cirrhosis. Could the gut microbiome be a novel modifiable risk factor in BA, reducing the need for LT?
Collapse
|
15
|
Chouhan MD, Ramasawmy R, Bainbridge A, Campbell‐Washburn A, Halligan S, Davies N, Walker‐Samuel S, Lythgoe MF, Mookerjee RP, Taylor SA. Liver perfusion MRI in a rodent model of cirrhosis: Agreement with bulk-flow phase-contrast MRI and noninvasive evaluation of inflammation in chronic liver disease using flow-sensitive alternating inversion recovery arterial spin labelling and tissue T1. NMR IN BIOMEDICINE 2021; 34:e4423. [PMID: 33029872 PMCID: PMC8427466 DOI: 10.1002/nbm.4423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 05/03/2023]
Abstract
Noninvasive measurements of liver perfusion and fibrosis in cirrhotic small animals can help develop treatments for haemodynamic complications of liver disease. Here, we measure liver perfusion in cirrhotic rodents using flow-sensitive alternating inversion recovery arterial spin labelling (FAIR ASL), evaluating agreement with previously validated caval subtraction phase-contrast magnetic resonance imaging (PCMRI) total liver blood flow (TLBF). Baseline differences in cirrhotic rodents and the haemodynamic effects of acute inflammation were investigated using FAIR ASL and tissue T1. Sprague-Dawley rats (nine bile duct ligated [BDL] and ten sham surgery controls) underwent baseline hepatic FAIR ASL with T1 measurement and caval subtraction PCMRI (with two-dimensional infra-/supra-hepatic inferior vena caval studies), induction of inflammation with intravenous lipopolysaccharide (LPS) and repeat liver FAIR ASL with T1 measurement after ~90 minutes. The mean difference between FAIR ASL hepatic perfusion and caval subtraction PCMRI TLBF was -51 ± 30 ml/min/100 g (Bland-Altman 95% limits-of-agreement ±258 ml/min/100 g). The FAIR ASL coefficient of variation was smaller than for caval subtraction PCMRI (29.3% vs 50.1%; P = .03). At baseline, FAIR ASL liver perfusion was lower in BDL rats (199 ± 32 ml/min/100 g vs sham 316 ± 24 ml/min/100 g; P = .01) but liver T1 was higher (BDL 1533 ± 50 vs sham 1256 ± 18 ms; P = .0004). Post-LPS FAIR ASL liver perfusion response differences were observed between sham/BDL rats (P = .02), approaching significance in sham (+78 ± 33 ml/min/100 g; P = .06) but not BDL rats (-49 ± 40 ml/min/100 g; P = .47). Post-LPS differences in liver tissue T1 were nonsignificant (P = .35). FAIR ASL hepatic perfusion and caval subtraction PCMRI TLBF agreement was modest, with significant baseline FAIR ASL liver perfusion and tissue T1 differences in rodents with advanced cirrhosis compared with controls. Following inflammatory stress, differences in hepatic perfusion response were detected between cirrhotic/control animals, but liver T1 was unaffected. Findings underline the potential of FAIR ASL in the assessment of vasoactive treatments for patients with chronic liver disease and inflammation.
Collapse
|
16
|
Chouhan MD, Taylor SA, Bainbridge A, Walker-Samuel S, Davies N, Halligan S, Lythgoe MF, Mookerjee RP. Haemodynamic changes in cirrhosis following terlipressin and induction of sepsis-a preclinical study using caval subtraction phase-contrast and cardiac MRI. Eur Radiol 2020; 31:2518-2528. [PMID: 33044649 PMCID: PMC7979649 DOI: 10.1007/s00330-020-07259-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Objectives Effects of liver disease on portal venous (PV), hepatic arterial (HA), total liver blood flow (TLBF), and cardiac function are poorly understood. Terlipressin modulates PV flow but effects on HA, TLBF, and sepsis/acute-on-chronic liver failure (ACLF)-induced haemodynamic changes are poorly characterised. In this study, we investigated the effects of terlipressin and sepsis/ACLF on hepatic haemodynamics and cardiac function in a rodent cirrhosis model using caval subtraction phase-contrast (PC) MRI and cardiac cine MRI. Methods Sprague-Dawley rats (n = 18 bile duct–ligated (BDL), n = 16 sham surgery controls) underwent caval subtraction PCMRI to estimate TLBF and HA flow and short-axis cardiac cine MRI for systolic function at baseline, following terlipressin and lipopolysaccharide (LPS) infusion, to model ACLF. Results All baseline hepatic haemodynamic/cardiac systolic function parameters (except heart rate and LV mass) were significantly different in BDL rats. Following terlipressin, baseline PV flow (sham 181.4 ± 12.1 ml/min/100 g; BDL 68.5 ± 10.1 ml/min/100 g) reduced (sham − 90.3 ± 11.1 ml/min/100 g, p < 0.0001; BDL − 31.0 ± 8.0 ml/min/100 g, p = 0.02), sham baseline HA flow (33.0 ± 11.3 ml/min/100 g) increased (+ 92.8 ± 21.3 ml/min/100 g, p = 0.0003), but BDL baseline HA flow (83.8 ml/min/100 g) decreased (− 34.4 ± 7.5 ml/min/100 g, p = 0.11). Sham baseline TLBF (214.3 ± 16.7 ml/min/100 g) was maintained (+ 2.5 ± 14.0 ml/min/100 g, p > 0.99) but BDL baseline TLBF (152.3 ± 18.7 ml/min/100 g) declined (− 65.5 ± 8.5 ml/min/100 g, p = 0.0004). Following LPS, there were significant differences between cohort and change in HA fraction (p = 0.03) and TLBF (p = 0.01) with BDL baseline HA fraction (46.2 ± 4.6%) reducing (− 20.9 ± 7.5%, p = 0.03) but sham baseline HA fraction (38.2 ± 2.0%) remaining unchanged (+ 2.9 ± 6.1%, p > 0.99). Animal cohort and change in systolic function interactions were significant only for heart rate (p = 0.01) and end-diastolic volume (p = 0.03). Conclusions Caval subtraction PCMRI and cardiac MRI in a rodent model of cirrhosis demonstrate significant baseline hepatic haemodynamic/cardiac differences, failure of the HA buffer response post-terlipressin and an altered HA fraction response in sepsis, informing potential translation to ACLF patients. Key Points Caval subtraction phase-contrast and cardiac MRI demonstrate: • Significant differences between cirrhotic/non-cirrhotic rodent hepatic blood flow and cardiac systolic function at baseline. • Failure of the hepatic arterial buffer response in cirrhotic rodents in response to terlipressin. • Reductions in hepatic arterial flow fraction in the setting of acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Manil D Chouhan
- Centre for Medical Imaging, Division of Medicine, UCL, University College London (UCL), London, UK
| | - Stuart A Taylor
- Centre for Medical Imaging, Division of Medicine, UCL, University College London (UCL), London, UK
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals NHS Trust, London, UK
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, University College London (UCL), London, UK
| | - Nathan Davies
- Institute for Liver and Digestive Health, Division of Medicine, UCL, Royal Free Hospital, University College London (UCL), NW3 2PF, London, UK
| | - Steve Halligan
- Centre for Medical Imaging, Division of Medicine, UCL, University College London (UCL), London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, University College London (UCL), London, UK
| | - Rajeshwar P Mookerjee
- Institute for Liver and Digestive Health, Division of Medicine, UCL, Royal Free Hospital, University College London (UCL), NW3 2PF, London, UK.
| |
Collapse
|
17
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Engelmann C, Sheikh M, Sharma S, Kondo T, Loeffler-Wirth H, Zheng YB, Novelli S, Hall A, Kerbert AJC, Macnaughtan J, Mookerjee R, Habtesion A, Davies N, Ali T, Gupta S, Andreola F, Jalan R. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J Hepatol 2020; 73:102-112. [PMID: 31987990 DOI: 10.1016/j.jhep.2020.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Herein, we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. METHODS Circulating TLR4 ligands and hepatic TLR4 expression were measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo (10 mg/kg intraperitoneally) in rodent models of ACLF (bile duct ligation + lipopolysaccharide [LPS]; carbon tetrachloride + LPS) and ALF (galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5). The in vivo therapeutic effect was assessed by coma-free survival, organ injury and cytokine release and in vitro by measuring IL-6, IL-1β or cell injury (TUNEL), respectively. RESULTS In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p <0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS-induced cytokine secretion and cell death (p = 0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma-free survival, reduced the degree of hepatocyte cell death in the liver (p <0.001) and kidneys (p = 0.048) and reduced circulating cytokine levels (IL-1β, p <0.001). In a rodent model of ALF, TAK-242 prevented organ injury (p <0.001) and systemic inflammation (IL-1β, p <0.001). CONCLUSION This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF; its inhibition reduces the severity of organ injury and improves outcome. TAK-242 may be of therapeutic relevance in patients with liver failure. LAY SUMMARY Toll-like receptor 4 (or TLR4) mediates endotoxin-induced tissue injury in liver failure and cirrhosis. This receptor sensitizes cells to endotoxins, which are produced by gram-negative bacteria. Thus, inhibiting TLR4 signaling with an inhibitor (TAK-242) ameliorates organ injury and systemic inflammation in rodent models of acute and acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Germany
| | - Mohammed Sheikh
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Shreya Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Yu Bao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajeshwar Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Tauhid Ali
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Saurabh Gupta
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
19
|
Zamanian G, Partoazar A, Tavangar SM, Rashidian A, Mirzaei P, Niaz Q, Sharifi K, Dehpour AR, Jazaeri F. Effect of phosphatidylserine on cirrhosis-induced hepatic encephalopathy: Response to acute endotoxemia in cirrhotic rats. Life Sci 2020; 253:117606. [PMID: 32320707 DOI: 10.1016/j.lfs.2020.117606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND/AIMS In cirrhosis, the levels of proinflammatory cytokines are high in the liver and blood. Endotoxin decreases level of consciousness in cirrhotic rats. Phosphatidylserine exists in the cell membrane structure and is essential for the survival of neurons. Phosphatidylserine receptor is found in phagocytic cells and also activates the signaling of membrane proteins in apoptotic process. Therefore this study was aimed to explore the hypothesis that hepatic encephalopathy is prevented by phosphatidylserine treatment and if so, whether this is associated with altered level of proinflammatory cytokines in the brain. METHODS Cirrhosis was induced by surgical ligation of the bile duct in male Wister rats. The groups were treated with phosphatidylserine and saline for 4 weeks. Brain IL6, TNFα and the expression of phosphatidylserine receptor were assessed. Intraperitoneal injections of either saline or lipopolysaccharide (0.1 mg/kg) were administered to each group. Finally, animal behavior, blood ammonia and the expression of toll like receptor 4 were examined in the brain. RESULTS Cirrhosis in rats was associated with altered expression of toll-like receptor4 in brain cortex and phosphatidylserine treatment increases toll-like receptor4 receptor expression. Phosphatidylserine had anti-inflammatory effect in healthy rats but no effect in cirrhotic rats. Chronic phosphatidylserine treatment decreased blood ammonia in BDL cirrhotic rats treated with lipopolysaccharide. CONCLUSION The brain of cirrhotic rat is more susceptible to acute endotoxemia and chronic phosphatidylserine treatment decreases blood ammonia and encephalopathy in cirrhotic rats by encountering endotoxin. Phosphatidylserine may boost immune system against endotoxin.
Collapse
Affiliation(s)
- Golnaz Zamanian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parto Mirzaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Qamar Niaz
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Sharifi
- School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farahnaz Jazaeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Engelmann C, Mehta G, Tacke F. Regeneration in acute-on-chronic liver failure - the phantom lost its camouflage. J Hepatol 2020; 72:610-612. [PMID: 31953140 DOI: 10.1016/j.jhep.2020.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Gautam Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Institute of Hepatology, Foundation for Liver Research, London, United Kingdom; Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Charité Campus Mitte, Charité - Universitaetsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
21
|
Recombinant Alkaline Phosphatase Prevents Acute on Chronic Liver Failure. Sci Rep 2020; 10:389. [PMID: 31942020 PMCID: PMC6962206 DOI: 10.1038/s41598-019-57284-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The lipopolysaccharide (LPS)– toll-like receptor-4 (TLR4) pathway plays an important role in liver failure. Recombinant alkaline phosphatase (recAP) deactivates LPS. The aim of this study was to determine whether recAP prevents the progression of acute and acute-on-chronic liver failure (ACLF). Eight groups of rats were studied 4-weeks after sham surgery or bile duct ligation and were injected with saline or LPS to mimic ACLF. Acute liver failure was induced with Galactosamine-LPS and in both models animals were treated with recAP prior to LPS administration. In the ACLF model, the severity of liver dysfunction and brain edema was attenuated by recAP, associated with reduction in cytokines, chemokines, liver cell death, and brain water. The activity of LPS was reduced by recAP. The treatment was not effective in acute liver failure. Hepatic TLR4 expression was reduced by recAP in ACLF but not acute liver failure. Increased sensitivity to endotoxins in cirrhosis is associated with upregulation of hepatic TLR4, which explains susceptibility to development of ACLF whereas acute liver failure is likely due to direct hepatoxicity. RecAP prevents multiple organ injury by reducing receptor expression and is a potential novel treatment option for prevention of ACLF but not acute liver failure.
Collapse
|
22
|
Aller MA, Arias N, Blanco-Rivero J, Arias J. Metabolism in Acute-On-Chronic Liver Failure: The Solution More than the Problem. Arch Med Res 2019; 50:271-284. [PMID: 31593852 DOI: 10.1016/j.arcmed.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation. The acute decompensation of the liver disease is associated with encephalopathy, ascites, acute renal failure, an acute phase response and a splanchnic increase of pro- and anti-inflammatory cytokines. This multiorgan inflammatory dysfunction is mainly associated with a splanchnic and systemic metabolic switch with dedifferentiation of the epithelial, endothelial and mesothelial splanchnic barriers. Furthermore, a splanchnic infiltration by mast cells occurs, which suggests that these cells could carry out a compensatory metabolic role, especially through the modulation of hepatic and extrahepatic mitochondrial-peroxisome crosstalk. For this reason, we propose the hypothesis that mastocytosis in the acute-on-chronic hepatic insufficiency could represent the development of a survival metabolic mechanisms that mitigates the noxious effect of the hepatic functional deficit. A better understanding the pathophysiological response of the mast cells in liver insufficiency and portal hypertension would help to find new pathways for decreasing the high morbidity and mortality rate of these patients.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonoma University of Madrid, Madrid, Spain, Instituto de Investigación Biomédica La Paz (IdIPAZ), Madrid, España; Centro de Investigación Biomédica en Red (Ciber) de Enfermedades Cardiovasculares, Madrid, España
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
23
|
Hadjihambi A, Harrison IF, Costas-Rodríguez M, Vanhaecke F, Arias N, Gallego-Durán R, Mastitskaya S, Hosford PS, Olde Damink SWM, Davies N, Habtesion A, Lythgoe MF, Gourine AV, Jalan R. Impaired brain glymphatic flow in experimental hepatic encephalopathy. J Hepatol 2019; 70:40-49. [PMID: 30201461 PMCID: PMC7613052 DOI: 10.1016/j.jhep.2018.08.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Neuronal function is exquisitely sensitive to alterations in the extracellular environment. In patients with hepatic encephalopathy (HE), accumulation of metabolic waste products and noxious substances in the interstitial fluid of the brain is thought to result from liver disease and may contribute to neuronal dysfunction and cognitive impairment. This study was designed to test the hypothesis that the accumulation of these substances, such as bile acids, may result from reduced clearance from the brain. METHODS In a rat model of chronic liver disease with minimal HE (the bile duct ligation [BDL] model), we used emerging dynamic contrast-enhanced MRI and mass-spectroscopy techniques to assess the efficacy of the glymphatic system, which facilitates clearance of solutes from the brain. Immunofluorescence of aquaporin-4 (AQP4) and behavioural experiments were also performed. RESULTS We identified discrete brain regions (olfactory bulb, prefrontal cortex and hippocampus) of altered glymphatic clearance in BDL rats, which aligned with cognitive/behavioural deficits. Reduced AQP4 expression was observed in the olfactory bulb and prefrontal cortex in HE, which could contribute to the pathophysiological mechanisms underlying the impairment in glymphatic function in BDL rats. CONCLUSIONS This study provides the first experimental evidence of impaired glymphatic flow in HE, potentially mediated by decreased AQP4 expression in the affected regions. LAY SUMMARY The 'glymphatic system' is a newly discovered brain-wide pathway that facilitates clearance of various substances that accumulate in the brain due to its activity. This study evaluated whether the function of this system is altered in a model of brain dysfunction that occurs in cirrhosis. For the first time, we identified that the clearance of substances from the brain in cirrhosis is reduced because this clearance system is defective. This study proposes a new mechanism of brain dysfunction in patients with cirrhosis and provides new targets for therapy.
Collapse
Affiliation(s)
- Anna Hadjihambi
- Liver Failure Group Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK; Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | - Ian F Harrison
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Marta Costas-Rodríguez
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry - A&MS Research Unit, Campus Sterre, Krijgslaan 281-S12, BE-9000 Ghent, Belgium
| | - Natalia Arias
- Liver Failure Group Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Rocío Gallego-Durán
- Institute of Biomedicine of Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, UCM Digestive Diseases & CIBERehd Sevilla, Spain
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | | | - Nathan Davies
- Liver Failure Group Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Abeba Habtesion
- Liver Failure Group Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK
| | - Rajiv Jalan
- Liver Failure Group Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK.
| |
Collapse
|
24
|
Nataj A, Eftekhari G, Raoufy MR, Mani AR. The effect of fractal-like mechanical ventilation on vital signs in a rat model of acute-on-chronic liver failure. Physiol Meas 2018; 39:114008. [PMID: 30475741 DOI: 10.1088/1361-6579/aaea10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The network of interactions between different organs is impaired in liver cirrhosis. Liver cirrhosis is associated with multi-system involvement, which eventually leads to multiple organ failure. This process is accelerated by a precipitating factor such as bacterial infection, which leads to respiratory distress, circulatory shock, neural dysfunction and very high mortality. Cirrhotic patients often have blunted respiratory sinus arrhythmia and impaired cardio-respiratory variability. Fractal-like mechanical ventilation is reported to enhance respiratory sinus arrhythmia and attenuate respiratory distress in experimental models. In the present study we hypothesise that fractal-like mechanical ventilation may improve the outcome of cirrhotic rats with multiple organ failure. APPROACH Cirrhosis was induced by chronic biliary obstruction in rats. Acute multiple organ failure was induced by intraperitoneal injection of bacterial endotoxin in cirrhotic rats. The effect of conventional mechanical ventilation (with constant tidal volume and respiratory rate) or fractal-like ventilation (with the same average but variable tidal volume and respiratory rate) were assessed on vital signs, oxygen saturation and plasma alanine aminotransferase in anaesthetised cirrhotic rats. MAIN RESULTS We demonstrated that fractal-like mechanical ventilation was accompanied by improved oxygen saturation, reduced heart rate and decreased liver injury following injection of bacterial endotoxin. Moreover, variable mechanical ventilation in cirrhotic rats reduced mortality and prevented a fall in short-term heart rate variability following endotoxin challenge in comparison with rats with constant mechanical ventilation. SIGNIFICANCE We suggest further investigations into the beneficial effects of fractal-like ventilation strategy in critically ill patients with liver failure requiring organ support and mechanical ventilation.
Collapse
Affiliation(s)
- Arman Nataj
- Faculty of Medical Sciences, Department of Physiology, Tarbiat Modares University, Tehran, Iran. These authors are joint first authors
| | | | | | | |
Collapse
|
25
|
Chuang CL, Chang CC, Hsu SJ, Huang HC, Lee FY, Huang LJ, Lee SD. Endotoxemia-enhanced renal vascular reactivity to endothelin-1 in cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2018; 315:G752-G761. [PMID: 30095297 DOI: 10.1152/ajpgi.00302.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatorenal syndrome (HRS), a severe complication of advanced cirrhosis, is defined as hypoperfusion of kidneys resulting from intense renal vasoconstriction in response to generalized systemic arterial vasodilatation. Nevertheless, the mechanisms have been barely investigated. Cumulative studies demonstrated renal vasodilatation in portal hypertensive and compensated cirrhotic rats. Previously, we identified that blunted renal vascular reactivity of portal hypertensive rats was reversed after lipopolysaccharide (LPS). This study was therefore conducted to delineate the sequence of renal vascular alternation and underlying mechanisms in LPS-treated cirrhotic rats. Sprague-Dawley rats were randomly allocated to receive sham surgery (Sham) or common bile duct ligation (CBDL). LPS was induced on the 28th day after surgery. Kidney perfusion was performed at 0.5 or 3 h after LPS to evaluate renal vascular response to endothelin-1 (ET-1). Endotoxemia increased serum ET-1 levels ( P < 0.0001) and renal arterial blood flow ( P < 0.05) in both Sham and CBDL rats. CBDL rats showed enhanced renal vascular reactivity to ET-1 at 3 h after LPS ( P = 0.026). Pretreatment with endothelin receptor type A (ETA) antagonist abrogated the LPS-enhanced renal vascular response in CBDL rats ( P < 0.001). There were significantly lower inducible nitric oxide synthase (iNOS) expression but higher ETA and phosphorylated extracellular signal-regulated kinase (p-ERK) expressions in renal medulla of endotoxemic CBDL rats ( P < 0.05). We concluded that LPS-induced renal iNOS inhibition, ETA upregulation, and subsequent ERK signaling activation may participate in renal vascular hyperreactivity in cirrhosis. ET-1-targeted therapy may be feasible in the control of HRS. NEW & NOTEWORTHY Hepatorenal syndrome (HRS) occurred in advanced cirrhosis after large-volume paracentesis or bacterial peritonitis. We demonstrated that intraperitoneal lipopolysaccharide (LPS) enhanced renal vascular reactivity to endothelin-1 (ET-1) in cirrhotic rats, accompanied by inducible nitric oxide synthase inhibition, endothelin receptor type A (ETA) upregulation, and subsequent extracellular signal-regulated kinase activation in renal medulla. Pretreatment with ETA antagonist abrogated the LPS-enhanced renal vascular response in common bile duct ligation rats. These findings suggest that further clinical investigation of ET-1-targeted therapy may be feasible in the control of HRS.
Collapse
Affiliation(s)
- Chiao-Lin Chuang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Ching-Chih Chang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Hui-Chun Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital , Taipei , Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine , Taipei , Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng-Hsin General Hospital , Taipei , Taiwan
| |
Collapse
|
26
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
27
|
Balasubramanian V, Mehta G, Jones H, Sharma V, Davies NA, Jalan R, Mookerjee RP. Post-Transcriptional Regulation of Hepatic DDAH1 with TNF Blockade Leads to Improved eNOS Function and Reduced Portal Pressure In Cirrhotic Rats. Sci Rep 2017; 7:17900. [PMID: 29263339 PMCID: PMC5738445 DOI: 10.1038/s41598-017-18094-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Portal hypertension (PH) is a major cause of morbidity and mortality in chronic liver disease. Infection and inflammation play a role in potentiating PH and pro-inflammatory cytokines, including TNF, are associated with severity of PH. In this study, cirrhotic bile duct ligated (BDL) rats with PH were treated with Infliximab (IFX, a monoclonal antibody against TNF) and its impact on modulation of vascular tone was assessed. BDL rats had increased TNF and NFkB compared to sham operated rats, and their reduction by IFX was associated with a reduction in portal pressure. IFX treatment also reduced hepatic oxidative stress, and biochemical markers of hepatic inflammation and injury. IFX treatment was associated with an improvement in eNOS activity and increased l-arginine/ADMA ratio and DDAH1 expression. In vitro analysis of HepG2 hepatocytes showed that DDAH1 protein expression is reduced by oxidative stress, and this is in part mediated by post-transcriptional regulation by the 3′UTR. This study supports a role for the DDAH1/ADMA axis on the effect of inflammation and oxidative stress in PH and provides insight for new therapies.
Collapse
Affiliation(s)
- V Balasubramanian
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - G Mehta
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - H Jones
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - V Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - N A Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - R Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK
| | - R P Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London, UK.
| |
Collapse
|
28
|
Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 2017; 65:1306-1318. [PMID: 28066916 PMCID: PMC5396295 DOI: 10.1002/hep.29031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte-neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia-lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia-induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. CONCLUSION The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel-mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306-1318).
Collapse
Affiliation(s)
- Anna Hadjihambi
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom,Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Francesco De Chiara
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Abeba Habtetion
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | | | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| |
Collapse
|
29
|
Taghipour M, Eftekhari G, Haddadian Z, Mazloom R, Mani M, Mani AR. Increased sample asymmetry and memory of cardiac time-series following endotoxin administration in cirrhotic rats. Physiol Meas 2016; 37:N96-N104. [DOI: 10.1088/0967-3334/37/11/n96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Ghiassy B, Rahimi N, Javadi-Paydar M, Gharedaghi MH, Norouzi-Javidan A, Dehpour AR. Nitric oxide mediates effects of acute, not chronic, naltrexone on LPS-induced hepatic encephalopathy in cirrhotic rats. Can J Physiol Pharmacol 2016; 95:16-22. [PMID: 28044452 DOI: 10.1139/cjpp-2016-0188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies suggest endogenous opioids and nitric oxide (NO) are involved in the pathophysiology of hepatic encephalopathy (HE). In this study, the interaction between the opioid receptor antagonist and NO was investigated on lipopolysaccharide (LPS)-induced HE in cirrhotic rats. Male rats were divided in the sham- and bile duct ligation (BDL)-operated groups. Animals were treated with saline; naltrexone (10 mg/kg, i.p.); or L-NAME (3 mg/kg, i.p.), alone or in combination with naltrexone. To induce HE, LPS (1 mg/kg, i.p.) was injected 1 h after the final drug treatment. HE scoring, hepatic histology, and plasma NO metabolites levels and mortality rate were recorded. Deteriorated level of consciousness and mortality after LPS administration significantly ameliorated following both acute and chronic treatment with naltrexone in cirrhotic rats. However, acute and chronic administration of L-NAME did not change HE scores in cirrhotic rats. The effects of acute but not chronic treatment of naltrexone on HE parameters were reversed by L-NAME. Plasma NOx concentrations elevated in BDL rats, which were decreased after acute and chronic treatment by naltrexone or L-NAME, significantly. We suggest both acute and chronic treatment with naltrexone improved LPS-induced HE. But, only acute treatment with naltrexone may affect through NO pathway.
Collapse
Affiliation(s)
- Bentolhoda Ghiassy
- a Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran.,b Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Nastaran Rahimi
- a Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran.,c Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Mehrak Javadi-Paydar
- c Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Mohammad Hadi Gharedaghi
- a Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran.,c Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Abbas Norouzi-Javidan
- b Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Ahmad R Dehpour
- a Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran.,c Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| |
Collapse
|
31
|
Abstract
The definition of acute-on-chronic liver failure (ACLF) remains contested. In Europe and North America, the term is generally applied according to the European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium guidelines, which defines this condition as a syndrome that develops in patients with cirrhosis and is characterized by acute decompensation, organ failure and high short-term mortality. One-third of patients who are hospitalized for acute decompensation present with ACLF at admission or develop the syndrome during hospitalization. ACLF frequently occurs in a closed temporal relationship to a precipitating event, such as bacterial infection or acute alcoholic, drug-induced or viral hepatitis. However, no precipitating event can be identified in approximately 40% of patients. The mechanisms of ACLF involve systemic inflammation due to infections, acute liver damage and, in cases without precipitating events, probably intestinal translocation of bacteria or bacterial products. ACLF is graded into three stages (ACLF grades 1-3) on the basis of the number of organ failures, with higher grades associated with increased mortality. Liver and renal failures are the most common organ failures, followed by coagulation, brain, circulatory and respiratory failure. The 28-day mortality rate associated with ACLF is 30%. Depending on the grade, ACLF can be reversed using standard therapy in only 16-51% of patients, leaving a considerable proportion of patients with ACLF that remains steady or progresses. Liver transplantation in selected patients with ACLF grade 2 and ACLF grade 3 increases the 6-month survival from 10% to 80%.
Collapse
|
32
|
Abstract
Cholestasis in preterm infants has a multifactorial etiology. Risk factors include degree of prematurity, lack of enteral feeding, intestinal injury, prolonged use of parenteral nutrition (PN), and sepsis. Soy-based parenteral lipid emulsions have been implicated in the pathophysiology of PN-associated liver injury. Inflammation plays an important role. Medical therapies are used; however, their effects have not consistently proven effective. Evaluation of cholestasis involves laboratory work; direct bilirubin levels are used for diagnosis and trending. Adverse outcomes include risk for hepatobiliary dysfunction, irreversible liver failure, and death. Early enteral feedings as tolerated is the best way to prevent and manage cholestasis.
Collapse
Affiliation(s)
- Katie Satrom
- Division of Neonatology, Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, 6th Floor, East Building, Delivery Code: 8952A, Minneapolis, MN 55454, USA.
| | - Glenn Gourley
- Pediatric Gastroenterology, Department of Pediatrics, University of Minnesota, 2450 Riverside Avenue, 6th Floor, East Building, 8952A, Minneapolis, MN 55454, USA
| |
Collapse
|
33
|
Van't Erve TJ, Lih FB, Jelsema C, Deterding LJ, Eling TE, Mason RP, Kadiiska MB. Reinterpreting the best biomarker of oxidative stress: The 8-iso-prostaglandin F2α/prostaglandin F2α ratio shows complex origins of lipid peroxidation biomarkers in animal models. Free Radic Biol Med 2016; 95:65-73. [PMID: 26964509 PMCID: PMC6626672 DOI: 10.1016/j.freeradbiomed.2016.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
Abstract
Oxidative stress is elevated in numerous environmental exposures and diseases. Millions of dollars have been spent to try to ameliorate this damaging process using anti-oxidant therapies. Currently, the best accepted biomarker of oxidative stress is the lipid oxidation product 8-iso-prostaglandin F2α (8-iso-PGF2α), which has been measured in over a thousand human and animal studies. 8-iso-PGF2α generation has been exclusively attributed to nonenzymatic chemical lipid peroxidation (CLP). However, 8-iso-PGF2α can also be produced enzymatically by prostaglandin-endoperoxide synthases (PGHS) in vivo. When failing to account for PGHS-dependent generation, 8-iso-PGF2α cannot be interpreted as a selective biomarker of oxidative stress. We investigated the formation of 8-iso-PGF2α in rats exposed to carbon tetrachloride (CCl4) or lipopolysaccharide (LPS) using the 8-iso-PGF2α/PGF2α ratio to quantitatively determine the source(s) of 8-iso-PGF2α. Upon exposure to a 120mg/kg dose of CCl4, the contribution of CLP accounted for only 55.6±19.4% of measured 8-iso-PGF2α, whereas in the 1200mg/kg dose, CLP was the predominant source of 8-iso-PGF2α (86.6±8.0% of total). In contrast to CCl4, exposure to 0.5mg/kg LPS was characterized by a significant increase in both the contribution of PGHS (59.5±7.0) and CLP (40.5±14.0%). In conclusion, significant generation of 8-iso-PGF2α occurs through enzymatic as well as chemical lipid peroxidation. The distribution of the contribution is dependent on the exposure agent as well as the dose. The 8-iso-PGF2α/PGF2α ratio accurately determines the source of 8-iso-PGF2α and provides an absolute measure of oxidative stress in vivo.
Collapse
Affiliation(s)
- Thomas J Van't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Fred B Lih
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Casey Jelsema
- Department of Statistics, West Virginia University, Morgantown, WV 26505, USA
| | - Leesa J Deterding
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Thomas E Eling
- Emeritus, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
34
|
Chouhan MD, Mookerjee RP, Bainbridge A, Walker-Samuel S, Davies N, Halligan S, Lythgoe MF, Taylor SA. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation. Radiology 2016; 280:916-23. [PMID: 27171018 PMCID: PMC5015842 DOI: 10.1148/radiol.2016151832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caval subtraction phase-contrast MR imaging is technically feasible and may offer a
reproducible and clinically viable method for measuring total liver blood flow and
hepatic arterial flow. Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic
resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic
arterial fraction in an animal model and evaluate consistency and reproducibility
in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research
ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR
imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena
cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting
infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF,
respectively. Direct PV transit-time ultrasonography (US) and fluorescent
microsphere measurements of hepatic arterial fraction were the standards of
reference. Thereafter, consistency of caval subtraction phase-contrast MR
imaging–derived TLBF and hepatic arterial flow was assessed in 13
volunteers (mean age, 28.3 years ± 1.4) against directly measured
phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility
was measured after 7 days. Bland-Altman analysis of agreement and coefficient of
variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging
and that measured with transit-time US (mean difference, −3.5 mL/min/100 g;
95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction
obtained with caval subtraction agreed well with those with fluorescent
microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was
demonstrated between TLBF in humans measured with caval subtraction and direct
inflow phase-contrast MR imaging (mean difference, −1.3 mL/min/100 g; 95%
LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between
the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable
method for measuring TLBF and hepatic arterial flow. Online supplemental
material is available for this article.
Collapse
Affiliation(s)
- Manil D Chouhan
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Rajeshwar P Mookerjee
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Alan Bainbridge
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Simon Walker-Samuel
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Nathan Davies
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Steve Halligan
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Mark F Lythgoe
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Stuart A Taylor
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| |
Collapse
|
35
|
Abdou RM, Zhu L, Baker RD, Baker SS. Gut Microbiota of Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1268-81. [PMID: 26898658 DOI: 10.1007/s10620-016-4045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.
Collapse
Affiliation(s)
- Reham M Abdou
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.,, 3435 Main Street, 413 Biomedical Research Building, Buffalo, NY, 14214, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| |
Collapse
|
36
|
Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, Pinzani M, Mookerjee RP, Rombouts K. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J Hepatol 2016; 64:823-33. [PMID: 26654994 DOI: 10.1016/j.jhep.2015.11.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. METHODS Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24-72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. RESULTS Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L±43.65 vs. BDL+OP 149.27 μmol/L±51.1, p<0.05) and portal pressure (BDL 14±0.6 vs. BDL+OP 11±0.3 mmHg, p<0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. CONCLUSIONS The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension.
Collapse
Affiliation(s)
- Rajiv Jalan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Francesco De Chiara
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Vairappan Balasubramaniyan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Varun Khetan
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK
| | - Massimo Malago
- Division of Surgery, University College London, Royal Free, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, Institute for Liver & Digestive Health, University College of London, Royal Free, London, UK.
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free, London, UK.
| |
Collapse
|
37
|
Vairappan B. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol 2015; 7:443-459. [PMID: 25848469 PMCID: PMC4381168 DOI: 10.4254/wjh.v7.i3.443] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/08/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases.
Collapse
|
38
|
Ostadhadi S, Rezayat SM, Ejtemaei-Mehr S, Tavangar SM, Nikoui V, Jazaeri F, Eftekhari G, Abdollahi A, Dehpour AR. Mesenteric artery responsiveness to acetylcholine and phenylephrine in cirrhotic rats challenged with endotoxin: the role of TLR4. Can J Physiol Pharmacol 2015; 93:475-83. [PMID: 25978623 DOI: 10.1139/cjpp-2014-0515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cirrhosis is associated with vascular dysfunction and endotoxemia. These experiments were designed to investigate the hypothesis that the administration of a low-dose of lipopolysaccharide (LPS) worsens vascular dysfunction in rats subjected to bile-duct ligation (BDL), and to determine whether LPS initiates changes in vascular Toll-like receptor 4 (TLR4) expression. Four weeks after BDL, the animals were given an intraperitoneal injection of either saline or LPS (1.0 mg/kg body mass). Three hours later, the superior mesenteric artery was isolated, perfused, and then subjected to the vasoconstriction and vasodilatation effects of phenylephrine and acetylcholine, respectively. Our results show that phenylephrine-induced vasoconstriction decreased in the cirrhotic vascular bed (BDL rats) compared with the vascular bed of the sham-operated animals, and that the LPS injections in the cirrhotic (BDL) rats worsened this response. LPS injection administered to the sham-operated animals had no such effect. On the other hand, both the BDL procedure and the LPS injection increased acetylcholine-induced vasorelaxation, but LPS administration to the BDL rats had no effect on this response. The mRNA levels of TLR4 did not change, but immunohistochemical studies showed that TLR4 localization switched from the endothelium to vascular smooth muscle cells following chronic BDL. In conclusion, acute endotoxemia in cirrhotic rats is associated with hyporesponsiveness to phenylephrine and tolerance to the effects of acetylcholine. Altered localization of TLR4 may be responsible for these effects.
Collapse
Affiliation(s)
- Sattar Ostadhadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran., Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wright G, Sharifi Y, Jover-Cobos M, Jalan R. The brain in acute on chronic liver failure. Metab Brain Dis 2014; 29:965-73. [PMID: 24838253 PMCID: PMC4234892 DOI: 10.1007/s11011-014-9553-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is a newly defined clinical entity with significant morbidity and mortality (~40-90% at 1 year dependent on need for organ support at presentation). It defines a presentation with acute severe liver injury, often with multiorgan dysfunction, on a background of previously known or unknown cirrhosis. In its severest form, it is almost indistinguishable from acute liver failure, as similarly in around 5% may rapidly progress to intracranial hypertension and cerebral oedema culminating in coma and/or death. Our understanding of such cerebral sequelae is currently limited to clinical observation, though our knowledge base is rapidly expanding since recent consensus clinical definition and guidance. Moreover, there are now animal models of ACLF and imaging modalities to better characterize events in the brain that occur with ACLF. However, as yet there has been little in the way of interventional study of this condition which are much needed. In this review we dissect existing clinical and experimental data to better characterise the manifestations of ACLF on the brain and allow for the development of targeted therapy as currently the plethora of existing interventions were designed to treat either the effects of cirrhosis or acute liver injury independently.
Collapse
Affiliation(s)
- Gavin Wright
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
- Basildon & Thurrock University Hospitals NHS Foundation Trust Nethermayne, Essex, SS16 5NL Basildon UK
| | - Yalda Sharifi
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| | - Maria Jover-Cobos
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Liver Failure Group, UCL Institute of Hepatology, The Royal Free Hospital, Upper Third UCL Medical School, Pond Street, London, NW3 2PF UK
| |
Collapse
|
40
|
Thomsen KL, Hebbard L, Glavind E, Clouston A, Vilstrup H, George J, Grønbæk H. Non-alcoholic steatohepatitis weakens the acute phase response to endotoxin in rats. Liver Int 2014; 34:1584-92. [PMID: 24674765 DOI: 10.1111/liv.12547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/19/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Patients with non-alcoholic steatohepatitis (NASH) have increased mortality, including from infections. We, therefore, tested in a rodent model of steatohepatitis whether the hepatic acute phase response is intact. METHODS Steatohepatitis was induced in rats by feeding a high-fat, high-cholesterol diet for 4 (early) and 16 weeks (advanced NASH). 2 h after low-dose LPS (0.5 mg/kg i.p.), we measured the serum concentrations of tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also measured liver mRNA's and the serum concentrations of acute phase proteins 24 h after LPS. RESULTS Non-alcoholic steatohepatitis in itself increased the liver mRNA levels of TNF-α and IL-6 and also the liver mRNA and serum levels of the acute phase proteins. The exposure to LPS increased serum TNF-α in both early and advanced NASH and more so than in the control rats. However, the increases in acute phase protein genes in liver tissue and proteins in the blood were lower than in the control rats. CONCLUSION In rats with early or advanced experimental NASH, LPS despite an increased interleukin release resulted in a blunted acute phase protein response. This tachyphylaxis may be part of the mechanism for the increased infection susceptibility of patients with NASH. We speculate that the steatosis-related interleukin release desensitises the signalling pathway leading to acute phase protein synthesis.
Collapse
Affiliation(s)
- Karen L Thomsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus C, DK-8000, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Wright GAK, Sharifi Y, Newman TA, Davies N, Vairappan B, Perry HV, Jalan R. Characterisation of temporal microglia and astrocyte immune responses in bile duct-ligated rat models of cirrhosis. Liver Int 2014; 34:1184-91. [PMID: 24528887 DOI: 10.1111/liv.12481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/31/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Microglia and astrocyte related pro-inflammatory responses are thought to underpin cerebral sequelae of acute liver failure. Conversely, despite background pro-inflammatory responses in cirrhosis, overt brain swelling and coma associated with acute-on-chronic liver failure, is infrequent unless precipitated (e.g. sepsis). Moreover in other chronic neurodegenerative disorders and sepsis, the brain is protected from recurrent microbial insults by compensatory microglial-associated immune responses. To characterise longitudinal cerebral immune responses in a bile duct-ligated (BDL) rat model of cirrhosis. METHOD Rats underwent BDL or sham operation before sacrifice at either 1-day, 1, 2 and 4 weeks post-surgery. We analysed consciousness, brain water, biochemistry and immunohistochemistry to assess activation of microglia (ED-1, OX6 and Iba-1), astrocytes (Glial fibrillary acidic protein - GFAP), cellular stress (Heat shock protein - Hsp 25) and pro-inflammatory mediator expression (inducible nitric oxide synthase (iNOS), interleukin-1beta (IL-1β) and tumour growth factor-beta (TGF-β)). RESULTS BDL significantly increased ammonia and bilirubin (P < 0.01 respectively). The classical microglial markers OX6, ED1 and Iba-1 and pro-inflammatory IL-1β and iNOS were not significantly increased. However, the alternative microglial marker and regulatory cytokine TGF-β was elevated from day 1 to 4 weeks post-BDL. GFAP expression was significantly increased in corpus callosum in all groups. In BDL rats, Hsp 25 was also increased in the corpus callosum, peaking at 2 weeks. CONCLUSION BDL triggers early alternative, but not classical, microglial activation. There was a correlation between astrocyte activation and cellular stress. These findings indicate early cerebral immune responses, which may be associated with immune tolerance to further challenge.
Collapse
Affiliation(s)
- Gavin A K Wright
- Institute of Hepatology, University College London, Royal Free Hospital London, London, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Balasubramaniyan V, Dhar DK, Warner AE, Vivien Li WY, Amiri AF, Bright B, Mookerjee RP, Davies NA, Becker DL, Jalan R. Importance of Connexin-43 based gap junction in cirrhosis and acute-on-chronic liver failure. J Hepatol 2013; 58:1194-200. [PMID: 23376361 DOI: 10.1016/j.jhep.2013.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS In cirrhosis, superimposed inflammation often culminates in acute-on-chronic liver failure (ACLF) but the mechanism underlying this increased sensitivity is not clear. Cx43 is a ubiquitous gap junction protein that allows transmission of signals between cells at a much higher rate than the constitutively expressed gap junctions. The aims of the study were to test the hypothesis that inflammation drives the increased expression of hepatic Cx43 and to determine its role by Cx43 inhibition. METHODS Four weeks after bile-duct ligation (BDL) or sham operation, rats were treated with an anti-TNF antibody, or saline; with or without LPS (1mg/kg); given 3h prior to termination. Biochemistry and cytokines were measured in the plasma and hepatic protein expression (NFkB, TNFα, iNOS, 4HNE, Cx26, 32, and 43) and confocal microscopy (Cx26, 32, and 43) were performed. The effect of a Cx43-specific inhibitory peptide was studied in a mouse BDL model. RESULTS BDL animals administered LPS developed typical features of ACLF but animals administered infliximab were relatively protected. Cx26/32 expression was significantly decreased in BDL animals while Cx43 was significantly increased and increased further following LPS. Infliximab treatment prevented this increase. However, inhibiting Cx43 in BDL mice produced detrimental effects with markedly greater hepatocellular necrosis. CONCLUSIONS The results of this study show for the first time an increased expression of hepatic Cx43 in cirrhosis and ACLF, which was related to the severity of inflammation. This increased Cx43 expression is likely to be an adaptive protective response of the liver to allow better cell-to-cell communication.
Collapse
Affiliation(s)
- Vairappan Balasubramaniyan
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Royal Free Hospital, Pond Street, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Haddadian Z, Eftekhari G, Mazloom R, Jazaeri F, Dehpour AR, Mani AR. Effect of endotoxin on heart rate dynamics in rats with cirrhosis. Auton Neurosci 2013; 177:104-13. [PMID: 23511062 DOI: 10.1016/j.autneu.2013.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022]
Abstract
Reduced heart rate variability (HRV) is a hallmark of systemic inflammation which carries negative prognostic information in sepsis. Decreased HRV is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control during systemic inflammation. Sepsis is a common complication in liver cirrhosis with high mortality. The present study was aimed to explore the hypothesis that endotoxin uncouples cardiac pacemaker from autonomic neural control and reduces HRV in an experimental model of cirrhosis. Cirrhosis was induced by surgical ligation of the bile duct in rats. Cirrhotic rats were given intraperitoneal injection of either saline or lipopolysaccharide (endotoxin, 1mg/kg). Changes in HRV indices were studied in conscious rats using implanted telemetric probes. The atria were isolated and chronotropic responsiveness to cholinergic stimulation was assessed in vitro. Endotoxin injection induced a significant tachycardia and decreased short-term and long-term HRV indices in control rats. However, endotoxin was unable to increase heart rate in cirrhotic animals. In contrast with control rats, endotoxin induced biphasic changes in short-term HRV in cirrhotic rats. Acute endotoxin challenge reduced long-term HRV with 60-min delay in comparison with control animals. Endotoxin injection was associated with a significant hypo-responsiveness to cholinergic stimulation in control rats in vitro. Endotoxin did not change atrial chronotropic responsiveness to cholinergic stimulation in cirrhotic rats. Our data shows that cirrhosis is associated with development of tolerance to cardiac chronotropic effect of endotoxin in rats.
Collapse
Affiliation(s)
- Zahra Haddadian
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
44
|
Jazaeri F, Tavangar SM, Ghazi-Khansari M, Khorramizadeh MR, Mani AR, Dehpour AR. Cirrhosis is associated with development of tolerance to cardiac chronotropic effect of endotoxin in rats. Liver Int 2013; 33:368-74. [PMID: 23311391 DOI: 10.1111/liv.12039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/03/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS Sepsis is a common complication of cirrhosis with a high mortality. Cirrhosis is associated with cardiac chronotropic and inotropic dysfunction, which is known as cirrhotic cardiomyopathy and might be linked to endotoxaemia. This study was aimed to explore the hypothesis that the inflammatory response induced by administration of low dose of lipopolysaccharide (LPS) exacerbates cardiac chronotropic dysfunction in cirrhotic rats; and if so, whether this is associated with altered cardiac toll-like receptor expression. METHODS Cirrhosis was induced by surgical ligation of the bile duct in male Wister rats. Four weeks after bile duct ligation or sham surgery, the subjects were given intraperitoneal injection of either saline or LPS (0.1 mg/kg). Five hours after LPS injection, the atria were isolated and spontaneously beating rate and chronotropic responsiveness to β-adrenergic stimulation was assessed using standard organ bath. The expression of toll-like receptor 4 (TLR4) was assessed the atria using immunohistochemistry as well as quantitative RT-PCR. RESULTS LPS injection could induce a significant hypo-responsiveness to adrenergic stimulation in sham-operated rats. However, in cirrhotic rats, the chronotropic responses did not change after acute injection of LPS. Immunohistochemical study showed that TLR4 is mainly expressed in the myocardium in control atria and its expression is markedly decreased in myocardial layer following chronic bile duct ligation. CONCLUSION Our data showed that cirrhosis is associated with development of tolerance to cardiac chronotropic effect of LPS in rats and this might be caused by altered localization of TLR4 in myocardium.
Collapse
Affiliation(s)
- Farahnaz Jazaeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
45
|
Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. JOURNAL OF INFLAMMATION-LONDON 2012. [PMID: 23192004 PMCID: PMC3599703 DOI: 10.1186/1476-9255-9-49] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During inflammation, the inflammasomes representing a group of multi-protein complexes trigger the biological maturation of pro-inflammatory cytokines such as interleukin-1β and interleukin-18 by proteolytic activation of caspase-1 from its inactive proforms. The individual genes encoding components of the inflammasome machinery are regulated at transcriptional and post-transcriptional levels. Once activated, they drive a wide variety of cellular responses that are necessary to mediate host defense against microbial pathogens and to guarantee tissue homeostasis. In the present work, we have studied the expression of the different inflammasomes in various primary hepatic cell subpopulations, in models of acute inflammation and during experimental liver fibrogenesis. We demonstrate that NLRP-1, NLRP-3 and AIM2 are prominently expressed in Kupffer cells and liver sinusoidal endothelial cells, moderately expressed in periportal myofibroblasts and hepatic stellate cells, and virtually absent in primary cultured hepatocytes. We found that the challenge with the lipopolysaccharides results in a time- and concentration-dependent expression of the NOD-like receptor family members NLRP-1, NLRP-3 and NLRC4/NALP4 in cultured hepatic stellate cells and a strong transcriptional activation of NLRP-3 in hepatocytes. Moreover, we detect a diverse regulatory network of the different inflammasomes in the chosen experimental models of acute and chronic liver insult suggesting that the various inflammasomes might contribute simultaneously to the outcome of inflammatory and fibrotic liver insult, irrespectively of the underlying inflammatory stimulus.
Collapse
Affiliation(s)
- Sorina Georgiana Boaru
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen D-52074, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen D-52074, Germany
| | - Lidia Tihaa
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen D-52074, Germany
| | - Ute Haas
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen D-52074, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, Aachen D-52074, Germany
| |
Collapse
|
46
|
Shah N, Dhar D, El Zahraa Mohammed F, Habtesion A, Davies NA, Jover-Cobos M, Macnaughtan J, Sharma V, Olde Damink SWM, Mookerjee RP, Jalan R. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J Hepatol 2012; 56:1047-1053. [PMID: 22266601 DOI: 10.1016/j.jhep.2011.11.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/30/2011] [Accepted: 11/29/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Superimposed infection and/or inflammation precipitate renal failure in cirrhosis. This study aimed at testing the hypothesis that increased gut bacterial translocation in cirrhosis primes the kidney to the effect of superimposed inflammation by upregulating expression of Toll-like receptor 4 (TLR4), NFκB, and cytokines. A well-characterized bile-duct ligated (BDL) model of cirrhosis, which develops renal failure following superimposed inflammatory insult with lipopolysaccharide (LPS), was used and selective gut decontamination was performed using norfloxacin. METHODS Sprague-Dawley rats were studied: Sham, Sham+LPS; BDL, BDL+LPS; an additional BDL and BDL+LPS groups were selectively decontaminated with norfloxacin. Plasma biochemistry, plasma renin activity (PRA) and cytokines and, protein expression of TLR4, NFκB, and cytokines were measured in the kidney homogenate. The kidneys were stained for TLR4, TLR2, and caspase-3. Endotoxemia was measured using neutrophil burst and Limulus amoebocyte lysate (LAL) assays. RESULTS The groups treated with norfloxacin showed significant attenuation of the increase in plasma creatinine, plasma and renal TNF-α and renal tubular injury on histology. The increased renal protein expression of TLR4, NFκB, and caspase-3 in the untreated animals was significantly attenuated in the norfloxacin treated animals. PRA was reduced in the treated animals and severity of endotoxemia was also reduced. CONCLUSIONS The results show for the first time that kidneys in cirrhosis show an increased expression of TLR4, NFκB, and the pro-inflammatory cytokine TNF-α, which makes them susceptible to a further inflammatory insult. This increased susceptibility to LPS can be prevented with selective decontamination, providing novel insights into the pathophysiology of renal failure in cirrhosis.
Collapse
Affiliation(s)
- Naina Shah
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Dipok Dhar
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Fatma El Zahraa Mohammed
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Pathology Department, Minia University, Egypt
| | - Abeba Habtesion
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Nathan A Davies
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Maria Jover-Cobos
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Jane Macnaughtan
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Vikram Sharma
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Steven W M Olde Damink
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK; Department of Surgery, Maastricht University Medical Centre, and Nutrition and Toxicology Research Institute (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Rajeshwar P Mookerjee
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Rajiv Jalan
- UCL Institute of Hepatology, Upper Third Floor, UCL Medical School, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
47
|
Wright G, Vairappan B, Stadlbauer V, Mookerjee RP, Davies NA, Jalan R. Reduction in hyperammonaemia by ornithine phenylacetate prevents lipopolysaccharide-induced brain edema and coma in cirrhotic rats. Liver Int 2012; 32:410-9. [PMID: 22151131 DOI: 10.1111/j.1478-3231.2011.02698.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/08/2011] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In liver failure, inflammation synergistically exacerbates the deleterious cerebral effects of ammonia. The aims were to test whether treatment with the ammonia-lowering agent ornithine phenylacetate (OP) and/or anti-TNF-α (infliximab) prevent the deleterious brain consequences of lipopolysaccharide (LPS) in cirrhotic rats. DESIGN Rats 4 weeks following bile duct-ligation (BDL), sham-operation (sham) and/or 7 days hyperammonemic feed (HD), were randomized to receive LPS (1 mg/kg) or saline, and treatment with either 3 days intraperitoneal injections of OP (0.6 g/kg) and/or infliximab, 10 mg/kg. Animals were sacrificed at coma stages or at 3 h. RESULTS In sham rats, both HD and LPS increased brain water, with an increase in ammonia in the former and brain cytokines in the latter but with no effect on consciousness. BDL + HD rats caused significantly higher plasma ammonia, TNF-α and IL-6 levels compared to sham. LPS significantly worsened coma stage, increased brain water and plasma and brain TNF-α. OP significantly delayed LPS-induced progression to coma stages (P < 0.009), reduced arterial ammonia and brain water (P < 0.001 and P < 0.01 respectively), which was associated with a significant reduction in cytokines. Infliximab significantly reduced plasma and brain cytokines, but not brain water. OP + infliximab attenuated increase in brain water and delayed occurrence of coma, which was not different to OP alone. In BDL rats, OP reduced the expression of brain iNOS and NFκB. CONCLUSION Reduction in ammonia with OP in cirrhotic rats prevents LPS-induced brain edema and delays coma, suggesting that ammonia may prime the brain to the deleterious effect of LPS, possibly through effects on iNOS and NFκB related mechanisms.
Collapse
Affiliation(s)
- Gavin Wright
- Liver Failure Group, UCL Institute of Hepatology, Royal Free Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Ábrahám S, Hermesz E, Szabó A, Ferencz Á, Jancsó Z, Duda E, Ábrahám M, Lázár G, Lázár G. Effects of Kupffer cell blockade on the hepatic expression of metallothionein and heme oxygenase genes in endotoxemic rats with obstructive jaundice. Life Sci 2012; 90:140-6. [DOI: 10.1016/j.lfs.2011.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 09/07/2011] [Accepted: 10/18/2011] [Indexed: 01/11/2023]
|
49
|
Balasubramaniyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, Mookerjee RP, Jalan R. Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2012; 302:G145-52. [PMID: 21903766 DOI: 10.1152/ajpgi.00097.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ammonia is central in the pathogenesis of hepatic encephalopathy, which is associated with dysfunction of the nitric oxide (NO) signaling pathway. Ornithine phenylacetate (OP) reduces hyperammonemia and brain water in cirrhotic animals. This study aimed to determine whether endothelial NO synthase activity is altered in the brain of cirrhotic animals, whether this is associated with changes in the endogenous inhibitor, asymmetric-dimethylarginine (ADMA) and its regulating enzyme, dimethylarginine-dimethylaminohydrolase (DDAH-1), and whether these abnormalities are restored by ammonia reduction using OP. Sprague-Dawley rats were studied 4-wk after bile duct ligation (BDL) (n = 16) or sham operation (n = 8) and treated with placebo or OP (0.6 g/kg). Arterial ammonia, brain water, TNF-α, plasma, and brain ADMA were measured using standard techniques. NOS activity was measured radiometrically, and protein expression for NOS enzymes, ADMA, DDAH-1, 4-hydroxynonenol ((4)HNE), and NADPH oxidase (NOX)-1 were measured by Western blotting. BDL significantly increased arterial ammonia (P < 0.0001), brain water (P < 0.05), and brain TNF-α (P < 0.01). These were reduced significantly by OP treatment. The estimated eNOS component of constitutive NOS activity was significantly lower (P < 0.05) in BDL rat, and this was significantly attenuated in OP-treated animals. Brain ADMA levels were significantly higher and brain DDAH-1 significantly lower in BDL compared with sham (P < 0.01) and restored toward normal following treatment with OP. Brain (4)HNE and NOX-1 protein expression were significantly increased in BDL rat brain, which were significantly decreased following OP administration. We show a marked abnormality of NO regulation in cirrhotic rat brains, which can be restored by reduction in ammonia concentration using OP.
Collapse
|
50
|
Wright G, Soper R, Brooks HF, Stadlbauer V, Vairappan B, Davies NA, Andreola F, Hodges S, Moss RF, Davies DC, Jalan R. Role of aquaporin-4 in the development of brain oedema in liver failure. J Hepatol 2010; 53:91-7. [PMID: 20451280 DOI: 10.1016/j.jhep.2010.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Liver failure is associated with progressive cytotoxic brain oedema (astrocyte swelling), which underlies hepatic encephalopathy (HE). Ammonia and superimposed inflammation are key synergistic factors in HE, but the mechanism(s) involved remain unknown. We aimed to determine whether aquaporin-4 (AQP4), an astrocyte endfeet bi-directional water channel, is associated with the brain oedema of HE. METHOD Rats (n=60) received sham-operation (sham), 5 days hyperammonaemia-inducing diet (HD), galactosamine (GALN) induced acute liver failure (ALF), 4 weeks bile duct-ligation (BDL) induced cirrhosis, or caecal ligation and puncture (CLP), a 24h model of bacterial peritonitis. Rats from every group (except CLP) were randomised to receive intraperitoneal injections of lipopolysaccharide (LPS; 1mg/kg) or saline, prior to termination 3h later. Brain water, AQP4 protein expression (western blot) and AQP4 localisation by immunogold electron microscopy were investigated. RESULTS Significant hyperammonaemia was observed in saline-injected BDL (p<0.05), GALN (p<0.01), and HD (p<0.01), compared to sham rats. LPS injection did not affect arterial ammonia or plasma biochemistry in any of the treatment groups. Increased brain water was observed in saline-injected GALN (p<0.05), HD (p<0.01), and CLP (p<0.001) compared to sham rats. Brain water was numerically increased in BDL rats, but this failed to reach significance (p=0.09). LPS treatment further increased oedema significantly in all treatment groups (p<0.05, respectively). AQP4 expression was significantly increased in saline-injected BDL (p<0.05), but not other treatment groups, compared to sham rats. Membrane polarisation was maintained in BDL rats. CONCLUSION The results suggest that AQP4 is not directly associated with the development of brain oedema in liver failure, hyperammonaemia, or sepsis. In cirrhosis, there is increased AQP4 protein expression, but membrane polarisation, is maintained, possibly in a compensatory attempt to limit severe brain oedema.
Collapse
Affiliation(s)
- Gavin Wright
- Institute of Hepatology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|