1
|
Bevandić J, Stella F, Ólafsdóttir HF. Parallel maturation of rodent hippocampal memory and CA1 task representations. Curr Biol 2024; 34:5062-5072.e5. [PMID: 39305898 DOI: 10.1016/j.cub.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 11/07/2024]
Abstract
Hippocampal-dependent memory is known to emerge late in ontogeny, and its full development is protracted. Yet the changes in hippocampal neuronal function that underlie this delayed and gradual maturation remain relatively unexplored. To address this gap, we recorded ensembles of CA1 neurons while charting the development of hippocampal-dependent spatial working memory (WM) in rat pups (∼2-4 weeks of age). We found a sharp transition in WM development, with age of inflection varying considerably between individual animals. In parallel with the sudden emergence of WM, hippocampal spatial representations became abruptly task specific, remapping between encoding and retrieval phases of the task. Further, we show how the development of task-phase remapping could partly be explained by changes in place-field size during this developmental period as well as the onset of precise temporal coordination of CA1 excitatory input. Together, these results suggest that a hallmark of hippocampal memory development may be the emergence of contextually specific CA1 representations driven by the maturation of CA1 micro-circuits.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - Federico Stella
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 AJ Nijmegen, the Netherlands
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
4
|
Nadel L. Some implications of postnatal hippocampal development. Hippocampus 2021; 32:98-107. [PMID: 34133050 DOI: 10.1002/hipo.23369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
It is well established that in most species, the hippocampus shows extensive postnatal development. This delayed maturation has a number of implications, which can be thought of in three categories. First, the late maturation has the direct effect of depriving the developing organism of at least some of the functions of the hippocampus, in particular place learning, context coding and in humans, episodic memory. Second, such learning that does occur very early in life, prior to hippocampal maturation, will largely bear the imprint and properties of those brain systems that, unlike the hippocampus, are fully functional early in life. Third, the active state of development of hippocampus in the first weeks and months of life render this structure susceptible to disruption by environmental and/or chromosomal factors. In this article, I discuss my efforts, with many colleagues over the past 40 years, to understand each of these implications.
Collapse
Affiliation(s)
- Lynn Nadel
- Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Kloc ML, Velasquez F, Niedecker RW, Barry JM, Holmes GL. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Brain Stimul 2020; 13:1535-1547. [PMID: 32871261 DOI: 10.1016/j.brs.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hippocampal oscillations play a critical role in the ontogeny of allocentric memory in rodents. During the critical period for memory development, hippocampal theta is the driving force behind the temporal coordination of neuronal ensembles underpinning spatial memory. While known that hippocampal oscillations are necessary for normal spatial cognition, whether disrupted hippocampal oscillatory activity during the critical period impairs long-term spatial memory is unknown. Here we investigated whether disruption of normal hippocampal rhythms during the critical period have enduring effects on allocentric memory in rodents. OBJECTIVE/HYPOTHESIS We hypothesized that disruption of hippocampal oscillations via artificial regulation of the medial septum during the critical period for memory development results in long-standing deficits in spatial cognition. METHODS After demonstrating that pan-neuronal medial septum (MS) optogenetic stimulation (465 nm activated) regulated hippocampal oscillations in weanling rats we used a random pattern of stimulation frequencies to disrupt hippocampal theta rhythms for either 1Hr or 5hr a day between postnatal (P) days 21-25. Non-stimulated and yellow light-stimulated (590 nm) rats served as controls. At P50-60 all rats were tested for spatial cognition in the active avoidance task. Rats were then sacrificed, and the MS and hippocampus assessed for cell loss. Power spectrum density of the MS and hippocampus, coherences and voltage correlations between MS and hippocampus were evaluated at baseline for a range of stimulation frequencies from 0.5 to 110 Hz and during disruptive hippocampal stimulation. Unpaired t-tests and ANOVA were used to compare oscillatory parameters, behavior and cell density in all animals. RESULTS Non-selective optogenetic stimulation of the MS in P21 rats resulted in precise regulation of hippocampal oscillations with 1:1 entrainment between stimulation frequency (0.5-110 Hz) and hippocampal local field potentials. Across bandwidths MS stimulation increased power, coherence and voltage correlation at all frequencies whereas the disruptive stimulation increased power and reduced coherence and voltage correlations with most statistical measures highly significant (p < 0.001, following correction for false detection). Rats receiving disruptive hippocampal stimulation during the critical period for memory development for either 1Hr or 5hr had marked impairment in spatial learning as measured in active avoidance test compared to non-stimulated or yellow light-control rats (p < 0.001). No cell loss was measured between the blue-stimulated and non-stimulated or yellow light-stimulated controls in either the MS or hippocampus. CONCLUSION The results demonstrated that robust regulation of hippocampal oscillations can be achieved with non-selective optogenetic stimulation of the MS in rat pups. A disruptive hippocampal stimulation protocol, which markedly increases power and reduces coherence and voltage correlations between the MS and hippocampus during the critical period of memory development, results in long-standing spatial cognitive deficits. This spatial cognitive impairment is not a result of optogenetic stimulation-induced cell loss.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Rhys W Niedecker
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
6
|
Baram TZ, Donato F, Holmes GL. Construction and disruption of spatial memory networks during development. Learn Mem 2019; 26:206-218. [PMID: 31209115 PMCID: PMC6581006 DOI: 10.1101/lm.049239.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/02/2019] [Indexed: 01/18/2023]
Abstract
Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. In children, nonhippocampal dependent egocentric (self-to-object) memory develops before hippocampal-dependent allocentric (object-to-object) memory. The onset of allocentric spatial memory abilities in children around 22 mo of age occurs at an age-equivalent time in rodents when spatially tuned grid and place cells arise from patterned activity propagating through the entorhinal-hippocampal circuit. Neuronal activity, often driven by specific sensory signals, is critical for the normal maturation of brain circuits This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in spatial and temporal coding of place cells. The molecular mechanisms by which early-life seizures lead to disruptions at the cellular and network levels are now becoming better understood, and provide a target for intervention, potentially leading to improved cognitive outcome in individuals experiencing early-life seizures.
Collapse
Affiliation(s)
- Tallie Z Baram
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, California 92697, USA
- Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA
- Department of Neurology, University of California-Irvine, Irvine, California 92697, USA
| | - Flavio Donato
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Biozentrum, Department of Cell Biology, University of Basel 4056, Switzerland
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05401, USA
| |
Collapse
|
7
|
Cordner ZA, Khambadkone SG, Boersma GJ, Song L, Summers TN, Moran TH, Tamashiro KLK. Maternal high-fat diet results in cognitive impairment and hippocampal gene expression changes in rat offspring. Exp Neurol 2019; 318:92-100. [PMID: 31051155 DOI: 10.1016/j.expneurol.2019.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Consumption of a high-fat diet has long been known to increase risk for obesity, diabetes, and the metabolic syndrome. Further evidence strongly suggests that these same metabolic disorders are associated with an increased risk of cognitive impairment later in life. Now faced with an expanding global burden of obesity and increasing prevalence of dementia due to an aging population, understanding the effects of high-fat diet consumption on cognition is of increasingly critical importance. Further, the developmental origins of many adult onset neuropsychiatric disorders have become increasingly clear, indicating a need to investigate effects of various risk factors, including diet, across the lifespan. Here, we use a rat model to assess the effects of maternal diet during pregnancy and lactation on cognition and hippocampal gene expression of offspring. Behaviorally, adult male offspring of high-fat fed dams had impaired object recognition memory and impaired spatial memory compared to offspring of chow-fed dams. In hippocampus, we found decreased expression of Insr, Lepr, and Slc2a1 (GLUT1) among offspring of high-fat fed dams at postnatal day 21. The decreased expression of Insr and Lepr persisted at postnatal day 150. Together, these data provide additional evidence to suggest that maternal exposure to high-fat diet during pregnancy and lactation can have lasting effects on the brain, behavior, and cognition on adult offspring.
Collapse
Affiliation(s)
- Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Gretha J Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Lin Song
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Tyler N Summers
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Soares RO, Horiquini-Barbosa E, Almeida SS, Lachat JJ. Environmental enrichment protects spatial learning and hippocampal neurons from the long-lasting effects of protein malnutrition early in life. Behav Brain Res 2017; 335:55-62. [DOI: 10.1016/j.bbr.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 08/05/2017] [Indexed: 01/17/2023]
|
9
|
Chen YW, Actor-Engel H, Sherpa AD, Klingensmith L, Chowdhury TG, Aoki C. NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise. Brain Struct Funct 2017; 222:2271-2294. [PMID: 27915379 PMCID: PMC5764086 DOI: 10.1007/s00429-016-1341-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
Abstract
Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Hannah Actor-Engel
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Ang Doma Sherpa
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Lauren Klingensmith
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
| | - Tara G Chowdhury
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington PlaceRoom 809, New York, NY, 10003, USA.
| |
Collapse
|
10
|
Aoki C, Sherpa AD. Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:119-139. [DOI: 10.1007/978-4-431-56550-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Aoki C, Chowdhury TG, Wable GS, Chen YW. Synaptic changes in the hippocampus of adolescent female rodents associated with resilience to anxiety and suppression of food restriction-evoked hyperactivity in an animal model for anorexia nervosa. Brain Res 2017; 1654:102-115. [PMID: 26779892 PMCID: PMC4947030 DOI: 10.1016/j.brainres.2016.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 12/30/2022]
Abstract
Anorexia nervosa is a mental illness that emerges primarily during early adolescence, with mortality rate that is 200 times higher than that of suicide. The illness is characterized by intense fear of gaining weight, heightened anxiety, obstinate food restriction, often accompanied by excessive exercise, in spite of mounting hunger. The illness affects females nine times more often than males, suggesting an endocrine role in its etiology. Its relapse rate exceeds 25%, yet there are no accepted pharmacological treatments to prevent this. Here, we summarize studies from this laboratory that have used adolescent female rodents in activity-based anorexia (ABA), an animal model of anorexia nervosa, with the goal of identifying neurobiological underpinnings of this disease. We put forth a hypothesis that a GABAergic mechanism within the hippocampus is central to regulating an individual׳s anxiety which, in turn, strongly influences the individual׳s resilience/vulnerability to ABA. In particular, we propose that ionotropic GABAA receptors containing the subunits alpha4 and delta, are at play for exerting shunting inhibition upon hippocampal pyramidal neurons that become more excitable during ABA. Since these receptors confer insensitivity to benzodiazepines, this pharmacological profile of ABA fits with lack of report indicating efficacy of benzodiazepines in reducing the anxiety experienced by individuals with anorexia nervosa. The idea that the GABAergic system of the hippocampus regulates resilience/vulnerability to anorexia nervosa complements current opinions about the important roles of the prefrontal cortex, amygdala, striatum, gustatory pathways and feeding centers of the hypothalamus and of the neuromodulators, serotonin and dopamine, in the etiology of the disease. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- Chiye Aoki
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States.
| | - Tara G Chowdhury
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| | - Gauri S Wable
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| | - Yi-Wen Chen
- Center for Neural Science, 4 Washington Place, Room 809, New York, NY 10003, United States
| |
Collapse
|
12
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016. [DOI: 10.10.1002/wcs.1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
13
|
Tan HM, Wills TJ, Cacucci F. The development of spatial and memory circuits in the rat. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [DOI: 10.1002/wcs.1424] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Min Tan
- Singapore Institute for Clinical SciencesSingapore
| | - Thomas Joseph Wills
- Department of Cell and Developmental Biology, Division of BiosciencesUniversity College LondonLondonUK
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, Division of BiosciencesUniversity College LondonLondonUK
| |
Collapse
|
14
|
Cordner ZA, Tamashiro KLK. Effects of high-fat diet exposure on learning & memory. Physiol Behav 2015; 152:363-71. [PMID: 26066731 PMCID: PMC5729745 DOI: 10.1016/j.physbeh.2015.06.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/14/2015] [Accepted: 06/05/2015] [Indexed: 01/13/2023]
Abstract
The associations between consumption of a high-fat or 'Western' diet and metabolic disorders such as obesity, diabetes, and cardiovascular disease have long been recognized and a great deal of evidence now suggests that diets high in fat can also have a profound impact on the brain, behavior, and cognition. Here, we will review the techniques most often used to assess learning and memory in rodent models and discuss findings from studies assessing the cognitive effects of high-fat diet consumption. The review will then consider potential underlying mechanisms in the brain and conclude by reviewing emerging literature suggesting that maternal consumption of a high-fat diet may have effects on the learning and memory of offspring.
Collapse
Affiliation(s)
- Zachary A Cordner
- Cellular & Molecular Medicine Graduate Program, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Kellie L K Tamashiro
- Cellular & Molecular Medicine Graduate Program, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
15
|
Goodman J, Marsh R, Peterson BS, Packard MG. Annual research review: The neurobehavioral development of multiple memory systems--implications for childhood and adolescent psychiatric disorders. J Child Psychol Psychiatry 2014; 55:582-610. [PMID: 24286520 PMCID: PMC4244838 DOI: 10.1111/jcpp.12169] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 01/26/2023]
Abstract
Extensive evidence indicates that mammalian memory is organized into multiple brains systems, including a 'cognitive' memory system that depends on the hippocampus and a stimulus-response 'habit' memory system that depends on the dorsolateral striatum. Dorsal striatal-dependent habit memory may in part influence the development and expression of some human psychopathologies, particularly those characterized by strong habit-like behavioral features. The present review considers this hypothesis as it pertains to psychopathologies that typically emerge during childhood and adolescence. These disorders include Tourette syndrome, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, eating disorders, and autism spectrum disorders. Human and nonhuman animal research shows that the typical development of memory systems comprises the early maturation of striatal-dependent habit memory and the relatively late maturation of hippocampal-dependent cognitive memory. We speculate that the differing rates of development of these memory systems may in part contribute to the early emergence of habit-like symptoms in childhood and adolescence. In addition, abnormalities in hippocampal and striatal brain regions have been observed consistently in youth with these disorders, suggesting that the aberrant development of memory systems may also contribute to the emergence of habit-like symptoms as core pathological features of these illnesses. Considering these disorders within the context of multiple memory systems may help elucidate the pathogenesis of habit-like symptoms in childhood and adolescence, and lead to novel treatments that lessen the habit-like behavioral features of these disorders.
Collapse
Affiliation(s)
- Jarid Goodman
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| | - Rachel Marsh
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bradley S. Peterson
- The MRI Unit and Division of Child & Adolescent Psychiatry in the Department of Psychiatry, the New York State Psychiatric Institute and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mark G. Packard
- The Department of Psychology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Developmental trajectory of contextual learning and 24-h acetylcholine release in the hippocampus. Sci Rep 2014; 4:3738. [PMID: 24435246 PMCID: PMC3894550 DOI: 10.1038/srep03738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/18/2013] [Indexed: 11/08/2022] Open
Abstract
To determine the developmental trajectory of hippocampal function in rats, we examined 24-h changes in extracellular acetylcholine (ACh) levels and contextual learning performance. Extracellular ACh significantly correlated with spontaneous behavior, exhibiting a 24-h rhythm in juvenile (4-week-old), pubertal (6-week-old), and adult (9- to 12-week-old) rats. Although juveniles of both sexes exhibited low ACh levels, adult males had higher ACh levels than adult females. Moreover, juveniles exhibited much more spontaneous activity than adults when they showed equivalent ACh levels. Similarly, juveniles of both sexes exhibited relatively low contextual learning performance. Because contextual learning performance was significantly increased only in males, adult males exhibited better performance than adult females. We also observed a developmental relationship between contextual learning and ACh levels. Scopolamine pretreatment blocked contextual learning and interrupted the correlation. Since long-term scopolamine treatment after weaning impaired contextual learning in juveniles, the cholinergic input may participate in the development of hippocampus.
Collapse
|
17
|
Wills TJ, Muessig L, Cacucci F. The development of spatial behaviour and the hippocampal neural representation of space. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130409. [PMID: 24366148 PMCID: PMC3866458 DOI: 10.1098/rstb.2013.0409] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The role of the hippocampal formation in spatial cognition is thought to be supported by distinct classes of neurons whose firing is tuned to an organism's position and orientation in space. In this article, we review recent research focused on how and when this neural representation of space emerges during development: each class of spatially tuned neurons appears at a different age, and matures at a different rate, but all the main spatial responses tested so far are present by three weeks of age in the rat. We also summarize the development of spatial behaviour in the rat, describing how active exploration of space emerges during the third week of life, the first evidence of learning in formal tests of hippocampus-dependent spatial cognition is observed in the fourth week, whereas fully adult-like spatial cognitive abilities require another few weeks to be achieved. We argue that the development of spatially tuned neurons needs to be considered within the context of the development of spatial behaviour in order to achieve an integrated understanding of the emergence of hippocampal function and spatial cognition.
Collapse
Affiliation(s)
- Thomas J Wills
- Department of Cell and Developmental Biology, University College London, , London WC1E 6BT, UK
| | | | | |
Collapse
|
18
|
Wills TJ, Cacucci F. The development of the hippocampal neural representation of space. Curr Opin Neurobiol 2013; 24:111-9. [PMID: 24492087 DOI: 10.1016/j.conb.2013.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022]
Abstract
The hippocampal formation (HF) contains a neural representation of the environment, based on the activity of several classes of neurons whose firing is tuned to an animal's position and orientation in space. Recently, work has begun on understanding when and how this neural map of space emerges during development. Different classes of spatially tuned neurons emerge at different ages, some of them very early during development, before animals have started exploring their environment. The developmental timeline thus far uncovered has yielded insights into both the mechanisms of the ontogeny of the neural code for space, as well as how this system functions in the adult.
Collapse
Affiliation(s)
- Thomas J Wills
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Green MR, McCormick CM. Effects of stressors in adolescence on learning and memory in rodent models. Horm Behav 2013; 64:364-79. [PMID: 23998678 DOI: 10.1016/j.yhbeh.2012.09.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 02/07/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Learning and memory is affected by a myriad of factors, including exposure to stressors and the corresponding rise in circulating glucocorticoids. Nevertheless, the effects of stressors depend on the sex, species, the type of stressor used, the duration of exposure, as well as the developmental time-point in which stressors are experienced. Effects of stress in adolescence, however, have received less attention than other developmental periods. In adolescence, the hypothalamic-pituitary-adrenal axis and brain regions involved in learning and memory, which also richly express corticosteroid receptors, are continuing to develop, and thus the effects of stress exposures would be expected to differ from those in adulthood. We conclude from a review of the available literature in animal models that hippocampal function is particularly sensitive to adolescent stressors, and the effects tend to be most evident several weeks after the exposure, suggesting stressors alter the developmental trajectory of the hippocampus.
Collapse
Affiliation(s)
- Matthew R Green
- Department of Psychology, Brock University, 500 Glenridge Ave., St. Catharines, Ontario, Canada
| | | |
Collapse
|
20
|
Martinez-Canabal A, Akers KG, Josselyn SA, Frankland PW. Age-dependent effects of hippocampal neurogenesis suppression on spatial learning. Hippocampus 2012; 23:66-74. [PMID: 22826108 DOI: 10.1002/hipo.22054] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2012] [Indexed: 11/06/2022]
Abstract
Reducing hippocampal neurogenesis sometimes, but not always, disrupts hippocampus-dependent learning and memory. Here, we tested whether animal age, which regulates rate of hippocampal neurogenesis, is a factor that influences whether deficits in spatial learning are observed after reduction of neurogenesis. We found that suppressing the generation of new hippocampal neurons via treatment with temozolomide, an antiproliferation agent, impaired learning the location of a hidden platform in the water maze in juvenile mice (1-2 months old) but not in adult mice (2-3 months old) or middle-aged mice (11-12 months old). These findings suggest that during juvenility, suppression of neurogenesis may alter hippocampal development, whereas during adulthood and aging, pre-existing neurons may compensate for the lack of new hippocampal neurons.
Collapse
|
21
|
Knierim JJ, Zhang K. Attractor dynamics of spatially correlated neural activity in the limbic system. Annu Rev Neurosci 2012; 35:267-85. [PMID: 22462545 DOI: 10.1146/annurev-neuro-062111-150351] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Attractor networks are a popular computational construct used to model different brain systems. These networks allow elegant computations that are thought to represent a number of aspects of brain function. Although there is good reason to believe that the brain displays attractor dynamics, it has proven difficult to test experimentally whether any particular attractor architecture resides in any particular brain circuit. We review models and experimental evidence for three systems in the rat brain that are presumed to be components of the rat's navigational and memory system. Head-direction cells have been modeled as a ring attractor, grid cells as a plane attractor, and place cells both as a plane attractor and as a point attractor. Whereas the models have proven to be extremely useful conceptual tools, the experimental evidence in their favor, although intriguing, is still mostly circumstantial.
Collapse
Affiliation(s)
- James J Knierim
- Krieger Mind/Brain Institute and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
22
|
Abstract
Most GABAergic interneurons in the cortex are born at embryonic stages in the ganglionic eminences and migrate tangentially to their final destination. They continue, however, to differentiate and functionally integrate in the circuitry until later postnatal stages of the rodent brain. Recent investigations show that interneurons undergo marked changes in their morphological, intrinsic and synaptic properties as they mature. Action potential shape and its propagation, the period of transmitter release and the time course of the postsynaptic GABA(A) receptor-mediated conductance become faster during the first three to four postnatal weeks, resulting in a developmental switch of interneurons from slow to fast signalling units. At the same time, the nature of GABAergic signalling is classically considered to shift from depolarizing to hyperpolarizing. However, recent studies oppose this view as interneuron synapses can be shunting, excitatory or hyperpolarizing in the mature cortex, demonstrating the coexistence of diverse developmental rules for the emerging effects of GABAergic synapses. Thus, mature interneuron signalling comes in many forms and is apparently optimized to the network in which the neurons are embedded.
Collapse
Affiliation(s)
- Jonas-Frederic Sauer
- Institute of Physiology 1, University of Freiburg, Hermann-Herder-Strasse 7, D-70104 Freiburg, Germany
| | | |
Collapse
|
23
|
Ainge JA, Langston RF. Ontogeny of neural circuits underlying spatial memory in the rat. Front Neural Circuits 2012; 6:8. [PMID: 22403529 PMCID: PMC3290765 DOI: 10.3389/fncir.2012.00008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/17/2012] [Indexed: 11/13/2022] Open
Abstract
Spatial memory is a well-characterized psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we briefly review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioral studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.
Collapse
Affiliation(s)
- James A Ainge
- School of Psychology, University of St. Andrews, St. Mary's Quad, St. Andrews, Fife Scotland, UK
| | | |
Collapse
|
24
|
Scott RC, Richard GR, Holmes GL, Lenck-Santini PP. Maturational dynamics of hippocampal place cells in immature rats. Hippocampus 2011; 21:347-53. [PMID: 20865725 DOI: 10.1002/hipo.20789] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ontogeny of neural substrates underlying episodic memory is not well described. Place cells are a surrogate for episodic memory and are important for spatial navigation in rodents. Although place cells are well described in mature brains, the nature of the maturation processes remains uncertain. We now report on the ontogeny of the place cell system in rats between P22 and P43, a time during which there is rapid improvement in spatial behavior. We found that place cells with adult like firing fields were observed at the earliest ages. However, at this age, adult like place cells were few in number and their place fields were not stable across multiple exposures to the same environment. Independently of confounding factors such as the number of exposures to the environment, the proportion of adult-like place cells, their firing rate, and their stability increased with age and the average spatial signal of all pyramidal cells improved. These findings could account for the poor spatial behavior observed at young ages (P20-P30) and suggests that a small number of adult-like place cells are insufficient to support navigation.
Collapse
Affiliation(s)
- Rod C Scott
- Department of Neurology, Neuroscience Center at Dartmouth, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03756, USA.
| | | | | | | |
Collapse
|
25
|
Akers KG, Candelaria-Cook FT, Rice JP, Johnson TE, Hamilton DA. Cued platform training reveals early development of directional responding among preweanling rats in the Morris water task. Dev Psychobiol 2010; 53:1-12. [DOI: 10.1002/dev.20480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser MB. Development of the spatial representation system in the rat. Science 2010; 328:1576-80. [PMID: 20558721 DOI: 10.1126/science.1188210] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the adult brain, space and orientation are represented by an elaborate hippocampal-parahippocampal circuit consisting of head-direction cells, place cells, and grid cells. We report that a rudimentary map of space is already present when 2 1/2-week-old rat pups explore an open environment outside the nest for the first time. Head-direction cells in the pre- and parasubiculum have adultlike properties from the beginning. Place and grid cells are also present but evolve more gradually. Grid cells show the slowest development. The gradual refinement of the spatial representation is accompanied by an increase in network synchrony among entorhinal stellate cells. The presence of adultlike directional signals at the onset of navigation raises the possibility that such signals are instrumental in setting up networks for place and grid representation.
Collapse
Affiliation(s)
- Rosamund F Langston
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Medical Technical Research Center, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7489 Trondheim, Norway
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wills TJ, Cacucci F, Burgess N, O'Keefe J. Development of the hippocampal cognitive map in preweanling rats. Science 2010; 328:1573-6. [PMID: 20558720 PMCID: PMC3543985 DOI: 10.1126/science.1188224] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Orienting in large-scale space depends on the interaction of environmental experience and preconfigured, possibly innate, constructs. Place, head-direction, and grid cells in the hippocampal formation provide allocentric representations of space. Here we show how these cognitive representations emerge and develop as rat pups first begin to explore their environment. Directional, locational, and rhythmic organization of firing are present during initial exploration, including adultlike directional firing. The stability and precision of place cell firing continue to develop throughout juvenility. Stable grid cell firing appears later but matures rapidly to adult levels. Our results demonstrate the presence of three neuronal representations of space before extensive experience and show how they develop with age.
Collapse
Affiliation(s)
- Tom J Wills
- Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|
28
|
Bullens J, Nardini M, Doeller CF, Braddick O, Postma A, Burgess N. The role of landmarks and boundaries in the development of spatial memory. Dev Sci 2010; 13:170-80. [PMID: 20121873 DOI: 10.1111/j.1467-7687.2009.00870.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessie Bullens
- Helmholtz Research Institute, Department of Experimental Psychology, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Kropff E, Treves A. The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 2009; 18:1256-69. [PMID: 19021261 DOI: 10.1002/hipo.20520] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Individual medial entorhinal cortex (mEC) 'grid' cells provide a representation of space that appears to be essentially invariant across environments, modulo simple transformations, in contrast to multiple, rapidly acquired hippocampal maps; it may therefore be established gradually during rodent development. We explore with a simplified mathematical model the possibility that the self-organization of multiple grid fields into a triangular grid pattern may be a single-cell process, driven by firing rate adaptation and slowly varying spatial inputs. A simple analytical derivation indicates that triangular grids are favored asymptotic states of the self-organizing system, and computer simulations confirm that such states are indeed reached during a model learning process, provided it is sufficiently slow to effectively average out fluctuations. The interactions among local ensembles of grid units serve solely to stabilize a common grid orientation. Spatial information, in the real mEC network, may be provided by any combination of feedforward cortical afferents and feedback hippocampal projections from place cells, since either input alone is likely sufficient to yield grid fields.
Collapse
Affiliation(s)
- Emilio Kropff
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, NTNU-Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | | |
Collapse
|
30
|
Abstract
Gamma frequency (30-100 Hz) oscillations in the mature cortex underlie higher cognitive functions. Fast signaling in GABAergic interneuron networks plays a key role in the generation of these oscillations. During development of the rodent brain, gamma activity appears at the end of the first postnatal week, but frequency and synchrony reach adult levels only by the fourth week. However, the mechanisms underlying the maturation of gamma activity are unclear. Here we demonstrate that hippocampal basket cells (BCs), the proposed cellular substrate of gamma oscillations, undergo marked changes in their morphological, intrinsic, and synaptic properties between postnatal day 6 (P6) and P25. During maturation, action potential duration, propagation time, duration of the release period, and decay time constant of IPSCs decreases by approximately 30-60%. Thus, postnatal development converts BCs from slow into fast signaling devices. Computational analysis reveals that BC networks with young intrinsic and synaptic properties as well as reduced connectivity generate oscillations with moderate coherence in the lower gamma frequency range. In contrast, BC networks with mature properties and increased connectivity generate highly coherent activity in the upper gamma frequency band. Thus, late postnatal maturation of BCs enhances coherence in neuronal networks and will thereby contribute to the development of cognitive brain functions.
Collapse
|
31
|
Juvenile stress-induced alteration of maturation of the GABAA receptor alpha subunit in the rat. Int J Neuropsychopharmacol 2008; 11:891-903. [PMID: 18364065 DOI: 10.1017/s1461145708008559] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Profound evidence indicates that GABAA receptors are important in the control of physiological response to stress and anxiety. The alpha subunit type composition contributes significantly to the functional characterization of the GABAA receptors. The alpha2, alpha3, alpha5 subunits are predominately expressed in the brain during embryonic and early postnatal periods of normal rats, whilst alpha1 are most prominent during later developmental stages. In the present study, we examined the long-term effects of juvenile stress on GABA alpha subunit expression in adulthood in the amygdala and hippocampus. We applied the elevated platform stress paradigm at juvenility and used the open-field and startle response tests to assess anxiety level in adulthood. Juvenile stress effects without behavioural tests in adulthood were also examined since previous studies indicated that the mere exposure to these tests might be stressful for rats, enhancing the effects of the juvenile exposure to stress. In adulthood, we quantitatively determined the level of expression of alpha1, alpha2 and alpha3 in the hippocampus and amygdala. Our results indicate that subjecting juvenile stressed rats to additional challenges in adulthood results in an immature-like expression profile of these subunits. To test for potential functional implications of these alterations we examined the effects of the anxiolytic (diazepam) and the sedative (brotizolam) benzodiazepines on juvenile stressed and control rats following additional challenges in adulthood. Juvenile stressed rats were more sensitive to diazepam and less sensitive to brotizolam, suggesting that the alterations in GABA alpha subunit expression in these animals have functional consequences.
Collapse
|
32
|
Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 2008; 31:69-89. [PMID: 18284371 DOI: 10.1146/annurev.neuro.31.061307.090723] [Citation(s) in RCA: 974] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than three decades of research have demonstrated a role for hippocampal place cells in representation of the spatial environment in the brain. New studies have shown that place cells are part of a broader circuit for dynamic representation of self-location. A key component of this network is the entorhinal grid cells, which, by virtue of their tessellating firing fields, may provide the elements of a path integration-based neural map. Here we review how place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory. Because these cell types have some of the most conspicuous behavioral correlates among neurons in nonsensory cortical systems, and because their spatial firing structure reflects computations internally in the system, studies of entorhinal-hippocampal representations may offer considerable insight into general principles of cortical network dynamics.
Collapse
Affiliation(s)
- Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | | | |
Collapse
|
33
|
Abstract
Numerous single-unit recording studies have found mammalian hippocampal neurons that fire selectively for the animal's location in space, independent of its orientation. The population of such neurons, commonly known as place cells, is thought to maintain an allocentric, or orientation-independent, internal representation of the animal's location in space, as well as mediating long-term storage of spatial memories. The fact that spatial information from the environment must reach the brain via sensory receptors in an inherently egocentric, or viewpoint-dependent, fashion leads to the question of how the brain learns to transform egocentric sensory representations into allocentric ones for long-term memory storage. Additionally, if these long-term memory representations of space are to be useful in guiding motor behavior, then the reverse transformation, from allocentric to egocentric coordinates, must also be learned. We propose that orientation-invariant representations can be learned by neural circuits that follow two learning principles: minimization of reconstruction error and maximization of representational temporal inertia. Two different neural network models are presented that adhere to these learning principles, the first by direct optimization through gradient descent and the second using a more biologically realistic circuit based on the restricted Boltzmann machine (Hinton, 2002; Smolensky, 1986). Both models lead to orientation-invariant representations, with the latter demonstrating place-cell-like responses when trained on a linear track environment.
Collapse
Affiliation(s)
- Patrick Byrne
- Department of Psychology, Neuroscience and Behavior, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | | |
Collapse
|
34
|
Yap CSL, Richardson R. Extinction in the developing rat: an examination of renewal effects. Dev Psychobiol 2007; 49:565-75. [PMID: 17680605 DOI: 10.1002/dev.20244] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present series of experiments the context-specificity of extinction was examined from a developmental perspective. For postnatal day (PN) 23 rats, renewal of freezing to an aversive odor conditioned stimulus (CS) was observed when rats were conditioned in Context A, extinguished in Context B, and tested in Context A (i.e., ABA renewal). This effect was not observed in PN16 rats, which is consistent with previous studies suggesting that rats < approximately PN20 are impaired in encoding contextual information [i.e., Carew and Rudy [1991]. Developmental Psychobiology, 24, 191-209]. Subsequent experiments demonstrated that for rats conditioned at PN16 and tested at PN23, contextual regulation of extinction performance depended on the age at which extinction occurred. Specifically, ABA renewal was observed in rats given extinction training at PN22 but not in rats given extinction training at PN17. These latter results show that whether or not context regulates the expression of an ambiguous memory is determined by the animal's age when the memory becomes ambiguous.
Collapse
Affiliation(s)
- Carol S L Yap
- School of Psychology, The University of New South Wales, Sydney 2052, Australia.
| | | |
Collapse
|
35
|
Sullivan R, Wilson DA, Feldon J, Yee BK, Meyer U, Richter-Levin G, Avi A, Michael T, Gruss M, Bock J, Helmeke C, Braun K. The International Society for Developmental Psychobiology annual meeting symposium: Impact of early life experiences on brain and behavioral development. Dev Psychobiol 2006; 48:583-602. [PMID: 17016842 PMCID: PMC1952656 DOI: 10.1002/dev.20170] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, a juvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism's developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health.
Collapse
Affiliation(s)
- Regina Sullivan
- Department of Zoology, University of Oklahoma, Norman, OK 73072, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Le Pen G, Gourevitch R, Hazane F, Hoareau C, Jay TM, Krebs MO. Peri-pubertal maturation after developmental disturbance: a model for psychosis onset in the rat. Neuroscience 2006; 143:395-405. [PMID: 16973297 DOI: 10.1016/j.neuroscience.2006.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/30/2006] [Accepted: 08/01/2006] [Indexed: 11/21/2022]
Abstract
Schizophrenia is thought to be associated with abnormalities during neurodevelopment although those disturbances usually remain silent until puberty; suggesting that postnatal brain maturation precipitates the emergence of psychosis. In an attempt to model neurodevelopmental defects in the rat, brain cellular proliferation was briefly interrupted with methylazoxymethanol (MAM) during late gestation at embryonic day 17 (E17). The litters were explored at pre- and post-puberty and compared with E17 saline-injected rats. We measured spontaneous and provoked locomotion, working memory test, social interaction, and prepulse inhibition (PPI). As compared with the saline-exposed rats, the E17 MAM-exposed rats exhibited spontaneous hyperactivity that emerged only after puberty. At adulthood, they also exhibited hypersensitivity to the locomotor activating effects of a mild stress and a glutamatergic N-methyl-D-aspartate receptor antagonist (MK-801), as well as PPI deficits whereas before puberty no perturbations were observed. In addition, spatial working memory did not undergo the normal peri-pubertal maturation seen in the sham rats. Social interaction deficits were observed in MAM rats, at both pre- and post-puberty. Our study further confirms that transient prenatal disruption of neurogenesis by MAM at E17 is a valid behavioral model for schizophrenia as it is able to reproduce some fundamental features of schizophrenia with respect to both phenomenology and temporal pattern of the onset of symptoms and deficits.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/growth & development
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Inhibition, Psychological
- Interpersonal Relations
- Maze Learning/drug effects
- Maze Learning/physiology
- Methylazoxymethanol Acetate/analogs & derivatives
- Motor Activity/drug effects
- Motor Activity/physiology
- Pregnancy
- Prenatal Exposure Delayed Effects
- Psychotic Disorders/etiology
- Psychotic Disorders/physiopathology
- Rats
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Time Factors
Collapse
Affiliation(s)
- G Le Pen
- INSERM, U796, Pathophysiology of Psychiatric Disorders, University Paris Descartes, Sainte-Anne Hospital, Centre Paul Broca, Paris F-75014 France.
| | | | | | | | | | | |
Collapse
|
37
|
Dekay JGT, Chang TC, Mills N, Speed HE, Dobrunz LE. Responses of excitatory hippocampal synapses to natural stimulus patterns reveal a decrease in short-term facilitation and increase in short-term depression during postnatal development. Hippocampus 2006; 16:66-79. [PMID: 16261553 DOI: 10.1002/hipo.20132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schaffer collateral excitatory synapses onto CA1 pyramidal cells are subject to significant modulation by short-term plasticity. This presynaptic, history-dependent modulation of neurotransmitter release causes synaptic transmission to be sensitive to the frequency of the input. As a result, temporally irregular input patterns, such as those observed in vivo, produce synaptic responses over a very wide dynamic range that reflect a balance of short-term facilitation and short-term depression. The neonatal period is an important developmental period in the hippocampus, when functional representations of an animal's environment are being established through exploratory behavior. The strength of excitatory synapses and their modulation by short-term plasticity are critical to this process. One form of short-term plasticity, paired-pulse facilitation, has been shown to decrease as juvenile rats mature into young adults. However, little is known about the neonatal modulation of other forms of short-term plasticity, including the responses to temporally complex stimuli. We examined developmental modulation of the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 pyramidal cells in acute hippocampal slices, using both constant frequency stimuli and natural stimulus patterns that were taken from in vivo recording of spike patterns of hippocampal cells. In response to constant frequency stimulation, synapses in slices from young adult rats (P28-P35) showed less short-term depression than did those in slices from juveniles (P12-P18). However, when the natural stimulus pattern (containing a wide mix of frequencies) was used, synapses from young adults instead showed more short-term depression and less short-term facilitation than did juveniles. Comparing the natural stimulus pattern responses with constant frequency stimulation of a similar frequency, we found that the average responses were similar in young adults (both showed modest depression). However, in juveniles, the natural pattern produced robust facilitation while constant frequency stimulation caused a large short-term depression. Our results reveal that there are developmental changes both in individual forms of short-term plasticity and in the relative balance between short-term facilitation and short-term depression that will alter the signal transfer characteristics of these synapses.
Collapse
Affiliation(s)
- James G T Dekay
- Department of Neurobiology and Civitan International Research Center, University of Alabama, Birmingham, Alabama 35210, USA
| | | | | | | | | |
Collapse
|
38
|
Kaske A, Winber G, Cöster J. Motor-maps, navigation and implicit space representation in the hippocampus. BIOLOGICAL CYBERNETICS 2006; 94:46-57. [PMID: 16331489 DOI: 10.1007/s00422-005-0021-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/09/2005] [Indexed: 05/05/2023]
Abstract
Multiple sensory-motor maps located in the brainstem and the cortex are involved in spatial orientation. Guiding movements of eyes, head, neck and arms they provide an approximately linear relation between target distance and motor response. This involves especially the superior colliculus in the brainstem and the parietal cortex. There, the natural frame of reference follows from the retinal representation of the environment. A model of navigation is presented that is based on the modulation of activity in those sensory-motor maps. The actual mechanism chosen was gain-field modulation, a process of multimodal integration that has been demonstrated in the parietal cortex and superior colliculus, and was implemented as attraction to visual cues (colour). Dependent on the metric of the sensory-motor map, the relative attraction to these cues implemented as gain field modulation and their position define a fixed point attractor on the plane for locomotive behaviour. The actual implementation used Kohonen-networks in a variant of reinforcement learning that are well suited to generate such topographically organized sensory-motor maps with roughly linear visuo-motor response characteristics. In the following, it was investigated how such an implicit coding of target positions by gain-field parameters might be represented in the hippocampus formation and under what conditions a direction-invariant space representation can arise from such retinotopic representations of multiple cues. Information about the orientation in the plane--as could be provided by head direction cells--appeared to be necessary for unambiguous space representation in our model in agreement with physiological experiments. With this information, Gauss-shaped "place-cells" could be generated, however, the representation of the spatial environment was repetitive and clustered and single cells were always tuned to the gain-field parameters as well.
Collapse
Affiliation(s)
- Alexander Kaske
- BioComplexity Group, MTC, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
39
|
Avital A, Ram E, Maayan R, Weizman A, Richter-Levin G. Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Res Bull 2005; 68:419-24. [PMID: 16459196 DOI: 10.1016/j.brainresbull.2005.09.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Revised: 09/19/2005] [Accepted: 09/28/2005] [Indexed: 11/18/2022]
Abstract
Recent evidence support the hypothesis that exposure to stress or trauma during early childhood may disturb the formation of functional brain pathways, in particular, of the limbic circuits. We examined the effects of exposure to early life trauma (juvenile stress) on emotional and cognitive aspects of behavior in adulthood as well as on dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) levels in relevant brain regions. Quantitative assessment of the effects of exposure to juvenile stress was made 1 month post-stress, and obtained by measuring: emotional (utilizing an open field and a startle response tests) and cognitive (Morris water-maze task) functions, as well as neurosteroids concentration (DHEA and its sulfate ester, DHEAS) in the hypothalamus and entorhinal cortex. We report here that an exposure to juvenile stress led to elevated levels of anxiety 1 month post-stress. Moreover, in a spatial learning task, the juvenile stress group performed poorer than the control group. Finally, an exposure to juvenile stress increased DHEAS but not DHEA concentrations both in the hypothalamus and the entorhinal cortex. These findings indicate that an exposure to juvenile stress has long-lasting effects on behavior and DHEAS levels in the hypothalamus and the entorhinal cortex. These effects may be of relevance to our understanding of early life stress-related disorders such as PTSD and major depression.
Collapse
Affiliation(s)
- Avi Avital
- Department of Psychology and The Brain & Behavior Research Center, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | | | | | | | | |
Collapse
|
40
|
Dumas TC. Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus 2005; 15:562-78. [PMID: 15884034 DOI: 10.1002/hipo.20077] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sensorimotor systems in altricial animals mature incrementally during early postnatal development, with complex cognitive abilities developing late. Of prominence are cognitive processes that depend on an intact hippocampus, such as contextual-configural learning, allocentric and idiocentric navigation, and certain forms of trace conditioning. The mechanisms that regulate the delayed maturation of the hippocampus are not well understood. However, there is support for the idea that these behaviors come "on line" with the final maturation of excitatory synaptic transmission. First, by providing a timeline for the first behavioral expression of various forms of learning and memory, this study illustrates the late maturation of hippocampal-dependent cognitive abilities. Then, functional development of the hippocampus is reviewed to establish the temporal relationship between maturation of excitatory synaptic transmission and the behavioral evidence of adult-like hippocampal processing. These data suggest that, in rats, mechanisms necessary for the expression of adult-like synaptic plasticity become available at around 2 postnatal weeks of age. However, presynaptic plasticity mechanisms, likely necessary for refinement of the hippocampal network, predominate and impede information processing until the third postnatal week.
Collapse
Affiliation(s)
- Theodore C Dumas
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA.
| |
Collapse
|
41
|
Roelandse M, Welman A, Wagner U, Hagmann J, Matus A. Focal motility determines the geometry of dendritic spines. Neuroscience 2003; 121:39-49. [PMID: 12946698 DOI: 10.1016/s0306-4522(03)00405-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The geometry of dendritic spines has a major impact on signal transmission at excitatory synapses. To study it in detail we raised transgenic mice expressing an intrinsic green fluorescent protein-based plasma membrane marker that directly visualizes the cell surface of living neurons throughout the brain. Confocal imaging of developing hippocampal slices showed that as dendrites mature they switch from producing labile filopodia and polymorphic spine precursors to dendritic spines with morphologies similar to those reported from studies of adult brain. In images of live dendrites these mature spines are fundamentally stable structures, but retain morphological plasticity in the form of actin-rich lamellipodia at the tips of spine heads. In live mature dendrites up to 50% of spines had cup-shaped heads with prominent terminal lamellipodia whose motility produced constant alterations in the detailed geometry of the synaptic contact zone. The partial enveloping of presynaptic terminals by these cup-shaped spines coupled with rapid actin-driven changes in their shape may operate to fine-tune receptor distribution and neurotransmitter cross-talk at excitatory synapses.
Collapse
Affiliation(s)
- M Roelandse
- Friedrich Miescher Institute, PO Box 2543, 4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Rossier J, Schenk F. Olfactory and/or visual cues for spatial navigation through ontogeny: olfactory cues enable the use of visual cues. Behav Neurosci 2003; 117:412-25. [PMID: 12802871 DOI: 10.1037/0735-7044.117.3.412] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.
Collapse
Affiliation(s)
- Jérôme Rossier
- Institute of Physiology, Faculty of Medicine, Institute of Psychology, Faculty of Social and Political Sciences, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|