1
|
Syversen IF, Reznik D, Witter MP, Kobro-Flatmoen A, Navarro Schröder T, Doeller CF. A combined DTI-fMRI approach for optimizing the delineation of posteromedial versus anterolateral entorhinal cortex. Hippocampus 2024; 34:659-672. [PMID: 39305289 DOI: 10.1002/hipo.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/14/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024]
Abstract
In the entorhinal cortex (EC), attempts have been made to identify the human homologue regions of the medial (MEC) and lateral (LEC) subregions using either functional magnetic resonance imaging (fMRI) or diffusion tensor imaging (DTI). However, there are still discrepancies between entorhinal subdivisions depending on the choice of connectivity seed regions and the imaging modality used. While DTI can be used to follow the white matter tracts of the brain, fMRI can identify functionally connected brain regions. In this study, we used both DTI and resting-state fMRI in 103 healthy adults to investigate both structural and functional connectivity between the EC and associated cortical brain regions. Differential connectivity with these regions was then used to predict the locations of the human homologues of MEC and LEC. Our results from combining DTI and fMRI support a subdivision into posteromedial (pmEC) and anterolateral (alEC) EC and reveal a confined border between the pmEC and alEC. Furthermore, the EC subregions obtained by either imaging modality showed similar distinct whole-brain connectivity profiles. Optimizing the delineation of the human homologues of MEC and LEC with a combined, cross-validated DTI-fMRI approach allows to define a likely border between the two subdivisions and has implications for both cognitive and translational neuroscience research.
Collapse
Affiliation(s)
- Ingrid Framås Syversen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Reznik
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- K.G. Jebsen Centre for Alzheimer's Disease, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Kabanova A, Fedorov L, Eschenko O. The Projection-Specific Noradrenergic Modulation of Perseverative Spatial Behavior in Adult Male Rats. eNeuro 2024; 11:ENEURO.0063-24.2024. [PMID: 39160074 PMCID: PMC11334950 DOI: 10.1523/eneuro.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024] Open
Abstract
Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Leonid Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Dubanet O, Higley MJ. Retrosplenial inputs drive visual representations in the medial entorhinal cortex. Cell Rep 2024; 43:114470. [PMID: 38985682 PMCID: PMC11300029 DOI: 10.1016/j.celrep.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
The importance of visual cues for navigation and goal-directed behavior is well established, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the medial entorhinal cortex (MEC), which receives direct projections from neocortical visual areas, including the retrosplenial cortex (RSC). Here, we perform high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assess the dynamics of sensory-evoked activity. We find that a large fraction of neurons exhibit robust responses to visual input. Visually responsive cells are located primarily in layer 3 of the dorsal MEC and can be separated into subgroups based on functional and molecular properties. Furthermore, optogenetic suppression of RSC afferents within the MEC strongly reduces visual responses. Overall, our results demonstrate that the MEC can encode simple visual cues in the environment that may contribute to neural representations of location necessary for accurate navigation.
Collapse
Affiliation(s)
- Olivier Dubanet
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Reyes I, Faustin A, Tian C, Masurkar AV. Frontal-Variant Alzheimer's Disease: Subregional Distribution of Entorhinal-CA1 Pathology and Pathophysiological Implications. J Neuropsychiatry Clin Neurosci 2024; 36:360-363. [PMID: 38835223 DOI: 10.1176/appi.neuropsych.20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Chengju Tian
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| |
Collapse
|
5
|
Han X, Cramer SR, Chan DCY, Zhang N. Exploring memory-related network via dorsal hippocampus suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597201. [PMID: 38895299 PMCID: PMC11185736 DOI: 10.1101/2024.06.03.597201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Memory is a complex brain process that requires coordinated activities in a large-scale brain network. However, the relationship between coordinated brain network activities and memory-related behavior is not well understood. In this study, we investigated this issue by suppressing the activity in the dorsal hippocampus (dHP) using chemogenetics and measuring the corresponding changes in brain-wide resting-state functional connectivity (RSFC) and memory behavior in awake rats. We identified an extended brain network contributing to the performance in a spatial-memory related task. Our results were cross-validated using two different chemogenetic actuators, clozapine (CLZ) and clozapine-N-oxide (CNO). This study provides a brain network interpretation of memory performance, indicating that memory is associated with coordinated brain-wide neural activities. Significance Statement Successful memory processes require coordinated activity in a large-scale brain network, extending beyond a few key, well-known brain regions like the hippocampus. However, the specific brain regions involved and how they orchestrate their activity that is pertinent to memory processing remain unclear. Our study, using a chemogenetics-rsfMRI- behavior approach in awake rats, elucidates a comprehensive framework of the extended memory-associated network. This knowledge offers a broader interpretation of memory processes, enhancing our understanding of the neural mechanisms behind memory function, particularly from a network perspective.
Collapse
|
6
|
Chockanathan U, Padmanabhan K. Differential disruptions in population coding along the dorsal-ventral axis of CA1 in the APP/PS1 mouse model of Aβ pathology. PLoS Comput Biol 2024; 20:e1012085. [PMID: 38709845 PMCID: PMC11098488 DOI: 10.1371/journal.pcbi.1012085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Alzheimer's Disease (AD) is characterized by a range of behavioral alterations, including memory loss and psychiatric symptoms. While there is evidence that molecular pathologies, such as amyloid beta (Aβ), contribute to AD, it remains unclear how this histopathology gives rise to such disparate behavioral deficits. One hypothesis is that Aβ exerts differential effects on neuronal circuits across brain regions, depending on the neurophysiology and connectivity of different areas. To test this, we recorded from large neuronal populations in dorsal CA1 (dCA1) and ventral CA1 (vCA1), two hippocampal areas known to be structurally and functionally diverse, in the APP/PS1 mouse model of amyloidosis. Despite similar levels of Aβ pathology, dCA1 and vCA1 showed distinct disruptions in neuronal population activity as animals navigated a virtual reality environment. In dCA1, pairwise correlations and entropy, a measure of the diversity of activity patterns, were decreased in APP/PS1 mice relative to age-matched C57BL/6 controls. However, in vCA1, APP/PS1 mice had increased pair-wise correlations and entropy as compared to age matched controls. Finally, using maximum entropy models, we connected the microscopic features of population activity (correlations) to the macroscopic features of the population code (entropy). We found that the models' performance increased in predicting dCA1 activity, but decreased in predicting vCA1 activity, in APP/PS1 mice relative to the controls. Taken together, we found that Aβ exerts distinct effects across different hippocampal regions, suggesting that the various behavioral deficits of AD may reflect underlying heterogeneities in neuronal circuits and the different disruptions that Aβ pathology causes in those circuits.
Collapse
Affiliation(s)
- Udaysankar Chockanathan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Krishnan Padmanabhan
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Neuroscience Graduate Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Center for Visual Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Intellectual and Developmental Disabilities Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
7
|
Hayashi T, Sato N. Contribution of the retrosplenial cortex to route selection in a complex maze. Neurosci Res 2024; 202:52-59. [PMID: 38043596 DOI: 10.1016/j.neures.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The retrosplenial cortex (RSC) is a region involved in navigation. In this study, we investigated the role of the RSC in navigation in a large-scale environment where the destination is not visible from the current location. We used a large maze where the routes could be freely designed by inserting and removing plates. In Experiment 1, rats learned a specific route in the maze and then were tested with a shortcut route in addition to the learned route. The rats with RSC lesions utilized the shortcut faster than those in the control group. In Experiment 2, rats were initially trained to follow a specific route, and subsequently, we tested the effects of a small change in the environment on their route-following behavior. In the test, the rats with RSC lesions demonstrated more errors than those in the control group. This suggests that lesions in the RSC make navigation to a goal unstable. These findings suggest that the RSC may be involved in the ability to perform appropriate behavior at a segment on a learned route in a large-scale environment, which drives habitually following the learned route.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan; Center for Applied Psychological Science (CAPS), Kwansei Gakuin University, Japan.
| |
Collapse
|
8
|
Suh J, Park YH, Kim HR, Jang JW, Yi S, Kang MJ, Bae YJ, Choi BS, Kim JH, Kim S. Ventral Anterior Cingulate Atrophy as a Predisposing Factor for Transient Global Amnesia. Dement Neurocogn Disord 2024; 23:89-94. [PMID: 38720827 PMCID: PMC11073926 DOI: 10.12779/dnd.2024.23.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background and Purpose This study aimed to evaluate the brain magnetic resonance imaging (MRI) of patients with acute transient global amnesia (TGA) using volumetric analysis to verify whether the brains of TGA patients have pre-existing structural abnormalities. Methods We evaluated the brain MRI data from 87 TGA patients and 20 age- and sex-matched control subjects. We included brain MRIs obtained from TGA patients within 72 hours of symptom onset to verify the pre-existence of structural change. For voxel-based morphometric analyses, statistical parametric mapping was employed to analyze the structural differences between patients with TGA and control subjects. Results TGA patients exhibited significant volume reductions in the bilateral ventral anterior cingulate cortices (corrected p<0.05). Conclusions TGA patients might have pre-existing structural changes in bilateral ventral anterior cingulate cortices prior to TGA attacks.
Collapse
Affiliation(s)
- Jeewon Suh
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, National Medical Center, Seoul, Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Korea
| | - SangHak Yi
- Department of Neurology, Wonkwang University School of Medicine and Regional Cardiocerebrovascular Center, Iksan, Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Hoang TH, Manahan-Vaughan D. Differentiated somatic gene expression is triggered in the dorsal hippocampus and the anterior retrosplenial cortex by hippocampal synaptic plasticity prompted by spatial content learning. Brain Struct Funct 2024; 229:639-655. [PMID: 37690045 PMCID: PMC10978647 DOI: 10.1007/s00429-023-02694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.
Collapse
Affiliation(s)
- Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Universitätsstr. 150, MA 4/150, 44780, Bochum, Germany.
| |
Collapse
|
10
|
Cheng N, Dong Q, Zhang Z, Wang L, Chen X, Wang C. Egocentric processing of items in spines, dendrites, and somas in the retrosplenial cortex. Neuron 2024; 112:646-660.e8. [PMID: 38101396 DOI: 10.1016/j.neuron.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/31/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Egocentric representations of external items are essential for spatial navigation and memory. Here, we explored the neural mechanisms underlying egocentric processing in the retrosplenial cortex (RSC), a pivotal area for memory and navigation. Using one-photon and two-photon calcium imaging, we identified egocentric tuning for environment boundaries in dendrites, spines, and somas of RSC neurons (egocentric boundary cells) in the open-field task. Dendrites with egocentric tuning tended to have similarly tuned spines. We further identified egocentric neurons representing landmarks in a virtual navigation task or remembered cue location in a goal-oriented task, respectively. These neurons formed an independent population with egocentric boundary cells, suggesting that dedicated neurons with microscopic clustering of functional inputs shaped egocentric boundary processing in RSC and that RSC adopted a labeled line code with distinct classes of egocentric neurons responsible for representing different items in specific behavioral contexts, which could lead to efficient and flexible computation.
Collapse
Affiliation(s)
- Ning Cheng
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiqi Dong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Wang
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojing Chen
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China.
| |
Collapse
|
11
|
Dubanet O, Higley MJ. Retrosplenial inputs drive diverse visual representations in the medial entorhinal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560642. [PMID: 37873152 PMCID: PMC10592898 DOI: 10.1101/2023.10.03.560642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The ability of rodents to use visual cues for successful navigation and goal-directed behavior has been long appreciated, although the neural mechanisms supporting sensory representations in navigational circuits are largely unknown. Navigation is fundamentally dependent on the hippocampus and closely connected entorhinal cortex, whose neurons exhibit characteristic firing patterns corresponding to the animal's location. The medial entorhinal cortex (MEC) receives direct projections from sensory areas in the neocortex, suggesting the ability to encode sensory information. To examine this possibility, we performed high-density recordings of MEC neurons in awake, head-fixed mice presented with simple visual stimuli and assessed the dynamics of sensory-evoked activity. We found a large fraction of neurons exhibited robust responses to visual input that shaped activity relative to ongoing network dynamics. Visually responsive cells could be separated into subgroups based on functional and molecular properties within deep layers of the dorsal MEC, suggesting diverse populations within the MEC contribute to sensory encoding. We then showed that optogenetic suppression of retrosplenial cortex afferents within the MEC strongly reduced visual responses. Overall, our results demonstrate the the MEC can encode simple visual cues in the environment that can contribute to neural representations of location necessary for accurate navigation.
Collapse
Affiliation(s)
- Olivier Dubanet
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
12
|
Andrianova L, Yanakieva S, Margetts-Smith G, Kohli S, Brady ES, Aggleton JP, Craig MT. No evidence from complementary data sources of a direct glutamatergic projection from the mouse anterior cingulate area to the hippocampal formation. eLife 2023; 12:e77364. [PMID: 37545394 PMCID: PMC10425170 DOI: 10.7554/elife.77364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/03/2023] [Indexed: 08/08/2023] Open
Abstract
The connectivity and interplay between the prefrontal cortex and hippocampus underpin various key cognitive processes, with changes in these interactions being implicated in both neurodevelopmental and neurodegenerative conditions. Understanding the precise cellular connections through which this circuit is organised is, therefore, vital for understanding these same processes. Overturning earlier findings, a recent study described a novel excitatory projection from anterior cingulate area to dorsal hippocampus. We sought to validate this unexpected finding using multiple, complementary methods: anterograde and retrograde anatomical tracing, using anterograde and retrograde adeno-associated viral vectors, monosynaptic rabies tracing, and the Fast Blue classical tracer. Additionally, an extensive data search of the Allen Projection Brain Atlas database was conducted to find the stated projection within any of the deposited anatomical studies as an independent verification of our own results. However, we failed to find any evidence of a direct, monosynaptic glutamatergic projection from mouse anterior cingulate cortex to the hippocampus proper.
Collapse
Affiliation(s)
- Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
- School of Psychology & Neuroscience, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Steliana Yanakieva
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Gabriella Margetts-Smith
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - Shivali Kohli
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
| | - John P Aggleton
- School of Psychology, Cardiff UniversityCardiffUnited Kingdom
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical SchoolExeterUnited Kingdom
- School of Psychology & Neuroscience, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
13
|
Mathiasen ML, Aggleton JP, Witter MP. Projections of the insular cortex to orbitofrontal and medial prefrontal cortex: A tracing study in the rat. Front Neuroanat 2023; 17:1131167. [PMID: 37152205 PMCID: PMC10158940 DOI: 10.3389/fnana.2023.1131167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
The dense fiber pathways that connect the insular cortex with frontal cortices are thought to provide these frontal areas with interoceptive information, crucial for their involvement in executive functions. Using anterograde neuroanatomical tracing, we mapped the detailed organization of the projections from the rat insular cortex to its targets in orbitofrontal (OFC) and medial prefrontal (mPFC) cortex. In OFC, main insular projections distribute to lateral and medial parts, avoiding ventral parts. Whereas projections from the primary gustatory cortex densely innervate dorsolateral OFC, likely corresponding to what in primates is known as the secondary gustatory cortex, these projections avoid mPFC. Instead, mPFC is targeted almost exclusively by projections from agranular fields of the insular cortex. Finally, "parietal" domains of the insular cortex project specifically to the dorsolateral OFC, and strongly innervate ventral portions of mPFC, i.e., the dorsal peduncular cortex.
Collapse
Affiliation(s)
- Mathias L. Mathiasen
- School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - John P. Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
| | - Menno P. Witter
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Simonsen ØW, Czajkowski R, Witter MP. Retrosplenial and subicular inputs converge on superficially projecting layer V neurons of medial entorhinal cortex. Brain Struct Funct 2022; 227:2821-2837. [PMID: 36229654 PMCID: PMC9618507 DOI: 10.1007/s00429-022-02578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
The medial entorhinal cortex (MEC) plays a pivotal role in spatial processing together with hippocampal formation. The retrosplenial cortex (RSC) is also implicated in this process, and it is thus relevant to understand how these structures interact. This requires precise knowledge of their connectivity. Projections from neurons in RSC synapse onto principal neurons in layer V of MEC and some of these neurons send axons into superficial layers of MEC. Layer V of MEC is also the main target for hippocampal efferents from the subiculum and CA1 field. The aim of this study was to assess whether the population of cells targeted by RSC projections also receives input from the hippocampal formation and to compare the distribution of synaptic contacts on target dendrites. We labeled the cells in layer V of MEC by injecting a retrograde tracer into superficial layers. At the same time, we labeled RSC and subicular projections with different anterograde tracers. 3D-reconstruction of the labeled cells and axons revealed likely synaptic contacts between presynaptic boutons of both origins and postsynaptic MEC layer V basal dendrites. Moreover, these contacts overlapped on the same dendritic segments without targeting specific domains. Our results support the notion that MEC layer V neurons that project to the superficial layers receive convergent input from both RSC and subiculum. These data thus suggest that convergent subicular and RSC information contributes to the signal that neurons in superficial layers of EC send to the hippocampal formation.
Collapse
Affiliation(s)
- Øyvind Wilsgård Simonsen
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Menno P Witter
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
17
|
The anterior thalamic nuclei: core components of a tripartite episodic memory system. Nat Rev Neurosci 2022; 23:505-516. [PMID: 35478245 DOI: 10.1038/s41583-022-00591-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Standard models of episodic memory focus on hippocampal-parahippocampal interactions, with the neocortex supplying sensory information and providing a final repository of mnemonic representations. However, recent advances have shown that other regions make distinct and equally critical contributions to memory. In particular, there is growing evidence that the anterior thalamic nuclei have a number of key cognitive functions that support episodic memory. In this article, we describe these findings and argue for a core, tripartite memory system, comprising a 'temporal lobe' stream (centred on the hippocampus) and a 'medial diencephalic' stream (centred on the anterior thalamic nuclei) that together act on shared cortical areas. We demonstrate how these distributed brain regions form complementary and necessary partnerships in episodic memory formation.
Collapse
|
18
|
Palomero-Gallagher N, Amunts K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct Funct 2022; 227:673-684. [PMID: 34216271 PMCID: PMC8844151 DOI: 10.1007/s00429-021-02331-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Emotions are valenced mental responses and associated physiological reactions that occur spontaneously and automatically in response to internal or external stimuli, and can influence our behavior, and can themselves be modulated to a certain degree voluntarily or by external stimuli. They are subserved by large-scale integrated neuronal networks with epicenters in the amygdala and the hippocampus, and which overlap in the anterior cingulate cortex. Although emotion processing is accepted as being lateralized, the specific role of each hemisphere remains an issue of controversy, and two major hypotheses have been proposed. In the right-hemispheric dominance hypothesis, all emotions are thought to be processed in the right hemisphere, independent of their valence or of the emotional feeling being processed. In the valence lateralization hypothesis, the left is thought to be dominant for the processing of positively valenced stimuli, or of stimuli inducing approach behaviors, whereas negatively valenced stimuli, or stimuli inducing withdrawal behaviors, would be processed in the right hemisphere. More recent research points at the existence of multiple interrelated networks, each associated with the processing of a specific component of emotion generation, i.e., its generation, perception, and regulation. It has thus been proposed to move from hypotheses supporting an overall hemispheric specialization for emotion processing toward dynamic models incorporating multiple interrelated networks which do not necessarily share the same lateralization patterns.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
19
|
Morales L, González-Alonso A, Desfilis E, Medina L. Precise Mapping of Otp Expressing Cells Across Different Pallial Regions Throughout Ontogenesis Using Otp-Specific Reporter Transgenic Mice. Front Neural Circuits 2022; 16:831074. [PMID: 35250495 PMCID: PMC8891171 DOI: 10.3389/fncir.2022.831074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Taking advantage of two Otp-specific reporter lines of transgenic mice (Otp-eGFP and Otp-Cre; Rpl22-HA), we identify and describe different Otp cell populations across various pallial regions, including the pallial amygdala, the piriform cortex, the mesocortex, the neocortex, and the hippocampal complex. Some of these populations can be followed throughout development, suggesting migration from external sources (for example, those of the pallial amygdala and at least some of the cingulate cortex). Other cells become visible during postnatal development (some of those in the neocortex and hippocampal formation) or in adulthood (those of the parahippocampal lobe), and seem to be produced locally. We discuss the possible role of Otp in these different populations during different moments of ontogenesis. We also analyze the connectivity patterns of some of these cells and discuss their functional implications. For example, our data suggest that Otp cells of the pallial amygdala might be engaged in networks with other Otp cells of the medial amygdala with the same embryonic origin, and may regulate specific aspects of social behavior. Regarding Otp cells in the parahippocampal lobe, they seem to be projection neurons and may regulate hippocampal function during spatial navigation and memory formation. The two reporter transgenic mice employed here provide very powerful tools for high precision studies on these different Otp cells of the pallium, but careful attention should be paid to the age and to differences between lines.
Collapse
Affiliation(s)
- Lorena Morales
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alba González-Alonso
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
| | - Loreta Medina
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
- *Correspondence: Loreta Medina, ,
| |
Collapse
|
20
|
Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci 2022; 45:284-296. [DOI: 10.1016/j.tins.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
21
|
Blankvoort S, Olsen LC, Kentros CG. Single Cell Transcriptomic and Chromatin Profiles Suggest Layer Vb Is the Only Layer With Shared Excitatory Cell Types in the Medial and Lateral Entorhinal Cortex. Front Neural Circuits 2022; 15:806154. [PMID: 35153682 PMCID: PMC8826650 DOI: 10.3389/fncir.2021.806154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
All brain functionality arises from the activity in neural circuits in different anatomical regions. These regions contain different circuits comprising unique cell types. An integral part to understanding neural circuits is a full census of the constituent parts, i.e., the neural cell types. This census can be based on different characteristics. Previously combinations of morphology and physiology, gene expression, and chromatin accessibility have been used in various cortical and subcortical regions. This has given an extensive yet incomplete overview of neural cell types. However, these techniques have not been applied to all brain regions. Here we apply single cell analysis of accessible chromatin on two similar but different cortical regions, the medial and the lateral entorhinal cortices. Even though these two regions are anatomically similar, their intrinsic and extrinsic connectivity are different. In 4,136 cells we identify 20 different clusters representing different cell types. As expected, excitatory cells show regionally specific clusters, whereas inhibitory neurons are shared between regions. We find that several deep layer excitatory neuronal cell types as defined by chromatin profile are also shared between the two different regions. Integration with a larger scRNA-seq dataset maintains this shared characteristic for cells in Layer Vb. Interestingly, this layer contains three clusters, two specific to either subregion and one shared between the two. These clusters can be putatively associated with particular functional and anatomical cell types found in this layer. This information is a step forwards into elucidating the cell types within the entorhinal circuit and by extension its functional underpinnings.
Collapse
Affiliation(s)
- Stefan Blankvoort
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
- *Correspondence: Stefan Blankvoort
| | - Lene Christin Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway
| | - Clifford G. Kentros
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway
| |
Collapse
|
22
|
Medial temporal lobe contributions to resting-state networks. Brain Struct Funct 2022; 227:995-1012. [PMID: 35041057 PMCID: PMC8930967 DOI: 10.1007/s00429-021-02442-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022]
Abstract
The medial temporal lobe (MTL) is a set of interconnected brain regions that have been shown to play a central role in behavior as well as in neurological disease. Recent studies using resting-state functional magnetic resonance imaging (rsfMRI) have attempted to understand the MTL in terms of its functional connectivity with the rest of the brain. However, the exact characterization of the whole-brain networks that co-activate with the MTL as well as how the various sub-regions of the MTL are associated with these networks remains poorly understood. Here, we attempted to advance these issues by exploiting the high spatial resolution 7T rsfMRI dataset from the Human Connectome Project with a data-driven analysis approach that relied on independent component analysis (ICA) restricted to the MTL. We found that four different well-known resting-state networks co-activated with a unique configuration of MTL subcomponents. Specifically, we found that different sections of the parahippocampal cortex were involved in the default mode, visual and dorsal attention networks; sections of the hippocampus in the somatomotor and default mode networks; and the lateral entorhinal cortex in the dorsal attention network. We replicated this set of results in a validation sample. These results provide new insight into how the MTL and its subcomponents contribute to known resting-state networks. The participation of the MTL in an expanded range of resting-state networks is in line with recent proposals on MTL function.
Collapse
|
23
|
Vandrey B, Armstrong J, Brown CM, Garden DLF, Nolan MF. Fan cells in lateral entorhinal cortex directly influence medial entorhinal cortex through synaptic connections in layer 1. eLife 2022; 11:83008. [PMID: 36562467 PMCID: PMC9822265 DOI: 10.7554/elife.83008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.
Collapse
Affiliation(s)
- Brianna Vandrey
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Jack Armstrong
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Derek LF Garden
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom,Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom,Centre for Statistics, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
24
|
Syversen IF, Witter MP, Kobro-Flatmoen A, Goa PE, Navarro Schröder T, Doeller CF. Structural connectivity-based segmentation of the human entorhinal cortex. Neuroimage 2021; 245:118723. [PMID: 34780919 PMCID: PMC8756143 DOI: 10.1016/j.neuroimage.2021.118723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The medial (MEC) and lateral entorhinal cortex (LEC), widely studied in rodents, are well defined and characterized. In humans, however, the exact locations of their homologues remain uncertain. Previous functional magnetic resonance imaging (fMRI) studies have subdivided the human EC into posteromedial (pmEC) and anterolateral (alEC) parts, but uncertainty remains about the choice of imaging modality and seed regions, in particular in light of a substantial revision of the classical model of EC connectivity based on novel insights from rodent anatomy. Here, we used structural, not functional imaging, namely diffusion tensor imaging (DTI) and probabilistic tractography to segment the human EC based on differential connectivity to other brain regions known to project selectively to MEC or LEC. We defined MEC as more strongly connected with presubiculum and retrosplenial cortex (RSC), and LEC as more strongly connected with distal CA1 and proximal subiculum (dCA1pSub) and lateral orbitofrontal cortex (OFC). Although our DTI segmentation had a larger medial-lateral component than in the previous fMRI studies, our results show that the human MEC and LEC homologues have a border oriented both towards the posterior-anterior and medial-lateral axes, supporting the differentiation between pmEC and alEC.
Collapse
Affiliation(s)
- Ingrid Framås Syversen
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway.
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, NTNU - Norwegian University of Science and Technology, MH, NTNU, Postbox 8905, Trondheim 7491, Norway; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
25
|
Xu X, Song L, Kringel R, Hanganu-Opatz IL. Developmental decrease of entorhinal-hippocampal communication in immune-challenged DISC1 knockdown mice. Nat Commun 2021; 12:6810. [PMID: 34815409 PMCID: PMC8611076 DOI: 10.1038/s41467-021-27114-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
The prefrontal-hippocampal dysfunction that underlies cognitive deficits in mental disorders emerges during early development. The lateral entorhinal cortex (LEC) is tightly interconnected with both prefrontal cortex (PFC) and hippocampus (HP), yet its contribution to the early dysfunction is fully unknown. Here we show that mice that mimic the dual genetic (G) -environmental (E) etiology (GE mice) of psychiatric risk have poor LEC-dependent recognition memory at pre-juvenile age and abnormal communication within LEC-HP-PFC networks throughout development. These functional and behavioral deficits relate to sparser projections from LEC to CA1 and decreased efficiency of axonal terminals to activate the hippocampal circuits in neonatal GE mice. In contrast, the direct entorhinal drive to PFC is not affected, yet the PFC is indirectly compromised, as target of the under-activated HP. Thus, the entorhinal-hippocampal circuit is already impaired from neonatal age on in GE mice. The authors show that mice that mimic the dual genetic-environmental etiology of psychiatric risk have poor lateral entorhinal cortex-dependent recognition memory already at pre-juvenile age and abnormal communication within LECHP-PFC networks throughout development.
Collapse
Affiliation(s)
- Xiaxia Xu
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| | - Lingzhen Song
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Rebecca Kringel
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
26
|
de Landeta AB, Pereyra M, Miranda M, Bekinschtein P, Medina JH, Katche C. Functional connectivity of anterior retrosplenial cortex in object recognition memory. Neurobiol Learn Mem 2021; 186:107544. [PMID: 34737148 DOI: 10.1016/j.nlm.2021.107544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Recognition memory can rely on three components: "what", "where" and "when". Recently we demonstrated that the anterior retrosplenial cortex (aRSC), like the perirhinal cortex (PRH) and unlike the hippocampus (HP), is required for consolidation of the "what" component. Here, we aimed at studying which brain structures interact with the aRSC to process object recognition (OR) memory in rats. We studied the interaction of six brain structures that are connected to the aRSC during OR memory processing: PRH, medial prefrontal cortex (mPFC), anteromedial thalamic nuclei (AM), medial entorhinal cortex (MEC), anterior cingulate cortex (ACC) and the dorsal HP (dHP). We previously described the role of the PRH and dHP, so we first studied the participation of the mPFC, AM, MEC and ACC in OR memory consolidation by bilateral microinfusions of the GABAA receptor agonist muscimol. We observed an impairment in OR long-term memory (LTM) when inactivating the mPFC, the AM and the MEC, but not the ACC. Then, we studied the functional connections by unilateral inactivation of the aRSC and each one of the six structures in the same (ipsilateral) or the opposite (contralateral) hemisphere. Our results showed an amnesic LTM effect in rats with ipsilateral inactivations of aRSC-PRH, aRSC-mPFC, aRSC-AM, or aRSC-MEC. On the other hand, we observed memory impairment when aRSC-ACC were inactivated in opposite hemispheres, and no effect when the aRSC-dHP connection was inactivated. Thus, our ipsilateral inactivation findings reveal that the aRSC and, at least one brain region required in OR LTM processing are essential to consolidate OR memory. In conclusion, our results show that several cortico-cortical and cortico-thalamic pathways are important for OR memory consolidation.
Collapse
Affiliation(s)
- Ana Belén de Landeta
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Pereyra
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Jorge H Medina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Gerlei KZ, Brown CM, Sürmeli G, Nolan MF. Deep entorhinal cortex: from circuit organization to spatial cognition and memory. Trends Neurosci 2021; 44:876-887. [PMID: 34593254 DOI: 10.1016/j.tins.2021.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
The deep layers of the entorhinal cortex are important for spatial cognition, as well as memory storage, consolidation and retrieval. A long-standing hypothesis is that deep-layer neurons relay spatial and memory-related signals between the hippocampus and telencephalon. We review the implications of recent circuit-level analyses that suggest more complex roles. The organization of deep entorhinal layers is consistent with multi-stage processing by specialized cell populations; in this framework, hippocampal, neocortical, and subcortical inputs are integrated to generate representations for use by targets in the telencephalon and for feedback to the superficial entorhinal cortex and hippocampus. Addressing individual sublayers of the deep entorhinal cortex in future experiments and models will be important for establishing systems-level mechanisms for spatial cognition and episodic memory.
Collapse
Affiliation(s)
- Klára Z Gerlei
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Christina M Brown
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Gülşen Sürmeli
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
28
|
Ionov ID, Pushinskaya II, Gorev NP, Shpilevaya LA, Frenkel DD, Severtsev NN. Histamine H 1 receptors regulate anhedonic-like behavior in rats: Involvement of the anterior cingulate and lateral entorhinal cortices. Behav Brain Res 2021; 412:113445. [PMID: 34224764 DOI: 10.1016/j.bbr.2021.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
A decreased H1 receptor activity is observed in the anterior cingulate cortex (aCgCx) of depressed patients. The role of this abnormality in the development of depression-related processes is unstudied. We examined the influence of a decreased brain H1 receptor activity on rat behavior in the sucrose preference test. The H1 receptor deficit was simulated by injection of an H1 antagonist into the aCgCx; also, two aCgCx projection areas, lateral and medial entorhinal cortices were examined. A blockade of H1-receptors in the aCgCx and lateral entorhinal cortex (LEntCx) significantly reduced sucrose preference. These findings suggest the existence of H1 receptor-mediated aCgCx-LEntCx circuitry mechanism regulating anhedonic-like behavior in rats. The presented data suggest that H1 receptor-mediated processes might be a therapeutic target in depressive disorders.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
29
|
Perry BAL, Lomi E, Mitchell AS. Thalamocortical interactions in cognition and disease: the mediodorsal and anterior thalamic nuclei. Neurosci Biobehav Rev 2021; 130:162-177. [PMID: 34216651 DOI: 10.1016/j.neubiorev.2021.05.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
The mediodorsal thalamus (MD) and anterior thalamic nuclei (ATN) are two adjacent brain nodes that support our ability to make decisions, learn, update information, form and retrieve memories, and find our way around. The MD and PFC work in partnerships to support cognitive processes linked to successful learning and decision-making, while the ATN and extended hippocampal system together coordinate the encoding and retrieval of memories and successful spatial navigation. Yet, while these distinctions may appear to be segregated, both the MD and ATN together support our higher cognitive functions as they regulate and are influenced by interconnected fronto-temporal neural networks and subcortical inputs. Our review focuses on recent studies in animal models and in humans. This evidence is re-shaping our understanding of the importance of MD and ATN cortico-thalamocortical pathways in influencing complex cognitive functions. Given the evidence from clinical settings and neuroscience research labs, the MD and ATN should be considered targets for effective treatments in neuropsychiatric diseases and disorders and neurodegeneration.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Eleonora Lomi
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, The Tinsley Building, Mansfield Road, OX1 3SR, United Kingdom.
| |
Collapse
|
30
|
Liu J, Kashima T, Morikawa S, Noguchi A, Ikegaya Y, Matsumoto N. Molecular Characterization of Superficial Layers of the Presubiculum During Development. Front Neuroanat 2021; 15:662724. [PMID: 34234650 PMCID: PMC8256428 DOI: 10.3389/fnana.2021.662724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The presubiculum, a subarea of the parahippocampal region, plays a critical role in spatial navigation and spatial representation. An outstanding aspect of presubicular spatial codes is head-direction selectivity of the firing of excitatory neurons, called head-direction cells. Head-direction selectivity emerges before eye-opening in rodents and is maintained in adulthood through neurophysiological interactions between excitatory and inhibitory neurons. Although the presubiculum has been physiologically profiled in terms of spatial representation during development, the histological characteristics of the developing presubiculum are poorly understood. We found that the expression of vesicular glutamate transporter 2 (VGluT2) could be used to delimit the superficial layers of the presubiculum, which was identified using an anterograde tracer injected into the anterior thalamic nucleus (ATN). Thus, we immunostained slices from mice ranging in age from neonates to adults using an antibody against VGluT2 to evaluate the VGluT2-positive area, which was identified as the superficial layers of the presubiculum, during development. We also immunostained the slices using antibodies against parvalbumin (PV) and somatostatin (SOM) and found that in the presubicular superficial layers, PV-positive neurons progressively increased in number during development, whereas SOM-positive neurons exhibited no increasing trend. In addition, we observed repeating patch structures in presubicular layer III from postnatal days 12. The abundant expression of VGluT2 suggests that the presubicular superficial layers are regulated primarily by VGluT2-mediated excitatory neurotransmission. Moreover, developmental changes in the densities of PV- and SOM-positive interneurons and the emergence of the VGluT2-positive patch structures during adolescence may be associated with the functional development of spatial codes in the superficial layers of the presubiculum.
Collapse
Affiliation(s)
- Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiko Kashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Morikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita City, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Porta S, Xu Y, Lehr T, Zhang B, Meymand E, Olufemi M, Stieber A, Lee EB, Trojanowski JQ, Lee VMY. Distinct brain-derived TDP-43 strains from FTLD-TDP subtypes induce diverse morphological TDP-43 aggregates and spreading patterns in vitro and in vivo. Neuropathol Appl Neurobiol 2021; 47:1033-1049. [PMID: 33971027 DOI: 10.1111/nan.12732] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
AIM The heterogeneity in the distribution and morphological features of TAR DNA-binding protein-43 (TDP-43) pathology in the brains of frontotemporal lobar degeneration (FTLD-TDP) patients and their different clinical manifestations suggest that distinct pathological TDP-43 strains could play a role in this heterogeneity between different FTLD-TDP subtypes (A-E). Our aim was to evaluate the existence of distinct TDP-43 strains in the brains of different FTLD-TDP subtypes and characterise their specific seeding properties in vitro and in vivo. METHODS AND RESULTS We used an inducible stable cell line expressing a mutant cytoplasmic TDP-43 (iGFP-NLSm) to evaluate the seeding properties of distinct pathological TDP-43 strains. Brain-derived TDP-43 protein extracts from FTLD-TDP types A (n = 6) and B (n = 3) cases induced the formation of round/spherical phosphorylated TDP-43 aggregates that morphologically differed from the linear and wavy wisps and bigger heterogeneous filamentous (skein-like) aggregates induced by type E (n = 3) cases. These morphological differences correlated with distinct biochemical banding patterns of sarkosyl-insoluble TDP-43 protein recovered from the transduced cells. Moreover, brain-derived TDP-43 extracts from type E cases showed higher susceptibility to PK digestion of full-length TDP-43 and the most abundant C-terminal fragments that characterise type E extracts. Finally, we showed that intracerebral injections of different TDP-43 strains induced a distinctive morphological and subcellular distribution of TDP-43 pathology and different spreading patterns in the brains of CamKIIa-hTDP-43NLSm Tg mice. CONCLUSIONS We show the existence of distinct TDP-43 strains in the brain of different FTLD-TDP subtypes with distinctive seeding and spreading properties in the brains of experimental animal models.
Collapse
Affiliation(s)
- Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tagan Lehr
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bin Zhang
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Meymand
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Modupe Olufemi
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna Stieber
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
32
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
33
|
Ezama L, Hernández-Cabrera JA, Seoane S, Pereda E, Janssen N. Functional connectivity of the hippocampus and its subfields in resting-state networks. Eur J Neurosci 2021; 53:3378-3393. [PMID: 33786931 PMCID: PMC8252772 DOI: 10.1111/ejn.15213] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/14/2021] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
Many neuroimaging studies have shown that the hippocampus participates in a resting‐state network called the default mode network. However, how the hippocampus connects to the default mode network, whether the hippocampus connects to other resting‐state networks and how the different hippocampal subfields take part in resting‐state networks remains poorly understood. Here, we examined these issues using the high spatial‐resolution 7T resting‐state fMRI dataset from the Human Connectome Project. We used data‐driven techniques that relied on spatially‐restricted Independent Component Analysis, Dual Regression and linear mixed‐effect group‐analyses based on participant‐specific brain morphology. The results revealed two main activity hotspots inside the hippocampus. The first hotspot was located in an anterior location and was correlated with the somatomotor network. This network was subserved by co‐activity in the CA1, CA3, CA4 and Dentate Gyrus fields. In addition, there was an activity hotspot that extended from middle to posterior locations along the hippocampal long‐axis and correlated with the default mode network. This network reflected activity in the Subiculum, CA4 and Dentate Gyrus fields. These results show how different sections of the hippocampus participate in two known resting‐state networks and how these two resting‐state networks depend on different configurations of hippocampal subfield co‐activity.
Collapse
Affiliation(s)
- Laura Ezama
- Facultad de Psicología, Universidad de la Laguna, La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Instituto Universitario de Neurociencia, Universidad de la Laguna, La Laguna, Spain
| | - Juan A Hernández-Cabrera
- Facultad de Psicología, Universidad de la Laguna, La Laguna, Spain.,Instituto Universitario de Neurociencia, Universidad de la Laguna, La Laguna, Spain.,Basque Center on Cognition Brain and Language, San Sebastián, Spain
| | - Sara Seoane
- Facultad de Psicología, Universidad de la Laguna, La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Instituto Universitario de Neurociencia, Universidad de la Laguna, La Laguna, Spain
| | - Ernesto Pereda
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Instituto Universitario de Neurociencia, Universidad de la Laguna, La Laguna, Spain.,Facultad de Ingeniería Industrial, Universidad de La Laguna, La Laguna, Spain
| | - Niels Janssen
- Facultad de Psicología, Universidad de la Laguna, La Laguna, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain.,Instituto Universitario de Neurociencia, Universidad de la Laguna, La Laguna, Spain
| |
Collapse
|
34
|
Inglis JB, Valentin VV, Ashby FG. Modulation of Dopamine for Adaptive Learning: A Neurocomputational Model. COMPUTATIONAL BRAIN & BEHAVIOR 2021; 4:34-52. [PMID: 34151186 PMCID: PMC8210637 DOI: 10.1007/s42113-020-00083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There have been many proposals that learning rates in the brain are adaptive, in the sense that they increase or decrease depending on environmental conditions. The majority of these models are abstract and make no attempt to describe the neural circuitry that implements the proposed computations. This article describes a biologically detailed computational model that overcomes this shortcoming. Specifically, we propose a neural circuit that implements adaptive learning rates by modulating the gain on the dopamine response to reward prediction errors, and we model activity within this circuit at the level of spiking neurons. The model generates a dopamine signal that depends on the size of the tonically active dopamine neuron population and the phasic spike rate. The model was tested successfully against results from two single-neuron recording studies and a fast-scan cyclic voltammetry study. We conclude by discussing the general applicability of the model to dopamine mediated tasks that transcend the experimental phenomena it was initially designed to address.
Collapse
Affiliation(s)
- Jeffrey B Inglis
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara
| | - Vivian V Valentin
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
| | - F Gregory Ashby
- Department of Psychological & Brain Sciences, University of California, Santa Barbara
| |
Collapse
|
35
|
The brain dynamics of architectural affordances during transition. Sci Rep 2021; 11:2796. [PMID: 33531612 PMCID: PMC7854617 DOI: 10.1038/s41598-021-82504-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023] Open
Abstract
Action is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time-frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.
Collapse
|
36
|
Sato N. Episodic-like memory of rats as retrospective retrieval of incidentally encoded locations and involvement of the retrosplenial cortex. Sci Rep 2021; 11:2217. [PMID: 33500512 PMCID: PMC7838390 DOI: 10.1038/s41598-021-81943-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
To examine episodic memory in rats, we trained rats to perform two tasks and tested them for memory of past self-behavior without making them expect to be asked about the memory later when encoding. One of the trained tasks was a delayed matching-to-position task in which the rats were required to remember the location of a presented lever. The other was a tone discrimination task in which the rats were required to discriminate between two pure tones. After learning both tasks, the rats were unexpectedly asked the location of the pressed lever after responding to the cue tone in probe trials during test sessions. The rats demonstrated a response bias that suggests that they have the ability to retrospectively recollect their self-behavior, i.e., episodic memory. We next made excitotoxic lesions in the retrosplenial cortex (RSC) and investigated the effects of the lesions on the unexpected recollection. In the rats with lesions of the RSC, the response bias disappeared. This suggests that the RSC has a role in retrospectively answering unexpected questions about self-behavior.
Collapse
Affiliation(s)
- Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo, 662-8501, Japan.
| |
Collapse
|
37
|
Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci Rep 2020; 10:19843. [PMID: 33199790 PMCID: PMC7670469 DOI: 10.1038/s41598-020-76935-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
Stimuli presented at short temporal delays before functional magnetic resonance imaging (fMRI) can have a robust impact on the organization of synchronous activity in resting state networks. This presents an opportunity to investigate how sensory, affective and cognitive stimuli alter functional connectivity in rodent models. In the present study we assessed the effect on functional connectivity of a familiar contextual stimulus presented 10 min prior to sedation for imaging. A subset of animals were co-presented with an unfamiliar social stimulus in the same environment to further investigate the effect of familiarity on network topology. Rats were imaged at 11.1 T and graph theory analysis was applied to matrices generated from seed-based functional connectivity data sets with 144 brain regions (nodes) and 10,152 pairwise correlations (after excluding 144 diagonal edges). Our results show substantial changes in network topology in response to the familiar (context). Presentation of the familiar context, both in the absence and presence of the social stimulus, strongly reduced network strength, global efficiency, and altered the location of the highest eigenvector centrality nodes from cortex to the hypothalamus. We did not observe changes in modular organization, nodal cartographic assignments, assortative mixing, rich club organization, and network resilience. We propose that experiential factors, perhaps involving associative or episodic memory, can exert a dramatic effect on functional network strength and efficiency when presented at a short temporal delay before imaging.
Collapse
|
38
|
An Enriched Environment Enhances Angiogenesis Surrounding the Cingulum in Ischaemic Stroke Rats. Neural Plast 2020; 2020:8840319. [PMID: 33273907 PMCID: PMC7676980 DOI: 10.1155/2020/8840319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) has been demonstrated to improve functional recovery in animal models of ischaemic stroke through enhancing vascular endothelial growth factor- (VEGF-) mediated neuroprotection accompanied by angiogenesis in the ischaemic hemisphere. Whether EEs also promote VEGF-mediated neuroprotection and angiogenesis in the contralateral hemisphere remains unclear. Here, we explored the effect of EEs on VEGF expression and angiogenesis within the contralateral cerebral cortex in a rat middle cerebral artery occlusion/reperfusion (MCAO/r) model. We assessed the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), VEGF, and endothelial nitric oxide synthase (eNOS) in the whole contralateral cerebral cortex using Western blotting assay but did not find an increase in the expression of CD31, VEGF, or eNOS in MCAO/r rats housed in EEs, which suggested that EEs did not enhance the overall expression of VEGF and eNOS or angiogenesis in the entire contralateral cortex. We further analysed the local effect of EEs by immunohistochemistry and found that in and around the bilateral cingulum in MCAO/r rats housed in EEs, haematopoietic progenitor cell antigen- (CD34-) positive endothelial progenitor cells were significantly increased compared with those of rats housed in standard cages (SCs). Further experiments showed that EEs increased neuronal VEGF expression surrounding the cingulum in MCAO/r rats and robustly upregulated eNOS expression. These results revealed that EEs enhanced angiogenesis, VEGF expression, and activation of the VEGF-eNOS pathway in and/or around the cingulum in MCAO/r rats, which were involved in the functional recovery of MCAO/r rats.
Collapse
|
39
|
van Wijngaarden JBG, Babl SS, Ito HT. Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. eLife 2020; 9:e59816. [PMID: 33138915 PMCID: PMC7609058 DOI: 10.7554/elife.59816] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Spatial navigation requires landmark coding from two perspectives, relying on viewpoint-invariant and self-referenced representations. The brain encodes information within each reference frame but their interactions and functional dependency remains unclear. Here we investigate the relationship between neurons in the rat's retrosplenial cortex (RSC) and entorhinal cortex (MEC) that increase firing near boundaries of space. Border cells in RSC specifically encode walls, but not objects, and are sensitive to the animal's direction to nearby borders. These egocentric representations are generated independent of visual or whisker sensation but are affected by inputs from MEC that contains allocentric spatial cells. Pharmaco- and optogenetic inhibition of MEC led to a disruption of border coding in RSC, but not vice versa, indicating allocentric-to-egocentric transformation. Finally, RSC border cells fire prospective to the animal's next motion, unlike those in MEC, revealing the MEC-RSC pathway as an extended border coding circuit that implements coordinate transformation to guide navigation behavior.
Collapse
Affiliation(s)
| | - Susanne S Babl
- Institute of Neurophysiology, Neuroscience Center, Goethe UniversityFrankfurtGermany
| | - Hiroshi T Ito
- Max Planck Institute for Brain ResearchFrankfurtGermany
| |
Collapse
|
40
|
Makino Y, Polygalov D, Bolaños F, Benucci A, McHugh TJ. Physiological Signature of Memory Age in the Prefrontal-Hippocampal Circuit. Cell Rep 2020; 29:3835-3846.e5. [PMID: 31851917 DOI: 10.1016/j.celrep.2019.11.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
The long-term storage of episodic memory requires communication between prefrontal cortex and hippocampus. However, how consolidation alters dynamic interactions between these regions during subsequent recall remains unexplored. Here we perform simultaneous electrophysiological recordings from anterior cingulate cortex (ACC) and hippocampal CA1 in mice during recall of recent and remote contextual fear memory. We find that, in contrast to recent memory, remote memory recall is accompanied by increased ACC-CA1 synchronization at multiple frequency bands. The augmented ACC-CA1 interaction is associated with strengthened coupling among distally spaced CA1 neurons, suggesting an ACC-driven organization of a sparse code. This robust shift in physiology permits a support vector machine classifier to accurately determine memory age on the basis of the ACC-CA1 synchronization pattern. Our findings reveal that memory consolidation alters the dynamic coupling of the prefrontal-hippocampal circuit and results in a physiological signature of memory age.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan
| | - Federico Bolaños
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan; Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama 351-0198, Japan.
| |
Collapse
|
41
|
Witter MP, Amaral DG. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum. J Comp Neurol 2020; 529:828-852. [DOI: 10.1002/cne.24983] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Menno P. Witter
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences The MIND Institute and the California National Primate Research Center Davis California USA
| |
Collapse
|
42
|
León LA, Brandão ML, Cardenas FP, Parra D, Krahe TE, Cruz APM, Landeira-Fernandez J. Distinct patterns of brain Fos expression in Carioca High- and Low-conditioned Freezing Rats. PLoS One 2020; 15:e0236039. [PMID: 32702030 PMCID: PMC7377485 DOI: 10.1371/journal.pone.0236039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The bidirectional selection of high and low anxiety-like behavior is a valuable tool for understanding the neurocircuits that are responsible for anxiety disorders. Our group developed two breeding lines of rats, known as Carioca High- and Low-conditioned Freezing (CHF and CLF), based on defensive freezing in the contextual fear conditioning paradigm. A random selected line was employed as a control (CTL) comparison group for both CHF and CLF lines of animals. The present study performed Fos immunochemistry to investigate changes in neural activity in different brain structures among CHF and CLF rats when they were exposed to contextual cues that were previously associated with footshock. RESULTS The study indicated that CHF rats expressed high Fos expression in the locus coeruleus, periventricular nucleus of the hypothalamus (PVN), and lateral portion of the septal area and low Fos expression in the medial portion of the septal area, dentate gyrus, and prelimbic cortex (PL) compared to CTL animals. CLF rats exhibited a decrease in Fos expression in the PVN, PL, and basolateral nucleus of the amygdala and increase in the cingulate and perirhinal cortices compared to CTL animals. CONCLUSIONS Both CHF and CLF rats displayed Fos expression changes key regions of the anxiety brain circuitry. The two bidirectional lines exhibit different pattern of neural activation and inhibition with opposing influences on the PVN, the main structure involved in regulating the hypothalamic-pituitary-adrenal neuroendocrine responses observed in anxiety disorders.
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio Arboleda, Bogotá, Colombia
| | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, Behavioral Neuroscience Institute (INeC), São Paulo University, Campus USP, Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Diana Parra
- Laboratorio de Neurociencia y Comportamiento, Universidad de los Andes, Bogotá, Colombia
| | - Thomas E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
43
|
Spect-neuropsychology correlations in very mild Alzheimer's disease and amnesic mild cognitive impairment. Arch Gerontol Geriatr 2020; 89:104085. [DOI: 10.1016/j.archger.2020.104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/01/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022]
|
44
|
LaChance PA, Todd TP, Taube JS. A sense of space in postrhinal cortex. Science 2020; 365:365/6449/eaax4192. [PMID: 31296737 DOI: 10.1126/science.aax4192] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/30/2019] [Indexed: 11/02/2022]
Abstract
A topographic representation of local space is critical for navigation and spatial memory. In humans, topographic spatial learning relies upon the parahippocampal cortex, damage to which renders patients unable to navigate their surroundings or develop new spatial representations. Stable spatial signals have not yet been observed in its rat homolog, the postrhinal cortex. We recorded from single neurons in the rat postrhinal cortex whose firing reflects an animal's egocentric relationship to the geometric center of the local environment, as well as the animal's head direction in an allocentric reference frame. Combining these firing correlates revealed a population code for a stable topographic map of local space. This may form the basis for higher-order spatial maps such as those seen in the hippocampus and entorhinal cortex.
Collapse
Affiliation(s)
- Patrick A LaChance
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Travis P Todd
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Jeffrey S Taube
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
45
|
Chauvière L. Update on temporal lobe‐dependent information processing, in health and disease. Eur J Neurosci 2019; 51:2159-2204. [DOI: 10.1111/ejn.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Laëtitia Chauvière
- INSERM U1266 Institut de Psychiatrie et de Neurosciences de Paris (IPNP) Paris France
| |
Collapse
|
46
|
Przeździk I, Faber M, Fernández G, Beckmann CF, Haak KV. The functional organisation of the hippocampus along its long axis is gradual and predicts recollection. Cortex 2019; 119:324-335. [DOI: 10.1016/j.cortex.2019.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/01/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
|
47
|
Doan TP, Lagartos-Donate MJ, Nilssen ES, Ohara S, Witter MP. Convergent Projections from Perirhinal and Postrhinal Cortices Suggest a Multisensory Nature of Lateral, but Not Medial, Entorhinal Cortex. Cell Rep 2019; 29:617-627.e7. [DOI: 10.1016/j.celrep.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022] Open
|
48
|
Nilssen ES, Doan TP, Nigro MJ, Ohara S, Witter MP. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 2019; 29:1238-1254. [PMID: 31408260 DOI: 10.1002/hipo.23145] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input-output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high-order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.
Collapse
Affiliation(s)
- Eirik S Nilssen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh P Doan
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano J Nigro
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Shinya Ohara
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Laboratory of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
49
|
Chen M, Shao D, Fu Y, Ma Q, Chen M, Cui D, Song J, Sheng H, Yang L, Dong Y, Lai B, Zheng P. Key determinants for morphine withdrawal conditioned context-induced increase in Arc expression in anterior cingulate cortex and withdrawal memory retrieval. Exp Neurol 2019; 311:234-246. [DOI: 10.1016/j.expneurol.2018.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 11/15/2022]
|
50
|
Burke SN, Turner SM, Desrosiers CL, Johnson SA, Maurer AP. Perforant Path Fiber Loss Results in Mnemonic Discrimination Task Deficits in Young Rats. Front Syst Neurosci 2018; 12:61. [PMID: 30618655 PMCID: PMC6297719 DOI: 10.3389/fnsys.2018.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
The observation that entorhinal input to the hippocampus declines in old age is well established across human studies and in animal models. This loss of perforant path fibers is exaggerated in individuals with episodic memory deficits and Mild Cognitive Impairment, suggesting that perforant path integrity is associated with progression to Alzheimer's Disease. During normal aging, behaviors that measure the ability of a study participant to discriminate between stimuli that share features is particularly sensitive to perforant fiber loss. Evidence linking perforant path changes to cognitive decline, however, has been largely correlational. Thus, the current study tested the causative role of perforant path fiber loss in behavioral decline by performing a unilateral knife cut to disconnect the entorhinal cortex from the hippocampus in the right hemisphere in young male and female rats. This approach does not completely disconnect the hippocampus from the entorhinal cortex but rather reduces the effective connectivity between these two structures. Male and female rats were then tested on the rodent variant of the mnemonic discrimination task, which is believed to critically rely on perforant path fiber integrity. Right hemisphere perforant path transections produced a significant impairment in the abilities of lesioned animals to discriminate between objects with high levels of feature overlap. This deficit was not observed in the male and female sham groups that received a cut to cortex above the white matter. Together these data support the view that, across species, age-related perforant path fiber loss produces behavioral deficits in the ability to discriminate between stimuli with perceptual overlap.
Collapse
Affiliation(s)
- Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Institute on Aging, University of Florida, Gainesville, FL, United States
| | - Sean M. Turner
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Courtney L. Desrosiers
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah A. Johnson
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|