1
|
Yeung MK. Metamemory and executive function mediate the age-related decline in memory. J Int Neuropsychol Soc 2024; 30:479-488. [PMID: 38221867 DOI: 10.1017/s1355617723011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Although the effect of aging on episodic memory is relatively well studied, little is known about how aging influences metamemory. In addition, while executive function (EF) is known to mediate the age-related decline in episodic memory, the role of metamemory in aging-related memory differences beyond EF remains unknown. This study aimed to elucidate the effect of aging on metamemory and to clarify the role of metamemory in the age-related decline in memory. METHOD One hundred and four adults aged 18-79 years (50 M, 54 F) performed several EF tasks, as well as a face-scene paired-associate learning task that required them to make judgments of learning, feeling-of-knowing judgments, and retrospective confidence judgments. RESULTS Aging was significantly associated with poor metamemory accuracy and increased confidence across metamemory judgment types, even after controlling for EF and memory performance. A parallel mediation analysis indicated that both confidence of learning and EF performance had significant partial mediation effects on the relationship between aging and memory, albeit in different ways. Specifically, poor EF explained the age-related decline in memory, whereas increased confidence of learning served to compensate for this memory decline. CONCLUSIONS Aging is associated with general changes (i.e., poor inferences from cues) rather than specific changes (i.e., declined activation or utilization of certain cues) in metamemory monitoring. Also, changes in confidence of learning and in EF ability contribute to the preservation and decline of memory during aging, respectively. Therefore, boosting confidence during encoding and enhancing EF skills might be complementary memory intervention strategies for older adults.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
2
|
Koszałka A, Lustyk K, Pytka K. Sex-dependent differences in animal cognition. Neurosci Biobehav Rev 2023; 153:105374. [PMID: 37634555 DOI: 10.1016/j.neubiorev.2023.105374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
The differences in cognitive processes driven by biological sex are the issues that have gotten growing attention recently. Considering the increasing population suffering from various cognitive impairments and the development of therapeutic strategies, it is essential that we recognize the mechanisms responsible for discrepancies observed in male and female learning and memory functions. In this review, we discuss recent reports from preclinical studies on rodents regarding selected cognitive domains to explore the state of knowledge on sex-dependent differences and point to challenges encountered during such research. We focus on spatial, recognition, and emotional memory, as well as on executive functions, such as attention, cognitive flexibility, and working memory. This review will help to acknowledge sex-related differences in cognition and indicate some fields that lack sufficient data.
Collapse
Affiliation(s)
- Aleksandra Koszałka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Św. Łazarza 16, 31-530 Krakow, Poland
| | - Klaudia Lustyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
3
|
Augereau K, Migues PV, Hardt O. Infusing zeta inhibitory peptide into the perirhinal cortex of rats abolishes long-term object recognition memory without affecting novel object location recognition. Front Behav Neurosci 2022; 16:1007748. [PMID: 36560931 PMCID: PMC9763881 DOI: 10.3389/fnbeh.2022.1007748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Infusing the amnesic agent zeta inhibitory peptide (ZIP) into the dorsal hippocampus disrupts established long-term object location recognition memory without affecting object identity recognition, which likely depends on the perirhinal cortex. Here, we tested whether infusing ZIP into the perirhinal cortex can abolish long-term memory supporting object identity recognition, leaving long-term object location recognition memory intact. We infused ZIP into the perirhinal cortex of rats either 1 day or 6 days after exposing them to two identical objects in an open field arena. One day after ZIP infusion, that is, 2 or 7 days after object exposure, we either assessed whether the animals recognized that now one of the two objects was novel or whether they recognized that one of the two familiar objects was at a new location. Our results show for both retention intervals, infusions of ZIP into the perirhinal cortex impaired novel object recognition but spared novel object location recognition. Rats that received a scrambled version of ZIP had no deficit in either test at both retention intervals and expressed stronger novel object recognition compared to rats infused with ZIP. These findings support the view that object recognition depends on dissociable memory representations distributed across different brain areas, with perirhinal cortex maintaining long-term memory for what objects had been encountered, and hippocampus supporting memory for where these objects had been placed.
Collapse
Affiliation(s)
| | | | - Oliver Hardt
- Department of Psychology, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Fernández-Rubio G, Brattico E, Kotz SA, Kringelbach ML, Vuust P, Bonetti L. Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences. Commun Biol 2022; 5:1272. [PMID: 36402843 PMCID: PMC9675809 DOI: 10.1038/s42003-022-04217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Auditory recognition is a crucial cognitive process that relies on the organization of single elements over time. However, little is known about the spatiotemporal dynamics underlying the conscious recognition of auditory sequences varying in complexity. To study this, we asked 71 participants to learn and recognize simple tonal musical sequences and matched complex atonal sequences while their brain activity was recorded using magnetoencephalography (MEG). Results reveal qualitative changes in neural activity dependent on stimulus complexity: recognition of tonal sequences engages hippocampal and cingulate areas, whereas recognition of atonal sequences mainly activates the auditory processing network. Our findings reveal the involvement of a cortico-subcortical brain network for auditory recognition and support the idea that stimulus complexity qualitatively alters the neural pathways of recognition memory.
Collapse
Affiliation(s)
- Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Cohen SJ, Cinalli DA, Ásgeirsdóttir HN, Hindman B, Barenholtz E, Stackman RW. Mice recognize 3D objects from recalled 2D pictures, support for picture-object equivalence. Sci Rep 2022; 12:4184. [PMID: 35264621 PMCID: PMC8907285 DOI: 10.1038/s41598-022-07782-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Picture-object equivalence or recognizing a three-dimensional (3D) object after viewing a two-dimensional (2D) photograph of that object, is a higher-order form of visual cognition that may be beyond the perceptual ability of rodents. Behavioral and neurobiological mechanisms supporting picture-object equivalence are not well understood. We used a modified visual recognition memory task, reminiscent of those used for primates, to test whether picture-object equivalence extends to mice. Mice explored photographs of an object during a sample session, and 24 h later were presented with the actual 3D object from the photograph and a novel 3D object, or the stimuli were once again presented in 2D form. Mice preferentially explored the novel stimulus, indicating recognition of the “familiar” stimulus, regardless of whether the sample photographs depicted radially symmetric or asymmetric, similar, rotated, or abstract objects. Discrimination did not appear to be guided by individual object features or low-level visual stimuli. Inhibition of CA1 neuronal activity in dorsal hippocampus impaired discrimination, reflecting impaired memory of the 2D sample object. Collectively, results from a series of experiments provide strong evidence that picture-object equivalence extends to mice and is hippocampus-dependent, offering important support for the appropriateness of mice for investigating mechanisms of human cognition.
Collapse
Affiliation(s)
- Sarah J Cohen
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA.,Jupiter Life Science Initiative, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL, 33458, USA
| | - David A Cinalli
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Herborg N Ásgeirsdóttir
- Jupiter Life Science Initiative, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL, 33458, USA.,FAU and Max Planck Florida Institute Joint Integrative Biology - Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Brandon Hindman
- Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Elan Barenholtz
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA.,Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Robert W Stackman
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,Jupiter Life Science Initiative, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL, 33458, USA. .,Department of Psychology, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA. .,FAU and Max Planck Florida Institute Joint Integrative Biology - Neuroscience Graduate Program, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
6
|
What déjà vu and the “dreamy state” tell us about episodic memory networks. Clin Neurophysiol 2022; 136:173-181. [DOI: 10.1016/j.clinph.2022.01.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/22/2022]
|
7
|
Vandrey B, Duncan S, Ainge JA. Object and object-memory representations across the proximodistal axis of CA1. Hippocampus 2021; 31:881-896. [PMID: 33942429 DOI: 10.1002/hipo.23331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 11/07/2022]
Abstract
Episodic memory requires information about objects to be integrated into a spatial framework. Place cells in the hippocampus encode spatial representations of objects that could be generated through signaling from the entorhinal cortex. Projections from lateral (LEC) and medial entorhinal cortex (MEC) to the hippocampus terminate in distal and proximal CA1, respectively. We recorded place cells in distal and proximal CA1 as rats explored an environment that contained objects. Place cells in distal CA1 demonstrated higher measures of spatial tuning, stability, and closer proximity of place fields to objects. Furthermore, remapping to object displacement was modulated by place field proximity to objects in distal, but not proximal CA1. Finally, representations of previous object locations were closer to those locations in distal CA1 than proximal CA1. Our data suggest that in cue-rich environments, LEC inputs to the hippocampus support spatial representations with higher spatial tuning, closer proximity to objects, and greater stability than those receiving inputs from MEC. This is consistent with functional segregation in the entorhinal-hippocampal circuits underlying object-place memory.
Collapse
Affiliation(s)
- Brianna Vandrey
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH8 9XD, UK
| | - Stephen Duncan
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| | - James A Ainge
- University of St Andrews, School of Psychology and Neuroscience, St Andrews, Fife, UK
| |
Collapse
|
8
|
Boness CL, Korucuoglu O, Ellingson JM, Merrill AM, McDowell YE, Trela CJ, Sher KJ, Piasecki TM, Kerns JG. Twenty-first birthday drinking: Extreme-drinking episodes and white matter microstructural changes in the fornix and corpus callosum. Exp Clin Psychopharmacol 2020; 28:553-566. [PMID: 31789553 PMCID: PMC7263958 DOI: 10.1037/pha0000336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 21st birthday celebration is characterized by extreme alcohol consumption. Accumulating evidence suggests that high-dose bingeing is related to structural brain changes and cognitive deficits. This is particularly problematic in the transition from adolescence to adulthood when the brain is still maturing, elevating the brain's sensitivity to the acute effects of alcohol intoxication. Heavy drinking is associated with reduced structural integrity in the hippocampus and corpus callosum and is accompanied by cognitive deficits. However, there is little research examining changes in the human brain related to discrete heavy-drinking episodes. The present study investigated whether alcohol exposure during a 21st birthday celebration would result in changes to white matter microstructure by utilizing diffusion tensor imaging measures and a quasi-experimental design. By examining structural changes in the brain from pre- to postcelebration within subjects (N = 49) prospectively, we were able to more directly observe brain changes following an extreme-drinking episode. Region of interest analyses demonstrated increased fractional anisotropy in the posterior fornix (p < .0001) and in the body of the corpus callosum (p = .0029) from pre- to postbirthday celebration. These results suggest acute white matter damage to the fornix and corpus callosum following an extreme-drinking episode, which is especially problematic during continued neurodevelopment. Therefore, 21st birthday drinking may be considered an important target event for preventing acute brain injury in young adults. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine
| | | | | | | | | | - Kenneth J Sher
- Department of Psychological Sciences, University of Missouri
| | | | - John G Kerns
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
9
|
Ramos JM. Perirhinal cortex supports both taste neophobia and its attenuation. Neurobiol Learn Mem 2020; 173:107264. [DOI: 10.1016/j.nlm.2020.107264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/04/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
|
10
|
Aggleton JP, Nelson AJD. Distributed interactive brain circuits for object-in-place memory: A place for time? Brain Neurosci Adv 2020; 4:2398212820933471. [PMID: 32954003 PMCID: PMC7479857 DOI: 10.1177/2398212820933471] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Rodents will spontaneously learn the location of an individual object, an
ability captured by the object-in-place test. This review considers
the network of structures supporting this behavioural test, as well as
some potential confounds that may affect interpretation. A
hierarchical approach is adopted, as we first consider those brain
regions necessary for two simpler, ‘precursor’ tests (object
recognition and object location). It is evident that performing the
object-in-place test requires an array of areas additional to those
required for object recognition or object location. These additional
areas include the rodent medial prefrontal cortex and two thalamic
nuclei (nucleus reuniens and the medial dorsal nucleus), both densely
interconnected with prefrontal areas. Consequently, despite the need
for object and location information to be integrated for the
object-in-place test, for example, via the hippocampus, other
contributions are necessary. These contributions stem from how
object-in-place is a test of associative recognition, as none of the
individual elements in the test phase are novel. Parallels between the
structures required for object-in-place and for recency
discriminations, along with a re-examination of the demands of the
object-in-place test, signal the integration of temporal information
within what is usually regarded as a spatial-object test.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
11
|
Barker GRI, Warburton EC. Multi-level analyses of associative recognition memory: the whole is greater than the sum of its parts. Curr Opin Behav Sci 2020; 32:80-87. [PMID: 32617383 PMCID: PMC7323598 DOI: 10.1016/j.cobeha.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associative recognition memory depends on the integration of information concerning an item and the spatio-temporal context in which it was encountered. Such an integration depends on dynamic interactions across a brain-wide memory network. Here we discuss evidence from multiple levels of analysis, behavioural, cellular and synaptic which demonstrating the existence of multiple overlapping, subnetworks embedded within these large-scale networks. Recent advances have revealed that of these subnetworks, a distinct hippocampal-prefrontal networks are engaged by different representations (object-spatial or object temporal). Other subnetworks are recruited by distinct processing demands, such as encoding and retrieval which are supported by distinct cellular and synaptic processes. One challenge to multi-level investigations of memory continues to be that conclusions are drawn from correlations of effects rather than from direct evidence of causation.
Collapse
Affiliation(s)
- Gareth RI Barker
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| | - Elizabeth Clea Warburton
- School of Physiology, Pharmacology andNeuroscience University of Bristol University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
12
|
Postans M, Parker GD, Lundell H, Ptito M, Hamandi K, Gray WP, Aggleton JP, Dyrby TB, Jones DK, Winter M. Uncovering a Role for the Dorsal Hippocampal Commissure in Recognition Memory. Cereb Cortex 2020; 30:1001-1015. [PMID: 31364703 PMCID: PMC7132945 DOI: 10.1093/cercor/bhz143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/24/2023] Open
Abstract
The dorsal hippocampal commissure (DHC) is a white matter tract that provides interhemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted magnetic resonance imaging (DW-MRI) and white matter tractography to reconstruct the DHC in both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate a close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived diffusion tensor MRI metrics from the DHC in a large sample of human subjects to investigate whether interindividual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC correlated with performance in a standardized recognition memory task, an effect that was not reproduced in a comparison commissure tract-the anterior commissure. These findings highlight a potential role for the DHC in recognition memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease.
Collapse
Affiliation(s)
- M Postans
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- School of Psychology, CF10 3AS
| | - G D Parker
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- Experimental MRI Centre, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - H Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, DK-2650, Denmark
| | - M Ptito
- School of Optometry, University of Montreal, H3T 1J4 Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, H3A 2B4 Montreal, Canada
| | - K Hamandi
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- The Alan Richens Welsh Epilepsy Centre, Department of Neurology, University Hospital of Wales, Cardiff CF14 4XW, UK
- Institute of Psychological Medicine and Clinical Neurosciences
- Brain Repair And Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - W P Gray
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- The Alan Richens Welsh Epilepsy Centre, Department of Neurology, University Hospital of Wales, Cardiff CF14 4XW, UK
- Institute of Psychological Medicine and Clinical Neurosciences
- Brain Repair And Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
- Department of Neurosurgery, Neurosciences Division, University Hospital Wales, Cardiff, CF14 4XW, UK
| | - J P Aggleton
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- School of Psychology, CF10 3AS
| | - T B Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, DK-2650, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark, DK-2800
| | - D K Jones
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- School of Psychology, CF10 3AS
- Brain Repair And Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia
| | - M Winter
- Cardiff University Brain Research Imaging Centre, CF24 4HQ
- School of Psychology, CF10 3AS
- Brain Repair And Intracranial Neurotherapeutics Unit, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
- Department of Clinical Neuropsychology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| |
Collapse
|
13
|
Assessing object-recognition memory in rats: Pitfalls of the existent tasks and the advantages of a new test. Learn Behav 2020; 47:141-155. [PMID: 30132280 DOI: 10.3758/s13420-018-0347-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of object-recognition memory in lab rats began in the late 1980s, using variants of the trial-unique delayed nonmatching-to-sample (DNMS) task. By the end of the 20th century, most investigators who wanted to study object-recognition in rodents had abandoned the DNMS task in favor of the novel-object-preference (NOP) test, mainly because the latter test is relatively easy to employ, whereas conventional DNMS tasks are not. Some concerns have been raised, however, about the internal validity of the NOP test as a method of measuring object-recognition abilities. We describe two experiments using a new DNMS procedure which requires considerably less training than the DNMS tasks of the 1980s and 1990s, and which cannot be subject to the same criticisms that have been leveled at the NOP test. In Experiment 1, rats were trained on the new modified-DNMS (mDNMS) task using short delays. Rats successfully learned the nonmatching rule in fewer than 25 trials, and they made accurate choices with retention intervals of up to 10 min. Experiment 2 examined a different group of rats' performance on the mDNMS task following long retention intervals (72 h, 3 weeks, and ~45 weeks). Rats made accurate choices on all retention intervals, even the longest retention interval of ~45 weeks. Overall, the findings demonstrate some benefits of an alternative approach to assess object-recognition memory in rats.
Collapse
|
14
|
Mitchnick KA, Mendell AL, Wideman CE, Jardine KH, Creighton SD, Muller AM, Choleris E, MacLusky NJ, Winters BD. Dissociable involvement of estrogen receptors in perirhinal cortex-mediated object-place memory in male rats. Psychoneuroendocrinology 2019; 107:98-108. [PMID: 31125759 DOI: 10.1016/j.psyneuen.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Estrogens and the estrogen receptors (ER) - ERα, ERβ, and the G-protein coupled estrogen receptor (GPER) - are implicated in various forms of hippocampus (HPC)-dependent memory. However, the involvement of ER-related mechanisms in perirhinal cortex (PRh), which is necessary for object memory, remains much less clear. Moreover, there is a paucity of data assessing ER contributions to cognition in males,despite documented sex differences at the cellular level.We hypothesized that estrogens in PRh are important for object memory in males, assessingthe role of 17-βestradiol (E2), ERα, ERβ, GPER, and their downstream signaling pathways, in PRh-mediated object-in-place (OiP) memory in gonadally-intact male rats. Intra-PRh administration of E2 enhanced both long-term memory (LTM; 24 h) and short-term memory (STM; 20 min). Conversely, aromatase inhibition with letrozole impaired LTM and STM. The semi-selective ER inhibitor ICI 182780 impaired LTM, but not STM. This effect may be due to inhibition of ERβ, as the ERβagonist DPN, but not ERαagonist PPT, enhanced LTM. GPER was also found to be necessary in PRh, as the antagonist G15 impaired both LTM and STM. Western blot analyses demonstrated that phosphorylation levels of the extracellular signal-related kinase (ERK2 isoform), awell-establisheddownstream signaling pathway activated by estrogens through ERα/ERβ, was elevated in PRh 5 min following OiP learning.We also reportincreased levels of c-Jun N-terminal kinase (JNK; p46 and p54 isoforms) phosphorylation in PRh 5 min following learning,consistent with recent research linking GPER activation and JNK signaling in the HPC. This effect was abolished by intra-PRh administration of G15, but not letrozole, suggesting that JNK signaling is triggered via GPER activation during OiP learning, and is possibly E2-independent, similar to findings in the HPC. These results, therefore, reveal interesting dissociations between the roles of various ERs, possibly involving both estrogen-dependent and independent mechanisms, in PRh-mediated object-place learning in male rats.
Collapse
Affiliation(s)
- Krista A Mitchnick
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada.
| | - Ari L Mendell
- Collaborative Neuroscience Program, University of Guelph, Canada; Department of Biomedical Sciences, University of Guelph, Canada
| | - Cassidy E Wideman
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Kristen H Jardine
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Samantha D Creighton
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | | | - Elena Choleris
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada
| | - Neil J MacLusky
- Collaborative Neuroscience Program, University of Guelph, Canada; Department of Biomedical Sciences, University of Guelph, Canada
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Canada; Collaborative Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
15
|
Grant KS, Crouthamel B, Kenney C, McKain N, Petroff R, Shum S, Jing J, Isoherranen N, Burbacher TM. Preclinical modeling of exposure to a global marine bio-contaminant: Effects of in utero Domoic acid exposure on neonatal behavior and infant memory. Neurotoxicol Teratol 2019; 73:1-8. [PMID: 30690118 PMCID: PMC6511476 DOI: 10.1016/j.ntt.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/26/2023]
Abstract
Domoic Acid (DA) is a naturally-occurring marine neurotoxin that is increasingly recognized as an important public health issue. Prenatal DA exposure occurs through the maternal consumption of contaminated shellfish/finfish. To better understand the fetal risks associated with DA, we initiated a longitudinal, preclinical study focused on the reproductive and developmental effects of chronic, low-dose oral DA exposure. To this end, 32 adult female Macaca fascicularis monkeys were orally dosed with 0, 0.075 or 0.15 mg/kg/day DA on a daily basis prior to breeding and throughout breeding and pregnancy. The doses included the proposed human Tolerable Daily Intake (TDI) (0.075 mg/kg/day) for DA. Adult females were bred to nonexposed males. To evaluate development during early infancy, offspring were administered a Neonatal Assessment modeled after the human Neonatal Behavior Assessment Scale and a series of Visual Recognition Memory problems using the novelty paradigm. Results indicated that prenatal DA exposure did not impact early survival reflexes or responsivity to the environment. Findings from the recognition memory assessment, given between 1 and 2 months of age, showed that exposed and control infants demonstrated robust novelty scores when test problems were relatively easy to solve. Performance was not diminished by the introduction of delay periods. However, when more difficult recognition problems were introduced, the looking behavior of the 0.15 mg/kg DA group was random and infants failed to show differential visual attention to novel test stimuli. This finding suggests subtle but significant impairment in recognition memory and demonstrates that chronic fetal exposure to DA may impact developing cognitive processes.
Collapse
Affiliation(s)
- Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA.
| | - Brenda Crouthamel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| | - Caroline Kenney
- Washington National Primate Research Center, Seattle, WA, USA
| | - Noelle McKain
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| | - Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jing Jing
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Gross LA, Moore EM, Wozniak JR, Coles CD, Kable JA, Sowell ER, Jones KL, Riley EP, Mattson SN. Neural correlates of verbal memory in youth with heavy prenatal alcohol exposure. Brain Imaging Behav 2019; 12:806-822. [PMID: 28656347 DOI: 10.1007/s11682-017-9739-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prenatal alcohol exposure can impact both brain development and neurobehavioral function, including verbal learning and recall, although the relation between verbal recall and brain structure in this population has not been examined fully. We aimed to determine the structural neural correlates of verbal learning and recall in youth with histories of heavy prenatal alcohol exposure using a region of interest (ROI) approach. As part of an ongoing multisite project, subjects (age 10-16 years) with prenatal alcohol exposure (AE, n = 81) and controls (CON, n = 81) were tested using the CVLT-C and measures of cortical volume, surface area, and thickness as well as hippocampal volume were derived from MRI. Group differences in brain and memory indices were tested with ANOVA. Multiple regression analyses tested whether brain ROIs significantly predicted memory performance. The AE group had lower scores than the CON group on all CVLT-C variables (ps ≤ .001) and volume and surface area (ps < .025), although results varied by ROI. No group differences in cortical thickness were found. The relations between cortical structure and memory performance differed between group among some ROIs, particularly those in the frontal cortex, generally with smaller surface area and/or thinner cortex predicting better performance in CON but worse performance in AE. Cortical surface area appears to be the most sensitive index to the effects of prenatal alcohol exposure, while cortical thickness appears to be the least sensitive. These findings also indicate that the neural correlates of verbal memory are altered in youth with heavy prenatal alcohol exposure compared to controls.
Collapse
Affiliation(s)
- Lauren A Gross
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota, F282/2A West, 2450 Riverside Ave, Minneapolis, MN, 55454, USA
| | - Claire D Coles
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA.,Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Julie A Kable
- Department of Pediatrics, Emory University School of Medicine, 12 Executive Park Drive, Atlanta, GA, 30329, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Mailstop #130, Los Angeles, CA, 90027, USA
| | - Kenneth L Jones
- Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0828, USA
| | - Edward P Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, 6330 Alvarado Court, Suite 100, San Diego, CA, 92120, USA.
| | | |
Collapse
|
17
|
Esfahani-Bayerl N, Finke C, Kopp U, Moon DU, Ploner CJ. Musical memory and hippocampus revisited: Evidence from a musical layperson with highly selective hippocampal damage. Cortex 2019; 119:519-527. [PMID: 30795831 DOI: 10.1016/j.cortex.2018.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 01/27/2023]
Abstract
The role of the human hippocampus for musical memory is still unclear. While imaging studies in healthy humans have repeatedly shown hippocampal activation in musical memory tasks, studies in musicians with chronic bilateral medial temporal lobe damage and in non-musicians suffering from neuro-degenerative diseases suggest that musical memory may at least partly be independent of hippocampal integrity. Here, we report on a musical layperson who acutely developed an amnesic syndrome in the context of autoimmune encephalitis. Structural and resting state functional MRI revealed exceptionally selective bilateral lesions of the hippocampi and altered functional connectivity with retrosplenial cortex and precuneus. Neuropsychological testing showed a severe global amnesic syndrome. Perception and processing of scales, melodic contours, intervals, rhythms and meter were unaffected. Most notably, the patient performed completely normally on tests of recognition memory for unfamiliar melodies and excerpts of complex musical material, while recognition memory for visual and verbal information was severely impaired. Likewise, emotional evaluation of musical excerpts did not differ from controls. We infer that integrity of musical processing and recognition memory in patients with hippocampal dysfunction does not result from training-induced or post-lesional brain plasticity, but rather reflects integrity of brain networks outside the hippocampi and presumably also outside retrosplenial cortex and precuneus. Our findings suggest major differences in the neural substrates of musical and non-musical recognition memory.
Collapse
Affiliation(s)
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ute Kopp
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daa-Un Moon
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
18
|
Adenosine A 2A-Cannabinoid CB 1 Receptor Heteromers in the Hippocampus: Cannabidiol Blunts Δ 9-Tetrahydrocannabinol-Induced Cognitive Impairment. Mol Neurobiol 2019; 56:5382-5391. [PMID: 30610611 DOI: 10.1007/s12035-018-1456-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
At present, clinical interest in the plant-derived cannabinoid compound cannabidiol (CBD) is rising exponentially, since it displays multiple therapeutic properties. In addition, CBD can counteract the undesirable effects of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) that hinder clinical development of cannabis-based therapies. Despite this attention, the mechanisms of CBD action and its interaction with Δ9-THC are still not completely elucidated. Here, by combining in vivo and complementary molecular techniques, we demonstrate for the first time that CBD blunts the Δ9-THC-induced cognitive impairment in an adenosine A2A receptor (A2AR)-dependent manner. Furthermore, we reveal the existence of A2AR and cannabinoid CB1 receptor (CB1R) heteromers at the presynaptic level in CA1 neurons in the hippocampus. Interestingly, our findings support a brain region-dependent A2AR-CB1R functional interplay; indeed, CBD was not capable of modifying motor functions presumably regulated by striatal A2AR/CB1R complexes, nor anxiety responses related to other brain regions. Overall, these data provide new evidence regarding the mechanisms of action of CBD and the nature of A2AR-CB1R interactions in the brain.
Collapse
|
19
|
Morici JF, Miranda M, Gallo FT, Zanoni B, Bekinschtein P, Weisstaub NV. 5-HT2a receptor in mPFC influences context-guided reconsolidation of object memory in perirhinal cortex. eLife 2018; 7:33746. [PMID: 29717980 PMCID: PMC5931799 DOI: 10.7554/elife.33746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Context-dependent memories may guide adaptive behavior relaying in previous experience while updating stored information through reconsolidation. Retrieval can be triggered by partial and shared cues. When the cue is presented, the most relevant memory should be updated. In a contextual version of the object recognition task, we examined the effect of medial PFC (mPFC) serotonin 2a receptor (5-HT2aR) blockade during retrieval in reconsolidation of competing objects memories. We found that mPFC 5-HT2aR controls retrieval and reconsolidation of object memories in the perirhinal cortex (PRH), but not in the dorsal hippocampus in rats. Also, reconsolidation of objects memories in PRH required a functional interaction between the ventral hippocampus and the mPFC. Our results indicate that in the presence of conflicting information at retrieval, mPFC 5-HT2aR may facilitate top-down context-guided control over PRH to control the behavioral response and object memory reconsolidation.
Collapse
Affiliation(s)
- Juan Facundo Morici
- Departamento de Ciencias Fisiológicas, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| | - Magdalena Miranda
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina.,Instituto de Biologia Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Francisco Tomás Gallo
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina.,Instituto de Biologia Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Belén Zanoni
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina.,Instituto de Biologia Celular y Neurociencias, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Departamento de Ciencias Fisiológicas, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Instituto de Neurociencia Cognitiva y Translacional, Universidad Favaloro, INECO, CONICET, Buenos Aires, Argentina
| |
Collapse
|
20
|
Berté TE, Dalmagro AP, Zimath PL, Gonçalves AE, Meyre-Silva C, Bürger C, Weber CJ, Dos Santos DA, Cechinel-Filho V, de Souza MM. Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer's disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions. Steroids 2018; 132:5-11. [PMID: 29355563 DOI: 10.1016/j.steroids.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive impairment and cholinergic neuronal death, characteristic of the effect of time on biochemical neuronal function. The use of medicinal plants as an alternative form of prevention, or even as a possible treatment of AD, is therefore interesting areas of research, since the standard drugs have many side effects. Taraxerol (TRX) is a triterpene that has been isolated from several plant species, and its various pharmacological properties have already been identified, such the acetylcholinesterase (AChE) inhibition activity in vitro. There is a lack of information in literature that confirms the effect of TRX in an animal AD-like model. Seeking to fill this gap in the literature, in the present work we assessed the effect of TRX on AChE activity in the animals' encephalon and hippocampus. We also investigated the effect of TRX (1.77 µM/side, 0.5 μL) isolated from leaves of Eugenia umbelliflora Berg. on aversive memory impairments induced by scopolamine (2 µg/side, 0.5 µL) infused into rat hippocampus, and the effect of TRX (0.89 and 1.77 µM/side, 0.5 μL) on aversive memory impairments induced by streptozotocin (STZ) (2.5 mg/mL, 2.0 µL) infused i.c.v. into mice, using the step-down inhibitory avoidance task. We found that TRX significantly inhibited AChE activity in the animal's hippocampus. Furthermore, TRX significantly improved scopolamine and STZ-induced memory impairment. Taking together, these results confirms its AChE activity inhibition in animals and indicate that TRX has anti-amnesic activity that may hold significant therapeutic value in alleviating certain memory impairments observed in AD.
Collapse
Affiliation(s)
- Talita Elisa Berté
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Paula Dalmagro
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil.
| | - Priscila Laiz Zimath
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Ana Elisa Gonçalves
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Christiane Meyre-Silva
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Cristiani Bürger
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Carla J Weber
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Diogo Adolfo Dos Santos
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Valdir Cechinel-Filho
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| | - Márcia M de Souza
- Centro de Ciências da Saúde, CCS - Núcleo de Investigações Químico Farmacêuticas NIQFAR/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas/UNIVALI, Rua Uruguai 458, Centro, CEP: 88302-202 Itajaí, SC, Brazil
| |
Collapse
|
21
|
Belblidia H, Leger M, Abdelmalek A, Quiedeville A, Calocer F, Boulouard M, Jozet-Alves C, Freret T, Schumann-Bard P. Characterizing age-related decline of recognition memory and brain activation profile in mice. Exp Gerontol 2018. [PMID: 29524468 DOI: 10.1016/j.exger.2018.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks.
Collapse
Affiliation(s)
- Hassina Belblidia
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France; Université des Sciences et de la Technologie Houari Boumediene USTHB, Département de biologie, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria; Université M'hamed Bougara UMBB, Faculté des Sciences, 35000 Boumerdès, Algeria
| | - Marianne Leger
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Abdelouadoud Abdelmalek
- Université des Sciences et de la Technologie Houari Boumediene USTHB, Département de biologie, Laboratoire de Neurosciences Comportementales et Cognitives, 16111 Alger, Algeria
| | - Anne Quiedeville
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Floriane Calocer
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Michel Boulouard
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | | | - Thomas Freret
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France
| | - Pascale Schumann-Bard
- Université de Caen Normandie, UFR SANTE, Faculté des Sciences Pharmaceutiques, INSERM UMR 1075, COMETE-MOBILITES "Vieillissement, Pathologie, Santé", 14032 Caen, France.
| |
Collapse
|
22
|
von Ziegler LM, Selevsek N, Tweedie-Cullen RY, Kremer E, Mansuy IM. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice. Cell Rep 2018; 22:3362-3374. [DOI: 10.1016/j.celrep.2018.02.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
|
23
|
Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018; 9:56. [PMID: 29479335 PMCID: PMC5811463 DOI: 10.3389/fneur.2018.00056] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023] Open
Abstract
Light exerts a wide range of effects on mammalian physiology and behavior. As well as synchronizing circadian rhythms to the external environment, light has been shown to modulate autonomic and neuroendocrine responses as well as regulating sleep and influencing cognitive processes such as attention, arousal, and performance. The last two decades have seen major advances in our understanding of the retinal photoreceptors that mediate these non-image forming responses to light, as well as the neural pathways and molecular mechanisms by which circadian rhythms are generated and entrained to the external light/dark (LD) cycle. By contrast, our understanding of the mechanisms by which lighting influences cognitive processes is more equivocal. The effects of light on different cognitive processes are complex. As well as the direct effects of light on alertness, indirect effects may also occur due to disrupted circadian entrainment. Despite the widespread use of disrupted LD cycles to study the role circadian rhythms on cognition, the different experimental protocols used have subtly different effects on circadian function which are not always comparable. Moreover, these protocols will also disrupt sleep and alter physiological arousal, both of which are known to modulate cognition. Studies have used different assays that are dependent on different cognitive and sensory processes, which may also contribute to their variable findings. Here, we propose that studies addressing the effects of different lighting conditions on cognitive processes must also account for their effects on circadian rhythms, sleep, and arousal if we are to fully understand the physiological basis of these responses.
Collapse
Affiliation(s)
- Angus S Fisk
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Shu K E Tam
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Brancato A, Cavallaro A, Lavanco G, Plescia F, Cannizzaro C. Reward-related limbic memory and stimulation of the cannabinoid system: An upgrade in value attribution? J Psychopharmacol 2018; 32:204-214. [PMID: 28880120 DOI: 10.1177/0269881117725683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While a lot is known about the mechanisms promoting aversive learning, the impact of rewarding factors on memory has received comparatively less attention. This research investigates reward-related explicit memory in male rats, by taking advantage of the emotional-object recognition test. This is based on the prior association, during conditioned learning, between a rewarding experience (the encounter with a receptive female rat) and an object; afterwards rat discrimination and recognition of the 'emotional object' is recorded in the presence of a novel object, as a measure of positive limbic memory formation. Since endocannabinoids are critical for processing reward and motivation, the consequences of the stimulation of cannabinoid signalling are also assessed by the administration of WIN 55,212-2 at pre- and post-conditioning time. Our results show that rats encode the association between object and rewarding experience, form positive limbic memory of the emotional object, and retrieve this information in the face of novelty. Stimulation of the cannabinoid system at pre-conditioning time is able to strengthen reward-related explicit memory in the presence of novelty, whereas post-conditioning activation increases approach behaviour to novel stimuli. The assessment of limbic memory by the emotional-object recognition test can help unveiling the addictive and confounding properties of psychotropic drugs.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy
| |
Collapse
|
25
|
The contribution of different prefrontal cortex regions to recollection and familiarity: a review of fMRI data. Neurosci Biobehav Rev 2017; 83:240-251. [DOI: 10.1016/j.neubiorev.2017.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/08/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022]
|
26
|
Morillas E, Gómez-Chacón B, Gallo M. Flavor and object recognition memory impairment induced by excitotoxic lesions of the perirhinal cortex. Neurobiol Learn Mem 2017; 144:230-234. [DOI: 10.1016/j.nlm.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023]
|
27
|
Pezze MA, Marshall HJ, Fone KC, Cassaday HJ. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay. ACTA ACUST UNITED AC 2017; 24:310-317. [PMID: 28620078 PMCID: PMC5473111 DOI: 10.1101/lm.044784.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory.
Collapse
Affiliation(s)
- Marie A Pezze
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Hayley J Marshall
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Kevin Cf Fone
- School of Life Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Helen J Cassaday
- School of Psychology, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
28
|
Wu X, Li D, Liu J, Diao L, Ling S, Li Y, Gao J, Fan Q, Sun W, Li Q, Zhao D, Zhong G, Cao D, Liu M, Wang J, Zhao S, Liu Y, Bai G, Shi H, Xu Z, Wang J, Xue C, Jin X, Yuan X, Li H, Liu C, Sun H, Li J, Li Y, Li Y. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight. Front Pharmacol 2017; 8:315. [PMID: 28611667 PMCID: PMC5446991 DOI: 10.3389/fphar.2017.00315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.
Collapse
Affiliation(s)
- Xiaorui Wu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical UniversityXi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Dong Li
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing Proteome Research CenterBeijing, China
| | - Junlian Liu
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Lihong Diao
- State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing Proteome Research CenterBeijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Jianyi Gao
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Quanchun Fan
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Min Liu
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Jiaping Wang
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Shuang Zhao
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Yu Liu
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Guie Bai
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Hongzhi Shi
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Jing Wang
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Chunmei Xue
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Hongxing Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Huiyuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Yongzhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical UniversityXi'an, China.,State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Applications, China Astronaut Research and Training CenterBeijing, China
| |
Collapse
|
29
|
Santos VV, Stark R, Rial D, Silva HB, Bayliss JA, Lemus MB, Davies JS, Cunha RA, Prediger RD, Andrews ZB. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice. J Neuroendocrinol 2017; 29. [PMID: 28380673 DOI: 10.1111/jne.12476] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 12/24/2022]
Abstract
Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological conditions, including Parkinson's disease (PD), stroke and traumatic brain injury. Acyl ghrelin treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In the present study, we used ghrelin knockout (KO) and their wild-type littermates to test whether or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid β peptide 1-40 (Aβ1-40 ) was injected into the lateral ventricles i.c.v. Recognition memory, using the novel object recognition task, was significantly impaired in ghrelin KO mice and after i.c.v. Aβ1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in ghrelin KO mice and after i.c.v. Aβ1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination; however, neither i.c.v. Aβ1-40 treatment, nor acyl ghrelin injections affected olfactory discrimination. We used stereology to show that ghrelin KO and Aβ1-40 increased the total number of glial fibrillary acidic protein expressing astrocytes and ionised calcium-binding adapter expressing microglial in the rostral hippocampus. Finally, Aβ1-40 blocked long-term potentiation induced by high-frequency stimulation and this effect could be acutely blocked with co-administration of acyl ghrelin. Collectively, our studies demonstrate that ghrelin deletion affects memory performance and also that acyl ghrelin treatment may delay the onset of early events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically beneficial with respect to restricting disease progression in AD.
Collapse
Affiliation(s)
- V V Santos
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - R Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - D Rial
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina UFSC, Florianópolis, SC, Brazil
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - H B Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - J A Bayliss
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - M B Lemus
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J S Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, UK
| | - R A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - R D Prediger
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina UFSC, Florianópolis, SC, Brazil
| | - Z B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
30
|
Disconnection of the Perirhinal and Postrhinal Cortices Impairs Recognition of Objects in Context But Not Contextual Fear Conditioning. J Neurosci 2017; 37:4819-4829. [PMID: 28411272 DOI: 10.1523/jneurosci.0254-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 04/02/2017] [Indexed: 01/11/2023] Open
Abstract
The perirhinal cortex (PER) is known to process object information, whereas the rodent postrhinal cortex (POR), homolog to the parahippocampal cortex in primates, is thought to process spatial information. A number of studies, however, provide evidence that both areas are involved in processing contextual information. In this study, we tested the hypothesis that the rat POR relies on object information received from the PER to form complex representations of context. Using three fear-conditioning (FC) paradigms (signaled, unsignaled, and renewal) and two context-guided object recognition tasks (with 3D and 2D objects), we examined the effects of crossed excitotoxic lesions to the POR and the contralateral PER. Performance of rats with crossed lesions was compared with that of rats with ipsilateral POR plus PER lesions and sham-operated rats. We found that rats with contralateral PER-POR lesions were impaired in object-context recognition but not in contextual FC. Therefore, interaction between the POR and PER is necessary for context-guided exploratory behavior but not for associating fear with context. Our results provide evidence for the hypothesis that the POR relies on object and pattern information from the PER to encode representations of context. The association of fear with a context, however, may be supported by alternate cortical and/or subcortical pathways when PER-POR interaction is not available. Our results suggest that contextual FC may represent a special case of context-guided behavior.SIGNIFICANCE STATEMENT Representations of context are important for perception, memory, decision making, and other cognitive processes. Moreover, there is extensive evidence that the use of contextual representations to guide appropriate behavior is disrupted in neuropsychiatric and neurological disorders including developmental disorders, schizophrenia, affective disorders, and Alzheimer's disease. Many of these disorders are accompanied by changes in parahippocampal and hippocampal structures. Understanding how context is represented in the brain and how parahippocampal structures are involved will enhance our understanding and treatment of the cognitive and behavioral symptoms associated with neurological disorders and neuropsychiatric disease.
Collapse
|
31
|
Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. J Neurosci 2017; 37:3555-3567. [PMID: 28264977 PMCID: PMC5373134 DOI: 10.1523/jneurosci.3213-16.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/12/2017] [Accepted: 02/04/2017] [Indexed: 01/03/2023] Open
Abstract
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod).
Collapse
|
32
|
Mouro FM, Batalha VL, Ferreira DG, Coelho JE, Baqi Y, Müller CE, Lopes LV, Ribeiro JA, Sebastião AM. Chronic and acute adenosine A 2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB 1 receptor activation. Neuropharmacology 2017; 117:316-327. [PMID: 28235548 DOI: 10.1016/j.neuropharm.2017.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/17/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Abstract
Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1 receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB1/CB2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A2AR blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A2ARs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB1Rs was assessed by using the CB1R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/administration & dosage
- Animals
- Benzoxazines/pharmacology
- Calcium Channel Blockers/pharmacology
- Cannabinoid Receptor Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory Disorders/chemically induced
- Memory Disorders/metabolism
- Memory Disorders/prevention & control
- Memory, Episodic
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Purines/administration & dosage
- Pyrazoles/pharmacology
- Pyrimidines/administration & dosage
- Receptor, Adenosine A2A/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Triazoles/administration & dosage
Collapse
Affiliation(s)
- Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Vânia L Batalha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Diana G Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, Muscat, Oman
| | - Christa E Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie I, University of Bonn, Germany
| | - Luísa V Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Joaquim A Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
33
|
Perirhinal cortex involvement in allocentric spatial learning in the rat: Evidence from doubly marked tasks. Hippocampus 2017; 27:507-517. [DOI: 10.1002/hipo.22707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
|
34
|
Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. eNeuro 2016; 3:eN-NWR-0103-16. [PMID: 27844057 PMCID: PMC5099603 DOI: 10.1523/eneuro.0103-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability in Down syndrome (DS) is accompanied by altered neuro-architecture, deficient synaptic plasticity, and excitation-inhibition imbalance in critical brain regions for learning and memory. Recently, we have demonstrated beneficial effects of a combined treatment with green tea extract containing (-)-epigallocatechin-3-gallate (EGCG) and cognitive stimulation in young adult DS individuals. Although we could reproduce the cognitive-enhancing effects in mouse models, the underlying mechanisms of these beneficial effects are unknown. Here, we explored the effects of a combined therapy with environmental enrichment (EE) and EGCG in the Ts65Dn mouse model of DS at young age. Our results show that combined EE-EGCG treatment improved corticohippocampal-dependent learning and memory. Cognitive improvements were accompanied by a rescue of cornu ammonis 1 (CA1) dendritic spine density and a normalization of the proportion of excitatory and inhibitory synaptic markers in CA1 and dentate gyrus.
Collapse
|
35
|
Stackman RW, Cohen SJ, Lora JC, Rios LM. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiol Learn Mem 2016; 133:118-128. [PMID: 27330015 PMCID: PMC8746693 DOI: 10.1016/j.nlm.2016.06.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/10/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Recognition of a previously experienced item or object depends upon the successful retrieval of memory for the object. The neural mechanisms that support object recognition memory in the mammalian brain are not well understood. The rodent hippocampus plays a well-established role in spatial memory, and we previously demonstrated that temporary inactivation of the mouse hippocampus impairs object memory, as assessed with a novel object preference (NOP) test. The present studies were designed to test some remaining issues regarding the contribution of the CA1 sub-region of the mouse dorsal hippocampus to long-term object memory. Specifically, we examined whether the retrieval of spatial memory (as assessed by the Morris water maze; MWM) and object recognition memory are differentially sensitive to inactivation of the CA1 region. The current study used pre-test local microinfusion of muscimol directly into the CA1 region of dorsal hippocampus to temporarily interrupt its function during the respective retrieval phases of both behavioral tasks, in order to compare the contribution of the CA1 to object memory and spatial memory. Histological analyses revealed that local intra-CA1 injection of muscimol diffused within, and not beyond, the CA1 region of dorsal hippocampus. The degree of memory retrieval impairment induced by muscimol was comparable in the two tasks, supporting the view that object memory and spatial memory depend similarly on the CA1 region of rodent hippocampus. Further, we confirmed that the muscimol-induced impairment of CA1 function is temporary. First, mice that exhibited impaired object memory retrieval immediately after intra-CA1 muscimol, subsequently exhibited unimpaired retrieval of object memory when tested 24h later. Secondly, a cohort of mice that exhibited impaired object memory retrieval after intra-CA1 muscimol later acquired spatial memory in the MWM comparable to that of control mice. Together, these results offer further support for the involvement of the CA1 region of mouse hippocampus in object recognition memory, and provide evidence to suggest that the NOP task is as much a test of hippocampal function as the classic MWM test.
Collapse
Affiliation(s)
- Robert W Stackman
- Department of Psychology, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA; Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Sarah J Cohen
- Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Joan C Lora
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Lisa M Rios
- Department of Psychology, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
36
|
von Linstow Roloff E, Muller RU, Brown MW. Finding and Not Finding Rat Perirhinal Neuronal Responses to Novelty. Hippocampus 2016; 26:1021-32. [PMID: 26972751 PMCID: PMC4973686 DOI: 10.1002/hipo.22584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 01/12/2023]
Abstract
There is much evidence that the perirhinal cortex of both rats and monkeys is important for judging the relative familiarity of visual stimuli. In monkeys many studies have found that a proportion of perirhinal neurons respond more to novel than familiar stimuli. There are fewer studies of perirhinal neuronal responses in rats, and those studies based on exploration of objects, have raised into question the encoding of stimulus familiarity by rat perirhinal neurons. For this reason, recordings of single neuronal activity were made from the perirhinal cortex of rats so as to compare responsiveness to novel and familiar stimuli in two different behavioral situations. The first situation was based upon that used in “paired viewing” experiments that have established rat perirhinal differences in immediate early gene expression for novel and familiar visual stimuli displayed on computer monitors. The second situation was similar to that used in the spontaneous object recognition test that has been widely used to establish the involvement of rat perirhinal cortex in familiarity discrimination. In the first condition 30 (25%) of 120 perirhinal neurons were visually responsive; of these responsive neurons 19 (63%) responded significantly differently to novel and familiar stimuli. In the second condition eight (53%) of 15 perirhinal neurons changed activity significantly in the vicinity of objects (had “object fields”); however, for none (0%) of these was there a significant activity change related to the familiarity of an object, an incidence significantly lower than for the first condition. Possible reasons for the difference are discussed. It is argued that the failure to find recognition‐related neuronal responses while exploring objects is related to its detectability by the measures used, rather than the absence of all such signals in perirhinal cortex. Indeed, as shown by the results, such signals are found when a different methodology is used. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eva von Linstow Roloff
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, United Kingdom
| | - Robert U Muller
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, New York. In memoriam, Robert U. Muller (1942-2013)
| | - Malcolm W Brown
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, United Kingdom
| |
Collapse
|
37
|
Wang SF, Ritchey M, Libby LA, Ranganath C. Functional connectivity based parcellation of the human medial temporal lobe. Neurobiol Learn Mem 2016; 134 Pt A:123-134. [PMID: 26805590 DOI: 10.1016/j.nlm.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.
Collapse
Affiliation(s)
- Shao-Fang Wang
- Center for Neuroscience, University of California, Davis, CA 95618, USA.
| | - Maureen Ritchey
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Laura A Libby
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, CA 95616, USA
| |
Collapse
|
38
|
Albayram Ö, Passlick S, Bilkei-Gorzo A, Zimmer A, Steinhäuser C. Physiological impact of CB1 receptor expression by hippocampal GABAergic interneurons. Pflugers Arch 2016; 468:727-37. [DOI: 10.1007/s00424-015-1782-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
|
39
|
Abstract
Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30-40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30-40 Hz was not effective in increasing exploration of novel images. Stimulation at 10-15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. Significance statement: Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory.
Collapse
|
40
|
Yang M, Lewis FC, Sarvi MS, Foley GM, Crawley JN. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks. Learn Mem 2015; 22:622-32. [PMID: 26572653 PMCID: PMC4749736 DOI: 10.1101/lm.039602.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
Abstract
Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Freeman C Lewis
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Michael S Sarvi
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Gillian M Foley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| | - Jacqueline N Crawley
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, California 95817, USA
| |
Collapse
|
41
|
Barnes SA, Pinto-Duarte A, Kappe A, Zembrzycki A, Metzler A, Mukamel EA, Lucero J, Wang X, Sejnowski TJ, Markou A, Behrens MM. Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol Psychiatry 2015; 20:1161-72. [PMID: 26260494 PMCID: PMC4583365 DOI: 10.1038/mp.2015.113] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 06/21/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022]
Abstract
Alterations in glutamatergic transmission onto developing GABAergic systems, in particular onto parvalbumin-positive (Pv(+)) fast-spiking interneurons, have been proposed as underlying causes of several neurodevelopmental disorders, including schizophrenia and autism. Excitatory glutamatergic transmission, through ionotropic and metabotropic glutamate receptors, is necessary for the correct postnatal development of the Pv(+) GABAergic network. We generated mutant mice in which the metabotropic glutamate receptor 5 (mGluR5) was specifically ablated from Pv(+) interneurons postnatally, and investigated the consequences of such a manipulation at the cellular, network and systems levels. Deletion of mGluR5 from Pv(+) interneurons resulted in reduced numbers of Pv(+) neurons and decreased inhibitory currents, as well as alterations in event-related potentials and brain oscillatory activity. These cellular and sensory changes translated into domain-specific memory deficits and increased compulsive-like behaviors, abnormal sensorimotor gating and altered responsiveness to stimulant agents. Our findings suggest a fundamental role for mGluR5 in the development of Pv(+) neurons and show that alterations in this system can produce broad-spectrum alterations in brain network activity and behavior that are relevant to neurodevelopmental disorders.
Collapse
Affiliation(s)
- SA Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - A Pinto-Duarte
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Kappe
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Zembrzycki
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - A Metzler
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - EA Mukamel
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - J Lucero
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - X Wang
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - TJ Sejnowski
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - A Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - MM Behrens
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
42
|
Huijgen J, Dellacherie D, Tillmann B, Clément S, Bigand E, Dupont S, Samson S. The feeling of familiarity for music in patients with a unilateral temporal lobe lesion: A gating study. Neuropsychologia 2015; 77:313-20. [PMID: 26359715 DOI: 10.1016/j.neuropsychologia.2015.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Previous research has indicated that the medial temporal lobe (MTL), and more specifically the perirhinal cortex, plays a role in the feeling of familiarity for non-musical stimuli. Here, we examined contribution of the MTL to the feeling of familiarity for music by testing patients with unilateral MTL lesions. We used a gating paradigm: segments of familiar and unfamiliar musical excerpts were played with increasing durations (250, 500, 1000, 2000, 4000 ms and complete excerpts), and participants provided familiarity judgments for each segment. Based on the hypothesis that patients might need longer segments than healthy controls (HC) to identify excerpts as familiar, we examined the onset of the emergence of familiarity in HC, patients with a right MTL resection (RTR), and patients with a left MTL resection (LTR). In contrast to our hypothesis, we found that the feeling of familiarity was relatively spared in patients with a right or left MTL lesion, even for short excerpts. All participants were able to differentiate familiar from unfamiliar excerpts as early as 500 ms, although the difference between familiar and unfamiliar judgements was greater in HC than in patients. These findings suggest that a unilateral MTL lesion does not impair the emergence of the feeling of familiarity. We also assessed whether the dynamics of the musical excerpt (linked to the type and amount of information contained in the excerpts) modulated the onset of the feeling of familiarity in the three groups. The difference between familiar and unfamiliar judgements was greater for high than for low-dynamic excerpts for HC and RTR patients, but not for LTR patients. This indicates that the LTR group did not benefit in the same way from dynamics. Overall, our results imply that the recognition of previously well-learned musical excerpts does not depend on the integrity of either right or the left MTL structures. Patients with a unilateral MTL resection may compensate for the effects of unilateral damage by using the intact contralateral temporal lobe. Moreover, we suggest that remote semantic memory for music might depend more strongly on neocortical structures rather than the MTL.
Collapse
Affiliation(s)
- Josefien Huijgen
- Equipe Neuropsychologie: Audition, Cognition, Action (Laboratoire PSITEC-EA 4072), Université de Lille, France; Centre de NeuroImagerie de Recherche (CENIR), Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Institut du Cerveau et de la Moëlle Épinière (ICM), UPMC-UMR 7225 CNRS-UMRS 1127 INSERM, Paris, France.
| | - Delphine Dellacherie
- Equipe Neuropsychologie: Audition, Cognition, Action (Laboratoire PSITEC-EA 4072), Université de Lille, France; Centre National de Référence des Maladies rares, Service de Neuropédiatrie, CHRU de Lille, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center, Team Auditory Cognition and Psychoacoustics, CNRS-UMR 5292, INSERM U1028, Université de Lyon, Lyon, France.
| | - Sylvain Clément
- Equipe Neuropsychologie: Audition, Cognition, Action (Laboratoire PSITEC-EA 4072), Université de Lille, France.
| | - Emmanuel Bigand
- LEAD/CNRS (Laboratoire d'Etude de l'Apprentissage et du Développement/National Center for Scientific Research) UMR 5022, Université de Bourgogne, Dijon, France.
| | - Sophie Dupont
- Institut du Cerveau et de la Moëlle Épinière (ICM), UPMC-UMR 7225 CNRS-UMRS 1127 INSERM, Paris, France; Unité d'épilepsie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | - Séverine Samson
- Equipe Neuropsychologie: Audition, Cognition, Action (Laboratoire PSITEC-EA 4072), Université de Lille, France; Unité d'épilepsie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
43
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
44
|
Warburton EC, Brown MW. Neural circuitry for rat recognition memory. Behav Brain Res 2015; 285:131-9. [PMID: 25315129 PMCID: PMC4383363 DOI: 10.1016/j.bbr.2014.09.050] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/01/2022]
Abstract
Information concerning the roles of different brain regions in recognition memory processes is reviewed. The review concentrates on findings from spontaneous recognition memory tasks performed by rats, including memory for single objects, locations, object-location associations and temporal order. Particular emphasis is given to the potential roles of different regions in the circuit of interacting structures involving the perirhinal cortex, hippocampus, medial prefrontal cortex and medial dorsal thalamus in recognition memory for the association of objects and places. It is concluded that while all structures in this circuit play roles critical to such memory, these roles can potentially be differentiated and differences in the underlying synaptic and biochemical processes involved in each region are beginning to be uncovered.
Collapse
Affiliation(s)
- E C Warburton
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | - M W Brown
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
45
|
Aggleton JP, Christiansen K. The subiculum: the heart of the extended hippocampal system. PROGRESS IN BRAIN RESEARCH 2015; 219:65-82. [PMID: 26072234 DOI: 10.1016/bs.pbr.2015.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
While descriptions of the subiculum often emphasize its role as a recipient of hippocampal inputs, the area also has particular importance as a source of hippocampal projections. The extrinsic projections from the subiculum not only parallel those from hippocampal fields CA1-4 but also terminate in sites that do not receive direct inputs from the rest of the hippocampus. Both electrophysiological and lesion studies reveal how, despite its very dense CA1 inputs, the subiculum has functional properties seemingly independent from the rest of the hippocampus. In understanding the subiculum, it is necessary to appreciate that its connections are topographically organized along all three planes (longitudinal, transverse, and depth). These topographies may enable the subiculum to separate multiple information types and, hence, support multiple functions. The particular significance of the subiculum for learning and memory is underlined by its importance as a source of hippocampal projections to nuclei in the medial diencephalon, which are themselves vital for human memory and rodent spatial learning. Of particular note are its reciprocal connections with the anterior thalamic nuclei, which are not shared by the rest of the hippocampus (CA1-4). These thalamosubiculum connections may be of especial significance for resolving memory problems that suffer high interference and require the flexible use of stimulus representations.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
46
|
Ramos JM. Differential contribution of perirhinal cortex and hippocampus to taste neophobia: Effect of neurotoxic lesions. Behav Brain Res 2015; 284:94-102. [DOI: 10.1016/j.bbr.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/10/2023]
|
47
|
Biesbroek JM, van Zandvoort MJ, Kappelle LJ, Schoo L, Kuijf HJ, Velthuis BK, Biessels GJ, Postma A. Distinct anatomical correlates of discriminability and criterion setting in verbal recognition memory revealed by lesion-symptom mapping. Hum Brain Mapp 2015; 36:1292-303. [PMID: 25423892 PMCID: PMC6869440 DOI: 10.1002/hbm.22702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 11/09/2022] Open
Abstract
Recognition memory, that is, the ability to judge whether an item has been previously encountered in a particular context, depends on two factors: discriminability and criterion setting. Discriminability draws on memory processes while criterion setting (i.e., the application of a threshold resulting in a yes/no response) is regarded as a process of cognitive control. Discriminability and criterion setting are assumed to draw on distinct anatomical structures, but definite evidence for this assumption is lacking. We applied voxel-based and region of interest-based lesion-symptom mapping to 83 patients in the acute phase of ischemic stroke to determine the anatomical correlates of discriminability and criterion setting in verbal recognition memory. Recognition memory was measured with the Rey Auditory Verbal Learning Test. Signal-detection theory was used to calculate measures for discriminability and criterion setting. Lesion-symptom mapping revealed that discriminability draws on left medial temporal and temporo-occipital structures, both thalami and the right hippocampus, while criterion setting draws on the right inferior frontal gyrus. Lesions in the right inferior frontal gyrus were associated with liberal response bias. These findings indicate that discriminability and criterion setting indeed depend on distinct anatomical structures and provide new insights in the anatomical correlates of these cognitive processes that underlie verbal recognition memory.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUtrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtthe Netherlands
| | - Martine J.E. van Zandvoort
- Department of NeurologyUtrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtthe Netherlands
- Experimental PsychologyHelmholtz Institute, Utrecht Universitythe Netherlands
| | - L. Jaap Kappelle
- Department of NeurologyUtrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtthe Netherlands
| | - Linda Schoo
- Experimental PsychologyHelmholtz Institute, Utrecht Universitythe Netherlands
| | - Hugo J. Kuijf
- Image Sciences Institute, University Medical Center UtrechtUtrechtthe Netherlands
| | | | - Geert Jan Biessels
- Department of NeurologyUtrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtthe Netherlands
| | - Albert Postma
- Department of NeurologyUtrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrechtthe Netherlands
- Experimental PsychologyHelmholtz Institute, Utrecht Universitythe Netherlands
| | | |
Collapse
|
48
|
Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev 2015; 51:205-22. [PMID: 25597655 PMCID: PMC4359651 DOI: 10.1016/j.neubiorev.2015.01.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022]
Abstract
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States.
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Box 571464, Washington, DC 20057-1464, United States
| |
Collapse
|
49
|
In search of a recognition memory engram. Neurosci Biobehav Rev 2014; 50:12-28. [PMID: 25280908 PMCID: PMC4382520 DOI: 10.1016/j.neubiorev.2014.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
Abstract
The role of the perirhinal cortex in familiarity discrimination is reviewed. Behavioural, pharmacological and electrophysiological evidence is considered. The cortex is found to be essential for memory acquisition, retrieval and storage. The evidence indicates that perirhinal synaptic weakening is critically involved.
A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening.
Collapse
|
50
|
Kinnavane L, Amin E, Horne M, Aggleton JP. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. Eur J Neurosci 2014; 40:3720-34. [PMID: 25264133 PMCID: PMC4309468 DOI: 10.1111/ejn.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 12/30/2022]
Abstract
The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli.
Collapse
Affiliation(s)
- L Kinnavane
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|