1
|
Ripperger HS, Reed RG, Kang C, Lesnovskaya A, Aghjayan SL, Huang H, Wan L, Sutton BP, Oberlin L, Collins AM, Burns JM, Vidoni ED, Kramer AF, McAuley E, Hillman CH, Grove GA, Jakicic JM, Erickson KI. Cardiorespiratory fitness, hippocampal subfield morphology, and episodic memory in older adults. Front Aging Neurosci 2024; 16:1466328. [PMID: 39749255 PMCID: PMC11694150 DOI: 10.3389/fnagi.2024.1466328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Objective Age-related hippocampal atrophy is associated with memory loss in older adults, and certain hippocampal subfields are more vulnerable to age-related atrophy than others. Cardiorespiratory fitness (CRF) may be an important protective factor for preserving hippocampal volume, but little is known about how CRF relates to the volume of specific hippocampal subfields, and whether associations between CRF and hippocampal subfield volumes are related to episodic memory performance. To address these gaps, the current study evaluates the associations among baseline CRF, hippocampal subfield volumes, and episodic memory performance in cognitively unimpaired older adults from the Investigating Gains in Neurocognition Trial of Exercise (IGNITE) (NCT02875301). Methods Participants (N = 601, ages 65-80, 72% female) completed assessments including a graded exercise test measuring peak oxygen comsumption (VO2peak) to assess CRF, cognitive testing, and high-resolution magnetic resonance imaging of the hippocampus processed with Automated Segmentation of Hippocampal Subfields (ASHS). Separate linear regression models examined whether CRF was associated with hippocampal subfield volumes and whether those assocations were moderated by age or sex. Mediation models examined whether hippocampal volumes statistically mediated the relationship between CRF and episodic memory performance. Covariates included age, sex, years of education, body mass index, estimated intracranial volume, and study site. Results Higher CRF was significantly associated with greater total left (B = 5.82, p = 0.039) and total right (B = 7.64, p = 0.006) hippocampal volume, as well as greater left CA2 (B = 0.14, p = 0.022) and dentate gyrus (DG; B = 2.34, p = 0.031) volume, and greater right CA1 (B = 3.99, p = 0.011), CA2 (B = 0.15, p = 0.002), and subiculum (B = 1.56, p = 0.004) volume. Sex significantly moderated left DG volume (B = -4.26, p = 0.017), such that the association was positive and significant only for males. Total left hippocampal volume [indirect effect = 0.002, 95% CI (0.0002, 0.00), p = 0.027] and right subiculum volume [indirect effect = 0.002, 95% CI (0.0007, 0.01), p = 0.006] statistically mediated the relationship between CRF and episodic memory performance. Discussion While higher CRF was significantly associated with greater total hippocampal volume, CRF was not associated with all underlying subfield volumes. Our results further demonstrate the relevance of the associations between CRF and hippocampal volume for episodic memory performance. Finally, our results suggest that the regionally-specific effects of aging and Alzheimer's disease on hippocampal subfields could be mitigated by maintaining higher CRF in older adulthood.
Collapse
Affiliation(s)
- Hayley S. Ripperger
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca G. Reed
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chaeryon Kang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alina Lesnovskaya
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sarah L. Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Haiqing Huang
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Lu Wan
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Bradley P. Sutton
- The Grainger College of Engineering, Bioengineering Department, University of Illinois, Champaign, IL, United States
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Lauren Oberlin
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, United States
| | - Audrey M. Collins
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas, KS, United States
| | - Arthur F. Kramer
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Edward McAuley
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Department of Health and Kinesiology, University of Illinois, Urbana, IL, United States
| | - Charles H. Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - George A. Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Jakicic
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| |
Collapse
|
2
|
Chen D, Guo Y, Zhang M, Liu X, Zhang B, Kou X. Exercise alleviates cognitive decline of natural aging rats by upregulating Notch-mediated autophagy signaling. Brain Res 2024; 1850:149398. [PMID: 39667553 DOI: 10.1016/j.brainres.2024.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Notch signaling, a classical signaling pathway of neurogenesis, is downregulated during the aging and age-related neurodegenerative diseases. Exercise has been proposed as an effective lifestyle intervention for delaying cognitive decline. However, it remains unclear whether exercise intervention could alleviate cognitive decline by modulating neurogenesis in naturally aging rats. In this study, 21-month-old natural aging rats were used to study brain aging. The natural aging rats underwent different forms of exercise training (aerobic exercise or strength training or comprehensive exercise with aerobic exercise and strength training) for 12 consecutive weeks. The cognitive function of natural aging rats was determined by Morris Water Maze. Notch signaling, autophagy-related proteins and hippocampal neurogenesis were examined by immunofluorescence, qRT-PCR and Western blot. Results showed that natural aging rats exhibited cognitive decline, accumulation of AD pathological proteins (APP and Aβ), and decreased neurogenesis (decreased DCX, Ki67 and GFAP), compared with the young control rats. Moreover, a significant decline in Notch signaling and autophagy was found in the hippocampus of natural aging rats. However, different forms of exercise upregulated Notch signaling and its downstream target genes, as well as autophagy-related proteins, including LC3, Beclin1, and p62. In summary, our data suggest that different forms of exercise can mitigate brain aging by upregulating Notch signaling and autophagy, thereby increasing hippocampal neurogenesis and improves spatial learning and memory abilities.
Collapse
Affiliation(s)
- Dandan Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan Guo
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Wuhan Wuchang Hospital, Wuhan 430063, China
| | - Meng Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xingran Liu
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education and Health, Guangxi Medical University, Nanning 530021, China
| | - Baowen Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xianjuan Kou
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China.
| |
Collapse
|
3
|
Cherednichenko A, Miró-Padilla A, Adrián-Ventura J, Monzonís-Carda I, Beltran-Valls MR, Moliner-Urdiales D, Ávila C. Physical activity and hippocampal volume in young adults. Brain Imaging Behav 2024; 18:1333-1342. [PMID: 39249711 PMCID: PMC11680645 DOI: 10.1007/s11682-024-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Evidence from previous studies suggests that physical activity (PA) may contribute to functional and structural changes in the hippocampus throughout the lifespan. However, there is limited evidence available regarding the young adult population. Additionally, the personality traits that may influence this association remain unclear. With a sample of 84 young adults (43 women; age 22.7 ± 2.8y; range 18-29), the main aim of the current study was to analyze the association between objective and self-reported measures of daily PA and hippocampus subfield gray matter volumes, and to examine the role of the personality trait of punishment sensitivity in this association. Our results showed that only moderate to vigorous levels of objectively measured PA were positively associated with the hippocampal CA2/CA3 volume. Moreover, punishment sensitivity correlated negatively with the objective measure of sedentarism and with self-reported measures of PA. However, regression analyses did not find any interaction between punishment sensitivity and PA in explaining individual differences in hippocampal volumes. Thus, our data suggest that intense PA may contribute to enhancing the hippocampal CA2/CA3 volume in young adults.
Collapse
Affiliation(s)
- Anastasia Cherednichenko
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| | - Anna Miró-Padilla
- Neonatal Research Group, Health Research Institute La Fe, Avenida Fernando Abril Martorell 106, Valencia, 46026, Spain.
| | - Jesús Adrián-Ventura
- Department of Psychology and Sociology, University of Zaragoza, Teruel, 44003, Spain
| | - Irene Monzonís-Carda
- LIFE Research Group, Department of Education, Universitat Jaume I, Castellon, 12071, Spain
| | | | - Diego Moliner-Urdiales
- LIFE Research Group, Department of Education, Universitat Jaume I, Castellon, 12071, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain.
| |
Collapse
|
4
|
Khalil MH. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment's Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci 2024; 14:1133. [PMID: 39595896 PMCID: PMC11592236 DOI: 10.3390/brainsci14111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Unlike enriched environments for rodents, human-built environments often hinder neuroplasticity through sedentary lifestyles, to which exercise can merely overcome its adverse effects. This paper introduces "environmental affordance for physical activity" to quantify the potential of spatial layout designs to stimulate activity and sustain neuroplasticity, mainly hippocampal neurogenesis. Methods: A novel framework links metabolic equivalents (METs) that can be afforded by the spatial layout of the built environment to its role in increasing the brain-derived neurotrophic factor (BDNF)-a biomarker that promotes and sustains adult hippocampal neurogenesis and synaptic plasticity. Equations are developed to assess the built environment's affordance for physical activity through BDNF changes measurable after brief exposure to the built environment for 20-35 min. Results: The developed equations are evidenced to be feasible to cause BDNF release through low- to moderate-intensity physical activity. This model provides a feasible assessment tool to test the built environment's effectiveness towards neurosustainability. Conclusions: By sustaining neurogenesis, the environmental affordance for physical activity holds promise for improving mental health and preventing cognitive decline.
Collapse
|
5
|
Macedonia M, Mathias B, Rodella C, Andrä C, Sedaghatgoftar N, Repetto C. Reduction in physical activity during Covid-19 lockdowns predicts individual differences in cognitive performance several months after the end of the safety measures. Acta Psychol (Amst) 2024; 250:104472. [PMID: 39306872 DOI: 10.1016/j.actpsy.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 11/12/2024] Open
Abstract
Prior studies suggest that the reductions in physical activity during Covid-19-related lockdowns impacted physical and mental health. Whether reductions in physical activity that occurred during lockdowns also relate to cognitive functions such as memory and attention is less explored. Here, we investigated whether changes in physical activity (PA) that occurred during and following Covid-19-related lockdowns could predict a variety of measures of cognitive performance in 318 young adults. Participants were assessed on their engagement in PA before, during, and after lockdowns. They also completed tests of cognitive control, working memory, and short-term memory following lockdown(s). As expected, engagement in PA decreased during lockdown and returned to near baseline levels thereafter. Decreases in PA during lockdown predicted individual differences in cognitive performance following lockdown. Greater reductions in PA during lockdown were associated with lower scores on the go/no-go task, a measure of cognitive control ability, and the n-back task, a measure of working memory performance. Larger post-lockdown increases in PA were associated with higher scores on the same tasks. Individual differences in pandemic-related stress and insomnia also predicted cognitive outcomes. These findings suggest that reductions of PA can predict cognitive performance, and underscore the importance of maintaining PA for cognitive health, especially in situations such as lockdowns.
Collapse
Affiliation(s)
- Manuela Macedonia
- Department of Information Engineering, Johannes Kepler University, Linz, Austria.
| | - Brian Mathias
- School of Psychology, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Rodella
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Christian Andrä
- Department of Movement and Sport Pedagogy, University of Applied Sciences for Sport and Management, Potsdam, Germany
| | | | - Claudia Repetto
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| |
Collapse
|
6
|
Li Q, Zhao Y, Wang Y, Yang X, He Q, Cai H, Wang Y, Wang H, Han Y. Comparative effectiveness of open and closed skill exercises on cognitive function in young adults: a fNIRS study. Sci Rep 2024; 14:21007. [PMID: 39251657 PMCID: PMC11385981 DOI: 10.1038/s41598-024-70614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
While it is widely acknowledged that exercise has positive effects on cognitive function, the specific impacts of different types of exercises, particularly open and closed skill exercises, on cognitive impairment continue to be a debated topic. In this study, we used fNIRS and cognitive psychology tasks to investigate the effects of different types of exercises on cognitive function and brain activity in young adults. We conducted an observational study to assess the cognitive function of participants who had engaged in these exercises for a long period. Additionally, we examined the effects of open skill exercise (badminton) and closed skill exercise (calisthenics) on localized blood flow in the prefrontal lobe of the brain using an experimental research method. Specifically, during the Stroop task, the badminton group exhibited significantly higher △HbO2 in channel 18, corresponding to the dorsolateral prefrontal cortex, compared to the calisthenics group (F = 4.485, P < 0.05, η2 = 0.074). In the 2-back task, the calisthenics group showed significantly higher △HbO2 in channel 17, corresponding to the frontopolar area, dorsolateral prefrontal cortex and inferior prefrontal gyrus, than the badminton group (F = 8.842, P < 0.01, η2 = 0.136). Our findings reveal that open skill exercises are more effective in enhancing cognitive inhibition, thereby increasing attention capacity, self-regulation, and flexibility in response to environmental changes. Conversely, closed skill exercises demonstrate greater efficacy in improving working memory within cognitive functions, showcasing an enhanced capacity for information processing and storage. These data indicate that while both open and closed skill exercises are beneficial for cognitive function, they exhibit significant distinctions in some aspects.
Collapse
Affiliation(s)
- Qiurong Li
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Yuanpeng Zhao
- Department of Physical Education, Guilin Medical University, Guilin, China
| | - Yifei Wang
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Xin Yang
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Qinghua He
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Hejia Cai
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Yongbo Wang
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Hongli Wang
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China
| | - Yanbai Han
- College of Physical Education and Health, Guangxi Normal University, No.1 Yanzhong Road, Yanshan District, Guilin, 541006, China.
| |
Collapse
|
7
|
Yu Q, Kong Z, Zou L, Herold F, Ludyga S, Zhang Z, Hou M, Kramer AF, Erickson KI, Taubert M, Hillman CH, Mullen SP, Gerber M, Müller NG, Kamijo K, Ishihara T, Schinke R, Cheval B, McMorris T, Wong KK, Shi Q, Nie J. Imaging body-mind crosstalk in young adults. Int J Clin Health Psychol 2024; 24:100498. [PMID: 39290876 PMCID: PMC11407095 DOI: 10.1016/j.ijchp.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective There is evidence that complex relationships exist between motor functions, brain structure, and cognitive functions, particularly in the aging population. However, whether such relationships observed in older adults could extend to other age groups (e.g., younger adults) remains to be elucidated. Thus, the current study addressed this gap in the literature by investigating potential associations between motor functions, brain structure, and cognitive functions in a large cohort of young adults. Methods In the current study, data from 910 participants (22-35 yr) were retrieved from the Human Connectome Project. Interactions between motor functions (i.e., cardiorespiratory fitness, gait speed, hand dexterity, and handgrip strength), brain structure (i.e., cortical thickness, surface area, and subcortical volumes), and cognitive functions were examined using linear mixed-effects models and mediation analyses. The performance of different machine-learning classifiers to discriminate young adults at three different levels (related to each motor function) was compared. Results Cardiorespiratory fitness and hand dexterity were positively associated with fluid and crystallized intelligence in young adults, whereas gait speed and handgrip strength were correlated with specific measures of fluid intelligence (e.g., inhibitory control, flexibility, sustained attention, and spatial orientation; false discovery rate [FDR] corrected, p < 0.05). The relationships between cardiorespiratory fitness and domains of cognitive function were mediated by surface area and cortical volume in regions involved in the default mode, sensorimotor, and limbic networks (FDR corrected, p < 0.05). Associations between handgrip strength and fluid intelligence were mediated by surface area and volume in regions involved in the salience and limbic networks (FDR corrected, p < 0.05). Four machine-learning classifiers with feature importance ranking were built to discriminate young adults with different levels of cardiorespiratory fitness (random forest), gait speed, hand dexterity (support vector machine with the radial kernel), and handgrip strength (artificial neural network). Conclusions In summary, similar to observations in older adults, the current study provides empirical evidence (i) that motor functions in young adults are positively related to specific measures of cognitive functions, and (ii) that such relationships are at least partially mediated by distinct brain structures. Furthermore, our analyses suggest that machine-learning classifier has a promising potential to be used as a classification tool and decision support for identifying populations with below-average motor and cognitive functions.
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, 999078, China
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Zhihao Zhang
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Meijun Hou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, FL, 32101, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Marco Taubert
- Department Sport Science, Institute III, Faculty for Humanities, Center for Behavioral and Brain Sciences, Otto von Guericke University, Magdeburg, 39106, Germany
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Sean P Mullen
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana, Champaign, 61820, USA
| | - Markus Gerber
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Notger G Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, 466-8666, Japan
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Robert Schinke
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva CH-12114, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva CH-12114, Switzerland
| | - Terry McMorris
- Department Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, West Sussex, Chichester, PO19 6PE, United Kingdom
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| |
Collapse
|
8
|
Loprinzi PD, Caplan JB. Lack of effects of acute exercise intensity on mnemonic discrimination. Q J Exp Psychol (Hove) 2024:17470218241238881. [PMID: 38424033 DOI: 10.1177/17470218241238881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The hippocampus is thought to support episodic memory by pattern separation, thereby supporting the ability to discriminate high similarity items. Past research evaluating whether acute exercise can improve mnemonic discrimination of high similarity items is mixed. The present experiment attempts to extend these prior mixed findings by evaluating the effects of multiple exercise intensities on hippocampal-dependent, mnemonic discrimination and memory performance. Fifty-seven young adults completed a three-condition (control, moderate-intensity, and vigorous-intensity), within-subjects crossover pretest-posttest comparison. We observed no effects of acute exercise on recognition memory or mnemonic discrimination. We discuss the implications of these null findings with the broader literature by discussing the complexity of this potential exercise-mnemonic discrimination relationship, including the unique role of exercise intensity, differences in the level of processing (e.g., conceptual vs. perceptual), and unique brain regions involved in mnemonic discrimination.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management, The University of Mississippi, Oxford, MS, USA
| | - Jeremy B Caplan
- Department of Psychology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Boecker H, Daamen M, Kunz L, Geiß M, Müller M, Neuss T, Henschel L, Stirnberg R, Upadhyay N, Scheef L, Martin JA, Stöcker T, Radbruch A, Attenberger U, Axmacher N, Maurer A. Hippocampal subfield plasticity is associated with improved spatial memory. Commun Biol 2024; 7:271. [PMID: 38443439 PMCID: PMC10914736 DOI: 10.1038/s42003-024-05949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Physical exercise studies are generally underrepresented in young adulthood. Seventeen subjects were randomized into an intervention group (24.2 ± 3.9 years; 3 trainings/week) and 10 subjects into a passive control group (23.7 ± 4.2 years), over a duration of 6 months. Every two months, performance diagnostics, computerized spatial memory tests, and 3 Tesla magnetic resonance imaging were conducted. Here we find that the intervention group, compared to controls, showed increased cardiorespiratory fitness, spatial memory performance and subregional hippocampal volumes over time. Time-by-condition interactions occurred in right cornu ammonis 4 body and (trend only) dentate gyrus, left hippocampal tail and left subiculum. Increases in spatial memory performance correlated with hippocampal body volume changes and, subregionally, with left subicular volume changes. In conclusion, findings support earlier reports of exercise-induced subregional hippocampal volume changes. Such exercise-related plasticity may not only be of interest for young adults with clinical disorders of hippocampal function, but also for sedentary normal cohorts.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany.
| | - Marcel Daamen
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Geiß
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Moritz Müller
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Neuss
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Leonie Henschel
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Rüdiger Stirnberg
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Lukas Scheef
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jason A Martin
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Lab, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, Venusberg-Campus 1/99, 53127, Bonn, Germany
| |
Collapse
|
10
|
Kim J, Keye SA, Pascual-Abreu M, Khan NA. Effects of an acute bout of cycling on different domains of cognitive function. PROGRESS IN BRAIN RESEARCH 2024; 283:21-66. [PMID: 38538189 DOI: 10.1016/bs.pbr.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The literature suggesting acute exercise benefits cognitive function has been largely confined to single cognitive domains and measures of reliant on measures of central tendencies. Furthermore, studies suggest cognitive intra-individual variability (IIV) to reflect cognitive efficiency and provide unique insights into cognitive function, but there is limited knowledge on the effects of acute exercise on IIV. To this end, this study examined the effects of acute exercise on three different cognitive domains, executive function, implicit learning, and hippocampal-dependent memory function using behavioral performance and event-related potentials (ERPs). Furthermore, this study also sought to explore the effects of an acute bout of exercise on IIV using the RIDE algorithm to separate signals into individuals components based on latency variability. Healthy adult participants (N=20; 26.3±4.8years) completed a randomized cross-over trial with seated rest or 30min of high intensity cycling. Before and after each condition, participants completed a cognitive battery consisting of the Eriksen Flanker task, implicit statistical learning task, and a spatial reconstruction task. While exercise did not affect Flanker or spatial reconstruction performance, there were exercise related decreases in accuracy (F=5.47; P=0.040), slowed reaction time (F=5.18; P=0.036), and decreased late parietal positivity (F=4.26; P=0.046). However, upon adjusting for performance and ERP variability, there were exercise related decreases in Flanker reaction time (F=24.00; P<0.001), and reduced N2 amplitudes (F=13.03; P=0.002), and slower P3 latencies (F=3.57; P=0.065) for incongruent trials. These findings suggest that acute exercise may impact cognitive IIV as an adaptation to maintain function following exercise.
Collapse
Affiliation(s)
- Jeongwoon Kim
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Shelby A Keye
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Melannie Pascual-Abreu
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
11
|
Rosario MA, Kern KL, Mumtaz S, Storer TW, Schon K. Cardiorespiratory fitness is associated with cortical thickness of medial temporal brain areas associated with spatial cognition in young but not older adults. Eur J Neurosci 2024; 59:82-100. [PMID: 38056827 PMCID: PMC10979765 DOI: 10.1111/ejn.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Cardiorespiratory fitness has a potent effect on neurocognitive health, especially regarding the hippocampal memory system. However, less is known about the impact of cardiorespiratory fitness on medial temporal lobe extrahippocampal neocortical regions. Specifically, it is unclear how cardiorespiratory fitness modulates these brain regions in young adulthood and if these regions are differentially related to cardiorespiratory fitness in young versus older adults. The primary goal of this study was to investigate if cardiorespiratory fitness predicted medial temporal lobe cortical thickness which, with the hippocampus, are critical for spatial learning and memory. Additionally, given the established role of these cortices in spatial navigation, we sought to determine if cardiorespiratory fitness and medial temporal lobe cortical thickness would predict greater subjective sense of direction in both young and older adults. Cross-sectional data from 56 young adults (20-35 years) and 44 older adults (55-85 years) were included. FreeSurfer 6.0 was used to automatically segment participants' 3T T1-weighted images. Using hierarchical multiple regression analyses, we confirmed significant associations between greater cardiorespiratory fitness and greater left entorhinal, left parahippocampal, and left perirhinal cortical thickness in young, but not older, adults. Left parahippocampal cortical thickness interacted with age group to differentially predict subjective sense of direction in young and older adults. Young adults displayed a positive, and older adults a negative, correlation between left parahippocampal cortical thickness and sense of direction. Our findings extend previous work on the association between cardiorespiratory fitness and hippocampal subfield structure in young adults to left medial temporal lobe neocortical regions.
Collapse
Affiliation(s)
- Michael A. Rosario
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Shiraz Mumtaz
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Graduate Program for Neuroscience, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Zhu Y, Song G. Molecular origin and biological effects of exercise mimetics. J Exerc Sci Fit 2024; 22:73-85. [PMID: 38187084 PMCID: PMC10770624 DOI: 10.1016/j.jesf.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
With the rapid development of sports science and molecular biology technology, academia refers to molecules or microorganisms that mimic or enhance the beneficial effects of exercise on the body, called "exercise mimetics." This review aims to clarify the concept and development history of exercise mimetics, and to define the concept of exercise mimetics by summarizing its characteristics and functions. Candidate molecules and drug targets for exercise mimetics are summarized, and the relationship between exercise mimetics and exercise is explained, as well as the targeting system and function of exercise mimetics. The main targeting systems for exercise mimetics are the exercise system, circulatory system, endocrine system, endocrine system, and nervous system, while the immune system is potential targeting systems. Finally, future research directions for exercise mimetics are discussed.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| | - Gang Song
- Key Lab of Physical Fitness Evaluation and Motor Function Monitoring, College of Physical Education, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Morozumi T, Preziosa P, Meani A, Albergoni M, Margoni M, Pagani E, Filippi M, Rocca MA. Influence of cardiorespiratory fitness and MRI measures of neuroinflammation on hippocampal volume in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 95:29-36. [PMID: 37468307 DOI: 10.1136/jnnp-2023-331482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The hippocampus is a clinically relevant region where neurogenesis and neuroplasticity occur throughout the whole lifespan. Neuroinflammation and cardiorespiratory fitness (CRF) may influence hippocampal integrity by modulating the processes promoting neurogenesis and neuroprotection that contribute to the preservation of functions. This study aimed to investigate the effects of neuroinflammation and CRF on hippocampal volume in multiple sclerosis (MS) patients with relapsing-remitting (RR) and progressive (P) clinical phenotypes. The influence of neuroinflammation and CRF on brain, grey matter (GM) and thalamic volumes was also assessed to determine whether the effects were specific for the hippocampus. METHOD Brain 3T structural MRI scans and maximum oxygen consumption (VO2max), a proxy of CRF, were acquired from 81 MS patients (27 RR and 54 P) and 45 age-matched and sex-matched healthy controls. T2-hyperintense white matter lesion volume (T2-LV) and choroid plexuses volume (CPV) were quantified as neuroinflammatory measures. Associations of demographic, clinical, neuroinflammatory and CRF measures with normalised brain, GM, hippocampal and thalamic volumes in relapsing-remitting MS (RRMS) and progressive MS patients were assessed using Shapley and best subset selection regression. RESULTS For most volumetric measures, the largest portions of variance were explained by T2-LV (variable importance (VI)=9.4-39.4) and CPV (VI=4.5-26.2). VO2max explained the largest portion of variance of normalised hippocampal volume only in RRMS patients (VI=16.9) and was retained as relevant predictor (standardised β=0.374, p=0.023) with T2-LV (standardised β=-0.330, p=0.016). CONCLUSIONS A higher CRF may play a specific neuroprotective role on MS patients' hippocampal integrity, but only in the RR phase of the disease.
Collapse
Affiliation(s)
- Tetsu Morozumi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Alessandro Meani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Matteo Albergoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurorehabilitation Unit, IRCCS Ospedale San Raffaele, Milano, Italy
- Neurophysiology Service, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
- Neurology Unit, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
14
|
Augusto-Oliveira M, Arrifano GP, Leal-Nazaré CG, Santos-Sacramento L, Lopes-Araújo A, Royes LFF, Crespo-Lopez ME. Exercise Reshapes the Brain: Molecular, Cellular, and Structural Changes Associated with Cognitive Improvements. Mol Neurobiol 2023; 60:6950-6974. [PMID: 37518829 DOI: 10.1007/s12035-023-03492-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Physical exercise is well known as a non-pharmacological and holistic therapy believed to prevent and mitigate numerous neurological conditions and alleviate ageing-related cognitive decline. To do so, exercise affects the central nervous system (CNS) at different levels. It changes brain physiology and structure, promoting cognitive improvements, which ultimately improves quality of life. Most of these effects are mediated by neurotrophins release, enhanced adult hippocampal neurogenesis, attenuation of neuroinflammation, modulation of cerebral blood flow, and structural reorganisation, besides to promote social interaction with beneficial cognitive outcomes. In this review, we discuss, based on experimental and human research, how exercise impacts the brain structure and function and how these changes contribute to cognitive improvements. Understanding the mechanisms by which exercise affects the brain is essential to understand the brain plasticity following exercise, guiding therapeutic approaches to improve the quality of life, especially in obesity, ageing, neurodegenerative disorders, and following traumatic brain injury.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Caio G Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Letícia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil
| | - Luiz Fernando Freire Royes
- Laboratório de Bioquímica Do Exercício, Centro de Educacão Física E Desportos, Universidade Federal de Santa Maria, Santa Maria, RGS, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, PA, Brazil.
| |
Collapse
|
15
|
Miró-Padilla A, Adrián-Ventura J, Cherednichenko A, Monzonís-Carda I, Beltran-Valls MR, MolinerUrdiales D, Ávila C. Relevance of the anterior cingulate cortex volume and personality in motivated physical activity behaviors. Commun Biol 2023; 6:1106. [PMID: 37907751 PMCID: PMC10618534 DOI: 10.1038/s42003-023-05423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
Some recent theories about the origins and maintenance of regular physical activity focus on the rewards of the properties of practicing this activity. Animal and human studies have demonstrated that mesolimbic dopamine plays a crucial role in the involvement in voluntary physical activity. Here, we test this possible role in a sample of 66 right-handed healthy young adults by studying the influence of personality and the volume of reward-related brain areas on individual differences in voluntary physical activity, objectively measured by accelerometer and subjectively self-reported by questionnaire. Our results show that a smaller volume of the right anterior cingulate cortex and lower scores on reward sensitivity contributed to explaining low levels of daily physical activity. Moreover, the volume of the right anterior cingulate cortex correlates positively with self-reported total physical activity. Results are discussed by highlighting the need to use objective measures of daily physical activity, as well as the important role of the anterior cingulate cortex and personality in promoting effortful and invigorating actions to obtain rewards.
Collapse
Affiliation(s)
- Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Anastasia Cherednichenko
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| | - Irene Monzonís-Carda
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | | | - Diego MolinerUrdiales
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
16
|
Pieczyńska A, Zasadzka E, Pilarska A, Procyk D, Adamska K, Hojan K. Rehabilitation Exercises Supported by Monitor-Augmented Reality for Patients with High-Grade Glioma Undergoing Radiotherapy: Results of a Randomized Clinical Trial. J Clin Med 2023; 12:6838. [PMID: 37959303 PMCID: PMC10648373 DOI: 10.3390/jcm12216838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Exercise has been shown to improve quality of life (QoL) and even treatment outcomes in cancer patients. However, the evidence to support the benefits of exercise in patients with high-grade glioma (HGG) is limited. Therefore, we performed a randomized clinical trial (RCT) to examine the effect of augmented-reality-based rehabilitation exercises on physical and functional fitness, cognitive function, fatigue, mood, QoL, selected blood parameters, brain derived neurotrophic factor (BDNF), and S100 protein in patients with HGG. METHODS Adult patients with HGG scheduled to undergo radiotherapy after tumor resection were randomized to participate in an exercise program (experimental group, n = 25) or to receive usual care (controls, n = 22). Physical and mental fitness was measured at baseline, after the completion of radiotherapy, and at 3 months. The following tests were administered: Handgrip Strength Test; 6-Minute Walk Test; Time Up and Go test; Functional Independent Measure scale; Addenbrooke's Cognitive Examination III (ACE III); Hospital Anxiety and Depression Scale; Functional Cancer Therapy Assessment-Brain; and Functional Assessment of Chronic Illness Therapy-Fatigue. We also measured blood parameters, BDNF, and S100 protein levels. RESULTS No significant changes were observed in the exercise group. However, the controls experienced a significant decrease in HGS and in the ACE III attention domain. No significant changes were observed in QoL, fatigue, BDNF, or S100 levels in either group. CONCLUSIONS Augmented-reality-based exercise during radiation therapy may prevent loss of muscle strength and attention in patients with HGG.
Collapse
Affiliation(s)
- Anna Pieczyńska
- Department of Occupational Therapy, Poznan University of Medical Sciences, 61-781 Poznan, Poland; (A.P.); (K.H.)
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Ewa Zasadzka
- Department of Occupational Therapy, Poznan University of Medical Sciences, 61-781 Poznan, Poland; (A.P.); (K.H.)
| | - Agnieszka Pilarska
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Danuta Procyk
- Central Laboratory, Greater Poland Cancer Centre, 15, 61-866 Poznan, Poland;
| | - Krystyna Adamska
- Chair and Department of Electroradiology, Poznan University of Medical Science, 61-781 Poznan, Poland;
- 3rd Radiotherapy Department, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, 61-781 Poznan, Poland; (A.P.); (K.H.)
- Department of Rehabilitation, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| |
Collapse
|
17
|
AO YAWEN, LI YUSHUANG, ZHAO YILIN, ZHANG LIANG, YANG RENJIE, ZHA YUNFEI. Hippocampal Subfield Volumes in Amateur Marathon Runners. Med Sci Sports Exerc 2023; 55:1208-1217. [PMID: 36878015 PMCID: PMC10241426 DOI: 10.1249/mss.0000000000003144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Numerous studies have implicated the involvement of structure and function of the hippocampus in physical exercise, and the larger hippocampal volume is one of the relevant benefits reported in exercise. It remains to be determined how the different subfields of hippocampus respond to physical exercise. METHODS A 3D T1-weighted magnetic resonance imaging was acquired in 73 amateur marathon runners (AMR) and 52 healthy controls (HC) matched with age, sex, and education. The Montreal Cognitive Assessment, the Pittsburgh Sleep Quality Index (PSQI), and the Fatigue Severity Scale were assessed in all participants. We obtained hippocampal subfield volumes using FreeSurfer 6.0. We compared the volumes of the hippocampal subfield between the two groups and ascertained correlation between the significant subfield metrics and the significant behavioral measure in AMR group. RESULTS The AMR had significantly better sleep than HC, manifested as with lower score of PSQI. Sleep duration in AMR and HC was not significantly different from each other. In the AMR group, the left and right hippocampus, cornu ammonis 1 (CA1), CA4, granule cell and molecular layers of the dentate gyrus, molecular layer, left CA2-3, and left hippocampal-amygdaloid transition area volumes were significantly larger compared with those in the HC group. In AMR group, the correlations between the PSQI and the hippocampal subfield volumes were not significant. No correlations were found between hippocampal subfield volumes and sleep duration in AMR group. CONCLUSIONS We reported larger volumes of specific hippocampal subfields in AMR, which may provide a hippocampal volumetric reserve that protects against age-related hippocampal deterioration. These findings should be further investigated in longitudinal studies.
Collapse
|
18
|
Li K, Dong G, Gao Q. Martial arts enhances working memory and attention in school-aged children: A functional near-infrared spectroscopy study. J Exp Child Psychol 2023; 235:105725. [PMID: 37336063 DOI: 10.1016/j.jecp.2023.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
Interventions can improve working memory and attention in school-aged children, but little is known about how regional changes in brain activity promoted by exercise mediate this cognitive improvement. This study focused on the improved neurocognitive functions and intrinsic regional variation within the brain by comparing school-aged children in a martial arts group with those in free-play and rest groups. With a pretest-posttest design, the d2 attention test and N-back tasks were carried out. Functional near-infrared spectroscopy was performed during the pre- and post-intervention N-back tasks and rest. Following the intervention, the d2 attention in all groups remarkably increased, and the attention level of the martial arts group was substantially higher than those of the other two groups. Free-play and martial arts shortened the 1- and 2-back task reaction time and increased the 2-back accuracy rate (AR), and the martial arts group exhibited a significantly higher AR than the other two groups. In addition, the martial arts group showed higher activations in the right orbitofrontal cortex and right Broca's area (r-BA) regions post-intervention 1-back tasks, whereas a strong correlation was observed between 1-back performance and the related brain region. However, under the 2-back task, although the cognitive control was improved, the martial arts group decreased activation in the left frontopolar area and free play decreased the activation in the r-BA and right somatosensory cortex. Together, our findings showed that martial arts could be more conducive to cognitive improvement than physical exercise that requires no cognitive skills and that performing interventions in the earlier stages of childhood may improve the regulation of neural networks involved in cognitive control.
Collapse
Affiliation(s)
- Kefeng Li
- Medical School, Quzhou College of Technology, Quzhou, Zhejiang 324000, China
| | - Guijun Dong
- Department of Sports, Quzhou University, Quzhou, Zhejiang 324000, China.
| | - Quanfa Gao
- Department of Graduate School of Education, Shandong Sport University, Jinan, Shandong 250102, China; Mengyin No. 6 Middle School, Linyi, Shandong 276200, China
| |
Collapse
|
19
|
Khoury R, Nagy C. Running from stress: a perspective on the potential benefits of exercise-induced small extracellular vesicles for individuals with major depressive disorder. Front Mol Biosci 2023; 10:1154872. [PMID: 37398548 PMCID: PMC10309045 DOI: 10.3389/fmolb.2023.1154872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Aerobic exercise promotes beneficial effects in the brain including increased synaptic plasticity and neurogenesis and regulates neuroinflammation and stress response via the hypothalamic-pituitary-adrenal axis. Exercise can have therapeutic effects for numerous brain-related pathologies, including major depressive disorder (MDD). Beneficial effects of aerobic exercise are thought to be mediated through the release of "exerkines" including metabolites, proteins, nucleic acids, and hormones that communicate between the brain and periphery. While the specific mechanisms underlying the positive effects of aerobic exercise on MDD have not been fully elucidated, the evidence suggests that exercise may exert a direct or indirect influence on the brain via small extracellular vesicles which have been shown to transport signaling molecules including "exerkines" between cells and across the blood-brain barrier (BBB). sEVs are released by most cell types, found in numerous biofluids, and capable of crossing the BBB. sEVs have been associated with numerous brain-related functions including neuronal stress response, cell-cell communication, as well as those affected by exercise like synaptic plasticity and neurogenesis. In addition to known exerkines, they are loaded with other modulatory cargo such as microRNA (miRNA), an epigenetic regulator that regulates gene expression levels. How exercise-induced sEVs mediate exercise dependent improvements in MDD is unknown. Here, we perform a thorough survey of the current literature to elucidate the potential role of sEVs in the context of neurobiological changes seen with exercise and depression by summarizing studies on exercise and MDD, exercise and sEVs, and finally, sEVs as they relate to MDD. Moreover, we describe the links between peripheral sEV levels and their potential for infiltration into the brain. While literature suggests that aerobic exercise is protective against the development of mood disorders, there remains a scarcity of data on the therapeutic effects of exercise. Recent studies have shown that aerobic exercise does not appear to influence sEV size, but rather influence their concentration and cargo. These molecules have been independently implicated in numerous neuropsychiatric disorders. Taken together, these studies suggest that concentration of sEVs are increased post exercise, and they may contain specifically packaged protective cargo representing a novel therapeutic for MDD.
Collapse
Affiliation(s)
- Reine Khoury
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Kuhne LA, Ksiezarczyk AM, Braumann KM, Reer R, Jacobs T, Röder B, Hötting K. Cardiovascular exercise, learning, memory, and cytokines: Results of a ten-week randomized controlled training study in young adults. Biol Psychol 2023; 176:108466. [PMID: 36455805 DOI: 10.1016/j.biopsycho.2022.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Physical exercise has been shown to enhance memory and to increase neuroplasticity. Rodent studies have revealed modulating effects of signaling molecules of the immune system (cytokines) on hippocampal plasticity and memory. Acute and chronic exercise have been both found to alter the number and function of immune cells. Thus, physical exercise might enhance neuroplasticity via an altered immune response. In this study we tested whether multiple repetitions of a vocabulary learning task combined with a bout of cardiovascular exercise enhances learning in humans and whether memory improvements correlated with acute exercise-induced cytokine changes. Data of 52 participants (20-40 years of age) who were randomly assigned to a cardiovascular exercise group (cycling) or a control group (stretching) were analyzed. During the 10-week treatment, participants completed 18 learning-exercise sessions. In each of these sessions, the vocabulary learning task was always performed immediately before exercising started. To assess acute exercise-induced changes in cytokine levels, blood sampling was performed at rest and immediately after exercising in two of the sessions. Learning success measured as increase in learning across all sessions and vocabulary retention four weeks after the treatment had ended did not differ between groups. The cycling group showed a relatively larger acute increase in IL-6, IL-1ra, IL-4, and IFN-γ compared to the stretching group. Exploratory analyses revealed significant positive associations between within-session learning and acute exercise-induced increases in IL-6 and IL-1ra in the cycling group only. These results suggest that the immune system may act as a mediator of exercise-induced cognitive benefits.
Collapse
Affiliation(s)
- Laura A Kuhne
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | | | | | - Rüdiger Reer
- Sports and Exercise Medicine, University of Hamburg, Turmweg 2, 20148 Hamburg, Germany.
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| | - Kirsten Hötting
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146 Hamburg, Germany.
| |
Collapse
|
21
|
Kern KL, McMains SA, Storer TW, Moffat SD, Schon K. Cardiorespiratory fitness is associated with fMRI signal in right cerebellum lobule VIIa Crus I and II during spatial navigation in older adult women. Front Aging Neurosci 2022; 14:979741. [PMID: 36506472 PMCID: PMC9727394 DOI: 10.3389/fnagi.2022.979741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Spatial navigation is a cognitive skill critical for accomplishing daily goal-directed behavior in a complex environment; however, older adults exhibit marked decline in navigation performance with age. Neuroprotective interventions that enhance the functional integrity of navigation-linked brain regions, such as those in the medial temporal lobe memory system, may preserve spatial navigation performance in older adults. Importantly, a well-established body of literature suggests that cardiorespiratory fitness has measurable effects on neurobiological integrity in the medial temporal lobes, as well as in other brain areas implicated in spatial navigation, such as the precuneus and cerebellum. However, whether cardiorespiratory fitness modulates brain activity in these regions during navigation in older adults remains unknown. Thus, the primary objective of the current study was to examine cardiorespiratory fitness as a modulator of fMRI activity in navigation-linked brain regions in cognitively healthy older adults. To accomplish this objective, cognitively intact participants (N = 22, aged 60-80 years) underwent cardiorespiratory fitness testing to estimate maximal oxygen uptake (V · O2max) and underwent whole-brain high-resolution fMRI while performing a virtual reality navigation task. Our older adult sample demonstrated significant fMRI signal in the right and left retrosplenial cortex, right precuneus, right and left inferior parietal cortex, right and left cerebellum lobule VIIa Crus I and II, right fusiform gyrus, right parahippocampal cortex, right lingual gyrus, and right hippocampus during encoding of a virtual environment. Most importantly, in women but not men (N = 16), cardiorespiratory fitness was positively associated with fMRI activity in the right cerebellum lobule VIIa Crus I and II, but not other navigation-linked brain areas. These findings suggest that the influence of cardiorespiratory fitness on brain function extends beyond the hippocampus, as observed in other work, to the cerebellum lobule VIIa Crus I and II, a component of the cerebellum that has recently been linked to cognition and more specifically, spatial processing.
Collapse
Affiliation(s)
- Kathryn L. Kern
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Center for Memory and Brain, Boston University, Boston, MA, United States
| | | | - Thomas W. Storer
- Men’s Health, Aging, and Metabolism Unit, Brigham and Women’s Hospital, Boston, MA, United States
| | - Scott D. Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Karin Schon
- Department of Anatomy & Neurobiology, Boston University Aram V. Chobanian & Edward Avedisian School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Center for Memory and Brain, Boston University, Boston, MA, United States
- Cognitive Neuroimaging Center, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
22
|
Qi W, Marx J, Zingman M, Li Y, Petkova E, Blessing E, Ardekani B, Sakalli Kani A, Cather C, Freudenreich O, Holt D, Zhao J, Wang J, Goff DC. Hippocampal Subfield Volumes Predict Disengagement from Maintenance Treatment in First Episode Schizophrenia. Schizophr Bull 2022; 49:34-42. [PMID: 36370124 PMCID: PMC9810017 DOI: 10.1093/schbul/sbac043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Disengagement from treatment is common in first episode schizophrenia (FES) and is associated with poor outcomes. Our aim was to determine whether hippocampal subfield volumes predict disengagement during maintenance treatment of FES. METHODS FES patients were recruited from sites in Boston, New York, Shanghai, and Changsha. After stabilization on antipsychotic medication, participants were randomized to add-on citalopram or placebo and followed for 12 months. Demographic, clinical and cognitive factors at baseline were compared between completers and disengagers in addition to volumes of hippocampal subfields. RESULTS Baseline data were available for 95 randomized participants. Disengagers (n = 38, 40%) differed from completers (n = 57, 60%) by race (more likely Black; less likely Asian) and in more alcohol use, parkinsonism, negative symptoms and more impairment in visual learning and working memory. Bilateral dentate gyrus (DG), CA1, CA2/3 and whole hippocampal volumes were significantly smaller in disengagers compared to completers. When all the eight volumes were entered into the model simultaneously, only left DG volume significantly predicted disengagement status and remained significant after adjusting for age, sex, race, intracranial volume, antipsychotic dose, duration of untreated psychosis, citalopram status, alcohol status, and smoking status (P < .01). Left DG volume predicted disengagement with 57% sensitivity and 83% specificity. CONCLUSIONS Smaller left DG was significantly associated with disengagement status over 12 months of maintenance treatment in patients with FES participating in a randomized clinical trial. If replicated, these findings may provide a biomarker to identify patients at risk for disengagement and a potential target for interventions.
Collapse
Affiliation(s)
| | | | - Michael Zingman
- Department of Psychiatry, NYU Langone Health, 1 Park Avenue, New York, NY, USA
| | - Yi Li
- Department of Population Health, Division of Biostatistics, NYU School of Medicine, 180 Madison Avenue, New York, NY, USA
| | - Eva Petkova
- Department of Population Health, Division of Biostatistics, NYU School of Medicine, 180 Madison Avenue, New York, NY, USA,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA
| | - Esther Blessing
- Department of Psychiatry, NYU Langone Health, 1 Park Avenue, New York, NY, USA
| | - Babak Ardekani
- Department of Psychiatry, NYU Langone Health, 1 Park Avenue, New York, NY, USA,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA
| | - Ayse Sakalli Kani
- Department of Psychiatry, NYU Langone Health, 1 Park Avenue, New York, NY, USA,4New York State Psychiatric Institute, Columbia University Medical Center, 601 West 168th St., New York, NY, USA
| | - Corinne Cather
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Oliver Freudenreich
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Daphne Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Donald C Goff
- To whom correspondence should be addressed; Psychiatry Department, NYU Langone Health, One Park Ave, New York, NY 10016, USA; tel: 646-754-4843, e-mail:
| |
Collapse
|
23
|
Cassim TZ, McGregor KM, Nocera JR, García VV, Sinon CG, Kreuzer M, García PS. Effects of exercise on the sleep microarchitecture in the aging brain: A study on a sedentary sample. Front Syst Neurosci 2022; 16:855107. [PMID: 36387307 PMCID: PMC9644157 DOI: 10.3389/fnsys.2022.855107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/26/2022] [Indexed: 03/23/2024] Open
Abstract
Having a healthy sleep pattern plays a vital role in one's overall health. Sleep in the elderly is characterized by decreased slow-wave sleep and an increase of REM sleep. Furthermore, quantitative electroencephalographic (qEEG) studies have shown an age-related attenuation of total EEG power in sleep. However, exercise has been shown to improve sleep across all age groups. In this study, we used the Sleep Profiler™ EEG Sleep Monitor to observe EEG changes occurring during sleep following an aerobic exercise intervention. This study was done on older adults (N = 18, with only five subjects containing both pre- and post-data of sufficient quality for analysis) with an age range 60-85 years. The aerobics regimen was performed three times weekly for 12-weeks commencing with 20-min sessions. The time of each session progressed by 1-2 min/session as needed to a maximum time of 45 min per session. The macro-architecture (sleep stages) and microarchitecture (EEG) results were analyzed using MATLAB. For the microarchitecture, our results showed more deep sleep following the aerobic exercise regimen. Furthermore, for the microarchitecture, out results shows an increase in total EEG power post-exercise in both light (N1 and L1) and deep sleep (N2 and N3). These preliminary changes in sleep the microarchitecture suggest that non-pharmacologic methods might mitigate age-related EEG changes with potential implications for neurocognitive health.
Collapse
Affiliation(s)
- Tuan Z. Cassim
- Department of Anesthesiology, Neuroanesthesia Division, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Keith M. McGregor
- Department of Clinical and Diagnostic Sciences, School of Health Profession, University of Alabama at Birmingham, Birmingham, AL, United States
- Birmingham Veterans Affairs Geriatric Research, Education, and Clinical Center (GRECC), Birmingham, AL, United States
| | - Joe R. Nocera
- VA Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Violet V. García
- Stamps President’s Scholars Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christopher G. Sinon
- Yerkes National Primate Research Center, Neuropharmacology and Neurologic Diseases, Emory University, Atlanta, GA, United States
| | - Matthias Kreuzer
- Department of Anesthesiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul S. García
- Department of Anesthesiology, Neuroanesthesia Division, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
24
|
Fakhoury M, Eid F, El Ahmad P, Khoury R, Mezher A, El Masri D, Haddad Z, Zoghbi Y, Ghayad LM, Sleiman SF, Stephan JS. Exercise and Dietary Factors Mediate Neural Plasticity Through Modulation of BDNF Signaling. Brain Plast 2022; 8:121-128. [DOI: 10.3233/bpl-220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
The term “neural plasticity” was first used to describe non-pathological changes in neuronal structure. Today, it is generally accepted that the brain is a dynamic system whose morphology and function is influenced by a variety of factors including stress, diet, and exercise. Neural plasticity involves learning and memory, the synthesis of new neurons, the repair of damaged connections, and several other compensatory mechanisms. It is altered in neurodegenerative disorders and following damage to the central or peripheral nervous system. Understanding the mechanisms that regulate neural plasticity in both healthy and diseased states is of significant importance to promote cognition and develop rehabilitation techniques for functional recovery after injury. In this minireview, we will discuss the mechanisms by which environmental factors promote neural plasticity with a focus on exercise- and diet-induced factors. We will highlight the known circulatory factors that are released in response to exercise and discuss how all factors activate pathways that converge in part on the activation of BDNF signaling. We propose to harness the therapeutic potential of exercise by using BDNF as a biomarker to identify novel endogenous factors that promote neural plasticity. We also discuss the importance of combining exercise factors with dietary factors to develop a lifestyle pill for patients afflicted by CNS disorders.
Collapse
Affiliation(s)
- Marc Fakhoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Fady Eid
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Perla El Ahmad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Reine Khoury
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Amar Mezher
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Diala El Masri
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Zena Haddad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Yara Zoghbi
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Litsa Maria Ghayad
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | - Sama F. Sleiman
- Biological Sciences Program, Lebanese American University, Byblos, Lebanon
| | | |
Collapse
|
25
|
Fitness is positively associated with hippocampal formation subfield volumes in schizophrenia: a multiparametric magnetic resonance imaging study. Transl Psychiatry 2022; 12:388. [PMID: 36114184 PMCID: PMC9481539 DOI: 10.1038/s41398-022-02155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Hippocampal formation (HF) volume loss is a well-established finding in schizophrenia, with select subfields, such as the cornu ammonis and dentate gyrus, being particularly vulnerable. These morphologic alterations are related to functional abnormalities and cognitive deficits, which are at the core of the insufficient recovery frequently seen in this illness. To counteract HF volume decline, exercise to improve aerobic fitness is considered as a promising intervention. However, the effects of aerobic fitness levels on HF subfields are not yet established in individuals with schizophrenia. Therefore, our study investigated potential associations between aerobic fitness and HF subfield structure, functional connectivity, and related cognitive impact in a multiparametric research design. In this cross-sectional study, 53 participants diagnosed with schizophrenia (33 men, 20 women; mean [SD] age, 37.4 [11.8] years) underwent brain structural and functional magnetic resonance imaging and assessments of aerobic fitness and verbal memory. Multivariate multiple linear regressions were performed to determine whether aerobic fitness was associated with HF subfield volumes and functional connections. In addition, we explored whether identified associations mediated verbal memory functioning. Significant positive associations between aerobic fitness levels and volumes were demonstrated for most HF subfields, with the strongest associations for the cornu ammonis, dentate gyrus, and subiculum. No significant associations were found for HF functional connectivity or mediation effects on verbal memory. Aerobic fitness may mitigate HF volume loss, especially in the subfields most affected in schizophrenia. This finding should be further investigated in longitudinal studies.Clinical Trials Registration: The study on which the manuscript is based was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112 ) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
|
26
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
27
|
Seoane S, Ezama L, Janssen N. Daily-Life Physical Activity of Healthy Young Adults Associates With Function and Structure of the Hippocampus. Front Hum Neurosci 2022; 16:790359. [PMID: 35360290 PMCID: PMC8963905 DOI: 10.3389/fnhum.2022.790359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Previous research on Physical Activity (PA) has been highly valuable in elucidating how PA affects the structure and function of the hippocampus in elderly populations that take part in structured interventions. However, how PA affects the hippocampus in younger populations that perform PA during daily-life activities remains poorly understood. In addition, this research has not examined the impact of PA on the internal structure of the hippocampus. Here, we performed a cross-sectional exploration of the way structural and functional aspects of the hippocampus are associated with habitual PA performed during work, leisure time, and sports in the daily lives of healthy young adults (n = 30; 14 female; mean age = 23.9 y.o.; SD = 7.8 y.o.). We assessed PA in these three different contexts through a validated questionnaire. The results show that PA performed during work time correlated with higher subicular volumes. In addition, we found that PA changed functional connectivity (FC) between a location in the middle/posterior hippocampus and regions of the default mode network, and between a location in the anterior hippocampus and regions of the somatomotor network. No statistical effects of PA performed during leisure time and sports were found. The results generalize the impact of PA on younger populations and show how PA performed in daily-life situations correlates with the precise internal structure and functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Sara Seoane
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ezama
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Niels Janssen
- Facultad de Psicología, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
28
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
29
|
Kaiser A, Reneman L, Solleveld MM, Coolen BF, Scherder EJA, Knutsson L, Bjørnerud A, van Osch MJP, Wijnen JP, Lucassen PJ, Schrantee A. A Randomized Controlled Trial on the Effects of a 12-Week High- vs. Low-Intensity Exercise Intervention on Hippocampal Structure and Function in Healthy, Young Adults. Front Psychiatry 2022; 12:780095. [PMID: 35126199 PMCID: PMC8814653 DOI: 10.3389/fpsyt.2021.780095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Physical exercise affects hippocampal structure and function, but the underlying neural mechanisms and the effects of exercise intensity remain incompletely understood. Therefore, we undertook a comprehensive, multi-modal 3T and 7T MRI randomized controlled trial (Netherlands Trial Register - NL5847) in which we randomized 52 young, non-athletic volunteers to a 12-week low- or high-intensity exercise program. Using state-of-the-art methods, we investigated changes in hippocampal volume, as well as changes in vasculature, neuro-metabolites, and peripheral growth factors as potential underpinnings. Cardiorespiratory fitness improved over time (p < 0.001), but no interaction with exercise intensity was found (p = 0.48). Accordingly, we did not observe significant interactions between exercise condition and time on MRI measures (all p > 0.06). However, we found a significant decrease in right hippocampal volume (p < 0.01), an increase in left hippocampal glutathione (p < 0.01), and a decrease of left hippocampal cerebral blood volume (p = 0.01) over time, regardless of exercise condition. Additional exploratory analyses showed that changes in brain-derived neurotrophic factor (p = 0.01), insulin-like growth-factor (p = 0.03), and dorsal anterior cingulate cortex N-acetyl-aspartate levels (p = 0.01) were positively associated with cardiorespiratory fitness changes. Furthermore, a trend toward a positive association of fitness and gray-matter cerebral blood flow (p = 0.06) was found. Our results do not provide evidence for differential effects between high-intensity (aerobic) and low-intensity (toning) exercise on hippocampal structure and function in young adults. However, we show small but significant effects of exercise on hippocampal volume, neurometabolism and vasculature across exercise conditions. Moreover, our exploratory results suggest that exercise might not specifically only benefit hippocampal structure and function, but rather has a more widespread effect. These findings suggest that, in agreement with previous MRI studies demonstrating moderate to strong effects in elderly and diseased populations, but none to only mild effects in young healthy cohorts, the benefits of exercise on the studied brain measures may be age-dependent and restorative rather than stimulatory. Our study highlights the importance of a multi-modal, whole-brain approach to assess macroscopic and microscopic changes underlying exercise-induced brain changes, to better understand the role of exercise as a potential non-pharmacological intervention.
Collapse
Affiliation(s)
- Antonia Kaiser
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Liesbeth Reneman
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michelle M. Solleveld
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Erik J. A. Scherder
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Atle Bjørnerud
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Jannie P. Wijnen
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Scarapicchia V, MacDonald S, Gawryluk JR. The relationship between cardiovascular risk and lifestyle activities on hippocampal volumes in normative aging. AGING BRAIN 2022; 2:100033. [PMID: 36908897 PMCID: PMC9999441 DOI: 10.1016/j.nbas.2022.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
Abstract
Background Despite the life-course perspective of popular aging models, few studies on healthy aging to date have examined both younger and older adulthood. The current study examined how cumulative vascular risk factors and self-reported levels of physical, social, and cognitive activity are associated with differences in hippocampal volumes in healthy younger and older adults. Methods 34 neurologically healthy participants were separated into two age cohorts: a younger adult group (age 25-35, n = 17) and an older adult group (age 65-82, n = 17). Participants underwent a 3 T T1 MRI and completed a series of questionnaires. Voxel-based morphometry examined whole-brain grey matter density differences between groups. Hippocampal volumes were computed. Analyses examined the association between hippocampal volumes, cumulative vascular risk, and self-reported levels of physical, social, and cognitive activity, both within and across groups. Results Between-group comparisons revealed greater cortical atrophy in older relative to young adults in regions including the left and right hippocampus and temporal fusiform cortex. Across-group analyses revealed a significant negative association between cardiovascular risk scores and bilateral hippocampal volumes across age groups. A significant negative association was identified between frequency of social activities and bilateral hippocampal volumes in older adults only. No significant associations were found between left or right hippocampal volumes and total, cognitive, or physical activities in both within- and across-group analyses. Conclusion Greater cumulative vascular risk is associated with smaller hippocampal volumes across age cohorts. Findings suggest that social activities with low cognitive load may not be beneficial to structural brain outcomes in older age.
Collapse
Affiliation(s)
- Vanessa Scarapicchia
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Stuart MacDonald
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
31
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
32
|
Schaeffer E, Roeben B, Granert O, Hanert A, Liepelt-Scarfone I, Leks E, Otterbein S, Saraykin P, Busch JH, Synofzik M, Stransky E, Bartsch T, Berg D. Effects of exergaming on hippocampal volume and brain-derived neurotrophic factor levels in Parkinson's disease. Eur J Neurol 2021; 29:441-449. [PMID: 34724287 DOI: 10.1111/ene.15165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Cognitive impairment is among the most burdensome non-motor symptoms in Parkinson's disease (PD) and has been associated with hippocampal atrophy. Exercise has been reported to enhance neuroplasticity in the hippocampus in correlation with an improvement of cognitive function. We present data from the Training-PD study, which was designed to evaluate effects of an "" training protocol on neuronal plasticity in PD. METHODS We initiated a 6-week exergaming training program, combining visually stimulating computer games with physical exercise in 17 PD patients and 18 matched healthy controls. Volumetric segmentation of hippocampal subfields on T1- and T2-weighted magnetic resonance imaging and brain-derived neurotrophic factor (BDNF) serum levels were analyzed before and after the training protocol. RESULTS The PD group showed a group-dependent significant volume increase of the left hippocampal subfields CA1, CA4/dentate gyrus (DG) and subiculum after the 6-week training protocol. The effect was most pronounced in the left DG of PD patients, who showed a significantly smaller percentage volume compared to healthy controls at baseline, but not at follow-up. Both groups had a significant increase in serum BDNF levels after training. CONCLUSIONS The results of the present study indicate that exergaming might be a suitable approach to induce hippocampal volume changes in PD patients. Further and larger studies are needed to verify our findings.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Oliver Granert
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Annika Hanert
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Inga Liepelt-Scarfone
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,IB Hochschule, Studienzentrum Stuttgart, Stuttgart, Germany
| | - Edyta Leks
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Sascha Otterbein
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pavel Saraykin
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jan-Hinrich Busch
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Elke Stransky
- Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thorsten Bartsch
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrecht-University Kiel, Kiel, Germany.,Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Fink A, Koschutnig K, Zussner T, Perchtold-Stefan CM, Rominger C, Benedek M, Papousek I. A two-week running intervention reduces symptoms related to depression and increases hippocampal volume in young adults. Cortex 2021; 144:70-81. [PMID: 34653905 DOI: 10.1016/j.cortex.2021.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study examined the effects of a two-week running intervention on depressive symptoms and structural changes of different subfields of the hippocampus in young adults from the general population. The intervention was realized in small groups of participants in a mostly forested area and was organized into seven units of about 60 min each. The study design included two intervention groups which were tested at three time points and which received the intervention time-delayed: The first group between the first and the second time point, and the second group between the second and the third time point (waiting control group). At each test session, magnetic resonance imaging (MRI) was performed and symptoms related to depression were measured by means of the Center for Epidemiological Studies Depression (CES-D) Scale. Results revealed a significant reduction of CES-D scores after the running intervention. The intervention also resulted in significant increases in the volume of the hippocampus, and reductions of CES-D scores right after the intervention were associated with increases in hippocampal volume. These findings add important new evidence on the beneficial role of aerobic exercise on depressive symptoms and related structural alterations of the hippocampus.
Collapse
Affiliation(s)
- Andreas Fink
- Institute of Psychology, University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wong-Goodrich SJE, Kearley J. Strenuous Exercise Habits and Spatial Mnemonic Discrimination Ability in Young Adult Men and Women. Percept Mot Skills 2021; 128:2346-2366. [PMID: 34365862 DOI: 10.1177/00315125211038732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased physical activity has shown positive effects on various hippocampal memory functions through accumulating evidence that physical exercise and higher cardiorespiratory fitness can enhance human performance on nonspatial mnemonic discrimination tasks that rely on hippocampal pattern separation. However, there is less direct evidence of exercise effects on spatial pattern separation in humans, despite evidence for this association in rodent models. We examined the influence of strenuous exercise habits on spatial mnemonic discrimination among 176 young adults. We used a delayed match-/non-match-to-sample (same/different) task to assess pattern separation for spatial locations across varying degrees of similarity. Participants who reported regularly engaging in strenuous exercise three or more times per week performed significantly better than those who reported engaging in strenuous exercise fewer than three times per week, even when pattern separation tasks involved higher spatial similarity. These apparent exercise effects were observed for female, but not male, participants. These findings support likely benefits of strenuous exercise habits for human spatial pattern separation skills, and they suggest a need to explore potential interaction effects of exercise and gender.
Collapse
Affiliation(s)
| | - Julia Kearley
- Department of Psychology, Iona College, New Rochelle, New York, United States
| |
Collapse
|
35
|
Prathap S, Nagel BJ, Herting MM. Understanding the role of aerobic fitness, spatial learning, and hippocampal subfields in adolescent males. Sci Rep 2021; 11:9311. [PMID: 33927247 PMCID: PMC8084987 DOI: 10.1038/s41598-021-88452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Physical exercise during adolescence, a critical developmental window, can facilitate neurogenesis in the dentate gyrus and astrogliogenesis in Cornu Ammonis (CA) hippocampal subfields of rats, and which have been associated with improved hippocampal dependent memory performance. Recent translational studies in humans also suggest that aerobic fitness is associated with hippocampal volume and better spatial memory during adolescence. However, associations between fitness, hippocampal subfield morphology, and learning capabilities in human adolescents remain largely unknown. Employing a translational study design in 34 adolescent males, we explored the relationship between aerobic fitness, hippocampal subfield volumes, and both spatial and verbal memory. Aerobic fitness, assessed by peak oxygen utilization on a high-intensity exercise test (VO2 peak), was positively associated with the volumetric enlargement of the hippocampal head, and the CA1 head region specifically. Larger CA1 volumes were also associated with spatial learning on a Virtual Morris Water Maze task and verbal learning on the Rey Auditory Verbal Learning Test, but not recall memory. In line with previous animal work, the current findings lend support for the long-axis specialization of the hippocampus in the areas of exercise and learning during adolescence.
Collapse
Affiliation(s)
- Sandhya Prathap
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90023, USA
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA.
| |
Collapse
|
36
|
Zhu L, Yu Q, Herold F, Cheval B, Dong X, Cui L, Xiong X, Chen A, Yin H, Kong Z, Mueller N, Kramer AF, Zou L. Brain Structure, Cardiorespiratory Fitness, and Executive Control Changes after a 9-Week Exercise Intervention in Young Adults: A Randomized Controlled Trial. Life (Basel) 2021; 11:292. [PMID: 33808225 PMCID: PMC8066797 DOI: 10.3390/life11040292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiorespiratory fitness (CRF) is assumed to exert beneficial effects on brain structure and executive control (EC) performance. However, empirical evidence of exercise-induced cognitive enhancement is not conclusive, and the role of CRF in younger adults is not fully understood. Here, we conducted a study in which healthy young adults took part in a moderate aerobic exercise intervention program for 9 weeks (exercise group; n = 48), or control condition of non-aerobic exercise intervention (waitlist control group; n = 72). Before and after the intervention period maximal oxygen uptake (VO2max) as an indicator of CRF, the Flanker task as a measure of EC performance and grey matter volume (GMV), as well as cortical thickness via structural magnetic resonance imaging (MRI), were assessed. Compared to the control group, the CRF (heart rate, p < 0.001; VO2max, p < 0.001) and EC performance (congruent and incongruent reaction time, p = 0.011, p < 0.001) of the exercise group were significantly improved after the 9-week aerobic exercise intervention. Furthermore, GMV changes in the left medial frontal gyrus increased in the exercise group, whereas they were significantly reduced in the control group. Likewise, analysis of cortical morphology revealed that the left lateral occipital cortex (LOC.L) and the left precuneus (PCUN.L) thickness were considerably increased in the exercise group, which was not observed in the control group. The exploration analysis confirmed that CRF improvements are linked to EC improvement and frontal grey matter changes. In summary, our results support the idea that regular endurance exercises are an important determinant for brain health and cognitive performance even in a cohort of younger adults.
Collapse
Affiliation(s)
- Lina Zhu
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Qian Yu
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| | - Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, 1205 Geneva, Switzerland;
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, FPSE, University of Geneva, 1205 Geneva, Switzerland
| | - Xiaoxiao Dong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Lei Cui
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Xuan Xiong
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Aiguo Chen
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (X.D.); (X.X.)
| | - Hengchan Yin
- School of Physical Education and Sports Science, Beijing Normal University, Beijing 100875, China; (L.Z.); (L.C.)
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, China;
| | - Notger Mueller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany; (F.H.); (N.M.)
| | - Arthur F. Kramer
- Center for Cognitive and Brain Health, Department of Psychology, Northeastern University, Boston, MA 02115, USA;
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Liye Zou
- Exercise & Mental Health Laboratory, Institute of Collaborative Innovation (Sport-Psychology-Education), School of Psychology, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
37
|
Kern KL, Storer TW, Schon K. Cardiorespiratory fitness, hippocampal subfield volumes, and mnemonic discrimination task performance in aging. Hum Brain Mapp 2020; 42:871-892. [PMID: 33325614 PMCID: PMC7856657 DOI: 10.1002/hbm.25259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Aging and exercise have opposing effects on mnemonic discrimination task performance, which putatively taxes pattern separation mechanisms reliant on the dentate gyrus (DG) subfield of the hippocampus. In young adults, increasing cardiorespiratory fitness (CRF) has been shown to improve mnemonic discrimination task performance and increase left anterior DG/CA3 volume. It is unknown how these variables interact in cognitive aging, yet this knowledge is critical, given the established effects of aging on hippocampal plasticity. To investigate these relationships, 65 older adults (aged 55–85 years) completed a submaximal treadmill test to estimate CRF, a mnemonic discrimination task, and a high‐resolution MRI scan to determine hippocampal subfield volumes. Our older adult sample demonstrated the lowest task accuracy in the condition with the greatest stimuli similarity and left DG/CA3 body volume significantly predicted accuracy in this condition. Our results did not provide support for relationships between CRF and task accuracy or CRF and DG/CA3 volume as evidenced in studies of young adults. Instead, CRF predicted bilateral subiculum volume in older adult women, not men. Altogether, these findings provide further support for a role of the DG in behavioral pattern separation in humans and suggest that CRF may have differential effects on hippocampal subfield integrity in older adult men and women. ClinicalTrials.gov identifiers: (a) Neuroimaging Study of Exercise and Memory Function, NCT02057354; (b) The Entorhinal Cortex and Aerobic Exercise in Aging, NCT02775760; (c) Physical Activity and Cognition Study, NCT02773121.
Collapse
Affiliation(s)
- Kathryn L Kern
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thomas W Storer
- Men's Health, Aging, and Metabolism Unit, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Ben-Zeev T, Weiss I, Ashri S, Heled Y, Ketko I, Yanovich R, Okun E. Mild Physical Activity Does Not Improve Spatial Learning in a Virtual Environment. Front Behav Neurosci 2020; 14:584052. [PMID: 33281575 PMCID: PMC7705229 DOI: 10.3389/fnbeh.2020.584052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
It is well-established that physical exercise in humans improves cognitive functions, such as executive functions, pattern separation, and working memory. It is yet unknown, however, whether spatial learning, long known to be affected by exercise in rodents, is also affected in humans. In order to address this question, we recruited 20 healthy young male adults (18-30 years old) divided into exercise and control groups (n = 10 in each group). The exercise group performed three sessions per week of mild-intensity aerobic exercise for 12 weeks, while the control group was instructed not to engage in any physical activity. Both groups performed maximal oxygen uptake (VO2max) tests to assess their cardiovascular fitness at baseline and every 4 weeks through the 12 weeks of the training program. The effects of mild aerobic exercise were tested on performance in two different virtual reality (VR)-based spatial learning tasks: (1) virtual Morris water maze (VMWM) and (2) virtual Radial arm water maze (VRAWM). Subjects were tested in both tasks at baseline prior to the training program and at the end of 12 weeks training program. While the mild-intensity aerobic exercise did not affect subjects' VO2max parameters, mean time to anaerobic threshold increased for the exercise group compared with control. No effect was observed, however, on performance in the VMWM or VRAWM between the two groups. Based on these results, we suggest that mild-intensity aerobic exercise does not improve spatial learning and memory in young, healthy adults.
Collapse
Affiliation(s)
- Tavor Ben-Zeev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Paul Feder Alzheimer's Disease Research Laboratory, Ramat Gan, Israel
| | - Inbal Weiss
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Saar Ashri
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Yuval Heled
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Itay Ketko
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel
| | - Ran Yanovich
- The Institute of Military Physiology, Israeli Defense Forces Medical Corps, Ramat Gan, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel.,The Paul Feder Alzheimer's Disease Research Laboratory, Ramat Gan, Israel
| |
Collapse
|
39
|
Islam MR, Luo R, Valaris S, Haley EB, Takase H, Chen YI, Dickerson BC, Schon K, Arai K, Nguyen CT, Wrann CD. Diffusion tensor-MRI detects exercise-induced neuroplasticity in the hippocampal microstructure in mice. Brain Plast 2020; 5:147-159. [PMID: 33282678 PMCID: PMC7685674 DOI: 10.3233/bpl-190090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Despite considerable research on exercise-induced neuroplasticity in the brain, a major ongoing challenge in translating findings from animal studies to humans is that clinical and preclinical settings employ very different techniques. Objective: Here we aim to bridge this divide by using diffusion tensor imaging MRI (DTI), an advanced imaging technique commonly applied in human studies, in a longitudinal exercise study with mice. Methods: Wild-type mice were exercised using voluntary free-wheel running, and MRI scans were at baseline and after four weeks and nine weeks of running. Results: Both hippocampal volume and fractional anisotropy, a surrogate for microstructural directionality, significantly increased with exercise. In addition, exercise levels correlated with effect size. Histological analysis showed more PDGFRα+ oligodendrocyte precursor cells in the corpus callosum of running mice. Conclusions: These results provide compelling in vivo support for the concept that similar adaptive changes occur in the brains of mice and humans in response to exercise.
Collapse
Affiliation(s)
- Mohammad R Islam
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Renhao Luo
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Sophia Valaris
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Erin B Haley
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yinching Iris Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Karin Schon
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christiane D Wrann
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|