1
|
Bogoslovsky T, Bernstock JD, Bull G, Gouty S, Cox BM, Hallenbeck JM, Maric D. Development of a systems-based in situ multiplex biomarker screening approach for the assessment of immunopathology and neural tissue plasticity in male rats after traumatic brain injury. J Neurosci Res 2017; 96:487-500. [PMID: 28463430 DOI: 10.1002/jnr.24054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/08/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI. This platform encompasses an empirically optimized multiplex immunohistochemistry staining and imaging system customized to screen for a myriad of biomarkers required to comprehensively evaluate the extent of neuroinflammation, neural tissue damage, and repair in response to TBI. Herein, we demonstrate that our multiplex biomarker screening platform is capable of evaluating changes in both the topographical location and functional states of resident and infiltrating cell types that play a role in neuropathology after controlled cortical impact injury to the brain in male Sprague-Dawley rats. Our results demonstrate that our multiplex biomarker screening platform lays the groundwork for the comprehensive characterization of changes that occur within the brain after TBI. Such work may ultimately lead to the understanding of the governing pathobiology of TBI, thereby fostering the development of novel therapeutic interventions tailored to produce optimal tissue protection, repair, and/or regeneration with minimal side effects, and may ultimately find utility in a wide variety of other neurological injuries, diseases, and disorders that share components of TBI pathobiology.
Collapse
Affiliation(s)
- Tanya Bogoslovsky
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (CNRM/USUHS), Rockville, Maryland
| | - Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland.,Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Greg Bull
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (CNRM/USUHS), Rockville, Maryland.,Department of Pharmacology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Shawn Gouty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (CNRM/USUHS), Rockville, Maryland.,Department of Pharmacology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - Brian M Cox
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences (CNRM/USUHS), Rockville, Maryland.,Department of Pharmacology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland
| |
Collapse
|
2
|
Schuldt G, Galanis C, Strehl A, Hick M, Schiener S, Lenz M, Deller T, Maggio N, Vlachos A. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells. Front Neuroanat 2016; 10:64. [PMID: 27378862 PMCID: PMC4904007 DOI: 10.3389/fnana.2016.00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022] Open
Abstract
Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions.
Collapse
Affiliation(s)
- Gerlind Schuldt
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Christos Galanis
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Andreas Strehl
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Meike Hick
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Sabine Schiener
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Maximilian Lenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt Frankfurt, Germany
| | - Nicola Maggio
- Department of Neurology, The Sagol Center for Neurosciences, Sheba Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel; Talpiot Medical Leadership Program, Department of Neurology and J. Sagol Neuroscience Center, The Chaim Sheba Medical CenterTel HaShomer, Israel; Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| | - Andreas Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University FrankfurtFrankfurt, Germany; Institute of Anatomy II, Faculty of Medicine, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| |
Collapse
|
3
|
Yilmazer-Hanke D, O'Loughlin E, McDermott K. Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J Neurosci Res 2015; 94:486-503. [DOI: 10.1002/jnr.23689] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Deniz Yilmazer-Hanke
- Department of Biomedical Sciences, School of Medicine; Creighton University; Omaha Nebraska
- Department of Anatomy and Neuroscience; University College; Cork Ireland
| | - Elaine O'Loughlin
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Ann Romney Centre for Neurologic Diseases, Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts
| | - Kieran McDermott
- Department of Anatomy and Neuroscience; University College; Cork Ireland
- Graduate Entry Medical School; University of Limerick; Limerick Ireland
| |
Collapse
|
4
|
Affiliation(s)
- Robert Nitsch
- Center of Morphology, University Clinic Frankfurt, Frankfurt Germany
| |
Collapse
|
5
|
Arne Schousboe, Bachevalier J, Braak H, Heinemann U, Nitsch R, Schröder H, Wetmore C. Structural correlates and cellular mechanisms in entorhinal—hippocampal dysfunction. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arne Schousboe
- PharmaBiotec Research Center, the Neurobiology Unit, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | - Jocelyne Bachevalier
- Medical School, Department of Neurobiology and Anatomy, University of Texas, Houston, Texas, U.S.A
| | - Heiko Braak
- Center of Morphology, Goethe‐University, Frankfurt, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, University of Köln, Köln, Germany
| | - Robert Nitsch
- Institute of Anatomy, University of Köln, Köln, Germany
| | | | - Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| |
Collapse
|
6
|
Ginsberg SD. Alterations in discrete glutamate receptor subunits in adult mouse dentate gyrus granule cells following perforant path transection. Anal Bioanal Chem 2010; 397:3349-58. [PMID: 20577723 DOI: 10.1007/s00216-010-3826-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/27/2010] [Accepted: 05/04/2010] [Indexed: 01/25/2023]
Abstract
Custom-designed microarray analysis was utilized to evaluate expression levels of glutamate receptors (GluRs) and GluR-interacting protein genes within isolated dentate gyrus granule cells following axotomy of the principal input, the perforant path (PP). Dentate gyrus granule cells were evaluated by microdissection via laser capture microdissection, terminal continuation RNA amplification, and microarray analysis following unilateral PP transections at seven time points. Expression profiles garnered from granule cells on the side ipsilateral to PP transections were compared and contrasted with naive subjects and mice subjected to unilateral occipital cortex lesions. Selected microarray observations were validated by real-time quantitative PCR analysis. Postlesion time-dependent alterations in specific alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors, kainate receptors, N-methyl-D-aspartate (NMDA) receptors, and GluR-interacting protein genes were found across the time course of the study, suggesting a neuroplasticity response associated with the transsynaptic granule cell alterations following axotomy of incoming PP terminals.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Department of Psychiatry, Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| |
Collapse
|
7
|
Deller T, Del Turco D, Rappert A, Bechmann I. Structural reorganization of the dentate gyrus following entorhinal denervation: species differences between rat and mouse. PROGRESS IN BRAIN RESEARCH 2008; 163:501-28. [PMID: 17765735 DOI: 10.1016/s0079-6123(07)63027-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deafferentation of the dentate gyrus by unilateral entorhinal cortex lesion or unilateral perforant pathway transection is a classical model to study the response of the central nervous system (CNS) to denervation. This model has been extensively characterized in the rat to clarify mechanisms underlying denervation-induced gliosis, transneuronal degeneration of denervated neurons, and collateral sprouting of surviving axons. As a result, candidate molecules have been identified which could regulate these changes, but a causal link between these molecules and the postlesional changes has not yet been demonstrated. To this end, mutant mice are currently studied by many groups. A tacit assumption is that data from the rat can be generalized to the mouse, and fundamental species differences in hippocampal architecture and the fiber systems involved in sprouting are often ignored. In this review, we will (1) provide an overview of some of the basics and technical aspects of the entorhinal denervation model, (2) identify anatomical species differences between rats and mice and will point out their relevance for the axonal reorganization process, (3) describe glial and local inflammatory changes, (4) consider transneuronal changes of denervated dentate neurons and the potential role of reactive glia in this context, and (5) summarize the differences in the reorganization of the dentate gyrus between the two species. Finally, we will discuss the use of the entorhinal denervation model in mutant mice.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
8
|
Deller T, Bas Orth C, Vlachos A, Merten T, Del Turco D, Dehn D, Mundel P, Frotscher M. Plasticity of synaptopodin and the spine apparatus organelle in the rat fascia dentata following entorhinal cortex lesion. J Comp Neurol 2006; 499:471-84. [PMID: 16998909 DOI: 10.1002/cne.21103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptopodin is an actin-associated molecule essential for the formation of a spine apparatus in telencephalic spines. To study whether synaptopodin and the spine apparatus organelle are regulated under conditions of lesion-induced plasticity, synaptopodin and the spine apparatus were analyzed in granule cells of the rat fascia dentata following entorhinal denervation. Confocal microscopy was employed to quantify layer-specific changes in synaptopodin-immunoreactive puncta densities. Electron microscopy was used to quantify layer-specific changes in spine apparatus organelles. Within the denervated middle and outer molecular layers, the layers of deafferentation-induced spine loss, synaptogenesis, and spinogenesis, the density of synaptopodin puncta and the number of spine apparatuses decreased by 4 days postlesion and slowly recovered in parallel with spinogenesis by 180 days postlesion. Within the nondenervated inner molecular layer, the zone without deafferentation-induced spine loss, a rapid loss of synaptopodin puncta and spine apparatuses was also observed. In this layer, spine apparatus densities recovered by 14 days postlesion, in parallel with plastic remodeling at the synaptic level and the postlesional recovery of granule cell activity. These data demonstrate layer-specific changes in the distribution of synaptopodin and the spine apparatus organelle following partial denervation of granule cells: in the layer of spine loss, spine apparatus densities follow spine densities; in the layer of spine maintenance, however, spine apparatus densities appear to be regulated by other signals.
Collapse
Affiliation(s)
- Thomas Deller
- Institute of Clinical Neuroanatomy, J.W. Goethe-University, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bernabeu R, Thiriet N, Zwiller J, Di Scala G. Lesion of the lateral entorhinal cortex amplifies odor-induced expression of c-fos, junB, and zif 268 mRNA in rat brain. Synapse 2006; 59:135-43. [PMID: 16342059 DOI: 10.1002/syn.20224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paradoxical facilitation of olfactory learning following entorhinal cortex (EC) lesion has been described, which may result from widespread functional alterations taking place within the olfactory system. To test this hypothesis, expression of the immediate early genes c-fos, junB, and zif 268 was studied in response to an olfactory stimulation in several brain areas in control and in EC-lesioned rats. Olfactory stimulation in control rats induced the expression of the three genes in the granular/mitral and glomerular layers of the olfactory bulb, as well as c-fos and junB expression in the piriform cortex. However EC lesion was devoid of effects in nonstimulated animals; it significantly amplified the odor-induced expression of the three genes in these areas, as well as in the amygdala, hippocampus, and parietal-temporal cortices. The data suggest that EC lesion modifies the neural processing of odor by suppressing an inhibitory influence on brain areas connected to this cortex.
Collapse
Affiliation(s)
- Ramón Bernabeu
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521, Université Louis Pasteur/CNRS, Strasbourg 67000, France
| | | | | | | |
Collapse
|
10
|
Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HWGM, Nitsch R, Kettenmann H. CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 2005; 24:8500-9. [PMID: 15456824 PMCID: PMC6729901 DOI: 10.1523/jneurosci.2451-04.2004] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microglia are the resident macrophage population of the CNS and are considered its major immunocompetent elements. They are activated by any type of brain pathology and can migrate to the lesion site. The chemokine CXCL10 is expressed in neurons in response to brain injury and is a signaling candidate for activating microglia and directing them to the lesion site. We recently identified CXCR3, the corresponding receptor for CXCL10, in microglia and demonstrated that this receptor system controls microglial migration. We have now tested the impact of CXCR3 signaling on cellular responses after entorhinal cortex lesion. In wild-type mice, microglia migrate within the first 3 d after lesion into the zone of axonal degeneration, where 8 d after lesion denervated dendrites of interneurons are subsequently lost. In contrast, the recruitment of microglia was impaired in CXCR3 knock-out mice, and, strikingly, denervated distal dendrites were maintained in zones of axonal degeneration. No differences between wild-type and knock-out mice were observed after facial nerve axotomy, as a lesion model for assessing microglial proliferation. This shows that CXCR3 signaling is crucial in microglia recruitment but not proliferation, and this recruitment is an essential element for neuronal reorganization.
Collapse
Affiliation(s)
- Angelika Rappert
- Department of Cellular Neuroscience, Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bechmann I, Goldmann J, Kovac AD, Kwidzinski E, Simbürger E, Naftolin F, Dirnagl U, Nitsch R, Priller J. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. FASEB J 2005; 19:647-9. [PMID: 15671154 DOI: 10.1096/fj.04-2599fje] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we demonstrate the infiltration of blood-derived monocytic cells and their morphologic transformation into microglia in zones of acute, anterograde (Wallerian) axonal degeneration induced by entorhinal cortex lesion (ECL). ECL was performed in mice which had received green fluorescent protein (GFP)-transduced bone marrow grafts allowing identification of blood-derived elements within the brain. While in the unlesioned hemisphere GFP+ cells were restricted to perivascular and leptomeningeal sites, many round fluorescent cells appeared in hippocampal zones of axonal degeneration at 24 h post lesion (hpl). Within 72 hpl, these GFP+ cells acquired ramified, microglia-like morphologies, which persisted for at least 7 days post ECL. Differentiation of GFP+ cells into glial fibrillary acidic protein (GFAP)+ astrocytes was never observed. To exclude that this recruitment is an artifact of irradiation or bone marrow transplantation, the fluorescent cell tracker 6-carboxylfluorescein diacetate (CFDA) was injected into spleens of normal mice 1 day before ECL. Again, fluorescent cells appeared at the lesion site and along the layers of axonal degeneration at 48 hpl and CFDA+/MAC-1+, cells exhibited amoeboid and ramified morphologies. Thus, blood-derived cells infiltrate not only the site of mechanical lesion, but also the layers of anterograde axonal degeneration, where they readily transform into microglia-like elements. A role for infiltrating leukocytes in facilitating or modulating postlesional plasticity, e.g., by phagocytosis of growth-inhibiting myelin should now be considered. Moreover, monocytic cells may serve as vehicles to transport therapeutic substances such as neurotrophic factors or caspase inhibitors to zones of axonal degeneration.
Collapse
Affiliation(s)
- Ingo Bechmann
- Institute of Cell Biology and Neurobiology, Charité University Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kovac AD, Kwidzinski E, Heimrich B, Bittigau P, Deller T, Nitsch R, Bechmann I. Entorhinal cortex lesion in the mouse induces transsynaptic death of perforant path target neurons. Brain Pathol 2004; 14:249-57. [PMID: 15446579 PMCID: PMC8095900 DOI: 10.1111/j.1750-3639.2004.tb00061.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Entorhinal cortex lesion (ECL) is a well described model of anterograde axonal degeneration, subsequent sprouting and reactive synaptogenesis in the hippocampus. Here, we show that such lesions induce transsynaptic degeneration of the target cells of the lesions pathway in the dentate gyrus. Peaking between 24 and 36 hours post-lesion, dying neurons were labeled with DeOlmos silver-staining and antisera against activated caspase 3 (CCP32), a downstream inductor of programmed cell death. Within caspase 3-positive neurons, fragmented nuclei were co-localized using Hoechst 33342 staining. Chromatin condensation and nuclear fragmentation were also evident in semithin sections and at the ultrastructural level, where virtually all caspase 3-positive neurons showed these hallmarks of apoptosis. There is a well-described upregulation of the apoptosis-inducing CD95/L system within the CNS after trauma, yet a comparison of caspase 3-staining patterns between CD95 (Ipr)- and CD95L (gld)-deficient with non-deficient mice (C57/bl6) provided no evidence for CD95L-mediated neuronal cell death in this setting. However, inhibition of NMDA receptors with MK-801 completely suppressed caspase 3 activation, pointing to glutamate neurotoxicity as the upstream inducer of the observed cell death. Thus, these data show that axonal injury in the CNS does not only damage the axotomized neurons themselves, but can also lethally affect their target cells, apparently by activating glutamate-mediated intracellular pathways of programmed cell death.
Collapse
Affiliation(s)
- Adam D. Kovac
- Institute of Anatomy, Deptment of Cell and Neurobiology, Charité, University Medicine, Berlin, Germany
| | - Erik Kwidzinski
- Institute of Anatomy, Deptment of Cell and Neurobiology, Charité, University Medicine, Berlin, Germany
| | - Bernd Heimrich
- Institute of Anatomy, Deptment of Cell and Neurobiology, Charité, University Medicine, Berlin, Germany
| | - Petra Bittigau
- Department Pediatric Neurology, Charité, University Medicine, Berlin, Germany
| | - Thomas Deller
- Clinical Neuroanatomy, Johann Wolfgang Goethe‐University, Frankfurt/Main, Germany
| | - Robert Nitsch
- Institute of Anatomy, Deptment of Cell and Neurobiology, Charité, University Medicine, Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Deptment of Cell and Neurobiology, Charité, University Medicine, Berlin, Germany
| |
Collapse
|
13
|
Eyüpoglu IY, Bechmann I, Nitsch R. Modification of microglia function protects from lesion-induced neuronal alterations and promotes sprouting in the hippocampus. FASEB J 2003; 17:1110-1. [PMID: 12692086 DOI: 10.1096/fj.02-0825fje] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary neuronal destruction in the central nervous system triggers rapid changes in glial morphology and function, after which activated glial cells contribute to secondary neuronal changes. Here we show that, after entorhinal cortex lesion, activation of microglia, but not other glial cells, leads to massive secondary dendritic changes of deafferentiated hippocampal neurons. Blocking of microglial activation in vivo reduced this secondary neuronal damage and enhanced regenerative axonal sprouting. In contrast, abolishing astrocytes or oligodendroglia did not result in specific neuronal changes. Furthermore, primary damage leads to an interleukin 1beta up-regulation, which is attenuated by the immuno-modulator transforming growth factor beta1, whereas tumor necrosis factor alpha is not affected. Modification of microglial activity following denervation of the hippocampus protects neurons from secondary dendritic alterations and therefore enables their reinnervation. These data render activated microglia a putative therapeutic target during the course of axonal degeneration.
Collapse
Affiliation(s)
- Ilker Y Eyüpoglu
- Institute of Anatomy, Department of Cell and Neurobiology, Humboldt University Hospital (Charité), 10098 Berlin, Germany.
| | | | | |
Collapse
|
14
|
Bräuer AU, Savaskan NE, Plaschke M, Ninnemann O, Nitsch R. Perforant path lesion induces up-regulation of stathmin messenger RNA, but not SCG10 messenger RNA, in the adult rat hippocampus. Neuroscience 2001; 102:515-26. [PMID: 11226690 DOI: 10.1016/s0306-4522(00)00471-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, we performed in situ hybridization analysis of the expression pattern of two growth-associated proteins, stathmin and SCG10, in the hippocampus after unilateral lesion of the perforant pathway, the main excitatory input from the entorhinal cortex to the hippocampus. Stathmin is one of the major neural-enriched cytosolic phosphoproteins and a potential target of cyclic-AMP-dependent kinases [Jin L. W. et al. (1996) Neurobiol. Aging 17, 331-341; Leighton I. A. et al. (1993) Molec. Cell Biochem. 127/128, 151-156]. Three days after the lesion, stathmin messenger RNA was up-regulated ipsilaterally in the hilus, in the granule cell layer of the dentate gyrus and in the pyramidal cell layer of the CA1 region. Simultaneously, the hilar region of the contralateral dentate gyrus showed an increased stathmin messenger RNA expression. This altered expression pattern was observed until 15 days after lesion. Stathmin messenger RNA expression returned to a normal level until 21 days after lesion in all regions analysed. SCG10, a membrane-bound neuronal growth-associated protein belonging to the SCG10/stathmin gene family, did not show any alteration of messenger RNA expression after perforant path lesion. The temporal changes of stathmin messenger RNA expression in the ipsilateral hippocampus correspond well to the process of reactive synaptogenesis. The enhanced messenger RNA expression in the hilar region of the contralateral dentate gyrus might suggest a role in neurite elongation, since this region is the origin of commissural fibres involved in the sprouting response in the deafferented hippocampus. The present study provides evidence that the induction of specific growth-associated proteins is differentially regulated in the hippocampus.
Collapse
Affiliation(s)
- A U Bräuer
- Department of Cell Biology and Neurobiology, Humboldt University Medical School (Charité), Institute of Anatomy, Philippstr. 12, 10115, Berlin, Germany.
| | | | | | | | | |
Collapse
|
15
|
Woodhams PL, Terashima T. Aberrant trajectory of entorhino-dentate axons in the mutant Shaking Rat Kawasaki: a Dil-labelling study. Eur J Neurosci 2000; 12:2707-20. [PMID: 10971614 DOI: 10.1046/j.1460-9568.2000.00150.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Shaking Rat Kawasaki (SRK) is a neurological mutant that exhibits abnormalities of cell migration and lamination, with many similarities to the mouse reeler mutant. We recently used lamina-specific antibody staining to show that despite severe aberrations in the laminar organization of the SRK dentate gyrus, the entorhinal terminal field in the outer dentate molecular layer appeared relatively normal (Woodhams & Terashima, 1999, J. Comp. Neurol. 409 p57). However, neurofilament immunostaining suggested that entorhino-dentate afferents take an abnormal trajectory in reaching their appropriate targets, the granule cells dendrites. In the present study, anterograde tracing with the carbocyanine dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) has been used to delineate directly the path that entorhinal axons take to the dentate gyrus, confirming that in SRK entorhinal axons do indeed reach their appropriate terminal fields in the molecular layer, with laminar segregation between projections from the lateral and medial entorhinal cortices. However, these fibres fail to cross the hippocampal fissure between the subiculum and the dentate gyrus, coursing instead parallel to it until they curve round the deepest point of the fissure in field CA3. Similar findings were seen in the murine reeler mutant. Insertion of DiI crystals into the entorhinal cortex of neonatal rats also retrogradely labelled the developmentally transient Cajal-Retzius cells at the hippocampal fissure; these survive for longer in SRK than in normal littermates. The presence of a marked astrogliosis at the SRK hippocampal fissure may play a part in determining the abnormal trajectory taken by entorhino-dentate afferents in this mutant.
Collapse
Affiliation(s)
- P L Woodhams
- Division of Neurobiology, National Institute for Medical Research, London NW7 1AA, UK.
| | | |
Collapse
|
16
|
Drakew A, Frotscher M, Heimrich B. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization. Neuroscience 1999; 94:767-74. [PMID: 10579567 DOI: 10.1016/s0306-4522(99)00378-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Organotypic co-cultures of the entorhinal cortex and hippocampus were examined to determine the role of the entorhinal fibers in the dendritic development and formation of spines of dentate granule cells. Quantitative analysis of Golgi-impregnated granule cells in single hippocampal cultures and co-cultures with the entorhinal cortex revealed that the presence of entorhinal fibers promoted the elongation and differentiation of the target granule cell dendrites. This was accompanied by an increase in the total number of spines. The contribution of neuronal activity to this afferent-mediated dendritic development was tested by chronic application of the sodium channel blocker tetrodotoxin for 20 days in vitro. Tracing with biocytin showed that the formation of the entorhinohippocampal pathway was unaffected by the blockade of neuronal activity. The dendritic arbor of cultured granule cells and the number of dendritic spines did not differ between tetrodotoxin-treated slices and untreated controls. However, there was a significant increase in the relative number of filiform spines on granule cell dendrites in tetrodotoxin-treated co-cultures. Such filiform spines are a characteristic feature of immature neurons. These results suggest the cooperation of two mechanisms in the dendritic development of dentate granule cells: the specific afferent-mediated dendritic arborization and the activity-dependent maturation of spines.
Collapse
Affiliation(s)
- A Drakew
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
17
|
Blümcke I, Zuschratter W, Schewe JC, Suter B, Lie AA, Riederer BM, Meyer B, Schramm J, Elger CE, Wiestler OD. Cellular pathology of hilar neurons in Ammon's horn sclerosis. J Comp Neurol 1999; 414:437-53. [PMID: 10531538 DOI: 10.1002/(sici)1096-9861(19991129)414:4<437::aid-cne2>3.0.co;2-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In addition to functionally affected neuronal signaling pathways, altered axonal, dendritic, and synaptic morphology may contribute to hippocampal hyperexcitability in chronic mesial temporal lobe epilepsies (MTLE). The sclerotic hippocampus in Ammon's horn sclerosis (AHS)-associated MTLE, which shows segmental neuronal cell loss, axonal reorganization, and astrogliosis, would appear particularly susceptible to such changes. To characterize the cellular hippocampal pathology in MTLE, we have analyzed hilar neurons in surgical hippocampus specimens from patients with MTLE. Anatomically well-preserved hippocampal specimens from patients with AHS (n = 44) and from patients with focal temporal lesions (non-AHS; n = 20) were studied using confocal laser scanning microscopy (CFLSM) and electron microscopy (EM). Hippocampal samples from three tumor patients without chronic epilepsies and autopsy samples were used as controls. Using intracellular Lucifer Yellow injection and CFLSM, spiny pyramidal, multipolar, and mossy cells as well as non-spiny multipolar neurons have been identified as major hilar cell types in controls and lesion-associated MTLE specimens. In contrast, none of the hilar neurons from AHS specimens displayed a morphology reminiscent of mossy cells. In AHS, a major portion of the pyramidal and multipolar neurons showed extensive dendritic ramification and periodic nodular swellings of dendritic shafts. EM analysis confirmed the altered cellular morphology, with an accumulation of cytoskeletal filaments and increased numbers of mitochondria as the most prominent findings. To characterize cytoskeletal alterations in hilar neurons further, immunohistochemical reactions for neurofilament proteins (NFP), microtubule-associated proteins, and tau were performed. This analysis specifically identified large and atypical hilar neurons with an accumulation of low weight NFP. Our data demonstrate striking structural alterations in hilar neurons of patients with AHS compared with controls and non-sclerotic MTLE specimens. Such changes may develop during cellular reorganization in the epileptogenic hippocampus and are likely to contribute to the pathogenesis or maintenance of temporal lobe epilepsy.
Collapse
Affiliation(s)
- I Blümcke
- Department of Neuropathology, University of Bonn Medical Center, D-53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berger B, De Grissac N, Alvarez C. Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990118)403:3<309::aid-cne3>3.0.co;2-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Berger B, De Grissac N, Alvarez C. Precocious development of parvalbumin-like immunoreactive interneurons in the hippocampal formation and entorhinal cortex of the fetal cynomolgus monkey. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990118)403:3%3c309::aid-cne3%3e3.0.co;2-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Neumann-Haefelin T, Staiger JF, Redecker C, Zilles K, Fritschy JM, Möhler H, Witte OW. Immunohistochemical evidence for dysregulation of the GABAergic system ipsilateral to photochemically induced cortical infarcts in rats. Neuroscience 1998; 87:871-9. [PMID: 9759975 DOI: 10.1016/s0306-4522(98)00124-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deficits of GABAergic transmission have been reported to occur in tissue surrounding ischemic cortical lesions between a few days and several weeks after the insult. In the present experiments, we used immunohistochemistry with antibodies against parvalbumin and two major subunits of the GABA(A) receptor (alpha1, alpha2) to characterize the events that underlie these changes at different levels of circuit organization. Neocortical infarcts (2 mm diameter) consistently affecting medial parts of the primary somatosensory cortex were induced photochemically in adult male Wistar rats; animals were allowed to recover for one week before perfusion-fixation. When compared to controls the pattern of immunoreactivity had changed for the al subunit of the GABA(A) receptor seven days after the insult. Ipsilateral to the ischemic lesions, we found a decrease in staining intensity reaching up to 4 mm laterally, resulting in a partial or complete absence of the normal laminar staining pattern. No consistent changes were observed for the alpha2 subunit. Parvalbumin staining revealed pathological alterations in a rim of tissue surrounding the infarct, measuring up to 1 mm from the border of the infarcts. Parvalbumin-positive interneurons in this region showed signs of degeneration; both a reduction of the number of dendrites and, to a lesser extent and only immediately adjacent to the ischemic lesions, a reduction of the number of parvalbumin-positive neurons was readily apparent. The results provide evidence for both a differential regulation of two GABA(A) receptor subunits and degenerative changes of parvalbumin-containing interneurons ipsilateral to cortical infarcts. The relevance of these findings for mechanisms underlying long-term recovery, transient functional deficits and postinfarct seizures warrants further investigation.
Collapse
|
21
|
Davies P, Anderton B, Kirsch J, Konnerth A, Nitsch R, Sheetz M. First one in, last one out: the role of gabaergic transmission in generation and degeneration. Prog Neurobiol 1998; 55:651-8. [PMID: 9670223 DOI: 10.1016/s0301-0082(98)00024-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This paper is the result of discussions between scientists working in widely separated areas, united by an interest in the hippocampus. The discussions focused on the possible role of GABA in the development and maturation of the hippocampus and in neurodegeneration in Alzheimer's disease (AD). GABA neurons are among the first to differentiate in the hippocampus and the properties of GABA neurotransmission in the developing hippocampus are distinct from those in the adult. GABAergic transmission may play a role in the clustering and maturation of GABA receptors, as well as of receptors for other neurotransmitters. The development and maturation of synaptic connections involves changes in the organization of the cytoskeleton, and mechanical force generation is probably required to establish appropriate points of contact. This generation of force may require coupling of specific receptors to the cytoskeleton through specialized proteins. In AD, much of the developmental process is progressively unraveled in the hippocampus, as afferent fibers, most notably from entorhinal excitatory neurons and from basal forebrain cholinergic cells, degenerate. This denervation undoubtedly has consequences for receptor systems, dendritic morphology and the underlying cytoskeleton. GABA neurons remain in the AD hippocampus, and may actually contribute to abnormal firing and degeneration of remaining pyramidal neurons. This attempt to bring together data from different areas of research has allowed the development of a scheme which identifies significant specific gaps in our knowledge, which could be readily filled by focused experimental work.
Collapse
Affiliation(s)
- P Davies
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
In vitro tract tracing allowing for continuous observation of the perforant path is a crucial prerequisite for experimental studies on the entorhinal-hippocampal interaction in an organotypic slice culture containing the entorhinal cortex, the perforant path, and the dentate gyrus (OEHSC). We prepared horizontal slices of the temporal entorhinal-hippocampal region of the rat on a vibratome, and the perforant path axons were traced by application of the fluorescent tracer Mini Ruby on the entorhinal cortex. After 2 days in vitro (div), the perforant path became visible in most cultures. Entorhinal neurons and single perforant fibers could be followed to the outer molecular layers of the dentate gyrus by in vitro fluorescence microscopy and it was possible to monitor the perforant path directly over a period of 25 div. Moreover, ultrastructural analysis proved the existence of traced perforant path boutons forming synapses with spines and dendritic shafts in the outer molecular layers of the dentate gyrus. Transsection of the prelabelled perforant path in vitro resulted in anterograde degeneration and subsequent phagocytosis of axonal material by activated microglial cells in the zone of denervation. In conclusion, in vitro tracing demonstrates the maintenance of the entorhinal-hippocampal pathway in OEHSCs and permits monitoring of dynamic changes in the prelabeled perforant path after various lesion paradigms, e.g., transsection or neurotoxin treatment. This approach permits further studies on the efficacy of neuroprotectants, cytokines, and growth factors in the treatment of lesion-induced neuronal degeneration.
Collapse
Affiliation(s)
- A Kluge
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt University Hospital (Charité), Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Deller T, Frotscher M. Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog Neurobiol 1997; 53:687-727. [PMID: 9447617 DOI: 10.1016/s0301-0082(97)00044-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In response to a central nervous system trauma surviving neurons reorganize their connections and form new synapses that replace those lost by the lesion. A well established in vivo system for the analysis of this lesion-induced plasticity is the reorganization of the fascia dentata following unilateral entorhinal cortex lesions in rats. After general considerations of neuronal reorganization following a central nervous system trauma, this review focuses on the sprouting of single fibres in the rat hippocampus after entorhinal lesion and the molecular factors which may regulate this process. First, the connectivity of the fascia dentata in control animals is reviewed and previously unknown commissural fibers to the outer molecular layer and entorhinal fibres to the inner molecular layer are characterized. Second, sprouting of commissural and crossed entorhinal fibres after entorhinal cortex lesion is described. Single fibres sprout by forming additional collaterals, axonal extensions, boutons, and tangle-like axon formations. It is pointed out that the sprouting after entorhinal lesion mainly involves unlesioned fibre systems terminating within the layer of fibre degeneration and is therefore layer-specific. Third, molecular changes associated with axonal growth and synapse formation are considered. In this context, the role of adhesion molecules, glial cells, and neurotrophic factors for the sprouting process are discussed. Finally, an involvement of sprouting processes in the formation of neuritic plaques in Alzheimer's disease is reviewed and discussed with regard to the axonal tangle-like formations observed after entorhinal cortex lesion.
Collapse
Affiliation(s)
- T Deller
- Institute of Anatomy, University of Freiburg, Germany.
| | | |
Collapse
|
24
|
Haas CA, Deller T, Frotscher M. Basal expression, subcellular distribution, and up-regulation of the proto-oncogene c-JUN in the rat dentate gyrus after unilateral entorhinal cortex lesion. Neuroscience 1997; 81:33-45. [PMID: 9300399 DOI: 10.1016/s0306-4522(97)00187-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of the transcription factor c-JUN was investigated in the rat fascia dentata under normal conditions and after entorhinal cortex lesion. As shown by immunocytochemistry and in situ hybridization histochemistry c-JUN and its messenger RNA are present in the principal cell layers of the dentate gyrus and Ammon's horn (except hippocampal region CA2). Pre-embedding immunogold electron microscopy revealed an almost exclusive nuclear localization of c-JUN, where it is associated with chromatin. In addition, double immunolabelling for c-JUN and parvalbumin demonstrated that c-JUN immunoreactivity is primarily found in principal neurons since GABAergic parvalbumin-positive interneurons did not express c-JUN. After unilateral electrolytic lesion of the entorhinal cortex c-JUN was strongly up-regulated in the ipsilateral dentate gyrus within 2 h postlesion. This up-regulation was also present in the contralateral fascia dentata 12 h after entorhinal cortex lesion and returned to control levels on both sides 24 h postlesion. The cellular distribution of c-JUN did not change after entorhinal cortex lesion: parvalbumin-positive interneurons never contained c-JUN. These results point to a specific role of c-JUN in the granule cells of the fascia dentata in the normal animal and in rats with entorhinal cortex lesions. The selective induction of c-JUN after entorhinal lesion could be one of the first molecular steps that regulate transneuronal changes within granule cells after their denervation. A different mechanism has to be assumed for GABAergic interneurons known to receive an entorhinal innervation as well.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
25
|
Bechmann I, Nitsch R. Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Glia 1997; 20:145-54. [PMID: 9179599 DOI: 10.1002/(sici)1098-1136(199706)20:2<145::aid-glia6>3.0.co;2-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Entorhinal lesion leads to anterograde degeneration of perforant path fibers in their main termination zone in the outer molecular layers of the dentate gyrus. Concomitantly, astrocytes become hypertrophic, and microglial cells alter their phenotype, suggesting participation in anterograde degeneration. This study analyzes the involvement of these lesion-induced activated glial cells in the process of phagocytosis of degenerated axonal debris. We established a phagocytosis-dependent labeling technique that allows for direct and simultaneous visualization of both labeled incorporated axonal debris and incorporating glial cells. Stereotaxic application of small crystals of the biotin- and rhodamine-conjugated dextran amine Mini Ruby (MR) into the entorhinal cortex led to strong and stable axonal staining of perforant path axons. Following entorhinal lesion, labeled terminals and fibers condensed and formed small granules. Incorporation of these rhodamine-fluorescent granules resulted in a phagocytosis-dependent cell labeling. During the first 3 days, we were able to identify these cells as microglia by using double-fluorescence and confocal microscopy. The first unequivocally double-labeled astrocytes were found 6 days post lesion (dpl). Whereas in all stages a subpopulation of microglial cells remained devoid of MR-labeled granules, all astrocytes in the middle molecular layer were double-labeled after long survival times (20 dpl). On the ultrastructural level, labeled granules appeared to be perforant path axons containing the tracer. Both terminals and myelinated fibers could be seen inside the cytoplasm of microglial cells and astrocytes. Thus, anterograde degeneration is a sufficient stimulus to induce axon incorporation by both astrocytes and a subpopulation of microglial cells.
Collapse
Affiliation(s)
- I Bechmann
- Department of Cell and Neurobiology, Humboldt University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
26
|
Diekmann S, Ohm TG, Nitsch R. Long-lasting transneuronal changes in rat dentate granule cell dendrites after entorhinal cortex lesion. A combined intracellular injection and electron microscopy study. Brain Pathol 1996; 6:205-14; discussion 214-5. [PMID: 8864277 DOI: 10.1111/j.1750-3639.1996.tb00846.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Following entorhinal cortex lesion, inhibitory hippocampal neurons show a persistent rarefication of those dendrites formally receiving entorhinal input. Physiological data indicate a long lasting disequilibrium of inhibition and excitation in the de-entorhinated hippocampus. We analyzed the intracellularly-stained dendritic tree of de-entorhinated excitatory rat granule cells. Granule cells of controls and animals surviving 2, 8, 60 and 270 days after unilateral entorhinal cortex lesion were impaled. Dendrites of control cells were of typical shape, traced to the hippocampal fissure and a complete dye filling of dendrites was ascertained by EM-analysis. Conversely, 60 and 270 days following lesioning, dendrites were only rarely seen to extend into the outer portions of the molecular layer and the dendritic architecture became significantly rarefied. Sixty days post-lesion, intracellularly filled dendrites extending to the middle molecular layer were surrounded by cell clusters resembling glia. Some of these contained the neuronally applied dye, suggesting a close association of the cytosolic compartments with the altered dendrites. These observed alterations exceed the process of sprouting and de novo synaptogenesis of remaining afference for long periods of time. The dendritic morphology of both inhibitory and excitatory neurons seems to require specific input from the entorhinal cortex. Moreover, sprouting of remaining afferents is apparently not sufficient to compensate for this loss of input.
Collapse
Affiliation(s)
- S Diekmann
- Institute of Anatomy, Humboldt University Clinic (Charité), Berlin, FRG
| | | | | |
Collapse
|
27
|
Abstract
Calcium-binding proteins containing local circuit neurons are distributed ubiquitously in the human cerebral cortex where they colocalize with a subpopulation of cells that contain GABA. Several reports using a variety of pathological models, including Alzheimer's disease (AD), have suggested that cells containing calcium-binding proteins are resistant to pathological insults. In this report, we test the hypothesis that AD pathology can differentially affect parvalbumin-containing cells depending on their location in the entorhinal cortex and the state of projection neurons with which they are associated. Using cases with different quantities of AD pathology, we determined the density of immunostaining for parvalbumin in the entorhinal cortex, and we correlated this with the concomitant pathological lesions in the various layers of this cortex. Our results show a clear decrease in parvalbumin immunostaining in some parts of the entorhinal cortex when AD neuropathological markers are present. As the density of pathological markers in the entorhinal cortex becomes greater and more widespread, there is a decrease of parvalbumin immunostaining in additional layers, although in all cases, some cells persist. Parvalbumin-containing neurons are clearly vulnerable in AD, but not because of neurofibrillary tangle formation. Instead, they are rendered vulnerable only after substantial loss of projection neurons; only then do they, too, become part of the lesion.
Collapse
|
28
|
Beck T, Weber M, Horváth E, Wree A. Functional cerebral activity during regeneration from entorhinal lesions in the rat. J Cereb Blood Flow Metab 1996; 16:342-52. [PMID: 8594068 DOI: 10.1097/00004647-199603000-00021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The consequences of an unilateral electrolytic entorhinal lesion on the functional activity in all major anatomically defined brain regions were evaluated in the rat. The 14C-2 deoxyglucose method served as a tool to quantify alterations of local cerebral glucose utilization (LCGU) ipsilateral and contralateral to the lesion at 4 days, 2 weeks, or 3 months after stereotaxic surgery. Apart from a few minor increases in the contralateral hemisphere, the predominant pattern consisted of reductions in the range of 10-40% in the ipsilateral hemisphere. Ipsilaterally, in extrahippocampal areas, LCGU had regained control levels at 2 weeks postlesion in contrast to hippocampal regions, where reductions were more pronounced than in other brain areas and partially persisted for up to 3 months. Interestingly, the termination zones of entorhinal fibers in the dentate gyrus did not regain control levels within 3 months. We conclude from the data that functional recovery of denervated primary target areas does not occur within 3 months after entorhinal lesions and that altered functional activity may be found beyond the primary target areas predominantly during the acute recovery period after the lesion. The data suggest that sprouting fibers do not reestablish a fully functional neuronal network during the recovery period.
Collapse
Affiliation(s)
- T Beck
- Anatomisches Institut der Universität Rostock, Germany
| | | | | | | |
Collapse
|
29
|
Keseberg U, Schmidt WJ. Low-dose challenge by the NMDA receptor antagonist dizocilpine exacerbates the spatial learning deficit in entorhinal cortex-lesioned rats. Behav Brain Res 1995; 67:255-61. [PMID: 7779296 DOI: 10.1016/0166-4328(94)00156-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated the effects of a bilateral quinolinic acid lesion of the medial entorhinal cortex (EC) on acquisition of a spatial learning task. During reversal of the same task, we challenged the animals by the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801). Training took postoperatively place in an eight-arm radial maze in which four of eight arms were baited. In the acquisition phase (ten blocks of five trials) of the test, EC-lesioned animals showed a working (WM) and a reference memory (RM) deficit. The WM deficit was prominent at the beginning and fully compensated at the end of the acquisition phase. The RM deficit became more evident during the course of the experiment. In the reversal learning phase (seven blocks of five trials), the formerly unbaited arms were baited and half of the control and lesioned animals were challenged by a low dose of dizocilpine (0.04 mg/kg i.p.) before training. Only lesioned and additionally dizocilpine-treated animals showed a WM deficit that was again compensated and a RM deficit that was stronger at the end of the test. In summary, quinolinic acid lesion of the medial EC induces both WM and RM deficits in rats. The WM deficit is rapidly compensated. Enhancement of these deficits by challenge with dizocilpine in the reversal learning phase suggests that the NMDA receptor system was rendered more sensitive by this type of lesion.
Collapse
Affiliation(s)
- U Keseberg
- Department of Neuropharmacology, Zoological Institute, Tübingen, Germany
| | | |
Collapse
|
30
|
Ikonomovic MD, Sheffield R, Armstrong DM. AMPA-selective glutamate receptor subtype immunoreactivity in the hippocampal formation of patients with Alzheimer's disease. Hippocampus 1995; 5:469-86. [PMID: 8773259 DOI: 10.1002/hipo.450050509] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunocytochemical techniques were employed in order to examine the distribution and relative intensity of the AMPA receptor subunits GluR1 and GluR2/3 within the hippocampal formation of normal controls and Alzheimer's disease (AD) cases. Throughout our investigation we examined cases exhibiting a wide range of pathologic severity, thus allowing us to correlate our immunohistochemical data with the extent of pathology. Specifically, we investigated the distribution of these receptor subunits in hippocampal sectors that are particularly vulnerable to AD pathology (i.e., CA1 and subiculum) and compared these findings with those obtained following examination of sectors that are generally resistant to pathologic change (i.e., CA2/3, dentate gyrus). Within vulnerable sectors we observed a variable loss of GluR1 and GluR2/3 immunolabeling. The degree to which these proteins were reduced appeared to correlate with the extent of neurofibrillary pathology and cell loss. Despite the loss of labeled cells, the intensity of immunolabeling within the remaining neurons was comparable with, and in many instances even greater than, that observed in control cases. Within resistant sectors, the distribution of immunoreactive elements was comparable in both case groups yet the intensity of immunolabeling was markedly increased in AD cases, particularly in the molecular layer of the dentate gyrus and in the stratum lucidum of CA3 (i.e., the termination zones of perforant pathway and mossy fibers). In addition, within AD cases dramatic increases were observed within the supragranular and polymorphic layer of the dentate gyrus (i.e., the terminal zones of sprouting mossy fiber collaterals). The increase in GluR1 and GluR2/3 immunolabeling is hypothesized to occur in response to the deafferentation of selected glutamatergic pathways. Moreover, our data support that hippocampal plasticity is preserved, even in severe AD cases, and suggest a critical role for AMPA receptor subunits in this plasticity and in maintaining hippocampal functioning.
Collapse
Affiliation(s)
- M D Ikonomovic
- Neurosciences Research Center, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212-9986, USA
| | | | | |
Collapse
|
31
|
Diekmann S, Nitsch R, Ohm TG. The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:61-71. [PMID: 7897400 DOI: 10.1007/978-3-7091-9350-1_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The entorhinal-hippocampal system is severely altered in many neurodegenerative disorders with mnemonic malfunction, e.g. Alzheimer's, Parkinson's and Huntington's disease. The present approach characterizes an organotypic complex slice culture comprising both the entorhinal cortex and the hippocampal formation in order to establish a tool for experimental studies of the entorhinal-hippocampal interaction and its presumed neurodegenerative alterations in vitro. Slices were obtained from rats at about postnatal day 15 and maintained in culture using the interface technique. Thus, also structures known to be developed gradually during the first weeks postnatally are in accord to structures seen in adult rats. After two-three weeks in vitro, slices in the culture dish still revealed the typical morphological features of the entorhinal-hippocampal formation as visible with the dissecting microscope. Biocytin, which is taken up by and transported within living cells, labeled typical cell bodies, dendrites and axons of stellate neurons in layer II and pyramidal cells in layer III when applied to the outer layers of the entorhinal cortex. Small injections of biocytin within the dentate gyrus displayed living granule cells and the maintenance of their projection to the pyramidal cells in CA3, i.e., a typical suprapyramidal plexus of mossy fibers. The presence of axons of entorhinal neurons traveling towards the hippocampus and growth cones traversing the deep layers of the entorhinal cortex indicate that both brain regions are still interacting. Immunocytochemistry for calbindin D-28K revealed labeled neurons in layer II of the entorhinal cortex and dentate granule cells which are known to contain this calcium-binding protein.
Collapse
Affiliation(s)
- S Diekmann
- Zentrum der Morphologie, Johann Wolfgang-Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|