1
|
Sadeghinezhad J, Ebrahimi M, Lehi MH. Volumetric study on sheep brain using stereology technique. Anat Histol Embryol 2024; 53:e13072. [PMID: 38859689 DOI: 10.1111/ahe.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Three-dimensional morphometric data better show the structural and functional characteristics of the brain. The objective of this study was to estimate the volume of the cerebral structures of the sheep using design-based stereology. The brains of five sheep were used, fixed in formalin 10% and embedded in agar 6%. An average of 10-12 slab was obtained from each brain. All slabs were stained using Mulligan's method and photographs were recorded. The volume of the brain and its structures were estimated using the Cavalieri's estimator and the point counting system. The total volume was 70604.8 ± 132.45 mm3. The volume fractions of the grey and white matters were calculated as 42.55 ± 0.21% and 24.23 ± 0.51% of the whole brain, respectively. The fractional volume of the caudate nucleus and claustrum were estimated at 2.39 ± 0.08% and at 1.008 ± 0.057% of total brain volume. The volumes of corpus callosum, internal capsule and external capsule were 1.24 ± 0.053%, 3.63 ± 0.22% and 0.698 ± 0.049% of total cerebral volume, respectively. These data could help improve the veterinary comparative neuroanatomy knowledge and development of experimental studies in the field.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohamad Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Heydari Lehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Netzley AH, Pelled G. The Pig as a Translational Animal Model for Biobehavioral and Neurotrauma Research. Biomedicines 2023; 11:2165. [PMID: 37626662 PMCID: PMC10452425 DOI: 10.3390/biomedicines11082165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
In recent decades, the pig has attracted considerable attention as an important intermediary model animal in translational biobehavioral research due to major similarities between pig and human neuroanatomy, physiology, and behavior. As a result, there is growing interest in using pigs to model many human neurological conditions and injuries. Pigs are highly intelligent and are capable of performing a wide range of behaviors, which can provide valuable insight into the effects of various neurological disease states. One area in which the pig has emerged as a particularly relevant model species is in the realm of neurotrauma research. Indeed, the number of investigators developing injury models and assessing treatment options in pigs is ever-expanding. In this review, we examine the use of pigs for cognitive and behavioral research as well as some commonly used physiological assessment methods. We also discuss the current usage of pigs as a model for the study of traumatic brain injury. We conclude that the pig is a valuable animal species for studying cognition and the physiological effect of disease, and it has the potential to contribute to the development of new treatments and therapies for human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alesa H. Netzley
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Dudek SM, Phoenix AN, Scappini E, Shepeleva DV, Herbeck YE, Trut LN, Farris S, Kukekova AV. Defining hippocampal area CA2 in the fox (Vulpes vulpes) brain. Hippocampus 2023; 33:700-711. [PMID: 37159095 PMCID: PMC10274530 DOI: 10.1002/hipo.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.
Collapse
Affiliation(s)
- Serena M Dudek
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Ashley N Phoenix
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Erica Scappini
- National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Darya V Shepeleva
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Yury E Herbeck
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lyudmila N Trut
- Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russian Federation
| | - Shannon Farris
- Fralin Biomedical Research Institute, Virginia Tech, Roanoke, Virginia, USA
| | - Anna V Kukekova
- Department of Animal Science, The University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Maliković J, Amrein I, Vinciguerra L, Lalošević D, Wolfer DP, Slomianka L. Cell numbers in the reflected blade of CA3 and their relation to other hippocampal principal cell populations across seven species. Front Neuroanat 2023; 16:1070035. [PMID: 36686574 PMCID: PMC9846821 DOI: 10.3389/fnana.2022.1070035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The hippocampus of many mammals contains a histoarchitectural region that is not present in laboratory mice and rats-the reflected blade of the CA3 pyramidal cell layer. Pyramidal cells of the reflected blade do not extend dendrites into the hippocampal molecular layer, and recent evidence indicates that they, like the proximal CA3 pyramids in laboratory rats and mice, partially integrate functionally with the dentate circuitry in pattern separation. Quantitative assessments of phylogenetic or disease-related changes in the hippocampal structure and function treat the reflected blade heterogeneously. Depending on the ease with which it can be differentiated, it is either assigned to the dentate hilus or to the remainder of CA3. Here, we investigate the impact that the differential assignment of reflected blade neurons may have on the outcomes of quantitative comparisons. We find it to be massive. If reflected blade neurons are treated as a separate entity or pooled with dentate hilar cells, the quantitative makeup of hippocampal cell populations can differentiate between species in a taxonomically sensible way. Assigning reflected blade neurons to CA3 greatly diminishes the differentiating power of all hippocampal principal cell populations, which may point towards a quantitative hippocampal archetype. A heterogeneous assignment results in a differentiation pattern with little taxonomic semblance. The outcomes point towards the reflected blade as either a major potential player in hippocampal functional and structural differentiation or a region that may have cloaked that hippocampi are more similarly organized across species than generally believed.
Collapse
Affiliation(s)
- Jovana Maliković
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | | | - David P. Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland,Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland,*Correspondence: Lutz Slomianka
| |
Collapse
|
5
|
Farias SDS, Dierings AC, Mufalo VC, Sabei L, Parada Sarmiento M, da Silva AN, Ferraz PA, Pugliesi G, Ribeiro CVDM, Oliveira CADA, Zanella AJ. Asinine milk mitigates stress-mediated immune, cortisol and behavioral responses of piglets to weaning: A study to foster future interventions in humans. Front Immunol 2023; 14:1139249. [PMID: 37122716 PMCID: PMC10140756 DOI: 10.3389/fimmu.2023.1139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The present study assessed whether asinine milk supplementation improved the immune and behavioral responses of piglets during an early life weaning stress event as a model for its future use in humans. Methods For this, 48 piglets from 4 different litters were used. At 20 days of age, piglets were weighed and allocated with their litter and dam into group pens until 28 days of age. Four piglets from each litter were then randomly assigned to either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk supplementation (n = 16) or (3) no supplementation (n = 16; control group). The supplementations were voluntarily administered for 3 days preweaning and 3 days postweaning using a baby bottle. The effects on the weaning stress response were assessed through salivary cortisol measurements; behavioral tests such as the open field, novel object end elevated plus maze tests; and gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined by RT-qPCR and normalized to GAPDH and UBB. To test the effect of the supplementations on weight, milk intake, gene expression, and behavior, a randomized block design was used with repeated measurements over time by the PROC MIXED procedure. Results and discussion The effects on salivary cortisol were determined using the ratio between the morning and afternoon concentrations, considering the time before and after the weaning event. Principal component analysis (PCA) and Fisher's test were performed to evaluate the behavior test data. When comparing salivary cortisol concentrations between the pre- and postweaning periods, there was a difference (p < 0.05) between the supplementation groups in the afternoon period, suggesting that piglets fed asinine milk had lower afternoon cortisol concentrations postweaning than their counterparts. For the behavioral tests, the supplementations had no measurable effects. No difference was between groups pre- and postweaning for the expression of HSD11B2, which codes for an enzyme that breaks down cortisol. However, the expression of NR3C1, which encodes the glucocorticoid receptor, was significantly upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05). Conclusion Asinine milk downregulated 1L1B gene expression, which codes for an inflammatory cytokine. In conclusion, these results suggest that supplementation with asinine milk may represent a strategy to diminish the damage associated with an early life event by modulating IL1B expression and reducing salivary cortisol levels in piglets undergoing weaning stress. Further transcriptomic and metabolomic studies may improve our understanding of the molecular pathways that mediate this systemic immune-mediated response.
Collapse
Affiliation(s)
- Sharacely de Souza Farias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| | - Ana Carolina Dierings
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vinicius Cardoso Mufalo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marisol Parada Sarmiento
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudio Vaz Di Mambro Ribeiro
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Chiara Albano de Araujo Oliveira
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| |
Collapse
|
6
|
Scheulin KM, Jurgielewicz BJ, Spellicy SE, Waters ES, Baker EW, Kinder HA, Simchick GA, Sneed SE, Grimes JA, Zhao Q, Stice SL, West FD. Exploring the predictive value of lesion topology on motor function outcomes in a porcine ischemic stroke model. Sci Rep 2021; 11:3814. [PMID: 33589720 PMCID: PMC7884696 DOI: 10.1038/s41598-021-83432-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Harnessing the maximum diagnostic potential of magnetic resonance imaging (MRI) by including stroke lesion location in relation to specific structures that are associated with particular functions will likely increase the potential to predict functional deficit type, severity, and recovery in stroke patients. This exploratory study aims to identify key structures lesioned by a middle cerebral artery occlusion (MCAO) that impact stroke recovery and to strengthen the predictive capacity of neuroimaging techniques that characterize stroke outcomes in a translational porcine model. Clinically relevant MRI measures showed significant lesion volumes, midline shifts, and decreased white matter integrity post-MCAO. Using a pig brain atlas, damaged brain structures included the insular cortex, somatosensory cortices, temporal gyri, claustrum, and visual cortices, among others. MCAO resulted in severely impaired spatiotemporal gait parameters, decreased voluntary movement in open field testing, and higher modified Rankin Scale scores at acute timepoints. Pearson correlation analyses at acute timepoints between standard MRI metrics (e.g., lesion volume) and functional outcomes displayed moderate R values to functional gait outcomes. Moreover, Pearson correlation analyses showed higher R values between functional gait deficits and increased lesioning of structures associated with motor function, such as the putamen, globus pallidus, and primary somatosensory cortex. This correlation analysis approach helped identify neuroanatomical structures predictive of stroke outcomes and may lead to the translation of this topological analysis approach from preclinical stroke assessment to a clinical biomarker.
Collapse
Affiliation(s)
- Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
| | | | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Gregory A Simchick
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Physics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA
- Aruna Bio Inc, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA.
- Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, USA.
| |
Collapse
|
7
|
Shin SK, Kaiser EE, West FD. Alcohol Induced Brain and Liver Damage: Advantages of a Porcine Alcohol Use Disorder Model. Front Physiol 2021; 11:592950. [PMID: 33488396 PMCID: PMC7818780 DOI: 10.3389/fphys.2020.592950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Alcohol is one of the most commonly abused intoxicants with 1 in 6 adults at risk for alcohol use disorder (AUD) in the United States. As such, animal models have been extensively investigated with rodent AUD models being the most widely studied. However, inherent anatomical and physiological differences between rodents and humans pose a number of limitations in studying the complex nature of human AUD. For example, rodents differ from humans in that rodents metabolize alcohol rapidly and do not innately demonstrate voluntary alcohol consumption. Comparatively, pigs exhibit similar patterns observed in human AUD including voluntary alcohol consumption and intoxication behaviors, which are instrumental in establishing a more representative AUD model that could in turn delineate the risk factors involved in the development of this disorder. Pigs and humans also share anatomical similarities in the two major target organs of alcohol- the brain and liver. Pigs possess gyrencephalic brains with comparable cerebral white matter volumes to humans, thus enabling more representative evaluations of susceptibility and neural tissue damage in response to AUD. Furthermore, similarities in the liver result in a comparable rate of alcohol elimination as humans, thus enabling a more accurate extrapolation of dosage and intoxication level to humans. A porcine model of AUD possesses great translational potential that can significantly advance our current understanding of the complex development and continuance of AUD in humans.
Collapse
Affiliation(s)
- Soo K Shin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Erin E Kaiser
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States.,Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Brückmann R, Tuchscherer M, Tuchscherer A, Gimsa U, Kanitz E. Early-Life Maternal Deprivation Predicts Stronger Sickness Behaviour and Reduced Immune Responses to Acute Endotoxaemia in a Pig Model. Int J Mol Sci 2020; 21:ijms21155212. [PMID: 32717860 PMCID: PMC7432595 DOI: 10.3390/ijms21155212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
Early-life adversity may have programming effects on neuroendocrine and immune adaptation mechanisms in humans and socially living animals. Using a pig model, we investigated the effect of daily 2-h maternal and littermate deprivation from postnatal days 2–15, either alone (DA) or in a group of littermates (DG) on the neuroendocrine, immunological and behavioural responses of piglets challenged with the bacterial endotoxin lipopolysaccharide (LPS) on day 42. LPS increased plasma concentrations of cortisol, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) and induced typical signs of sickness in all piglets. DA+DG piglets showed stronger signs of sickness compared to control (C) piglets. Plasma TNF-α concentrations were significantly lower in DA+DG males. In addition, the TNF-α/IL-10 ratio was significantly lower in DA than in DG and C males. Gene expression analyses showed lower hypothalamic TNF-α mRNA expression and diminished mRNA expression of the mineralocorticoid receptor (MR) and IL-10 in the amygdala of DA+DG piglets in response to LPS. Interestingly, males showed a higher MR- and a lower IL-10 mRNA expression in the amygdala than females. The present data suggest that repeated maternal deprivation during early life may alter neuroendocrine and immune responses to acute endotoxaemia in a sex-specific manner.
Collapse
Affiliation(s)
- Roberto Brückmann
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Margret Tuchscherer
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Ulrike Gimsa
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| | - Ellen Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (R.B.); (M.T.)
- Correspondence: (U.G.); (E.K.); Tel.: +49-38208-68-803 (U.G.); +49-38208-68-807 (E.K.)
| |
Collapse
|
9
|
Fang X, Sun W, Jeon J, Azain M, Kinder H, Ahn J, Chung HC, Mote RS, Filipov NM, Zhao Q, Rayalam S, Park HJ. Perinatal Docosahexaenoic Acid Supplementation Improves Cognition and Alters Brain Functional Organization in Piglets. Nutrients 2020; 12:E2090. [PMID: 32679753 PMCID: PMC7400913 DOI: 10.3390/nu12072090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022] Open
Abstract
Epidemiologic studies associate maternal docosahexaenoic acid (DHA)/DHA-containing seafood intake with enhanced cognitive development; although, it should be noted that interventional trials show inconsistent findings. We examined perinatal DHA supplementation on cognitive performance, brain anatomical and functional organization, and the brain monoamine neurotransmitter status of offspring using a piglet model. Sows were fed a control (CON) or a diet containing DHA (DHA) from late gestation throughout lactation. Piglets underwent an open field test (OFT), an object recognition test (ORT), and magnetic resonance imaging (MRI) to acquire anatomical, diffusion tensor imaging (DTI), and resting-state functional MRI (rs-fMRI) at weaning. Piglets from DHA-fed sows spent 95% more time sniffing the walls than CON in OFT and exhibited an elevated interest in the novel object in ORT, while CON piglets demonstrated no preference. Maternal DHA supplementation increased fiber length and tended to increase fractional anisotropy in the hippocampus of offspring than CON. DHA piglets exhibited increased functional connectivity in the cerebellar, visual, and default mode network and decreased activity in executive control and sensorimotor network compared to CON. The brain monoamine neurotransmitter levels did not differ in healthy offspring. Perinatal DHA supplementation may increase exploratory behaviors, improve recognition memory, enhance fiber tract integrity, and alter brain functional organization in offspring at weaning.
Collapse
Affiliation(s)
- Xi Fang
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Wenwu Sun
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Julie Jeon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| | - Michael Azain
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Holly Kinder
- Department of Animal and Dairy Science, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (M.A.); (H.K.)
| | - Jeongyoun Ahn
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Hee Cheol Chung
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (J.A.); (H.C.C.)
| | - Ryan S. Mote
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Nikolay M. Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (R.S.M.); (N.M.F.)
| | - Qun Zhao
- Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; (W.S.); (Q.Z.)
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA; (X.F.); (J.J.)
| |
Collapse
|
10
|
Simchick G, Shen A, Campbell B, Park HJ, West FD, Zhao Q. Pig Brains Have Homologous Resting-State Networks with Human Brains. Brain Connect 2019; 9:566-579. [PMID: 31115245 DOI: 10.1089/brain.2019.0673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many neurological and psychiatric diseases in humans are caused by disruptions to large-scale functional properties of the brain, including functional connectivity. There has been growing interest in discovering the functional organization of brain networks in larger animal models. As a result, the use of translational pig models in neuroscience has significantly increased in the past decades. The gyrencephalic pig brain resembles the human brain more in anatomy, growth, and development than the brains of commonly used small laboratory animals such as rodents. In this work, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) data were acquired from a group of pigs (n = 12). rs-fMRI data were analyzed for resting-state networks (RSNs) by using independent component analysis and sparse dictionary learning. Six RSNs (executive control, cerebellar, sensorimotor, visual, auditory, and default mode) were detected that resemble their counterparts in human brains, as measured by Pearson spatial correlations and mean ratios. Supporting evidence of the validity of these RSNs was provided through the evaluation and quantification of structural connectivity measures (mean diffusivity, fractional anisotropy, fiber length, and fiber density) estimated from the DTI data. This study shows that as a translational, large animal model, pigs demonstrate great potential for mapping connectome-scale functional connectivity in experimental modeling of human brain disorders.
Collapse
Affiliation(s)
- Gregory Simchick
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| | - Alice Shen
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia
| | - Brandon Campbell
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Qun Zhao
- Bio-Imaging Research Center, University of Georgia, Athens, Georgia.,Department of Physics and Astronomy, University of Georgia, Athens, Georgia.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Spatial T-maze identifies cognitive deficits in piglets 1 month after hypoxia-ischemia in a model of hippocampal pyramidal neuron loss and interneuron attrition. Behav Brain Res 2019; 369:111921. [PMID: 31009645 DOI: 10.1016/j.bbr.2019.111921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Neonatal brain injury from hypoxia-ischemia (HI) causes major morbidity. Piglet HI is an established method for testing neuroprotective treatments in large, gyrencephalic brain. Though many neurobehavior tests exist for rodents, such tests and their associations with neuropathologic injury remain underdeveloped and underutilized in large, neonatal HI animal models. We examined whether spatial T-maze and inclined beam tests distinguish cognitive and motor differences between HI and sham piglets and correlate with neuropathologic injury. Neonatal piglets were randomized to whole-body HI or sham procedure, and they began T-maze and inclined beam testing 17 days later. HI piglets had more incorrect T-maze turns than did shams. Beam walking time did not differ between groups. Neuropathologic evaluations at 33 days validated the injury with putamen neuron loss after HI to below that of sham procedure. HI decreased the numbers of CA3 pyramidal neurons but not CA1 pyramidal neurons or dentate gyrus granule neurons. Though the number of hippocampal parvalbumin-positive interneurons did not differ between groups, HI reduced the number of CA1 interneuron dendrites. Piglets with more incorrect turns had greater CA3 neuron loss, and piglets that took longer in the maze had fewer CA3 interneurons. The number of putamen neurons was unrelated to T-maze or beam performance. We conclude that neonatal HI causes hippocampal CA3 neuron loss, CA1 interneuron dendritic attrition, and putamen neuron loss at 1-month recovery. The spatial T-maze identifies learning and memory deficits that are related to loss of CA3 pyramidal neurons and fewer parvalbumin-positive interneurons independent of putamen injury.
Collapse
|
13
|
Restoration of brain circulation and cellular functions hours post-mortem. Nature 2019; 568:336-343. [PMID: 30996318 DOI: 10.1038/s41586-019-1099-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain. With this system, we observed preservation of cytoarchitecture; attenuation of cell death; and restoration of vascular dilatory and glial inflammatory responses, spontaneous synaptic activity, and active cerebral metabolism in the absence of global electrocorticographic activity. These findings demonstrate that under appropriate conditions the isolated, intact large mammalian brain possesses an underappreciated capacity for restoration of microcirculation and molecular and cellular activity after a prolonged post-mortem interval.
Collapse
|
14
|
Watson C, Binks D. Elongation of the CA1 field of the septal hippocampus in ungulates. J Comp Neurol 2019; 527:818-832. [PMID: 30393922 DOI: 10.1002/cne.24573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/06/2022]
Abstract
It is widely assumed that the hippocampal formation seen in laboratory rodents and in primates is typical of that seen in other mammals. We have tested this assumption by examining sections of brains of 56 mammals from 20 mammalian orders from images on the brainmuseum.org website. We found wide variation in the form of the hippocampal formation, the most extreme examples of which are seen in ungulates, which possess an unusual elongation of the distal CA1 of the septal hippocampus. This phenomenon has not previously been reported. In individual coronal sections of the brains of seven artiodactyl ungulates, the pyramidal layer of CA1 is four times as long as CA2 + CA3. In a perissodactyl ungulate (Burchell's zebra) the distal end of CA1 is so large that it forms a number of folds. A similar but less pronounced CA1 elongation was seen in the brains of 14 carnivores. A modest elongation of CA1 is also present in some other placental mammals, notably the elephant shrew, hyrax, capybara, beaver, and rabbit. The elongation was not present in brains of primates, marsupials, or monotremes. The distal part of CA1 has been shown to play a role in object integration into the spatial map. We hypothesize that the distal CA1 enlargement could serve to enhance the ability to integrate objects into spatial navigation, which would be an advantage for migrating herds of ungulates. We suggest that the remarkable elongation of Q5 CA1 represents a major evolutionary specialization in the ungulates.
Collapse
Affiliation(s)
- Charles Watson
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Daniel Binks
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,Perron Institute of Neurological and Translational Science
| |
Collapse
|
15
|
Kinder HA, Baker EW, West FD. The pig as a preclinical traumatic brain injury model: current models, functional outcome measures, and translational detection strategies. Neural Regen Res 2019; 14:413-424. [PMID: 30539807 PMCID: PMC6334610 DOI: 10.4103/1673-5374.245334] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models-the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Emily W Baker
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Regenerative Bioscience Center; Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Ulyanova AV, Koch PF, Cottone C, Grovola MR, Adam CD, Browne KD, Weber MT, Russo RJ, Gagnon KG, Smith DH, Isaac Chen H, Johnson VE, Kacy Cullen D, Wolf JA. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. eNeuro 2018; 5:ENEURO.0102-18.2018. [PMID: 30229132 PMCID: PMC6142048 DOI: 10.1523/eneuro.0102-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.
Collapse
Affiliation(s)
| | - Paul F. Koch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Cottone
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael R. Grovola
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Christopher D. Adam
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Kevin D. Browne
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Maura T. Weber
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robin J. Russo
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kimberly G. Gagnon
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - D. Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - John A. Wolf
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
17
|
Gimsa U, Tuchscherer M, Kanitz E. Psychosocial Stress and Immunity-What Can We Learn From Pig Studies? Front Behav Neurosci 2018; 12:64. [PMID: 29666573 PMCID: PMC5891618 DOI: 10.3389/fnbeh.2018.00064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Psychosocial stress may impair immune functions and provoke the development of pathologies. The underlying communication between the brain and the immune system is being studied predominantly in rodents. However, pigs offer several advantages as preclinical models for humans because pigs are more similar to humans than rodents in many anatomical and physiological characteristics. Unlike in rodents, the main stress-induced glucocorticoid in humans and pigs is cortisol with a similar circadian rhythm. In this study, we summarize data on short-term and long-term effects of social stress in pigs for their immunity and neuroendocrine regulation with consequences for their health and well-being. As typical social stressors, regrouping, crowding, social isolation, and maternal deprivation have been studied. Psychosocial stress in pigs may affect various reactions of innate and adaptive immunity, such as leukocyte distribution, cytokine secretion, lymphocyte proliferation, and antibody production as well as immune responses to viral infection or vaccination. Furthermore, social stress may induce or promote gastrointestinal diseases through dysregulation of inflammatory processes. In piglets, psychosocial stress may also result in glucocorticoid resistance of lymphocytes, which has been discussed as a cause of allergic asthma in humans. Stress-related neuroendocrine alterations in the cortico-limbic structures, such as the prefrontal cortex, amygdala, hippocampus and hypothalamus, have been demonstrated in pigs at different ages. Based on these data, we propose using pigs as models for psychosocial stress in humans to study the mechanisms of brain-to-immune and immune-to-brain communication from the systemic level down to the cellular and subcellular levels.
Collapse
Affiliation(s)
- Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Margret Tuchscherer
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ellen Kanitz
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
18
|
Pascalau R, Szabo B. Fibre Dissection and Sectional Study of the Major Porcine Cerebral White Matter Tracts. Anat Histol Embryol 2017; 46:378-390. [PMID: 28677169 DOI: 10.1111/ahe.12280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2017] [Indexed: 01/19/2023]
Abstract
White matter anatomy is the basis for numerous applications in neurology, neurosurgery and fundamental neuroscience. Although the porcine brain is frequently used as experimental model in these fields of research, the description of its white matter is not as thorough as in the human brain or other species. Thus, the aim of this study is to describe the porcine white matter tracts in a complex manner. Two stepwise dissection protocols adapted from human anatomy were performed on six adult pig brain hemispheres prepared according to the Klingler method. Other four hemispheres were sectioned along section planes that were chosen similar to the Talairach coordinate system. As a result, three commissural tracts, seven association tracts and one projection tract were identified: corpus callosum, fornix, commissura rostralis, the short-association tracts, fasciculus longitudinalis superior, fasciculus uncinatus, fasciculus longitudinalis inferior, fasciculus occipitofrontalis inferior, cingulum, tractus mamillothalamicus and capsula interna. They were described and illustrated from multiple points of view, focusing on their trajectory, position, dimensions and anatomical relations. All in all, we achieved a three-dimensional understanding of the major tracts. The results are ready to be applied in future imagistic or experimental studies.
Collapse
Affiliation(s)
- R Pascalau
- Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012, Cluj-Napoca, Romania
| | - B Szabo
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Street, 400012, Cluj-Napoca, Romania.,Department of Ophthalmology, Emergency County Hospital, 3-5 Clinicilor Street, 400006, Cluj-Napoca, Romania
| |
Collapse
|
19
|
van Dijk RM, Huang SH, Slomianka L, Amrein I. Taxonomic Separation of Hippocampal Networks: Principal Cell Populations and Adult Neurogenesis. Front Neuroanat 2016; 10:22. [PMID: 27013984 PMCID: PMC4783399 DOI: 10.3389/fnana.2016.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis (AHN) in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates) are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non-rodent species, and support emerging concepts of functional and structural interactions between CA3 and the dentate gyrus.
Collapse
Affiliation(s)
- R Maarten van Dijk
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland; Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH ZurichZürich, Switzerland
| | - Shih-Hui Huang
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland; Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH ZurichZürich, Switzerland
| | - Lutz Slomianka
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich Zurich, Switzerland
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of ZürichZurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH ZurichZürich, Switzerland
| |
Collapse
|
20
|
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2015; 238:267-87. [DOI: 10.1002/path.4654] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ida E Holm
- Department of Pathology; Randers Hospital; 8930 Randers Denmark
- Department of Clinical Medicine; Aarhus University; 8000 Aarhus C Denmark
| | | | - Yonglun Luo
- Department of Biomedicine; Aarhus University; 8000 Aarhus C Denmark
| |
Collapse
|
21
|
Slomianka L, Drenth T, Cavegn N, Menges D, Lazic SE, Phalanndwa M, Chimimba CT, Amrein I. The hippocampus of the eastern rock sengi: cytoarchitecture, markers of neuronal function, principal cell numbers, and adult neurogenesis. Front Neuroanat 2013; 7:34. [PMID: 24194702 PMCID: PMC3810719 DOI: 10.3389/fnana.2013.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 12/04/2022] Open
Abstract
The brains of sengis (elephant shrews, order Macroscelidae) have long been known to contain a hippocampus that in terms of allometric progression indices is larger than that of most primates and equal in size to that of humans. In this report, we provide descriptions of hippocampal cytoarchitecture in the eastern rock sengi (Elephantulus myurus), of the distributions of hippocampal calretinin, calbindin, parvalbumin, and somatostatin, of principal neuron numbers, and of cell numbers related to proliferation and neuronal differentiation in adult hippocampal neurogenesis. Sengi hippocampal cytoarchitecture is an amalgamation of characters that are found in CA1 of, e.g., guinea pig and rabbits and in CA3 and dentate gyrus of primates. Correspondence analysis of total cell numbers and quantitative relations between principal cell populations relate this sengi to macaque monkeys and domestic pigs, and distinguish the sengi from distinct patterns of relations found in humans, dogs, and murine rodents. Calretinin and calbindin are present in some cell populations that also express these proteins in other species, e.g., interneurons at the stratum oriens/alveus border or temporal hilar mossy cells, but neurons expressing these markers are often scarce or absent in other layers. The distributions of parvalbumin and somatostatin resemble those in other species. Normalized numbers of PCNA+ proliferating cells and doublecortin-positive (DCX+) differentiating cells of neuronal lineage fall within the overall ranges of murid rodents, but differed from three murid species captured in the same habitat in that fewer DCX+ cells relative to PCNA+ were observed. The large and well-differentiated sengi hippocampus is not accompanied by correspondingly sized cortical and subcortical limbic areas that are the main hippocampal sources of afferents and targets of efferents. This points to intrinsic hippocampal information processing as the selective advantage of the large sengi hippocampus.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Tanja Drenth
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Nicole Cavegn
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Dominik Menges
- Institute of Anatomy, University of ZürichZürich, Switzerland
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical ResearchBasel, Switzerland
| | - Mashudu Phalanndwa
- Mammal Research Institute, Department of Zoology and Entomology, University of PretoriaHatfield, South Africa
- Western Cape Nature Conservation Board (CapeNature)Cape Town, South Africa
| | - Christian T. Chimimba
- Mammal Research Institute, Department of Zoology and Entomology, University of PretoriaHatfield, South Africa
- Department of Science and Technology-National Research Foundation Centre of Excellence for Invasion Biology, Department of Zoology and Entomology University of PretoriaHatfield, South Africa
| | - Irmgard Amrein
- Institute of Anatomy, University of ZürichZürich, Switzerland
| |
Collapse
|
22
|
Magnetic resonance imaging evaluation of Yukatan minipig brains for neurotherapy applications. Lab Anim Res 2011; 27:309-16. [PMID: 22232639 PMCID: PMC3251761 DOI: 10.5625/lar.2011.27.4.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/10/2011] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) of six Yukatan minipig brains was performed. The animals were placed in stereotaxic conditions currently used in experiments. To allow for correctpositioning of the animal in the MRI instrument, landmarks were previously traced on the snout of the pig. To avoid movements, animal were anesthetized. The animals were placed in a prone position in a Siemens Magnetom Avanto 1.5 System with a head coil. Axial T2-weighted and sagittal T1-weighted MRI images were obtained from each pig. Afterwards, the brains of the pigs were fixed and cut into axial sections. Histologic and MR images were compared. The usefulness of this technique is discussed.
Collapse
|
23
|
Guidi S, Bianchi P, Alstrup AKO, Henningsen K, Smith DF, Bartesaghi R. Postnatal neurogenesis in the hippocampal dentate gyrus and subventricular zone of the Göttingen minipig. Brain Res Bull 2011; 85:169-79. [PMID: 21501667 DOI: 10.1016/j.brainresbull.2011.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 01/18/2023]
Abstract
Postnatal neurogenesis is currently viewed as important for neuroplasticity and brain repair. We are, therefore, interested in animal models for neuroimaging of postnatal neurogenesis. A recent stereological study found an age-dependent increase in the number of neurons and glial cells in the neocortex of Göttingen minipigs, suggesting that this species may be characterized by a prolonged postnatal neurogenesis. Since there is no direct evidence on this issue, the goal of our study was to quantify cell proliferation in the two major neurogenic regions of the postnatal brain - the subventricular zone of the lateral ventricle (SVZ) and the hippocampal dentate gyrus (DG) - at two separate points during the lifespan of the minipig. Göttingen minipigs aged 6-7 and 32 weeks were injected with bromodeoxyuridine (BrdU), a marker of cycling cells, and killed after 2h. We found BrdU-positive cells numbering 165,000 in the SVZ and 35,000 in the DG at 6-7 weeks and 66,000 in the SVZ and 19,000 in the DG at 32 weeks-of-age. Stereology showed a 60% increase in the total number of DG granule cells between 6-7 and 32 weeks-of-age. Our findings show a continued postnatal neurogenesis in the major neurogenic regions of Göttingen minipigs, thereby providing a potential animal model for studies aimed at examining ongoing neurogenesis in the living brain with molecular neuroimaging technology.
Collapse
Affiliation(s)
- Sandra Guidi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Piazza di Porta San Donato 2, I-40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Kornum BR, Knudsen GM. Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neurosci Biobehav Rev 2011; 35:437-51. [DOI: 10.1016/j.neubiorev.2010.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/16/2022]
|
25
|
Saikali S, Meurice P, Sauleau P, Eliat PA, Bellaud P, Randuineau G, Vérin M, Malbert CH. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods 2010; 192:102-9. [PMID: 20692291 DOI: 10.1016/j.jneumeth.2010.07.041] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
We used high-magnetic field (4.7 T) magnetic resonance imaging (MRI) to build the first high-resolution (100 microm x 150 microm x 100 microm) three-dimensional (3D) digital atlas in stereotaxic coordinates of the brain of a female domestic pig (Sus scrofa domesticus). This atlas was constructed from one hemisphere which underwent a symmetrical transformation through the midsagittal plane. Concomitant construction of a 3D histological atlas based on the same scheme facilitated control of deep brain structure delimitation and enabled cortical mapping to be achieved. The atlas contains 178 individual cerebral structures including 42 paired and 9 single deep brain structures, 5 ventricular system areas, 6 paired deep cerebellar nuclei, 12 cerebellar lobules and 28 cortical areas per hemisphere. Given the increasing importance of pig brains in medical research, this atlas should be a useful tool for intersubject normalization in anatomical imaging as well as for precisely localizing brain areas in functional MR studies or electrode implantation trials. The atlas can be freely downloaded from our institution's Website.
Collapse
Affiliation(s)
- Stéphan Saikali
- Département d'Anatomie et Cytologie Pathologiques, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 09, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Eriksen N, Rostrup E, Andersen K, Lauritzen MJ, Fabricius M, Larsen VA, Dreier JP, Strong AJ, Hartings JA, Pakkenberg B. Application of stereological estimates in patients with severe head injuries using CT and MR scanning images. Br J Radiol 2010; 83:307-17. [PMID: 19690078 PMCID: PMC3473455 DOI: 10.1259/bjr/18575224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 02/28/2009] [Accepted: 03/27/2009] [Indexed: 11/05/2022] Open
Abstract
Severe brain damage is often followed by serious complications. Quantitative measurements, such as regional volume and surface area under various conditions, are essential for understanding functional changes in the brain and assessing prognosis. The affected brain tissue is variable, hence traditional imaging methods are not always applicable and automatic methods may not be able to match the individual observer. Stereological techniques are alternative tools in the quantitative description of biological structures, and have been increasingly applied to the human brain. In the present study, we applied stereological techniques to representative CT and MRI brain scans from five patients to describe how stereological methods, when applied to scans of trauma patients, can provide a useful supplement to the estimation of structural brain changes in head injuries. The reliability of the estimates was tested by obtaining repeated intra- and interobserver estimates of selected subdivisions of the brain in patients with acute head injury, as well as in an MR phantom. The estimates of different subdivisions showed a coefficient of variation (CV) below 12% in the patients and below 7% for phantom estimation. The validity of phantom estimates was tested by the average deviation from the true geometric values, and was below 10%. The stereological methods were compared with more traditional region-based methods performed on medical imaging, which showed a CV below 7% and bias below 14%. It is concluded that the stereological estimates may be useful tools in head injury quantification.
Collapse
Affiliation(s)
- N Eriksen
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital Bispebjerg.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Amrein I, Slomianka L. A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis. Brain Res 2010; 1328:12-24. [DOI: 10.1016/j.brainres.2010.02.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/25/2022]
|
28
|
Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 2009; 18:545-58. [DOI: 10.1007/s11248-009-9245-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
29
|
|
30
|
Blaabjerg M, Zimmer J. The dentate mossy fibers: structural organization, development and plasticity. PROGRESS IN BRAIN RESEARCH 2007; 163:85-107. [PMID: 17765713 DOI: 10.1016/s0079-6123(07)63005-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving and taking interesting turns, the mossy fibers display a number of unique features with regard to axonal projections, terminal structures and synaptic contacts, development and variations among species and strains, as well as to normal occurring and lesion-induced plasticity and neural transplantation. These features are the topic of this review, which will use the mossy fiber system of the rat as basis and reference in its aim to provide an up-to-date, yet historically based guide to students in the field.
Collapse
Affiliation(s)
- Morten Blaabjerg
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C, Denmark
| | | |
Collapse
|
31
|
Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: Modeling brain disorders. Neurosci Biobehav Rev 2007; 31:728-51. [PMID: 17445892 DOI: 10.1016/j.neubiorev.2007.02.003] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 02/05/2007] [Accepted: 02/18/2007] [Indexed: 11/22/2022]
Abstract
The use of pigs in neuroscience research has increased in the past decade, which has seen broader recognition of the potential of pigs as an animal for experimental modeling of human brain disorders. The volume of available background data concerning pig brain anatomy and neurochemistry has increased considerably in recent years. The pig brain, which is gyrencephalic, resembles the human brain more in anatomy, growth and development than do the brains of commonly used small laboratory animals. The size of the pig brain permits the identification of cortical and subcortical structures by imaging techniques. Furthermore, the pig is an increasingly popular laboratory animal for transgenic manipulations of neural genes. The present paper focuses on evaluating the potential for modeling symptoms, phenomena or constructs of human brain diseases in pigs, the neuropsychiatric disorders in particular. Important practical and ethical aspects of the use of pigs as an experimental animal as pertaining to relevant in vivo experimental brain techniques are reviewed. Finally, current knowledge of aspects of behavioral processes including learning and memory are reviewed so as to complete the summary of the status of pigs as a species suitable for experimental models of diverse human brain disorders.
Collapse
Affiliation(s)
- Nanna Marie Lind
- Department of Experimental Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
32
|
Jelsing J, Nielsen R, Olsen AK, Grand N, Hemmingsen R, Pakkenberg B. The postnatal development of neocortical neurons and glial cells in the Göttingen minipig and the domestic pig brain. ACTA ACUST UNITED AC 2006; 209:1454-62. [PMID: 16574805 DOI: 10.1242/jeb.02141] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first mathematically unbiased estimates of neocortical cell numbers are presented from the developing pig brain, including a full description of tissue processing and optimal sampling for application of the stereological optical fractionator method in this species. The postnatal development of neocortical neurons and glial cells from the experimental Göttingen minipig was compared with the postnatal development of neocortical neurons in the domestic pig. A significant postnatal development was observed in the Göttingen minipig brain for both neuronal (28%; P=0.01) and glial cells (87%; P<0.01). A corresponding postnatal development of neurons was not detected in the domestic pig brain. The reason for this strain difference is not known. The mean total number of neocortical neurons is 324 million in the adult Göttingen minipig compared with 432 million in the domestic pig. The glial-to-neuron cell ratio is around 2.2 in the adult Göttingen minipig. Based on these results, the domestic pig seems to be a more suitable model for evaluating the effects of developmental insults on human brain growth and neuronal development than the Göttingen minipig.
Collapse
Affiliation(s)
- Jacob Jelsing
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital, Bispebjerg, Denmark.
| | | | | | | | | | | |
Collapse
|
33
|
van der Beek EM, Wiegant VM, Schouten WGP, van Eerdenburg FJCM, Loijens LWS, van der Plas C, Benning MA, de Vries H, de Kloet ER, Lucassen PJ. Neuronal number, volume, and apoptosis of the left dentate gyrus of chronically stressed pigs correlate negatively with basal saliva cortisol levels. Hippocampus 2004; 14:688-700. [PMID: 15318328 DOI: 10.1002/hipo.10213] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the consequences of stress and hypercortisolemia for the rodent hippocampal dentate gyrus (DG) are well known, little is known about other species. For pigs, tethered housing represents a well-established chronic stressor that shares many similarities with restraint paradigms, as evidenced by profound changes in behavior and autonomic and endocrine dysfunction, including flattened cortisol rhythms and hypercortisolemia--all conditions that may threaten hippocampal viability in rat. Here, we studied structural parameters of the porcine DG after 5 months of tethered housing in relation to basal saliva cortisol measured antemortem. We further investigated whether any neuropathology or alterations in apoptosis had occurred in the left hippocampal hemisphere. Stereological analysis revealed high correlations between DG volume and neuron number in individual animals in both hemispheres. Within individual animals, neuron numbers of the left and right lobes were not correlated. Notably, basal cortisol was negatively correlated with volume and neuron number of the left, but not the right DG. Although obvious neuropathology was absent, apoptosis was present in DG and alveus and less so in CA areas. Despite the short window of time during which apoptosis is detectable, their stereologically estimated numbers in the DG, but not in other regions, were negatively correlated with cortisol. In conclusion, our data indicate for the first time a profound lateralization in the relationship between DG structure, apoptosis, and basal cortisol after stress in pigs. Five months of chronic stress failed to induce lasting neuropathology. Although accumulating changes in apoptosis could have contributed to the structural DG alterations, further studies should reveal whether stress has been instrumental, or whether the differences between animals were present from birth onward. The present lateralization after stress is, however, consistent with lateralized hippocampal volume changes in stress-related human disorders and suggests that these effects are not limited to this species alone.
Collapse
Affiliation(s)
- Eline M van der Beek
- Human and Animal Physiology Group, Department of Animal Science, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abrahám H, Tóth Z, Seress L. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig. Hippocampus 2004; 14:385-401. [PMID: 15132437 DOI: 10.1002/hipo.10180] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calretinin-containing neurons in the hippocampal formation, including the subiculum, presubiculum, parasubiculum, and entorhinal cortex, were visualized with immunocytochemistry. Calretinin immunoreactivity was present exclusively in non-principal cells. The largest immunoreactive cell population was found in the outer half of the molecular layer of the dentate gyrus and in the stratum lacunosum-moleculare of Ammon's horn. A proportion of these cells were also immunoreactive for reelin, a Cajal-Retzius cell marker. Similar calretinin-positive cells were found in the molecular layer of the subicular complex and entorhinal cortex. In the parasubiculum, a few immunoreactive bipolar and multipolar cells could be observed in the superficial and deep pyramidal cell layers. In the entorhinal cortex, bipolar and multipolar calretinin-positive cells were frequent in layer II, and large numbers of multipolar cells in layer V were immunoreactive. Electron microscopic analysis showed that somata of calretinin-positive cells contained either round nuclei with smooth nuclear envelopes or nuclei with multiple deep infoldings. Immunoreactive dendrites were smooth varicose, and the apposing axon terminals formed both symmetric and asymmetric synapses. Zonula adherentia were observed between calretinin-positive dendrites. Calretinin-positive axon terminals formed two types of synapses. Axon terminals with asymmetric synapses were found close to the hippocampal fissure, whereas axon terminals forming symmetric synapses innervated spiny dendrites in both the molecular layer of the dentate gyrus and in stratum lacunosum-moleculare of Ammon's horn. Calretinin-positive axon terminals formed both symmetric and asymmetric synapses with calretinin-positive dendrites. In conclusion, calretinin-positive neurons form two major subpopulations in the adult domestic pig hippocampus: (1) a gamma-aminobutyric acid (GABA)ergic subpopulation of local circuit neurons that innervates distal dendrites of principal cells in both the dentate gyrus and in Ammon's horn; and (2) Cajal-Retzius type cells close to the hippocampal fissure, as well as in the molecular layer of the subicular complex and entorhinal cortex.
Collapse
Affiliation(s)
- Hajnalka Abrahám
- Central Electron Microscopic Laboratory, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | | | |
Collapse
|
35
|
Keuker JI, Vollmann-Honsdorf GK, Fuchs E. How to use the optical fractionator: an example based on the estimation of neurons in the hippocampal CA1 and CA3 regions of tree shrews. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:211-21. [PMID: 11431122 DOI: 10.1016/s1385-299x(01)00064-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, exposure of the hippocampus to prolonged elevated glucocorticoid levels was thought to result in damage and loss of pyramidal neurons. Most of the earlier studies were based on measures of neuronal density and used assumptions-based counting methods. Using a stereological technique, the optical fractionator, which eliminates potential biases inherent in the assumption-based techniques, we were able to demonstrate that chronic psychosocial stress in tree shrews has no effect on neuronal number in the hippocampal CA1 and CA3 regions. The present report will focus on the practical aspects of the optical fractionator, by describing in detail how to estimate the total number of neurons in the hippocampal CA1 and CA3 regions of tree shrews. In this example the group sizes have been increased over those used in the earlier study. The present study supports our previous conclusion that stress does not affect the number of hippocampal neurons in the CA1 and CA3 areas as suggested by other authors. The results obtained with the optical fractionator can be used to estimate the precision of the data.
Collapse
Affiliation(s)
- J I Keuker
- Division of Neurobiology, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
36
|
Saito T, Bjarkam CR, Nakamura M, Nemoto T. Determination of stereotaxic coordinates for the hippocampus in the domestic pig. J Neurosci Methods 1998; 80:29-36. [PMID: 9606047 DOI: 10.1016/s0165-0270(97)00183-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study a stereotaxic instrument and a stereotaxic procedure based on external skull structures, to be used in prepubertal male Landrace pigs weighing less than 30 kg, is described. The instrument represents an adaptation of the apparatus designed by Marcilloux et al., Brain Res Bull 1989;22:591-597, but we have modified the instrument for stereotaxic procedures based on external skull structures, instead of intracerebral structures necessitating ventriculography (Marcilloux et al., Brain Res Bull 1989;22:591-597). For this reason the U-shaped frame and the ear-bar supports have been changed allowing the three-dimensional placement of the ear-bars into the oblique auditory canals. Firm fixation of the skulls of pigs weighing less than 30 kg, was furthermore secured with modified infraorbital ridges and hard palate pieces. Measurements of distances between external skull structures in animals of the same sex, age and weight showed a negligible variation, thus enabling definition of the horizontal, frontal and sagittal zero planes using external skull structures alone. Stereotaxic coordinates for the hippocampal region of male Landrace pigs weighing 10 kg were then provided and the coordinates from two different levels of the hippocampal region are presented in the text. The reliability of the stereotaxic instrument was finally secured by intrahippocampal injections of ink at predetermined coordinates.
Collapse
Affiliation(s)
- T Saito
- Laboratory of Neurophysiology, National Institute of Animal Industry, Ibaraki, Japan.
| | | | | | | |
Collapse
|
37
|
Thoresen M, Haaland K, Løberg EM, Whitelaw A, Apricena F, Hankø E, Steen PA. A piglet survival model of posthypoxic encephalopathy. Pediatr Res 1996; 40:738-48. [PMID: 8910940 DOI: 10.1203/00006450-199611000-00014] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to produce a neonatal piglet model which, avoiding vessel ligation, exposed the whole animal to hypoxia and produced dose-dependent clinical encephalopathy and neuropathologic damage similar to that seen after birth asphyxia. Twenty-three piglets were halothane-anesthetized. Hypoxia was induced in 19 piglets by reducing the fractional concentration of inspired oxygen (FiO2) to the maximum concentration at which the EEG amplitude was below 7 microV (low amplitude) for 17-55 min. There were transient increases in Fio2 to correct bradycardia and hypotension. Posthypoxia, the piglets were extubated when breathing was stable. Four were sham-treated controls. We aimed at 72-h survival; seven died prematurely due to posthypoxic complications. EEG and a videotaped itemized neurologic assessment were recorded regularly. We found that 95% of the animals showed neuropathologic damage. The duration of low amplitude EEG during the insult and the arterial pH at the end of the insult correlated with cortical/white matter damage; r = 0.75 and 0.81, respectively. Early postinsult EEG background amplitude (r = 0.86 at 3 h) and neurologic score (r = 0.79 at 8 h) correlated with neuropathology. Epileptic seizures in seven animals were always associated with severe neuropathologic damage. We conclude that EEG-controlled hypoxia and subsequent intensive care enabled the animals to survive with an encephalopathy which correlated with the cerebral hypoxic insult. The encephalopathy was clinically, electrophysiologically, and neuropathologically similar to that in the asphyxiated term infant. This model is suitable for examining mechanisms of damage and evaluation of potential protective therapies after birth asphyxia.
Collapse
Affiliation(s)
- M Thoresen
- Department of Surgical Research, National Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
38
|
Satas S, Haaland K, Thoresen M, Steen PA. MAC for halothane and isoflurane during normothermia and hypothermia in the newborn piglet. Acta Anaesthesiol Scand 1996; 40:452-6. [PMID: 8738690 DOI: 10.1111/j.1399-6576.1996.tb04468.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Halothane and isoflurane are frequently used in studies of perinatal hypoxia and ischemia. Little information exists on the minimum alveolar concentration (MAC) necessary to prevent movement to a painful stimulus in newborn pigs and no information on the effects of hypothermia on MAC in pigs. Hypothermia is currently investigated as a posthypoxic neuroprotective intervention. METHODS The MAC of halothane and isoflurane necessary to prevent movement when a 25 cm hemostatic clamp was applied to the tail were determined in six 20-48-hour-old piglets, and when the same stimulus was applied to the hoof. MAC for halothane was first determined at 39 degrees C, then at 35 degrees C, whereafter halothane was discontinued and MAC for isoflurane determined first at 35 degrees C and then at 39 degrees C. RESULTS In all six piglets MAC was lower at 35 degrees C than at 39 degrees C for both anesthetics with both tail and hoof determination, lower for halothane than isoflurane for both stimuli at both temperatures, and lower for tail than hoof determination for both anesthetics at both temperatures. For halothane at 39 degrees C, mean (SD) MAC hoof was 0.82 (0.05)% vs tail 0.60 (0.12)%, and at 35 degrees C, hoof 0.65 (0.06)% vs tail 0.42 (0.10)%. For isoflurane at 39 degrees C, MAC hoof was 2.47 (0.28)% vs tail 1.83 (0.28)%, and at 35 degrees C, hoof was 1.83 (0.18)% vs tail 0.85 (0.25)%. CONCLUSION In the newborn piglet, MAC should be determined by hoof clamp, MAC of isoflurane is approximately three times that of halothane, and both are reduced during hypothermia.
Collapse
Affiliation(s)
- S Satas
- Institute of Surgical and Pediatric Research, National Hospital, University of Oslo, Norway
| | | | | | | |
Collapse
|