1
|
Nakagawa T, Xie JL, Savadkohighodjanaki M, Zhang YJ, Jun H, Cao K, Ichii A, Lee JY, Soma S, Medhat YK, Saido TC, Igarashi KM. Early disruption of entorhinal dopamine in a knock-in model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617678. [PMID: 39416095 PMCID: PMC11482956 DOI: 10.1101/2024.10.10.617678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The entorhinal cortex (EC) is a critical brain area for memory formation, while also the region exhibiting the earliest histological and functional alterations in Alzheimer's disease (AD). The EC thus has been long hypothesized as one of the originating brain areas of AD pathophysiology, although circuit mechanisms causing its selective vulnerability remain poorly understood. We found that dopamine neurons projecting their axons to the lateral EC (LEC), critical for memory formation in healthy brains, become dysfunctional and cause memory impairments in early AD brains. In amyloid precursor protein knock-in mice with associative memory impairment, LEC dopamine activity and associative memory encoding of LEC layer 2/3 neurons were disrupted in parallel from the early pathological stage. Optogenetic reactivation of LEC dopamine fibers, as well as L- DOPA treatment, rescued associative learning behavior. These results suggest that dysfunction of LEC-projecting dopamine neurons underlies memory impairment in AD from early stages, pointing to a need for clinical investigation of LEC dopamine in AD patients.
Collapse
|
2
|
Valeri J, Stiplosek C, O'Donovan SM, Sinclair D, Grant KA, Bollavarapu R, Platt DM, Stockmeier CA, Gisabella B, Pantazopoulos H. Extracellular matrix abnormalities in the hippocampus of subjects with substance use disorder. Transl Psychiatry 2024; 14:115. [PMID: 38402197 PMCID: PMC10894211 DOI: 10.1038/s41398-024-02833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charlotte Stiplosek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - David Sinclair
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | | | - Ratna Bollavarapu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
3
|
Valeri J, Stiplosek C, O’Donovan SM, Sinclair D, Grant K, Bollavarapu R, Platt DM, Stockmeier CA, Gisabella B, Pantazopoulos H. Extracellular Matrix Abnormalities in the Hippocampus of Subjects with Substance Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.07.23295222. [PMID: 37732207 PMCID: PMC10508799 DOI: 10.1101/2023.09.07.23295222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.
Collapse
Affiliation(s)
- Jake Valeri
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Charlotte Stiplosek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
| | | | - David Sinclair
- Department of Neuroscience, University of Toledo, Toledo, OH
| | | | - Ratna Bollavarapu
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Donna M. Platt
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Barbara Gisabella
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
4
|
Gulfo MC, Lebowitz JJ, Ramos C, Hwang DW, Nasrallah K, Castillo PE. Dopamine D2 receptors in hilar mossy cells regulate excitatory transmission and hippocampal function. Proc Natl Acad Sci U S A 2023; 120:e2307509120. [PMID: 38064513 PMCID: PMC10723153 DOI: 10.1073/pnas.2307509120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. A defining feature of MCs is the promoter activity of the dopamine D2 receptor (D2R) gene (Drd2), and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well known. Surprisingly, though, the function of MC D2Rs remains largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior, and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells (GCs). D2R activation by exogenous and endogenous dopamine reduced MC to dentate GC synaptic transmission, most likely by a presynaptic mechanism. In contrast, exogenous dopamine had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.
Collapse
Affiliation(s)
- Michelle C. Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY10461
| | - Joseph J. Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, OR97239
| | - Czarina Ramos
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY10461
| | - Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY10461
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY10461
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY10461
| |
Collapse
|
5
|
Wolter M, Lapointe T, Baidoo N, Mitchnick KA, Wideman C, Winters BD, Leri F. Double dissociation of perirhinal nicotinic acetylcholine receptors and dopamine D2 receptors in modulation of object memory consolidation by nicotine, cocaine and their conditioned stimuli. Eur Neuropsychopharmacol 2023; 72:50-59. [PMID: 37086715 DOI: 10.1016/j.euroneuro.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
There are indications that drug conditioned stimuli (CS) may activate neurochemical systems of memory modulation that are activated by the drugs themselves. To directly test this hypothesis, a cholinergic nicotinic receptor antagonist (mecamylamine; MEC: 0, 10 or 30 µg/side) and a dopamine D2 receptor antagonist (l-741,626: 0, 0.63, 2.5 µg/side) were infused in the perirhinal cortex (PRh) to block modulation of object recognition memory consolidation induced by 0.4 mg/kg nicotine, 20 mg/kg cocaine, or their CSs. To establish these CSs, male Sprague-Dawley rats were confined for 2 h in a chamber, the CS+, after injections of 0.4 mg/kg nicotine, or 20 mg/kg cocaine, and in another chamber, the CS-, after injections of vehicle. This was repeated over 10 days (5 drug/CS+ and 5 vehicle/CS- pairings in total). It was found that the memory enhancing action of post-sample nicotine was blocked by intra-PRh infusions of both MEC doses, and 30 µg/side MEC also blocked the memory enhancing action of the nicotine CS. Interestingly, intra-PRh MEC did not block the memory enhancing effect of cocaine, nor that of the cocaine CS. In contrast, the memory enhancing action of post-sample cocaine administration was blocked by both l-741,626 doses, and 2.5 µg/side also blocked the effect of the cocaine CS, but not the memory effects of nicotine or of the nicotine CS. This functional double dissociation strongly indicates that drug CSs modulate memory consolidation by activating neural systems that are activated by the drugs themselves.
Collapse
Affiliation(s)
- Michael Wolter
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Thomas Lapointe
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Nana Baidoo
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | | | - Cassidy Wideman
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Boyer D Winters
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada
| | - Francesco Leri
- Department of Psychology & Neuroscience Specialization, University of Guelph, ON, N1G 2W1 Canada.
| |
Collapse
|
6
|
Gulfo MC, Lebowitz JJ, Ramos C, Hwang DW, Nasrallah K, Castillo PE. Dopamine D2 receptors in mossy cells reduce excitatory transmission and are essential for hippocampal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539468. [PMID: 37205586 PMCID: PMC10187294 DOI: 10.1101/2023.05.05.539468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hilar mossy cells (MCs) are principal excitatory neurons of the dentate gyrus (DG) that play critical roles in hippocampal function and have been implicated in brain disorders such as anxiety and epilepsy. However, the mechanisms by which MCs contribute to DG function and disease are poorly understood. Expression from the dopamine D2 receptor (D2R) gene (Drd2) promoter is a defining feature of MCs, and previous work indicates a key role for dopaminergic signaling in the DG. Additionally, the involvement of D2R signaling in cognition and neuropsychiatric conditions is well-known. Surprisingly, though, the function of MC D2Rs remain largely unexplored. In this study, we show that selective and conditional removal of Drd2 from MCs of adult mice impaired spatial memory, promoted anxiety-like behavior and was proconvulsant. To determine the subcellular expression of D2Rs in MCs, we used a D2R knockin mouse which revealed that D2Rs are enriched in the inner molecular layer of the DG, where MCs establish synaptic contacts with granule cells. D2R activation by exogenous and endogenous dopamine reduced MC to dentate granule cells (GC) synaptic transmission, most likely by a presynaptic mechanism. In contrast, removing Drd2 from MCs had no significant impact on MC excitatory inputs and passive and active properties. Our findings support that MC D2Rs are essential for proper DG function by reducing MC excitatory drive onto GCs. Lastly, impairment of MC D2R signaling could promote anxiety and epilepsy, therefore highlighting a potential therapeutic target.
Collapse
Affiliation(s)
- Michelle C. Gulfo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Joseph J. Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, U.S.A
| | - Czarina Ramos
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Dong-Woo Hwang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, U.S.A
- Lead contact
| |
Collapse
|
7
|
The modulatory role of dopamine receptors within the hippocampal cornu ammonis area 1 in stress-induced analgesia in an animal model of persistent inflammatory pain. Behav Pharmacol 2022; 33:492-504. [PMID: 36148837 DOI: 10.1097/fbp.0000000000000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intrinsic pain inhibitory mechanisms can be activated by fear, anxiety, and stress. Stressful experiences produce analgesia, referred to as stress-induced analgesia (SIA). Major components of the limbic system, including the ventral tegmental area, nucleus accumbens, amygdala, and hippocampus, are involved in the SIA. In this study, we tried to understand the role of dopamine receptors in the cornu ammonis area 1 (CA1) of the hippocampus in the forced swim stress (FSS)-induced analgesia. Stereotaxic surgery was unilaterally performed on 129 adult male Wistar rats weighing 220-280 g. SCH23390 (0.25, 1, and 4 μg/0.5 μl saline) or sulpiride (0.25, 1, and 4 μg/0.5 μl DMSO), as D1- and D2-like dopamine receptor antagonists, respectively, were microinjected into the CA1 area, 5 min before exposure to FSS for a 6-min period. The vehicle groups received saline or DMSO instead of SCH23390 or sulpiride, respectively. The formalin test was done using formalin injection (50 μl; 2.5%) into the plantar surface of the rat's hind paw immediately after exposure to FSS. The results demonstrated that FSS produces analgesia during the early and late phases of the formalin test. However, intra-CA1 microinjection of SCH23390 or sulpiride attenuated the FSS-induced analgesia in both phases of the formalin test. This study provides new insight into the role of D1- and D2-like dopamine receptors in the CA1 area in the FSS-induced analgesia during persistent inflammatory pain.
Collapse
|
8
|
Caragea VM, Manahan-Vaughan D. Bidirectional Regulation of Hippocampal Synaptic Plasticity and Modulation of Cumulative Spatial Memory by Dopamine D2-Like Receptors. Front Behav Neurosci 2022; 15:803574. [PMID: 35095441 PMCID: PMC8789653 DOI: 10.3389/fnbeh.2021.803574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine is a key factor in the enablement of cognition and hippocampal information processing. Its action in the hippocampus is mediated by D1/D5 and D2-like (D2, D3, D4) receptors. While D1/D5-receptors are well recognized as strong modulators of hippocampal synaptic plasticity and information storage, much less is known about the role of D2-like receptors (D2R) in these processes. Here, we explored to what extent D2R contribute to synaptic plasticity and cumulative spatial memory derived from semantic and episodic-like information storage. In freely behaving adult rats, we also assessed to what extent short and long-term forms of synaptic plasticity are influenced by pharmacological activation or blockade of D2R. Antagonism of D2R by means of intracerebral treatment with remoxipride, completely prevented the expression of both short-term (<1 h) and long-term potentiation (>4 h), as well as the expression of short-term depression (STD, <1 h) in the hippocampal CA1 region. Scrutiny of involvement of D2R in spatial learning revealed that D2R-antagonism prevented retention of a semantic spatial memory task, and also significantly impaired retention of recent spatiotemporal aspects of an episodic-like memory task. Taken together, these findings indicate that D2R are required for bidirectional synaptic plasticity in the hippocampal CA1 region. Furthermore, they are critically involved in enabling cumulative and episodic-like forms of spatial learning.
Collapse
Affiliation(s)
- Violeta-Maria Caragea
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
9
|
Ferré S, Belcher AM, Bonaventura J, Quiroz C, Sánchez-Soto M, Casadó-Anguera V, Cai NS, Moreno E, Boateng CA, Keck TM, Florán B, Earley CJ, Ciruela F, Casadó V, Rubinstein M, Volkow ND. Functional and pharmacological role of the dopamine D 4 receptor and its polymorphic variants. Front Endocrinol (Lausanne) 2022; 13:1014678. [PMID: 36267569 PMCID: PMC9578002 DOI: 10.3389/fendo.2022.1014678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- *Correspondence: Sergi Ferré,
| | - Annabelle M. Belcher
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Comfort A. Boateng
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point, NC, United States
| | - Thomas M. Keck
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Benjamín Florán
- Departament of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christopher J. Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Mäki-Marttunen V, Andreassen OA, Espeseth T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2020; 118:298-314. [PMID: 32768486 DOI: 10.1016/j.neubiorev.2020.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.
Collapse
Affiliation(s)
| | - Ole A Andreassen
- CoE NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Building 49, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Bjørknes College, Lovisenberggata 13, 0456 Oslo, Norway
| |
Collapse
|
11
|
Srivastava AK, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci 2020; 8:1345-1363. [PMID: 31912833 DOI: 10.1039/c9bm01602c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and localized deposition of cytoplasmic fibrillary inclusions as Lewy bodies in the brain. The aberrant phosphorylation of α-synuclein at serine 129 is the key process on its early onset, which alters the cellular conformation to oligomers and insoluble aggregates, underpinning cellular oxidative stress and mitochondrial dysfunction, leading to devastating PD synucleinopathy. The multiple neuroprotective roles of dopamine and melatonin are often demonstrated separately; however, this approach suffers from low and short bioavailability and is associated with side-effects upon overdosing. Herein, highly pleiotropic melatonin-enriched polydopamine nanostructures were fabricated, which showed efficient brain tissue retention, sustainable and prolonged melatonin release, and prevented neuroblastoma cell death elicited by Parkinson's disease-associated and mitochondrial damaging stimuli. The synergistic neuroprotection re-established the mitochondrial membrane potential, reduced the generation of cellular reactive oxygen species (ROS), inhibited the activation of both the caspase-dependent and independent apoptotic pathways, and exhibited an anti-inflammatory effect. At the molecular level, it suppressed α-synuclein phosphorylation at Ser 129 and reduced the cellular deposition of high molecular weight oligomers. The therapeutic assessment on ex vivo organotypic brain slice culture, and in vivo experimental PD model confirmed the superior brain targeting, collective neuroprotection on dopaminergic neurons with reduced alpha-synuclein phosphorylation and deposition in the hippocampal and substantia nigra region of the brain. Thus, nature-inspired melatonin-enriched polydopamine nanostructures conferring collective neuroprotective effects attributes activation of anti-oxidative, anti-inflammatory, and anti-apoptotic pathways may be superior for application in a nanomedicine-based PD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Mohali, Punjab-160062, India.
| | | | | |
Collapse
|
12
|
Mishra A, Singh S, Tiwari V, Parul, Shukla S. Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease. Neurochem Int 2018; 122:170-186. [PMID: 30500462 DOI: 10.1016/j.neuint.2018.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is primarily characterized by midbrain dopamine depletion. Dopamine acts through dopamine receptors (D1 to D5) to regulate locomotion, motivation, pleasure, attention, cognitive functions and formation of newborn neurons, all of which are likely to be impaired in PD. Reduced hippocampal neurogenesis associated with dopamine depletion has been demonstrated in patients with PD. However, the precise mechanism to regulate multiple steps of adult hippocampal neurogenesis by dopamine receptor(s) is still unknown. In this study, we tested whether pharmacological agonism and antagonism of dopamine D1 and D2 receptor regulate nonmotor symptoms, neural stem cell (NSC) proliferation and fate specification and explored the cellular mechanism(s) underlying dopamine receptor (D1 and D2) mediated adult hippocampal neurogenesis in rat model of PD-like phenotypes. We found that single unilateral intra-medial forebrain bundle administration of 6-hydroxydopamine (6-OHDA) reduced D1 receptor level in the hippocampus. Pharmacological agonism of D1 receptor exerts anxiolytic and antidepressant-like effects as well as enhanced NSC proliferation, long-term survival and neuronal differentiation by positively regulating Wnt/β-catenin signaling pathway in hippocampus in PD rats. shRNA lentivirus mediated knockdown of Axin-2, a negative regulator of Wnt/β-catenin signaling potentially attenuated D1 receptor antagonist induced anxiety and depression-like phenotypes and impairment in adult hippocampal neurogenesis in PD rats. Our results suggest that improved nonmotor symptoms and hippocampal neurogenesis in PD rats controlled by D1-like receptors that involve the activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Virendra Tiwari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Parul
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, U.P, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
13
|
Effect of Intrastriatal 6-OHDA Lesions on Extrastriatal Brain Structures in the Mouse. Mol Neurobiol 2017; 55:4240-4252. [PMID: 28616718 DOI: 10.1007/s12035-017-0637-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor and non-motor symptoms. The underlying pathology of non-motor symptoms is poorly understood. Discussed are pathological changes of extrastriatal brain structures. In this study, we characterized histopathological alterations of extrastriatal brain structures in the 6-hydroxydopamine (6-OHDA) PD animal model. Lesions were induced by unilateral stereotactic injections of 6-OHDA into the striatum or medial forebrain bundle of adult male mice. Loss of tyrosine hydroxylase positive (TH+) fibers as well as glia activation was quantified following stereological principles. Loss of dopaminergic innervation was further investigated by western-blotting. As expected, 6-OHDA injection into the nigrostriatal route induced retrograde degeneration of dopaminergic neurons within the substantia nigra pars compacta (SNpc), less so within the ventral tegmental area. Furthermore, we observed a region-specific drop of TH+ projection fiber density in distinct cortical regions. This pathology was most pronounced in the cingulate- and motor cortex, whereas the piriform cortex was just modestly affected. Loss of cortical TH+ fibers was not paralleled by microglia or astrocyte activation. Our results demonstrate that the loss of dopaminergic neurons within the substantia nigra pars compacta is paralleled by a cortical dopaminergic denervation in the 6-OHDA model. This model serves as a valuable tool to investigate mechanisms operant during cortical pathology in PD patients. Further studies are needed to understand why cortical dopaminergic innervation is lost in this model, and what functional consequence is associated with the observed denervation.
Collapse
|
14
|
Edelmann E, Cepeda-Prado E, Leßmann V. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons. Front Synaptic Neurosci 2017; 9:7. [PMID: 28352224 PMCID: PMC5348504 DOI: 10.3389/fnsyn.2017.00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the brain. We hypothesize that resolving the subcellular location of t-LTP and t-LTD mechanisms that are regulated by distinct neuromodulator systems will be essential to reach a more cohesive understanding of synaptic plasticity in memory formation.
Collapse
Affiliation(s)
- Elke Edelmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| | | | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke UniversityMagdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke UniversityMagdeburg, Germany
| |
Collapse
|
15
|
Hagena H, Manahan-Vaughan D. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning. Front Synaptic Neurosci 2016; 8:31. [PMID: 27721791 PMCID: PMC5033958 DOI: 10.3389/fnsyn.2016.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023] Open
Abstract
Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an important role for DA acting on D1/D5 receptors in the support of long-lasting and learning-related forms of synaptic plasticity at MF-CA3 synapses and provide further evidence for an important neuromodulatory role for this receptor in experience-dependent synaptic encoding in the hippocampal subfields.
Collapse
Affiliation(s)
- Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
16
|
Tapia-Bustos A, Perez-Lobos R, Vío V, Lespay-Rebolledo C, Palacios E, Chiti-Morales A, Bustamante D, Herrera-Marschitz M, Morales P. Modulation of Postnatal Neurogenesis by Perinatal Asphyxia: Effect of D 1 and D 2 Dopamine Receptor Agonists. Neurotox Res 2016; 31:109-121. [PMID: 27638511 DOI: 10.1007/s12640-016-9669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/18/2023]
Abstract
Perinatal asphyxia (PA) is associated to delayed cell death, affecting neurocircuitries of basal ganglia and hippocampus, and long-term neuropsychiatric disabilities. Several compensatory mechanisms have been suggested to take place, including cell proliferation and neurogenesis. There is evidence that PA can increase postnatal neurogenesis in hippocampus and subventricular zone (SVZ), modulated by dopamine, by still unclear mechanisms. We have studied here the effect of selective dopamine receptor agonists on cell death, cell proliferation and neurogenesis in organotypic cultures from control and asphyxia-exposed rats. Hippocampus and SVZ sampled at 1-3 postnatal days were cultured for 20-21 days. At day in vitro (DIV) 19, cultures were treated either with SKF38393 (10 and 100 µM, a D1 agonist), quinpirole (10 µM, a D2 agonist) or sulpiride (10 μM, a D2 antagonist) + quinpirole (10 μM) and BrdU (10 μM, a mitosis marker) for 24 h. At DIV 20-21, cultures were processed for immunocytochemistry for microtubule-associated protein-2 (MAP-2, a neuronal marker), and BrdU, evaluated by confocal microscopy. Some cultures were analysed for cell viability at DIV 20-21 (LIVE/DEAD kit). PA increased cell death, cell proliferation and neurogenesis in hippocampus and SVZ cultures. The increase in cell death, but not in cell proliferation, was inhibited by both SKF38393 and quinpirole treatment. Neurogenesis was increased by quinpirole, but only in hippocampus, in cultures from both asphyxia-exposed and control-animals, effect that was antagonised by sulpiride, leading to the conclusion that dopamine modulates neurogenesis in hippocampus, mainly via D2 receptors.
Collapse
Affiliation(s)
- A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - R Perez-Lobos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - V Vío
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - E Palacios
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - A Chiti-Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, ICBM, Medical Faculty, University of Chile, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia 1027, PO Box 8389100, Santiago, Chile. .,Biomedical Neuroscience Institute, BNI, ICBM, Medical Faculty, University of Chile, Santiago, Chile.
| |
Collapse
|
17
|
Silkis IG. The contribution of dopamine to the functioning of the hippocampus during spatial learning (a hypothetical mechanism). NEUROCHEM J+ 2016. [DOI: 10.1134/s181971241601013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
The neuroanatomical delineation of agentic and affiliative extraversion. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 15:321-34. [PMID: 25712871 DOI: 10.3758/s13415-014-0331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extraversion is a fascinating personality dimension that consists of two major components, agentic extraversion and affiliative extraversion. Agentic extraversion involves incentive motivation and is expressed as a tendency toward assertiveness, persistence, and achievement. Affiliative extraversion involves the positive emotion of social warmth and is expressed as a tendency toward amicability, gregariousness, and affection. Here we investigate the neuroanatomical correlates of the personality traits of agentic and affiliative extraversion using the Multidimensional Personality Questionnaire Brief Form, structural magnetic resonance imaging, and voxel-based morphometry in a sample of 83 healthy adult volunteers. We found that trait agentic extraversion and trait affiliative extraversion were each positively associated with the volume of the medial orbitofrontal cortex bilaterally (t's ≥ 2.03, r's ≥ .23, p's < .05). Agentic extraversion was specifically and positively related to the volume of the left parahippocampal gyrus (t = 4.08, r = .21, p < .05), left cingulate gyrus (t = 4.75, r = .28, p < .05), left caudate (t = 4.29, r = .24, p < .05), and left precentral gyrus (t = 4.00, r = .18, p < .05) in males and females, and the volume of the right nucleus accumbens in males (t = 2.92, r = .20, p < .05). Trait affiliative extraversion was not found to be associated with additional regions beyond the medial orbitofrontal cortex. The findings provide the first evidence of a neuroanatomical dissociation between the personality traits of agentic and affiliative extraversion in healthy adults.
Collapse
|
19
|
Sánchez-Soto M, Bonifazi A, Cai NS, Ellenberger MP, Newman AH, Ferré S, Yano H. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist. Mol Pharmacol 2016; 89:457-66. [PMID: 26843180 DOI: 10.1124/mol.115.101808] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/28/2016] [Indexed: 01/11/2023] Open
Abstract
The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays.
Collapse
Affiliation(s)
- Marta Sánchez-Soto
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Alessandro Bonifazi
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Ning Sheng Cai
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Michael P Ellenberger
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Amy Hauck Newman
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Sergi Ferré
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| | - Hideaki Yano
- Integrative Neurobiology Section (M.S.-S., N.S.C., S.F., H.Y.) and Medicinal Chemistry Section (A.B., M.P.E., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain (M.S.-S.)
| |
Collapse
|
20
|
Chen C, Xiu D, Chen C, Moyzis R, Xia M, He Y, Xue G, Li J, He Q, Lei X, Wang Y, Liu B, Chen W, Zhu B, Dong Q. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity. PLoS One 2015; 10:e0133143. [PMID: 26308205 PMCID: PMC4550269 DOI: 10.1371/journal.pone.0133143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/23/2015] [Indexed: 01/20/2023] Open
Abstract
Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality.
Collapse
Affiliation(s)
- Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Daiming Xiu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
- Institute of Psychology, Division of Psychopathology and Clinic Intervention, University of Zurich, Zurich, CH-8050, Switzerland
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, California, 92697, United States of America
- * E-mail: (QD); (Chuansheng Chen)
| | - Robert Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, California, 92697, United States of America
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jin Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Beibei, Chongqing, 400715, China
| | - Xuemei Lei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Yunxin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Bin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Wen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
| | - Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875,China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
- * E-mail: (QD); (Chuansheng Chen)
| |
Collapse
|
21
|
Huang Y, Chen J, Chen Y, Zhuang Y, Sun M, Behnisch T. The neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) alters hippocampal excitatory synaptic transmission by modulation of the GABAergic system. Front Cell Neurosci 2015; 9:299. [PMID: 26300734 PMCID: PMC4523793 DOI: 10.3389/fncel.2015.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/20/2015] [Indexed: 11/13/2022] Open
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson's disease-like symptoms following administration to mice, monkeys, and humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium ion (MPP(+)) to induce its neurodegenerative effects on dopaminergic neurons in the substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which are projecting from the ventral tegmental area, SN and pars compacta and contain the whole machinery required for dopamine synthesis making them sensitive to MPTP and MPP(+). Here, we present data showing that acute bath-application of MPP(+) elicited a dose-dependent facilitation followed by a depression of synaptic transmission of hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPP(+) were not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine transporters did not prevent but increased the depression of excitatory post-synaptic field potentials. In the search for a possible mechanism, we observed that MPP(+) reduced the appearance of polyspikes in population spikes recorded in str. pyramidale and increased the frequency of miniature inhibitory post-synaptic currents. The acute effect of MPP(+) on synaptic transmission was attenuated by co-application of a GABAA receptor antagonist. Taking these data together, we suggest that MPP(+) affects hippocampal synaptic transmission by enhancing some aspects of the hippocampal GABAergic system.
Collapse
Affiliation(s)
- YuYing Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - JunFang Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Ying Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - YingHan Zhuang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| | - Mu Sun
- Neurodegeneration Discovery Performance Unit, GSK R&D Shanghai, China
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
22
|
Puighermanal E, Biever A, Espallergues J, Gangarossa G, De Bundel D, Valjent E. drd2-cre:ribotagmouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus 2015; 25:858-75. [DOI: 10.1002/hipo.22408] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Emma Puighermanal
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Anne Biever
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Julie Espallergues
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Giuseppe Gangarossa
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Dimitri De Bundel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| | - Emmanuel Valjent
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle; Montpellier F-34094 France
- INSERM, U661; Montpellier F-34094 France
- Universités de Montpellier 1 & 2, UMR-5203; Montpellier F-34094 France
| |
Collapse
|
23
|
Yoon DH, Yoon S, Kim D, Kim H, Baik JH. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 2014; 586:24-30. [PMID: 25483619 DOI: 10.1016/j.neulet.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability.
Collapse
Affiliation(s)
- Dong-Hoon Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Donghoon Kim
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, South Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
24
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
25
|
Nguyen CL, Tran AH, Matsumoto J, Hori E, Uwano T, Ono T, Nishijo H. Hippocampal place cell responses to distal and proximal cue manipulations in dopamine D2 receptor-knockout mice. Brain Res 2014; 1567:13-27. [PMID: 24747614 DOI: 10.1016/j.brainres.2014.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner and form relational representations of environmental cues. The important roles of dopaminergic D1 receptors in learning and in hippocampal neural synaptic plasticity in novel environments have been previously shown. However, the roles of D2 receptors in hippocampal neural plasticity in response to novel and familiar spatial stimuli remain unclear. In order to clarify this issue, we recorded from hippocampal neurons in dopamine D2 receptor-knockout (D2R-KO) mice and their wild-type (WT) littermates during manipulations of distinct spatial cues in familiar and novel environments. Here, we report that D2R-KO mice showed substantial deficits in place-cell properties (number of place cells, intra-field firing rates, spatial tuning, and spatial coherence). Furthermore, although place cells in D2R-KO mice responded to manipulations of distal and proximal cues in both familiar and novel environments in a manner that was similar to place cells in WT mice, place fields were less stable in the D . The axes represent the differences between the peak and the valley of each waveform of EL2 and EL3.2R-KO mice in the familiar environment, but not in the novel environment. The present results suggested that D2 receptors in the hippocampus are important for place response stability. The place-cell properties of D2R-KO mice were similar to aged animals, suggesting that the alterations of place-cell properties in aged animals might be ascribed partly to alterations in the D2R in the HF of aged animals.
Collapse
Affiliation(s)
- Chien Le Nguyen
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Anh Hai Tran
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Etsuro Hori
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Teruko Uwano
- Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Taketoshi Ono
- Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
26
|
Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014; 282:23-48. [PMID: 24735820 DOI: 10.1016/j.neuroscience.2014.04.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/21/2022]
Abstract
This review covers the intrinsic organization and afferent and efferent connections of the midbrain dopaminergic complex, comprising the substantia nigra, ventral tegmental area and retrorubral field, which house, respectively, the A9, A10 and A8 groups of nigrostriatal, mesolimbic and mesocortical dopaminergic neurons. In addition, A10dc (dorsal, caudal) and A10rv (rostroventral) extensions into, respectively, the ventrolateral periaqueductal gray and supramammillary nucleus are discussed. Associated intrinsic and extrinsic connections of the midbrain dopaminergic complex that utilize gamma-aminobutyric acid (GABA), glutamate and neuropeptides and various co-expressed combinations of these compounds are considered in conjunction with the dopamine-containing systems. A framework is provided for understanding the organization of massive afferent systems descending and ascending to the midbrain dopaminergic complex from the telencephalon and brainstem, respectively. Within the context of this framework, the basal ganglia direct and indirect output pathways are treated in some detail. Findings from rodent brain are briefly compared with those from primates, including humans. Recent literature is emphasized, including traditional experimental neuroanatomical and modern gene transfer and optogenetic studies. An attempt was made to provide sufficient background and cite a representative sampling of earlier primary papers and reviews so that people new to the field may find this to be a relatively comprehensive treatment of the subject.
Collapse
Affiliation(s)
- L Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| | - H N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - R A Reichard
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - D S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
27
|
Zhu G, Huang Y, Chen Y, Zhuang Y, Behnisch T. MPTP modulates hippocampal synaptic transmission and activity-dependent synaptic plasticity via dopamine receptors. J Neurochem 2012; 122:582-93. [PMID: 22651101 DOI: 10.1111/j.1471-4159.2012.07815.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD)-like symptoms and cognitive deficits are inducible by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Since cognitive abilities, including memory formations rely also on hippocampus, we set out to clarify the effects of MPTP on hippocampal physiology. We show that bath-application of MPTP (25 μM) to acute hippocampal slices enhanced AMPA receptor-mediated field excitatory postsynaptic potentials (AMPAr-fEPSPs) transiently, whereas N-methyl-D-aspartate (NMDA) receptor-mediated fEPSPs (NMDAr-fEPSPs) were facilitated persistently. The MPTP-mediated transient AMPAr-fEPSP facilitation was antagonized by the dopamine D2-like receptor antagonists, eticlopride (1 μM) and sulpiride (1 and 40 μM). In contrast, the persistent enhancement of NMDAr-fEPSPs was prevented by the dopamine D1-like receptor antagonist SCH23390 (10 μM). In addition, we show that MPTP decreased paired-pulse facilitation of fEPSPs and mEPSCs frequency. Regarding activity-dependent synaptic plasticity, 25 μM MPTP transformed short-term potentiation (STP) into a long-term potentiation (LTP) and caused a slow onset potentiation of a non-tetanized synaptic input after induction of LTP in a second synaptic input. This heterosynaptic slow onset potentiation required activation of dopamine D1-like and NMDA-receptors. We conclude that acute MPTP application affects basal synaptic transmission by modulation of presynaptic vesicle release and facilitates NMDAr-fEPSPs as well as activity-dependent homo- and heterosynaptic plasticity under participation of dopamine receptors.
Collapse
Affiliation(s)
- Guoqi Zhu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Abstract
Abnormal dopaminergic neurotransmission in the hippocampus may be involved in certain aspects of cognitive dysfunction. In the hippocampus, there is little, if any, expression of dopamine transporters (DAT), indicating that the mechanism for dopamine clearance differs from that in the striatum. Here, by means of in-vivo microdialysis in freely moving rats, we tested the hypothesis that the norepinephrine transporter (NET) is involved in dopamine clearance in the hippocampus. We found that systemic administration of the selective NET inhibitor reboxetine (3 mg/kg) and the psychostimulants amphetamine (0.5 mg/kg) and cocaine (10 mg/kg) increased hippocampal dopamine efflux. Local administration of reboxetine (300 μM) produced a large increase in hippocampal dopamine levels that could not be further enhanced by the addition of the NET/DAT inhibitor nomifensine (100 μM). Administration of the specific DAT inhibitor GBR12909 at a concentration (1 mM) that robustly increased dopamine in the nucleus accumbens had a comparably smaller effect in the hippocampus. In line with a minor role of DAT in the hippocampus, we detected very little DAT in this area using ligand binding with radiolabelled RTI-55. Moreover, in contrast to raclopride (100 μM), a dopamine D2-autoreceptor antagonist, local administration of the α2-adrenoceptor antagonist idazoxan (100 μM) increased hippocampal dopamine. Taken together, our data demonstrate an interaction between dopamine and norepinephrine systems in the hippocampus. It is proposed that this interaction originates from a shared uptake mechanism at the NET level.
Collapse
|
29
|
Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus. Neuroscience 2011; 192:164-71. [DOI: 10.1016/j.neuroscience.2011.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/27/2011] [Accepted: 06/18/2011] [Indexed: 01/22/2023]
|
30
|
Kealy J, Commins S. The rat perirhinal cortex: A review of anatomy, physiology, plasticity, and function. Prog Neurobiol 2011; 93:522-48. [DOI: 10.1016/j.pneurobio.2011.03.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 01/28/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
|
31
|
Devoto P, Flore G. On the origin of cortical dopamine: is it a co-transmitter in noradrenergic neurons? Curr Neuropharmacol 2010; 4:115-25. [PMID: 18615131 DOI: 10.2174/157015906776359559] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/04/2005] [Accepted: 12/30/2005] [Indexed: 11/22/2022] Open
Abstract
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
Collapse
Affiliation(s)
- Paola Devoto
- "B.B. Brodie" Department of Neuroscience, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
32
|
Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 2009; 106:13028-33. [PMID: 19620735 DOI: 10.1073/pnas.0900546106] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spike-timing-dependent plasticity (STDP) is considered a physiologically relevant form of Hebbian learning. However, behavioral learning often involves action of reinforcement or reward signals such as dopamine. Here, we examined how dopamine influences the quantitative rule of STDP at glutamatergic synapses of hippocampal neurons. The presence of 20 muM dopamine during paired pre- and postsynaptic spiking activity expanded the effective time window for timing-dependent long-term potentiation (t-LTP) to at least -45 ms, and allowed normally ineffective weak stimuli with fewer spike pairs to induce significant t-LTP. Meanwhile, dopamine did not affect the degree of t-LTP induced by normal strong stimuli with spike timing (ST) of +10 ms. Such dopamine-dependent enhancement in the sensitivity of t-LTP was completely blocked by the D1-like dopamine receptor antagonist SCH23390, but not by the D2-like dopamine receptor antagonist sulpiride. Surprisingly, timing-dependent long-term depression (t-LTD) at negative ST was converted into t-LTP by dopamine treatment; this conversion was also blocked by SCH23390. In addition, t-LTP in the presence of dopamine was completely blocked by the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid, indicating that D1-like receptor-mediated modulation appears to act through the classical NMDA receptor-mediated signaling pathway that underlies STDP. These results provide a quantitative and mechanistic basis for a previously undescribed learning rule that depends on pre- and postsynaptic ST, as well as the global reward signal.
Collapse
|
33
|
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33:1746-59. [PMID: 17895918 DOI: 10.1038/sj.npp.1301529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both mu-opioid receptors (MORs) and delta-opioid receptors (DORs) are expressed in the ventral tegmental area (VTA) and are thought to be involved in the addictive properties of opiates. However, their respective contributions to opiate reward remain unclear. We used intracranial self-administration (ICSA) to study the rewarding effects of morphine microinjections into the VTA of male and female MOR-/- and DOR-/- mice. In brains of mice tested for intra-VTA morphine self-administration, we analyzed regional Fos protein expression to investigate the neural circuitry underlying this behavior. Male and female WT and DOR-/- mice exhibited similar self-administration performances, whereas knockout of the MOR gene abolished intra-VTA morphine self-administration at all doses tested. Naloxone (4 mg/kg) disrupted this behavior in WT and DOR mutants, without triggering physical signs of withdrawal. Morphine ICSA was associated with an increase in Fos within the nucleus accumbens, striatum, limbic cortices, amygdala, hippocampus, the lateral mammillary nucleus (LM), and the ventral posteromedial thalamus (VPM). This latter structure was found to express high levels of Fos exclusively in self-administering WT and DOR-/- mice. Abolition of morphine reward in MOR-/- mice was associated with a decrease in Fos-positive neurons in the mesocorticolimbic dopamine system, amygdala, hippocampus (CA1), LM, and a complete absence within the VPM. We conclude that (i) VTA MORs, but not DORs, are critical for morphine reward and (ii) the role of VTA-thalamic projections in opiate reward deserves to be further explored.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Cell Count/methods
- Conditioning, Operant/drug effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/administration & dosage
- Neurons/drug effects
- Neurons/metabolism
- Oncogene Proteins v-fos/genetics
- Oncogene Proteins v-fos/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Self Administration
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Vincent David
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228/Universités de Bordeaux 1 et 2, Talence, France.
| | | | | | | | | | | |
Collapse
|
34
|
Sarkey S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D, DonCarlos LL. Classical androgen receptors in non-classical sites in the brain. Horm Behav 2008; 53:753-64. [PMID: 18402960 PMCID: PMC2413135 DOI: 10.1016/j.yhbeh.2008.02.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 02/02/2023]
Abstract
Androgen receptors are expressed in many different neuronal populations in the central nervous system where they often act as transcription factors in the cell nucleus. However, recent studies have detected androgen receptor immunoreactivity in neuronal and glial processes of the adult rat neocortex, hippocampal formation, and amygdala as well as in the telencephalon of eastern fence and green anole lizards. This review discusses previously published findings on extranuclear androgen receptors, as well as new experimental results that begin to establish a possible functional role for androgen receptors in axons within cortical regions. Electron microscopic studies have revealed that androgen receptor immunoreactive processes in the rat brain correspond to axons, dendrites and glial processes. New results show that lesions of the dorsal CA1 region by local administration of ibotenic acid reduce the density of androgen receptor immunoreactive axons in the cerebral cortex and the amygdala, suggesting that these axons may originate in the hippocampus. Androgen receptor immunoreactivity in axons is also decreased by the intracerebroventricular administration of colchicine, suggesting that androgen receptor protein is transported from the perikaryon to the axons by fast axonal transport. Androgen receptors in axons located in the cerebral cortex and amygdala and originating in the hippocampus may play an important role in the rapid behavioral effects of androgens.
Collapse
Affiliation(s)
- Sara Sarkey
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861Fax: +34-913944981 e-mail:
| | | | - Daniel Garcia-Ovejero
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental (assocciated with the Instituto Cajal, CSIC, Madrid, Spain), Hospital Nacional de Parapléjicos, SESCAM, 45071-Toledo, Spain. Tel:+34-925247754; e-mail:
| | - Lydia L. DonCarlos
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
- Department of Cell Biology, Neurobiology and Anatomy, and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| |
Collapse
|
35
|
Tarazi FI, Moran-Gates T, Wong EHF, Henry B, Shahid M. Differential regional and dose-related effects of asenapine on dopamine receptor subtypes. Psychopharmacology (Berl) 2008; 198:103-11. [PMID: 18297468 DOI: 10.1007/s00213-008-1098-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE The novel psychopharmacologic agent, asenapine, has high affinity for a range of receptors including the dopaminergic receptors. OBJECTIVE We examined the long-term effects of multiple doses of asenapine on dopamine receptor subtypes: D(1)-like (D(1) and D(5)), D(2), D(3), and D(4). METHODS Rats were given asenapine 0.03, 0.1, or 0.3 mg/kg (subcutaneously, twice daily) or vehicle for 4 weeks. Receptor binding was determined by autoradiography from brain sections collected from the medial prefrontal cortex (mPFC), dorsolateral frontal cortex, caudate putamen (CPu), nucleus accumbens (NAc), and hippocampus (HIP). RESULTS Four weeks of asenapine at 0.3 mg/kg significantly (P < 0.05) increased D(1)-like binding in the mPFC (by 26%), NAc (59%), and CPu (55%). Asenapine (0.1 and 0.3 mg/kg) also increased D(2) binding in mPFC (43% and 55%, respectively). All doses of asenapine dose-dependently increased D(2) binding in HIP (by 32%, 45%, and 63%, respectively). In contrast, only 0.3 mg/kg of asenapine significantly (P < 0.05) increased D(2) binding in the NAc (32%) and CPu (41%). Repeated treatment with 0.1 and 0.3 mg/kg of asenapine increased D(4) binding in the NAc (36% and 71%), CPu (27% and 70%), and HIP (48% and 77%). However, asenapine, at the doses tested, did not significantly alter D(3) binding in the brain regions examined in this study. CONCLUSIONS These results indicate that asenapine has region-specific and dose-dependent effects on dopamine receptor subtypes in rat forebrain, which may contribute to asenapine's unique psychopharmacological properties.
Collapse
Affiliation(s)
- Frank I Tarazi
- Mailman Research Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | | | | | | | | |
Collapse
|
36
|
Vago DR, Kesner RP. Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 2008; 189:273-83. [PMID: 18313770 DOI: 10.1016/j.bbr.2008.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/11/2007] [Accepted: 01/08/2008] [Indexed: 11/28/2022]
Abstract
Subregional analyses of the hippocampus suggest CA1-dependent memory processes rely heavily upon interactions between the CA1 subregion and entorhinal cortex. There is evidence that the direct perforant path (pp) projection to CA1 is selectively modulated by dopamine while having little to no effect on the Schaffer collateral (SC) projection to CA1. The current study takes advantage of this pharmacological dissociation to demonstrate that local infusion of the non-selective dopamine agonist, apomorphine (10, 15 microg), into the CA1 subregion of awake animals produces impairments in working memory at intermediate (5 min), but not short-term (10 s) delays within a delayed non-match-to-place task on a radial arm maze. Sustained impairments were also found in a novel context with similar object-space relationships. Infusion of apomorphine into CA1 is also shown here to produce deficits in spatial, but not non-spatial novelty detection within an object exploration paradigm. In contrast, apomorphine produces no behavioral deficits when infused into the CA3 subregion or overlying cortex. These behavioral studies are supported by previous electrophysiological data that demonstrate local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a fundamental role for EC-CA1 synaptic transmission in terms of detection of spatial novelty, and intermediate-term, but not short-term spatial working memory or object-novelty detection.
Collapse
Affiliation(s)
- David R Vago
- University of Utah, Department of Psychology, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
37
|
Vago DR, Bevan A, Kesner RP. The role of the direct perforant path input to the CA1 subregion of the dorsal hippocampus in memory retention and retrieval. Hippocampus 2008; 17:977-87. [PMID: 17604347 PMCID: PMC3057091 DOI: 10.1002/hipo.20329] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subregional analyses of the hippocampus have suggested a selective role for the CA1 subregion in intermediate/long-term spatial memory and consolidation, but not short-term acquisition or encoding processes. It remains unclear how the direct cortical projection to CA1 via the perforant path (pp) contributes to these CA1-dependent processes. It has been suggested that dopamine selectively modulates the pp projection to CA1 while having little to no effect on the Schaffer collateral (SC) projection to CA1. This series of behavioral and electrophysiological experiments takes advantage of this pharmacological dissociation to demonstrate that the direct pp inputs to CA1 are critical in CA1-dependent intermediate-term retention and retrieval function. Here we demonstrate that local infusion of the nonselective dopamine agonist, apomorphine (10, 15 microg), into the CA1 subregion of awake animals produces impairments in between-day retention and retrieval, sparing within-day encoding of a modified Hebb-Williams maze and contextual conditioning of fear. In contrast, apomorphine produces no deficits when infused into the CA3 subregion. To complement the behavioral analyses, electrophysiological data was collected. In anesthetized animals, local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the more proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in the EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a more fundamental role for EC-CA1 synaptic transmission in terms of intermediate-term, but not short-term spatial memory.
Collapse
Affiliation(s)
| | | | - Raymond P. Kesner
- Correspondence to: Raymond P. Kesner, Department of Psychology, University of Utah, 380 South, 1530 E, Rm. 502, Salt Lake City, UT 84112, USA.,
| |
Collapse
|
38
|
Piggott MA, Ballard CG, Rowan E, Holmes C, McKeith IG, Jaros E, Perry RH, Perry EK. Selective loss of dopamine D2 receptors in temporal cortex in dementia with Lewy bodies, association with cognitive decline. Synapse 2007; 61:903-11. [PMID: 17663455 DOI: 10.1002/syn.20441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dementia with Lewy bodies (DLB) is a progressive dementia frequently accompanied by psychotic symptoms. Similar symptoms can occur in Alzheimer's disease (AD) to a lesser extent. The use of neuroleptic medication to treat psychosis in both diseases is of modest efficacy and can induce severe adverse reactions in DLB. Dopamine D2 receptors in the cerebral cortex are the putative target for the antipsychotic action of these drugs, but the status of these receptors in DLB is unknown. Autoradiography was used to examine the density D2 receptors in postmortem temporal cortex tissue from prospectively assessed patients with neuropathologically confirmed DLB and AD. D2 receptors were substantially (over 40%) and significantly (P < 0.001) reduced in temporal cortex in DLB, and in DLB with concomitant Alzheimer pathology, but was not significantly changed in AD. This reduction correlated with greater cognitive decline (P < 0.01), but was not significantly related to visual or auditory hallucinations or delusions. D2 receptor density was inversely correlated with cortical Lewy body pathology in the neocortex (P < 0.001). The specific loss of D2 receptors associated with Lewy body pathology, in conjunction with our previous finding of low D2 receptors in striatum in DLB, provides a possible explanation for neuroleptic intolerance. That the reduction of D2 receptors correlated with cognitive decline suggests that neuroleptics, as dopamine D2 receptor antagonists, may have a deleterious effect on cognition in DLB.
Collapse
Affiliation(s)
- Margaret A Piggott
- Institute for Ageing and Health, Wolfson Research Centre, Newcastle General Hospital, Newcastle-upon-Tyne NE4 6BE, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y. Eur J Neurosci 2007; 26:3079-92. [PMID: 18005069 DOI: 10.1111/j.1460-9568.2007.05911.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent anticonvulsant properties of neuropeptide Y (NPY) are generally attributed to a Y2 receptor-mediated inhibition of glutamatergic synaptic transmission. Independent studies have shown that NPY increases brain dopamine content, possibly via interaction with sigma 1 receptors. Recently, we showed that increased extracellular hippocampal dopamine attenuates pilocarpine-induced limbic seizures via activation of hippocampal D2 receptors. Our aim in this study was to elucidate the role of increased hippocampal dopamine in the mechanism of the anticonvulsant action of NPY and to investigate the involvement of Y2 and sigma 1 receptors in this process. Limbic seizures were evoked in freely moving rats by intrahippocampal administration of pilocarpine via a microdialysis probe. NPY was administered intracerebroventricularly, intrahippocampally via the microdialysis probe, or coadministered intrahippocampally with the D2 receptor antagonist remoxipride, the Y2 receptor antagonist BIIE0246 or the sigma 1 receptor antagonist BD1047. Changes in hippocampal extracellular dopamine were monitored, and behavioural changes indicative of seizure activity were scored. Intracerebroventricular (10 nmol/3 microL) and intrahippocampal (20-50 microm) NPY administration increased hippocampal dopamine and attenuated pilocarpine-induced seizures. Hippocampal D2 receptor blockade (4 microm remoxipride) reversed the anticonvulsant effect of NPY. Y2 receptor blockade (1 microm BIIE0246) reversed the anticonvulsant effect of NPY but did not prevent NPY-induced increases in hippocampal dopamine. Sigma 1 receptor blockade (10 microm BD1047) abolished NPY-induced increases in hippocampal dopamine and reversed the anticonvulsant effect of NPY. Our results indicate that NPY-induced increases in hippocampal dopamine are mediated via sigma 1 receptors and contribute to the anticonvulsant effect of NPY via increased activation of hippocampal D2 receptors. This novel mechanism of anticonvulsant action of NPY is separate from, and may be complementary to, the well established Y2 receptor-mediated inhibition of hippocampal excitability.
Collapse
Affiliation(s)
- Alfred Meurs
- Department of Neurology, U. Z. Brussel, Laarbeeklaan 101,1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
40
|
Rosenkranz JA, Johnston D. State-dependent modulation of amygdala inputs by dopamine-induced enhancement of sodium currents in layer V entorhinal cortex. J Neurosci 2007; 27:7054-69. [PMID: 17596455 PMCID: PMC6672235 DOI: 10.1523/jneurosci.1744-07.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interaction between the entorhinal cortex (EC) and basolateral amygdala (BLA) may be a fundamental component in the consolidation of many forms of affective memory, such as inhibitory avoidance. Dopamine (DA) in the EC is necessary for, and may facilitate, this form of learning. This effect of DA on affective behaviors may be accomplished in part through modulation of amygdala inputs. Although it is known that DA can modulate neuronal activity in the EC, it is not known whether DA modulates inputs from the BLA. In this study, we used in vitro patch-clamp recordings and Ca2+ imaging of layer V neurons in the rat lateral EC to determine whether DA modulates the integration of inputs from the BLA and the mechanism for this modulation. We found that DA exerted actions that depended on the neuronal state. Near resting membrane potentials, DA suppressed integration of inputs, whereas at depolarized potentials, DA enhanced integration. DA enhanced the integration by a D2-mediated enhancement of Na+ currents, via phospholipase C. These experiments demonstrate that DA can exert actions in the EC that depend on the membrane voltage. This effect of DA may affect a wide range of inputs. Functionally, by enhancement of amygdala inputs that arrive in concert with other inputs, or during depolarized states, DA can facilitate the impact of affect on memory in a subset of conditions.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
41
|
Wolstencroft EC, Simic G, thi Man N, Holt I, Lam LT, Buckland PR, Morris GE. Endosomal location of dopamine receptors in neuronal cell cytoplasm. J Mol Histol 2007; 38:333-40. [PMID: 17593530 DOI: 10.1007/s10735-007-9106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Five subtypes of dopamine receptor exist in two subfamilies: two D(1)-like (D(1) and D(5)) and three D(2)-like (D(2), D(3) and D(4)). We produced novel monoclonal antibodies against all three D(2)-like receptors and used them to localize receptors in Ntera-2 (NT-2) cells, the human neuronal precursor cell line. Most of the immunostaining for all three receptors colocalized with mannose-6-phosphate receptor, a marker for late endosomes formed by internalization of the plasma membrane. This result was obtained with antibodies against three different epitopes on the D(3) receptor, to rule out the possibility of cross-reaction with another protein, and controls without primary antibody or in the presence of competitor antigen were completely negative. In rat cerebral cortex and hippocampus, some of the dopamine receptor staining was found in similar structures in neuronal cell cytoplasm. Only some of the neurons were positive for dopamine receptors and the pattern was consistent with previously-reported patterns of innervation by dopamine-producing neurons. Endosomal dopamine receptors may provide a useful method for identifying cell bodies of dopamine-responsive neurons to complement methods that detect only active receptors in the neuronal cell membrane.
Collapse
Affiliation(s)
- Elizabeth C Wolstencroft
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, LMARC Building, Oswestry SY10 7AG, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Nakauchi S, Yamazaki Y, Sumikawa K. Chronic nicotine exposure affects the normal operation of hippocampal circuits. Neuroreport 2007; 18:87-91. [PMID: 17259867 DOI: 10.1097/wnr.0b013e328011b883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Evidence suggests that dopamine hyperfunction in schizophrenia blocks direct sensory information flow to CA1 pyramidal cells via the temporoammonic path. Owing to the high prevalence of smoking in schizophrenics, we examined whether nicotine modulates synaptic transmission in the temporoammonic path. Application of nicotine suppressed temporoammonic synaptic transmission as in the case of dopamine application. The suppressive effect of nicotine, however, disappeared in chronic nicotine-exposed hippocampi, suggesting the loss of nicotinic modulation of transmission in the temporoammonic path. In addition, the dopaminergic modulation of temporoammonic synaptic transmission decreased after chronic nicotine treatment. These observations suggest that chronic nicotine exposure affects the normal operation of hippocampal circuits.
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA
| | | | | |
Collapse
|
43
|
Takahashi H, Kato M, Hayashi M, Okubo Y, Takano A, Ito H, Suhara T. Memory and frontal lobe functions; possible relations with dopamine D2 receptors in the hippocampus. Neuroimage 2006; 34:1643-9. [PMID: 17174573 DOI: 10.1016/j.neuroimage.2006.11.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/20/2006] [Accepted: 11/01/2006] [Indexed: 11/30/2022] Open
Abstract
Cerebral cortical regions are thought to be important for cognitive functions such as memory and executive function. Although the functional associations between dopamine D2 receptors and motor and cognitive functions have been extensively examined in the striatum using positron emission tomography (PET), the role of dopamine D2 receptors in extrastriatal regions has been unexplored. We aimed to investigate the relationship between dopamine D2 receptors in extrastriatal regions and the performance of a broad spectrum of cognitive functions including memory, language, attention, and executive function in healthy subjects. Extrastriatal dopamine D2 receptors were measured in 25 male subjects using PET with [(11)C]FLB457. After the PET scans, a battery of neuropsychological tests was administered to all subjects. We found that the binding potential (BP) of [(11)C]FLB457 in the hippocampus was positively correlated with memory function. Furthermore, BP of [(11)C]FLB457 in the hippocampus, but not in the prefrontal cortex, was associated with frontal lobe functions such as executive function and verbal fluency. Our findings suggest that dopamine D2 receptors in the hippocampus might affect the local hippocampal function, but also brain functions outside the hippocampus such as the prefrontal cortex.
Collapse
Affiliation(s)
- Hidehiko Takahashi
- Molecular Imaging Center, Department of Molecular Neuroimaging, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Von Huben SN, Davis SA, Lay CC, Katner SN, Crean RD, Taffe MA. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Psychopharmacology (Berl) 2006; 188:586-96. [PMID: 16538469 PMCID: PMC2099258 DOI: 10.1007/s00213-006-0347-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/01/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Dopaminergic neurotransmission is critically involved in many aspects of complex behavior and cognition beyond reward/reinforcement and motor function. Mental and behavioral disorders associated with major disruptions of dopamine neurotransmission, including schizophrenia, attention deficit/hyperactivity disorder, Parkinson's disease, Huntington's disease, and substance abuse produce constellations of neuropsychological deficits in learning, memory, and attention in addition to other defining symptoms. OBJECTIVE To delineate the role dopaminergic D1- and D2-like receptor subtypes play in complex brain functions. MATERIALS AND METHODS Monkeys (N = 6) were trained on cognitive tests adapted from a human neuropsychological assessment battery (CAmbridge Neuropsychological Test Automated Battery). The battery included tests of spatial working memory (self-ordered spatial search task), visuo-spatial associative memory and learning (visuo-spatial paired associates learning task, vsPAL) and motivation (progressive ratio task, PR). Tests of motor function (bimanual motor skill task, BMS; rotating turntable task, RTT) were also included. The effects of the dopamine D2-like antagonist raclopride (10-56 microg/kg, i.m.) and the D1-like antagonist SCH23390 (SCH, 3.2-56 microg/kg, i.m.) on cognitive performance were then determined. RESULTS Deficits on PR, RTT, and BMS performance were observed after both raclopride and SCH23390. Spatial working memory accuracy was reduced to a greater extent by raclopride than by SCH, which was unexpected, given prior reports on the involvement of D1 signaling for spatial working memory in monkeys. Deficits were observed on vsPAL performance after raclopride, but not after SCH23390. CONCLUSIONS The intriguing results suggest a greater contribution of D2- over D1-like receptors to both spatial working memory and object-location associative memory.
Collapse
Affiliation(s)
- Stefani N Von Huben
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
45
|
Takahashi H, Higuchi M, Suhara T. The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry 2006; 59:919-28. [PMID: 16682269 DOI: 10.1016/j.biopsych.2006.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 01/23/2023]
Abstract
Despite numerous studies on extrastriatal regions involved in schizophrenia, studies on the functional implications of dopamine (DA) D2 receptors in the extrastriatal regions, including the cortex and thalamus, are limited. We review postmortem and in vivo human imaging studies as well as animal studies, focusing on the function of extrastriatal DA D2 receptors and their role in the pathophysiology of schizophrenia. Based on recent findings, cortical DA D2 receptors may interact with the gamma-aminobutyric acid system to modulate DA transmission, and thalamic DA D2 receptors are likely to participate in sensory gating function into the prefrontal cortex. We have found decreased DA D2 receptors in the anterior cingulate cortex and thalamic subregions of patients with schizophrenia. These observations may suggest that alterations of extrastriatal DA D2 receptors are involved in dysregulation of DA transmission and sensory signals from the thalamus to the cortex. Excessive excitatory signals from the thalamus might flow into the cortical neurotransmission system, aggravating dysregulation of DA transmission in both the striatal and extrastriatal regions in schizophrenia. These notions suggest the need for future investigations of extrastriatal DA D2 receptor function to gain important clues regarding the pathogenesis and of possible treatments for schizophrenia.
Collapse
Affiliation(s)
- Hidehiko Takahashi
- Molecular Imaging Center, Department of Molecular Neuroimaging, National Institute of Radiological Sciences, Chiba, Japan
| | | | | |
Collapse
|
46
|
Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JDE. Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron 2006; 50:507-17. [PMID: 16675403 DOI: 10.1016/j.neuron.2006.03.036] [Citation(s) in RCA: 656] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 02/10/2006] [Accepted: 03/23/2006] [Indexed: 11/17/2022]
Abstract
We examined anticipatory mechanisms of reward-motivated memory formation using event-related FMRI. In a monetary incentive encoding task, cues signaled high- or low-value reward for memorizing an upcoming scene. When tested 24 hr postscan, subjects were significantly more likely to remember scenes that followed cues for high-value rather than low-value reward. A monetary incentive delay task independently localized regions responsive to reward anticipation. In the encoding task, high-reward cues preceding remembered but not forgotten scenes activated the ventral tegmental area, nucleus accumbens, and hippocampus. Across subjects, greater activation in these regions predicted superior memory performance. Within subject, increased correlation between the hippocampus and ventral tegmental area was associated with enhanced long-term memory for the subsequent scene. These findings demonstrate that brain activation preceding stimulus encoding can predict declarative memory formation. The findings are consistent with the hypothesis that reward motivation promotes memory formation via dopamine release in the hippocampus prior to learning.
Collapse
Affiliation(s)
- R Alison Adcock
- Department of Psychiatry, University of California, San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
47
|
Rosenkranz JA, Johnston D. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 2006; 26:3229-44. [PMID: 16554474 PMCID: PMC6674109 DOI: 10.1523/jneurosci.4333-05.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/20/2006] [Accepted: 02/13/2006] [Indexed: 11/21/2022] Open
Abstract
The entorhinal cortex (EC) is a significant component of the systems that underlie certain forms of memory formation and recall. Evidence has been emerging that the dopaminergic system in the EC facilitates these and other functions of the EC. The effects of dopamine (DA) on membrane properties and excitability of EC neurons, however, are not known. We used in vitro whole-cell patch-clamp recordings from layer V pyramidal neuronal somata and dendrites of the adult rat lateral EC to investigate the effects of DA on the excitability of these neurons. We found that brief application of DA caused a reduction in the excitability of layer V EC pyramidal neurons. This effect was attributable to voltage-dependent modification of membrane properties that can best be explained by an increase in a hyperpolarization-activated conductance. Furthermore, the effects of DA were blocked by pharmacological blockade of h-channels, but not by any of a number of other ion channels. These actions were produced by a D1 receptor-mediated increase of cAMP but were independent of protein kinase A. A portion of the actions of DA can be attributed to effects in the apical dendrites. The data suggest that DA can directly influence the membrane properties of layer V EC pyramidal neurons by modulation of h-channels. These actions may underlie some of the effects of DA on memory formation.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Learning and Memory, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
48
|
Eisch AJ, Harburg GC. Opiates, psychostimulants, and adult hippocampal neurogenesis: Insights for addiction and stem cell biology. Hippocampus 2006; 16:271-86. [PMID: 16411230 DOI: 10.1002/hipo.20161] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Once thought to produce global, nonspecific brain injury, drugs of abuse are now known to produce selective neuro-adaptations in particular brain regions. These neuro-adaptations are being closely examined for clues to the development, maintenance, and treatment of addiction. The hippocampus is an area of particular interest, as it is central to many aspects of the addictive process, including relapse to drug taking. A recently appreciated hippocampal neuro-adaptation produced by drugs as diverse as opiates and psychostimulants is decreased neurogenesis in the sub-granular zone (SGZ). While the role of adult-generated neurons is not clear, their functional integration into hippocampal circuitry raises the possibility that decreased adult SGZ neurogenesis may alter hippocampal function in such a way as to maintain addictive behavior or contribute to relapse. Here, we review the impact of opiates and psychostimulants on the different stages of cell development in the adult brain, as well as the different stages of the addictive process. We discuss how examination of drug-induced alterations of adult neurogenesis advances our understanding of the complex mechanisms by which opiates and psychostimulants affect brain function while also opening avenues for novel ways of assessing the functional role of adult-generated neurons. In addition, we highlight key discrepancies in the field and underscore the necessity to move "beyond BrdU"--beyond merely counting new hippocampal cells labeled with the S phase marker bromodeoxyuridine--so as to probe mechanistic questions about how drug-induced alterations in adult hippocampal neurogenesis occur and what the functional ramifications of alterations in neurogenesis are for addiction.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA.
| | | |
Collapse
|
49
|
Lisman JE, Grace AA. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 2005; 46:703-13. [PMID: 15924857 DOI: 10.1016/j.neuron.2005.05.002] [Citation(s) in RCA: 1351] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article we develop the concept that the hippocampus and the midbrain dopaminergic neurons of the ventral tegmental area (VTA) form a functional loop. Activation of the loop begins when the hippocampus detects newly arrived information that is not already stored in its long-term memory. The resulting novelty signal is conveyed through the subiculum, accumbens, and ventral pallidum to the VTA where it contributes (along with salience and goal information) to the novelty-dependent firing of these cells. In the upward arm of the loop, dopamine (DA) is released within the hippocampus; this produces an enhancement of LTP and learning. These findings support a model whereby the hippocampal-VTA loop regulates the entry of information into long-term memory.
Collapse
Affiliation(s)
- John E Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
50
|
Devoto P, Flore G, Saba P, Fà M, Gessa GL. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neurosci 2005; 6:31. [PMID: 15865626 PMCID: PMC1134661 DOI: 10.1186/1471-2202-6-31] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 05/02/2005] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled.
Collapse
Affiliation(s)
- Paola Devoto
- Department of Neuroscience "B.B. Brodie" University of Cagliari, Italy
- Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Section of Cagliari, Cagliari, Italy
| | - Pierluigi Saba
- Department of Neuroscience "B.B. Brodie" University of Cagliari, Italy
| | - Mauro Fà
- Department of Neuroscience "B.B. Brodie" University of Cagliari, Italy
| | - Gian Luigi Gessa
- Department of Neuroscience "B.B. Brodie" University of Cagliari, Italy
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Section of Cagliari, Cagliari, Italy
- Centre of Excellence "Neurobiology of Addiction", University of Cagliari, Cagliari, Italy
| |
Collapse
|