1
|
Huang SC, Chang IYF, Chen TC, Lin HC, Tsai CY, Hsu JT, Yeh CN, Chang SC, Yeh TS. Redefining aberrant P53 expression of gastric cancer and its distinct clinical significance among molecular-histologic subtypes. Asian J Surg 2024; 47:4699-4705. [PMID: 38845323 DOI: 10.1016/j.asjsur.2024.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Numerous studies have demonstrated a correlation between p53 overexpression and diminished survival in gastric cancer patients. However, conflicting findings exist, and we hypothesize that these discrepancies arise from the cancer's complexity and heterogeneity, coupled with a lack of consensus on aberrant p53 expression. METHODS We enrolled a cohort of 187 patients with surgically resected gastric cancer. Patient categorization was based on Epstein-Barr virus (EBV), microsatellite instability (MSI), and Lauren classification (intestinal, diffuse and mixed). Utilizing an incremental algorithm, we evaluated p53 immunohistochemical (IHC) patterns in all 187 cases, while next-generation sequencing was successfully performed on 152 cases to identify TP53 mutations (mutTP53). RESULTS MutTP53 was identified in 32 % of the 152 cases, comprising 36 missense, 5 nonsense, and 7 frameshift alterations. Missense mutations predominantly correlated with p53 overexpression, while nonsense and frameshifting alterations related to null expression. Trial calculations indicated that null expression and a p53 IHC cutoff at >40 % offered the best prediction of mutTP53 (kappa coefficient, 0.427), with the highest agreement (0.524) observed in diffuse type and the lowest (0.269) in intestinal type. Null expression and a p53 IHC cutoff at >10 %, but not mutTP53 per se, provided the optimal prediction of survival outcome (p = 0.043), particularly in diffuse type (p = 0.044). Multivariate analysis showed that aberrant p53 IHC expression was not an independent prognostic factor. CONCLUSIONS P53 IHC patterns are predictive biomarkers for mutTP53 and gastric cancer outcomes, where a prerequisite involves a nuanced approach considering cutoff values and molecular-histologic subtyping.
Collapse
Affiliation(s)
- Shih-Chiang Huang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Hsiao-Ching Lin
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Chun-Yi Tsai
- Department of Surgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Jun-Te Hsu
- Department of Surgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linko, Chang Gung University, Taiwan.
| |
Collapse
|
2
|
Díaz Del Arco C, Fernández Aceñero MJ, Ortega Medina L. Molecular Classifications in Gastric Cancer: A Call for Interdisciplinary Collaboration. Int J Mol Sci 2024; 25:2649. [PMID: 38473896 DOI: 10.3390/ijms25052649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, often diagnosed at advanced stages, with a 5-year survival rate of approximately 20%. Despite notable technological advancements in cancer research over the past decades, their impact on GC management and outcomes has been limited. Numerous molecular alterations have been identified in GC, leading to various molecular classifications, such as those developed by The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG). Other authors have proposed alternative perspectives, including immune, proteomic, or epigenetic-based classifications. However, molecular stratification has not yet transitioned into clinical practice for GC, and little attention has been paid to alternative molecular classifications. In this review, we explore diverse molecular classifications in GC from a practical point of view, emphasizing their relationships with clinicopathological factors, prognosis, and therapeutic approaches. We have focused on classifications beyond those of TCGA and the ACRG, which have been less extensively reviewed previously. Additionally, we discuss the challenges that must be overcome to ensure their impact on patient treatment and prognosis. This review aims to serve as a practical framework to understand the molecular landscape of GC, facilitate the development of consensus molecular categories, and guide the design of innovative molecular studies in the field.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Luis Ortega Medina
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Zhang X, Li Y, Chen Y. Development of a Comprehensive Gene Signature Linking Hypoxia, Glycolysis, Lactylation, and Metabolomic Insights in Gastric Cancer through the Integration of Bulk and Single-Cell RNA-Seq Data. Biomedicines 2023; 11:2948. [PMID: 38001949 PMCID: PMC10669360 DOI: 10.3390/biomedicines11112948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Hypoxia and anaerobic glycolysis are cancer hallmarks and sources of the metabolite lactate. Intriguingly, lactate-induced protein lactylation is considered a novel epigenetic mechanism that predisposes cells toward a malignant state. However, the significance of comprehensive hypoxia-glycolysis-lactylation-related genes (HGLRGs) in cancer is unclear. We aimed to construct a model centered around HGLRGs for predicting survival, metabolic features, drug responsiveness, and immune response in gastric cancer. METHODS The integration of bulk and single-cell RNA-Seq data was achieved using data obtained from the TCGA and GEO databases to analyze HGLRG expression patterns. A HGLRG risk-score model was developed based on univariate Cox regression and a LASSO-Cox regression model and subsequently validated. Additionally, the relationships between the identified HGLRG signature and multiple metabolites, drug sensitivity and various cell clusters were explored. RESULTS Thirteen genes were identified as constituting the HGLRG signature. Using this signature, we established predictive models, including HGLRG risk scores and nomogram and Cox regression models. The stratification of patients into high- and low-risk groups based on HGLRG risk scores showed a better prognosis in the latter. The high-risk group displayed increased sensitivity to cytotoxic drugs and targeted inhibitors. The expression of the HGLRG BGN displayed a strong correlation with amino acids and lipid metabolites. Notably, a significant difference in immune infiltration, such as that of M1 macrophages and CD8 T cells, was correlated with the HGLRG signature. The abundant DUSP1 within the mesenchymal components was highlighted by single-cell transcriptomics. CONCLUSION The innovative HGLRG signature demonstrates efficacy in predicting survival and providing a practical clinical model for gastric cancer. The HGLRG signature reflects the internal metabolism, drug responsiveness, and immune microenvironment components of gastric cancer and is expected to boost patients' response to targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Xiangqian Zhang
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yun Li
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratroy for Anticancer Drugs, Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Dual roles of TRIM3 in colorectal cancer by retaining p53 in the cytoplasm to decrease its nuclear expression. Cell Death Discov 2023; 9:85. [PMID: 36894560 PMCID: PMC9998637 DOI: 10.1038/s41420-023-01386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Colorectal cancer is a very heterogeneous disease caused by the interaction of genetic and environmental factors. P53, as a frequent mutation gene, plays a critical role in the adenoma-carcinoma transition during the tumorous pathological process. Our team discovered TRIM3 as a tumor-associated gene in CRC by high-content screening techniques. TRIM3 demonstrated both tumor-suppressive and tumorigenic features in cell experiments dependent on the cell status of wild or mutant p53. TRIM3 could directly interact with the C terminus of p53 (residues 320 to 393), a common segment of wtp53 and mutp53. Moreover, TRIM3 could exert different neoplastic features by retaining p53 in the cytoplasm to decrease its nuclear expression in a wtp53 or mutp53-dependent pathway. Chemotherapy resistance develops in nearly all patients with advanced CRC and seriously limits the therapeutic efficacies of anticancer drugs. TRIM3 could reverse the chemotherapy resistance of oxaliplatin in mutp53 CRC cells by degradation of mutp53 in the nuclei to downregulate the multidrug resistance gene. Therefore, TRIM3 could be a potential therapeutic strategy to improve the survival of CRC patients with mutp53.
Collapse
|
5
|
Choi EK, Kim HD, Park EJ, Song SY, Phan TT, Nam M, Kim M, Kim DU, Hoe KL. 8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells. Biomol Ther (Seoul) 2023; 31:219-226. [PMID: 36782271 PMCID: PMC9970839 DOI: 10.4062/biomolther.2023.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Furanocoumarin 8-methoxypsoralen (8-MOP) is the parent compound that naturally occurs in traditional medicinal plants used historically. 8-MOP has been employed as a photochemotherapeutic component of Psoralen + Ultraviolet A (PUVA) therapy for the treatment of vitiligo and psoriasis. Although the role of 8-MOP in PUVA therapy has been studied, little is known about the effects of 8-MOP alone on human gastric cancer cells. In this study, we observed anti-proliferative effect of 8-MOP in several human cancer cell lines. Among these, the human gastric cancer cell line SNU1 is the most sensitive to 8-MOP. 8-MOP treated SNU1 cells showed G1-arrest by upregulating p53 and apoptosis by activating caspase-3 in a dose-dependent manner, which was confirmed by loss-of-function analysis through the knockdown of p53-siRNA and inhibition of apoptosis by Z-VAD-FMK. Moreover, 8-MOPinduced apoptosis is not associated with autophagy or necrosis. The signaling pathway responsible for the effect of 8-MOP on SNU1 cells was confirmed to be related to phosphorylated PI3K, ERK2, and STAT3. In contrast, 8-MOP treatment decreased the expression of the typical metastasis-related proteins MMP-2, MMP-9, and Snail in a p53-independent manner. In accordance with the serendipitous findings, treatment with 8-MOP decreased the wound healing, migration, and invasion ability of cells in a dose-dependent manner. In addition, combination treatment with 8-MOP and gemcitabine was effective at the lowest concentrations. Overall, our findings indicate that oral 8-MOP has the potential to treat early human gastric cancer, with fewer side effects.
Collapse
Affiliation(s)
- Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hae Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seuk Young Song
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Tien Thuy Phan
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Miyoung Nam
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjung Kim
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding Authors E-mail: (Hoe KL), (Kim DU), Tel: +82-42-821-8627 (Hoe KL), +82-42-860-4159 (Kim DU), Fax: +82-42-821-8927 (Hoe KL), +82-42-860-8589 (Kim DU)
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon 34134, Republic of Korea,Corresponding Authors E-mail: (Hoe KL), (Kim DU), Tel: +82-42-821-8627 (Hoe KL), +82-42-860-4159 (Kim DU), Fax: +82-42-821-8927 (Hoe KL), +82-42-860-8589 (Kim DU)
| |
Collapse
|
6
|
Yang H, Zhang K, Guo Y, Guo X, Hou K, Hou J, Luo Y, Liu J, Jia S. Gain-of-Function p53N236S Mutation Drives the Bypassing of HRas V12-Induced Cellular Senescence via PGC-1α. Int J Mol Sci 2023; 24:ijms24043790. [PMID: 36835200 PMCID: PMC9960896 DOI: 10.3390/ijms24043790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
One of the key steps in tumorigenic transformation is immortalization in which cells bypass cancer-initiating barriers such as senescence. Senescence can be triggered by either telomere erosion or oncogenic stress (oncogene-induced senescence, OIS) and undergo p53- or Rb-dependent cell cycle arrest. The tumor suppressor p53 is mutated in 50% of human cancers. In this study, we generated p53N236S (p53S) mutant knock-in mice and observed that p53S heterozygous mouse embryonic fibroblasts (p53S/+) escaped HRasV12-induced senescence after subculture in vitro and formed tumors after subcutaneous injection into severe combined immune deficiency (SCID) mice. We found that p53S increased the level and nuclear translocation of PGC-1α in late-stage p53S/++Ras cells (LS cells, which bypassed the OIS). The increase in PGC-1α promoted the biosynthesis and function of mitochondria in LS cells by inhibiting senescence-associated reactive oxygen species (ROS) and ROS-induced autophagy. In addition, p53S regulated the interaction between PGC-1α and PPARγ and promoted lipid synthesis, which may indicate an auxiliary pathway for facilitating cell escape from aging. Our results illuminate the mechanisms underlying p53S mutant-regulated senescence bypass and demonstrate the role played by PGC-1α in this process.
Collapse
|
7
|
Chromosomally Unstable Gastric Cancers Overexpressing Claudin-6 Disclose Cross-Talk between HNF1A and HNF4A, and Upregulated Cholesterol Metabolism. Int J Mol Sci 2022; 23:ijms232213977. [PMID: 36430456 PMCID: PMC9694805 DOI: 10.3390/ijms232213977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Abnormally increased expression of claudin-6 in gastric cancer is considered a prognostic marker of the chromosomal unstable molecular subtype. However, a detailed molecular profile analysis of differentially expressed genes and affected pathways associated with claudin-6 increased (Cldn6high) expression has not been assessed. (2) The TCGA Stomach Adenocarcinoma Pan-Cancer Atlas Data was evaluated using Cytoscape's Gene Mania, MCODE, and Cytohubba bioinformatic software. (3) 96.88% of Cldn6high gastric cancer tumors belonging to the chromosomal unstable molecular subtype are associated with a worse prognosis. Cldn6expression coincided with higher mutations in TP53, MIEN1, STARD3, PGAP3, and CCNE1 genes compared to Cldn6low expression. In Cldn6high cancers, 1316 genes were highly expressed. Cholesterol metabolism was the most affected pathway as APOA1, APOA2, APOH, APOC2, APOC3, APOB-100, LDL receptor-related protein 1/2, Sterol O-acyltransferase, STARD3, MAGEA-2, -3, -4, -6, -9B, and -12 genes were overexpressed in Cldn6high gastric cancers; interestingly, APOA2 and MAGEA9b were identified as top hub genes. Functional enrichment of DEGs linked HNF-4α and HNF-1α genes as highly expressed in Cldn6high gastric cancer. (4) Our results suggest that APOA2 and MAGEA9b could be considered as prognostic markers for Cldn6high gastric cancers.
Collapse
|
8
|
Mitra S, Emran TB, Chandran D, Zidan BMRM, Das R, Mamada SS, Masyita A, Salampe M, Nainu F, Khandaker MU, Idris AM, Simal-Gandara J. Cruciferous vegetables as a treasure of functional foods bioactive compounds: Targeting p53 family in gastrointestinal tract and associated cancers. Front Nutr 2022; 9:951935. [PMID: 35990357 PMCID: PMC9386315 DOI: 10.3389/fnut.2022.951935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
In the past few years, phytochemicals from natural products have gotten the boundless praise in treating cancer. The promising role of cruciferous vegetables and active components contained in these vegetables, such as isothiocyanates, indole-3-carbinol, and isothiocyanates, has been widely researched in experimental in vitro and in vivo carcinogenesis models. The chemopreventive agents produced from the cruciferous vegetables were recurrently proven to affect carcinogenesis throughout the onset and developmental phases of cancer formation. Likewise, findings from clinical investigations and epidemiological research supported this statement. The anticancer activities of these functional foods bioactive compounds are closely related to their ability to upregulate p53 and its related target genes, e.g., p21. As the “guardian of the genome,” the p53 family (p53, p63, and p73) plays a pivotal role in preventing the cancer progression associated with DNA damage. This review discusses the functional foods bioactive compounds derived from several cruciferous vegetables and their use in altering the tumor-suppressive effect of p53 proteins. The association between the mutation of p53 and the incidence of gastrointestinal malignancies (gastric, small intestine, colon, liver, and pancreatic cancers) is also discussed. This review contains crucial information about the use of cruciferous vegetables in the treatment of gastrointestinal tract malignancies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | | | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
9
|
Yamada H, Kaneko H, Kuwashima H, Sugimori M, Tsuyuki S, Sanga K, Irie K, Sasaki T, Kondo M, Miyake A, Maeda S. The Origin of Epithelium with Low-Grade Atypia in Early Gastric Cancer. Digestion 2022; 103:217-223. [PMID: 35172301 PMCID: PMC9153352 DOI: 10.1159/000521875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Helicobacter pylori (HP) infection causes chronic inflammation and atrophy of the gastric mucosa and thus a high risk of gastric cancer (GC). With the increasing success of HP infection treatment, a larger number of GCs that develop after eradication can be assessed. Several studies have shown that epithelium with low-grade atypia (ELA) is a frequent characteristic of these GCs, but the origin of this condition is unknown. In this study, we compared the mucin phenotype, cellular proliferation, and p53 staining in ELA and cancerous tissues obtained from patients with GC with and without HP eradication. METHODS The study population consisted of 23 patients with GC that developed after successful HP eradication therapy (eradicated group) and 24 patients with GC and HP infection (infected group). The prevalence of ELA was determined by hematoxylin and eosin staining. Tumor tissue and ELA samples were further analyzed by immunohistochemical staining for Muc5AC, Muc2, p53, and Ki-67. RESULTS The ELA coverage rate was significantly higher in the eradicated group than in the infected group. Gastric-type mucin was frequently expressed by the ELA, and the mucin phenotypes of ELA and cancerous areas differed in 75% of cases. The Ki-67 labeling index was consistently lower in ELA than in the cancerous mucosa. Fourteen of 21 (66.7%) cancerous lesions, but only 3 ELA samples, were p53-positive. CONCLUSION In most cases, ELA on the surfaces of GCs seems to have originated from normal gastric cells, not from cancer cells.
Collapse
Affiliation(s)
- Hiroaki Yamada
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan,*Hiroaki Yamada,
| | - Hiroaki Kaneko
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Hirofumi Kuwashima
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Sho Tsuyuki
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Katsuyuki Sanga
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Kuniyasu Irie
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan
| | - Akio Miyake
- Division of Pathological Diagnosis, Yokohama City University Hospital, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Yokohama City University, Yokohama, Japan,**Shin Maeda,
| |
Collapse
|
10
|
Kumagai K, Shimizu T, Takai A, Kakiuchi N, Takeuchi Y, Hirano T, Takeda H, Mizuguchi A, Teramura M, Ito T, Iguchi E, Nikaido M, Eso Y, Takahashi K, Ueda Y, Miyamoto SI, Obama K, Ogawa S, Marusawa H, Seno H. Expansion of gastric intestinal metaplasia with copy number aberrations contributes to field cancerization. Cancer Res 2022; 82:1712-1723. [PMID: 35363856 DOI: 10.1158/0008-5472.can-21-1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
Abstract
Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; nineteen single glands in the non-inflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. Additionally, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and the Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired copy number aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable to those of IGC, contributing to field cancerization.
Collapse
Affiliation(s)
- Ken Kumagai
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Atsushi Takai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - Haruhiko Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Aya Mizuguchi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mari Teramura
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takahiko Ito
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | | | - Yuji Eso
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yoshihide Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Seno
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Pádua JDB, Mariano CFA, Fabro AT, Tirapelli DPDC, Sankarankutty AK, dos Santos JS, Brunaldi MO. Prognostic Value of the Immunohistochemical Expression of RAD51 and BRCA2 in Gastric Adenocarcinoma. J Histochem Cytochem 2022; 70:199-210. [PMID: 34978208 PMCID: PMC8832630 DOI: 10.1369/00221554211065834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current scientific literature lacks data on the prognostic value of the expression of RAD51 and BRCA2 in gastric adenocarcinoma. Therefore, we aimed to evaluate those and other homologous recombination-related proteins (ATM, ATR, BRCA1, CHK2, γH2AX, p53) in gastric cancer, assessing their correlation with clinical prognosis. Paraffin-embedded samples were obtained from surgical specimens collected in total or subtotal gastrectomy procedures. Between 2008 and 2017, 121 patients with advanced gastric adenocarcinoma underwent surgical resection and were included in this study. Negativity for nuclear RAD51 correlated with vascular invasion, lymph node metastasis, larger tumor size, and lower overall survival and disease-free survival in univariate analysis. However, nuclear RAD51-negative cases presented better response rates to adjuvant therapy than the positive ones. Nuclear ATR negativity correlated with larger tumor size and a higher histological grade. Positivity for ATM was associated with more prolonged disease-free survival. Positivity for nuclear BRCA2 correlated with lower overall survival and diffuse histological type, whereas its high expression was associated with vascular invasion. Nevertheless, tumors positive for nuclear BRCA2 were more frequently low grade in the intestinal histological type. Our findings indicate that RAD51 and BRCA2 are valuable immunohistochemical prognostic markers in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Joel Del Bel Pádua
- Joel Del Bel Pádua, Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil. E-mail:
| | - Carolline Fontes Alves Mariano
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Perspective Investigation of the Pharmacological Mechanisms of the Herbal Drug FDY003 in Gastric Cancer. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly malignant tumors worldwide. While the application of herbal drugs for GC treatment is increasing, the multicompound–multitarget pharmacological mechanisms involved are yet to be elucidated. By adopting a network pharmacology strategy, we investigated the properties of the anticancer herbal drug FDY003 against GC. We found that FDY003 reduced the viability of human GC cells and enhanced their chemosensitivity. We also identified 8 active phytochemical compounds in FDY003 that target 70 GC-associated genes and proteins. Gene ontology (GO) enrichment analysis suggested that the targets of FDY003 are involved in various cellular processes, such as cellular proliferation, survival, and death. We further identified various major FDY003 target GC-associated pathways, including PIK3-Akt, MAPK, Ras, HIF-1, ErbB, and p53 pathways. Taken together, the overall analysis presents insight at the systems level into the pharmacological activity of FDY003 against GC.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
13
|
Qadir J, Majid S, Khan MS, Rashid F, Wani MD, Bhat SA. Implication of ARID1A Undercurrents and PDL1, TP53 Overexpression in Advanced Gastric Cancer. Pathol Oncol Res 2021; 27:1609826. [PMID: 34924820 PMCID: PMC8677663 DOI: 10.3389/pore.2021.1609826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
AT-rich interactive domain-containing protein 1A (ARID1A), TP53 and programmed cell death-ligand 1 (PDL1) are involved in several protein interactions that regulate the expression of various cancer-related genes involved in the progression of the cell cycle, cell proliferation, DNA repair, and apoptosis. In addition, gene expression analysis identified some common downstream targets of ARID1A and TP53. It has been established that tumors formed by ARID1A-deficient cancer cells exhibited elevated PDL1 expression. However, the aberrations in these molecules have not been studied in this population especially in Gastric Cancer (GC). In this backdrop we aimed to investigate the role of the ARID1A mutation and expression of ARID1A, TP53 and PDL1 genes in the etiopathogenesis of Gastric Cancer (GC) in the ethnic Kashmiri population (North India). The study included 103 histologically confirmed GC cases. The mutations, if any, in exon-9 of ARID1A gene was analysed by Polymerase Chain Reaction (PCR) followed by Sanger sequencing. The mRNA expression of the ARID1A, TP53 and PDL1 genes was analysed by Quantitative real time-PCR (qRT-PCR). We identified a nonsense mutation (c.3219; C > T) in exon-9 among two GC patients (∼2.0%), which introduces a premature stop codon at protein position 1073. The mRNA expression of the ARID1A, TP53 and PDL1 gene was significantly reduced in 25.3% and elevated in 47.6 and 39.8% of GC cases respectively with a mean fold change of 0.63, 2.93 and 2.43. The data revealed that reduced mRNA expression of ARID1A and elevated mRNA expression of TP53 and PDL1 was significantly associated with the high-grade and advanced stage of cancer. Our study proposes that ARAD1A under-expression and overexpression of TP53 and PDL1 might be crucial for tumor progression with TP53 and PDL1 acting synergistically.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Mumtaz Din Wani
- Department of Surgery, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | | |
Collapse
|
14
|
Yamasaki J, Hirata Y, Otsuki Y, Suina K, Saito Y, Masuda K, Okazaki S, Ishimoto T, Saya H, Nagano O. MEK Inhibition Suppresses Metastatic Progression of KRAS-Mutated Gastric Cancer. Cancer Sci 2021; 113:916-925. [PMID: 34931404 PMCID: PMC8898706 DOI: 10.1111/cas.15244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Metastatic progression of tumors is driven by genetic alterations and tumor‐stroma interaction. To elucidate the mechanism underlying the oncogene‐induced gastric tumor progression, we have developed an organoid‐based model of gastric cancer from GAstric Neoplasia (GAN) mice, which express Wnt1 and the enzymes COX2 and microsomal prostaglandin E synthase 1 in the stomach. Both p53 knockout (GAN‐p53KO) organoids and KRASG12V‐expressing GAN‐p53KO (GAN‐KP) organoids were generated by genetic manipulation of GAN mouse‐derived tumor (GAN wild‐type [WT]) organoids. In contrast with GAN‐WT and GAN‐p53KO organoids, which manifested Wnt addiction, GAN‐KP organoids showed a Wnt‐independent phenotype and the ability to proliferate without formation of a Wnt‐regulated three‐dimensional epithelial architecture. After transplantation in syngeneic mouse stomach, GAN‐p53KO cells formed only small tumors, whereas GAN‐KP cells gave rise to invasive tumors associated with the development of hypoxia as well as to liver metastasis. Spatial transcriptomics analysis suggested that hypoxia signaling contributes to the metastatic progression of GAN‐KP tumors. In particular, such analysis identified a cluster of stromal cells located at the tumor invasive front that expressed genes related to hypoxia signaling, angiogenesis, and cell migration. These cells were also positive for phosphorylated extracellular signal‐regulated kinase (ERK), suggesting that mitogen‐activated protein kinase (MAPK) signaling promotes development of both tumor and microenvironment. The MEK (MAPK kinase) inhibitor trametinib suppressed the development of GAN‐KP gastric tumors, formation of a hypoxic microenvironment, tumor angiogenesis, and liver metastasis. Our findings therefore establish a rationale for application of trametinib to suppress metastatic progression of KRAS‐mutated gastric cancer.
Collapse
Affiliation(s)
- Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yuki Hirata
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Suina
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Saito
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Shogo Okazaki
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
15
|
Yu R, Sun T, Zhang X, Li Z, Xu Y, Liu K, Shi Y, Wu X, Shao Y, Kong L. TP53 Co-Mutational Features and NGS-Calibrated Immunohistochemistry Threshold in Gastric Cancer. Onco Targets Ther 2021; 14:4967-4978. [PMID: 34629881 PMCID: PMC8493115 DOI: 10.2147/ott.s321949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose TP53 is the most frequently mutated gene in gastric cancer and it can be potentially used for gastric cancer diagnosis and screening. However, standardized clinical approaches that could accurately and cost-effectively detect TP53 mutations in gastric cancer are largely lagged behind. Patients and Methods We conducted next-generation sequencing (NGS) analysis of 425 cancer-related genes in 42 gastric cancer patients in our cohort. A 1313-patient cohort derived from the cBioPortal database was used for validation. We performed immunohistochemistry (IHC) staining with four commonly used p53 antibodies, and the NGS results were used as the gold standard to optimize the IHC threshold for each antibody. Results By NGS analysis, we found that around 80% of gastric cancer patients in our cohort harbored TP53 alterations. Genetic alterations of BRCA1/2 or KMT2B were mostly exclusive with TP53 mutations, so were the MSI status or low grade of tumors. These results were further validated using the data from cBioPortal. We then used the NGS-derived TP53 status to optimize four commonly used IHC antibodies for detecting TP53 mutations. We showed that all antibodies could achieve more than 93% accuracy when proper IHC positivity thresholds were used, especially for the SP5 antibody that could reach 100% sensitivity and specificity with the 20% threshold. Conclusion Our results indicated that exclusivity between TP53 and BRCA mutations could be potentially used as a cost-effective way to predict BRCA status. Also, setting proper IHC thresholds for each specific antibody is critical to accurately detect TP53 mutations and facilitate disease diagnosis.
Collapse
Affiliation(s)
- Ruili Yu
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Tingyi Sun
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xianwei Zhang
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhen Li
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yang Xu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Kaihua Liu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yuqian Shi
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
16
|
Ramos MFKP, Pereira MA, de Mello ES, Cirqueira CDS, Zilberstein B, Alves VAF, Ribeiro-Junior U, Cecconello I. Gastric cancer molecular classification based on immunohistochemistry and in situ hybridization: Analysis in western patients after curative-intent surgery. World J Clin Oncol 2021; 12:688-701. [PMID: 34513602 PMCID: PMC8394162 DOI: 10.5306/wjco.v12.i8.688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a highly heterogeneous disease, and the identification of molecular subtyping of gastric adenocarcinoma emerged as a promising option to define therapeutic strategies and prognostic subgroups. However, the costs and technical complexity of molecular methodologies remains an obstacle to its adoption, and their clinical significance by other approaches needs further evidence.
AIM To evaluate the clinicopathological characteristics and long-term survival of GC based on the subgroups of molecular classification by immunohistochemistry (IHC) and in situ hybridization (ISH).
METHODS We retrospectively evaluated all patients who underwent D2-gastrectomy between 2009 and 2016 in a Western cohort of GC patients treated with curative intent. Microsatellite instability (MSI) status, E-cadherin, and p53 expression were analyzed by IHC, and Epstein-Barr virus (EBV) by ISH. Tissue microarrays were constructed for analysis. Clinicopathological characteristics and survival of GC were evaluated according to subtypes defined by The Cancer Genome Atlas (TCGA) Research Network Group and Asian Cancer Research Group (ACRG) classification systems.
RESULTS A total of 287 GC patients were included. Based on IHC and ISH analysis, five profiles were defined as follows: E-cadherin aberrant (9.1%), MSI (20.9%), p53 aberrant (36.6%), EBV positivity (10.5%), and p53 normal (31%), which corresponded to tumors that showed no alteration in another profile. A flowchart according to the TCGA and ACRG classifications were used to define the subtypes, where clinical and pathological characteristics associated with GC subtypes were evidenced. Proximal location (P < 0.001), total gastrectomy (P = 0.001), and intense inflammatory infiltrate (P < 0.001) were characteristics related to EBV subtype. MSI subtype was predominantly associated with advanced age (P = 0.017) and the presence of comorbidities (P = 0.011). While Laurén diffuse type (P < 0.001) and advanced stage (P = 0.029) were related to genomically stable (GS) subtype. GS tumors and microsatellite stable/epithelial to mesenchymal transition phenotype subtype had worse disease-free survival (DFS) and overall survival (OS) than other subtypes. Conversely, MSI subtype of GC had better survival in both classifications. Type of gastrectomy, pT and the TCGA subtypes were independent factors associated to DFS and OS.
CONCLUSION The IHC/ISH analysis was able to distinguish immunophenotypic groups of GC with distinct characteristics and prognosis, resembling the subtypes of the molecular classifications. Accordingly, this method of classification may represent a viable option for use in a clinical setting.
Collapse
Affiliation(s)
- Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, Brazil
| | - Marina Alessandra Pereira
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, Brazil
| | - Evandro Sobroza de Mello
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01249000, Brazil
| | | | - Bruno Zilberstein
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, Brazil
| | - Venancio Avancini Ferreira Alves
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 01249000, Brazil
| | - Ulysses Ribeiro-Junior
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, Brazil
| | - Ivan Cecconello
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, Brazil
| |
Collapse
|
17
|
Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis 2021; 12:709. [PMID: 34267184 PMCID: PMC8282662 DOI: 10.1038/s41419-021-03988-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Asparaginase depletes extracellular asparagine in the blood and is an important treatment for acute lymphoblastic leukemia (ALL) due to asparagine auxotrophy of ALL blasts. Unfortunately, resistance occurs and has been linked to expression of the enzyme asparagine synthetase (ASNS), which generates asparagine from intracellular sources. Although TP53 is the most frequently mutated gene in cancer overall, TP53 mutations are rare in ALL. However, TP53 mutation is associated with poor therapy response and occurs at higher frequency in relapsed ALL. The mutant p53-reactivating compound APR-246 (Eprenetapopt/PRIMA-1Met) is currently being tested in phase II and III clinical trials in several hematological malignancies with mutant TP53. Here we present CEllular Thermal Shift Assay (CETSA) data indicating that ASNS is a direct or indirect target of APR-246 via the active product methylene quinuclidinone (MQ). Furthermore, combination treatment with asparaginase and APR-246 resulted in synergistic growth suppression in ALL cell lines. Our results thus suggest a potential novel treatment strategy for ALL.
Collapse
|
18
|
Sokolova O, Naumann M. Manifold role of ubiquitin in Helicobacter pylori infection and gastric cancer. Cell Mol Life Sci 2021; 78:4765-4783. [PMID: 33825941 PMCID: PMC8195768 DOI: 10.1007/s00018-021-03816-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Infection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.
Collapse
Affiliation(s)
- Olga Sokolova
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| | - Michael Naumann
- Medical Faculty, Otto Von Guericke University, Institute of Experimental Internal Medicine, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Li J, Li Z, Ding Y, Xu Y, Zhu X, Cao N, Huang C, Qin M, Liu F, Zhao A. TP53 mutation and MET amplification in circulating tumor DNA analysis predict disease progression in patients with advanced gastric cancer. PeerJ 2021; 9:e11146. [PMID: 33959414 PMCID: PMC8054733 DOI: 10.7717/peerj.11146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a heterogeneous disease that encompasses various molecular subtypes. The molecular mutation characteristics of circulating tumor DNA (ctDNA) in advanced gastric cancer (AGC), especially the clinical utility of TP53 mutation and MET amplification in ctDNA need to be further explored. Objectives The aim of this study was mainly to assess the clinical utility of TP53 mutation and MET amplification in ctDNA as biomarkers for monitoring disease progression of AGC. Patients and Methods We used multigene NGS-panel technology to study the characteristics of ctDNA gene mutations and screen the key mutant genes in AGC patients. The Kaplan-Meier method was used to calculate the survival probability and log-rank test was used to compare the survival curves of TP53 mutation and MET amplification in ctDNA of AGC patients. The survival time was set from the blood test time to the follow-up time to observe the relationship between the monitoring index and tumor prognosis. Results We performed mutation detection on ctDNA in 23 patients with AGC and identified the top 20 mutant genes. The five most frequently mutated genes were TP53 (55%), EGFR (20%), ERBB2 (20%), MET (15%) and APC (10%). TP53 was the most common mutated gene (55%) and MET had a higher frequency of mutations (15%) in our study. Kaplan-Meier analysis showed that patients with TP53 mutant in ctDNA had shorter overall survival (OS) than these with TP53 wild (P < 0.001). The Allele frequency (AF) of TP53 mutations in patient number 1 was higher in the second time (0.94%) than in the first time (0.36%); the AF of TP53 mutations in patient number 16 was from scratch (0∼0.26%). In addition, the AF of TP53 mutations in patients who survive was relatively low (P = 0.047). Simultaneously, Kaplan-Meier analysis showed that patients with MET amplification also had shorter OS than these with MET without amplification (P < 0.001). Conclusion TP53 and MET are the two common frequently mutant genes in ctDNA of AGC patients.TP53 mutation and MET amplification in ctDNA could predict disease progression of AGC patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China.,Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhaoyan Li
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Yajie Ding
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Chen Huang
- Department of General Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Feng Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| |
Collapse
|
20
|
Ramos MFKP, Pereira MA, Cardili L, de Mello ES, Ribeiro Jr U, Zilberstein B, Cecconello I. Expression profiles of gastric cancer molecular subtypes in remnant tumors. World J Gastrointest Oncol 2021; 13:265-278. [PMID: 33889278 PMCID: PMC8040060 DOI: 10.4251/wjgo.v13.i4.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Remnant gastric cancer (RGC) is a carcinoma arising in the stomach remnant after previous gastric resection. It is frequently reported as a tumor with a poor prognosis and distinct biological features from primary gastric cancer (PGC). However, as it is less frequent, its profile regarding the current molecular classifications of gastric cancer has not been evaluated.
AIM To evaluate a cohort of RGC according to molecular subtypes of GC using a panel of immunohistochemistry and in situ hybridization to determine whether the expression profile is different between PGC and RGC.
METHODS Consecutive RGC patients who underwent gastrectomy between 2009 and 2019 were assessed using seven GC panels: Epstein-Barr virus in situ hybridization, immunohistochemistry for mismatch repair proteins (MutL homolog 1, MutS homolog 2, MutS homolog 6, and PMS1 homolog 2), p53 protein, and E-cadherin expression. Clinicopathological characteristics and survival of these patients were compared to 284 PGC patients.
RESULTS A total of 40 RGC patients were enrolled in this study. Compared to PGC, older age (P < 0.001), male (P < 0.001), lower body mass index (P = 0.010), and lower hemoglobin level (P < 0.001) were associated with RGC patients. No difference was observed regarding Lauren’s type and pathologic Tumor Node Metastasis stage between the groups. Regarding the profiles evaluated, EBV-positive tumors were higher in RGC compared to PGC (P = 0.039). The frequency of microsatellite instability, aberrant p53 immunostaining, and loss of E-cadherin expression were similar between RGC and PGC. Higher rates of simultaneous alterations in two or more profiles were observed in RGC compared to PGC (P < 0.001). According to the molecular classification, the subtypes were defined as EBV in nine (22.5%) cases, microsatellite instability in nine (22.5%) cases, genomically stable in one (2.5%) case, and chromosomal instability in 21 (52.5%) cases. There was no significant difference in survival between molecular subtypes in RGC patients.
CONCLUSION RGC was associated with EBV positivity and higher rates of co-altered expression profiles compared to PGC. According to the molecular classification, there was no significant difference in survival between the subtypes of RGC.
Collapse
Affiliation(s)
- Marcus Fernando Kodama Pertille Ramos
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Marina Alessandra Pereira
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Leonardo Cardili
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Evandro Sobroza de Mello
- Department of Pathology, Instituto do Cancer, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Ulysses Ribeiro Jr
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Bruno Zilberstein
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| | - Ivan Cecconello
- Department of Gastroenterology, Instituto do Cancer, Hospital das Clinicas, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01249000, São Paulo, Brazil
| |
Collapse
|
21
|
Machlowska J, Kapusta P, Szlendak M, Bogdali A, Morsink F, Wołkow P, Maciejewski R, Offerhaus GJA, Sitarz R. Status of CHEK2 and p53 in patients with early-onset and conventional gastric cancer. Oncol Lett 2021; 21:348. [PMID: 33747205 PMCID: PMC7967923 DOI: 10.3892/ol.2021.12609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cause of cancer-associated death. Based on the age at diagnosis, GC is divided into early-onset GC (EOGC; ≤45 years) and conventional GC (CGC; >45 years). Mutations in the cell cycle checkpoint kinase 2 (CHEK2) and TP53 genes are associated with several types of cancer; however, their genetic defects in GC remain poorly understood. The aim of the present study was to determine the subcellular distribution of the CHEK2 protein and its redistribution following DNA damage, to improve the understanding of the DNA damage response. Genetic alterations and patterns of expression of CHEK2 and p53 proteins were investigated to identify potential biological markers and indicators of GC development. Additionally, the affected signaling pathways and their clinical importance in GC development and associated syndromes were investigated. A total of 196 GC samples (89 CGC and 107 EOGC samples) were used in the present study. DNA from 53 samples (18 CGC and 35 EOGC samples) was sequenced using targeted next-generation sequencing technology to identify and compare common and rare mutations associated with GC. Subsequently, the cytoplasmic and nuclear expression levels of CHEK2, phosphorylated (p)-CHEK2 at threonine 68 and p53 in GC tissues were determined via immunohistochemistry. Sequencing resulted in the identification of 63 single nucleotide polymorphisms (SNPs) in the CHEK2 gene amongst 5 different variants, and the intron variant c.319+379A>G was the most common SNP. In the TP53 gene, 57 different alterations were detected amongst 9 variant types, and the missense variant c.215C>G was the most common. Nuclear CHEK2 expression was high in both the EOGC and CGC subtypes. However, the prevalence of cytoplasmic CHEK2 expression (P<0.001) and nuclear p-CHEK2 expression (P=0.011) was significantly higher in CGC compared with in EOGC tissues. There was a statistically significant difference between high and low cytoplasmic CHEK2 expression in patients with p53-positive EOGC compared with in patients with p53-positive CGC (P=0.002). The present study was designed to determine the association between CHEK2 and p53 expression patterns in patients with EOGC and CGC, as well as genetic alterations in the CHEK2 and TP53 genes.
Collapse
Affiliation(s)
- Julita Machlowska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland.,Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Małgorzata Szlendak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.,Department of Surgical Oncology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Anna Bogdali
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Folkert Morsink
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Kraków, Poland
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - G Johan A Offerhaus
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.,Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland.,Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.,Department of Surgery, Center of Oncology of The Lublin Region St. Jana z Dukli, 20-090 Lublin, Poland
| |
Collapse
|
22
|
Abdullah NA, Md Hashim NF, Ammar A, Muhamad Zakuan N. An Insight into the Anti-Angiogenic and Anti-Metastatic Effects of Oridonin: Current Knowledge and Future Potential. Molecules 2021; 26:775. [PMID: 33546106 PMCID: PMC7913218 DOI: 10.3390/molecules26040775] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, with a mortality rate of more than 9 million deaths reported in 2018. Conventional anti-cancer therapy can greatly improve survival however treatment resistance is still a major problem especially in metastatic disease. Targeted anti-cancer therapy is increasingly used with conventional therapy to improve patients' outcomes in advanced and metastatic tumors. However, due to the complexity of cancer biology and metastasis, it is urgent to develop new agents and evaluate the anti-cancer efficacy of available treatments. Many phytochemicals from medicinal plants have been reported to possess anti-cancer properties. One such compound is known as oridonin, a bioactive component of Rabdosia rubescens. Several studies have demonstrated that oridonin inhibits angiogenesis in various types of cancer, including breast, pancreatic, lung, colon and skin cancer. Oridonin's anti-cancer effects are mediated through the modulation of several signaling pathways which include upregulation of oncogenes and pro-angiogenic growth factors. Furthermore, oridonin also inhibits cell migration, invasion and metastasis via suppressing epithelial-to-mesenchymal transition and blocking downstream signaling targets in the cancer metastasis process. This review summarizes the recent applications of oridonin as an anti-angiogenic and anti-metastatic drug both in vitro and in vivo, and its potential mechanisms of action.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Aula Ammar
- Wolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow City G61 1BD, UK;
| | - Noraina Muhamad Zakuan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
23
|
Khanipouyani F, Akrami H, Fattahi MR. Circular RNAs as important players in human gastric cancer. Clin Transl Oncol 2021; 23:10-21. [PMID: 32583185 DOI: 10.1007/s12094-020-02419-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023]
Abstract
As one of the most prevalent gastrointestinal diseases, gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. Since GC has no clinical manifestations in the early stage of the disease, most patients are detected in the later phases of disease and have an unfortunately lower chance of recovery. Circular RNAs (circRNAs), a novel category of non-coding RNAs (ncRNAs), are mainly engaged in the regulation of gene expression at the transcriptional and post-transcriptional levels. Numerous evidences have revealed that circRNAs play key roles in GC as they are involved in cell proliferation, growth, and apoptosis via modulating the expression of some target genes, miRNAs, and proteins. Many studies have addressed the impact of circRNA dysregulation on GC initiation, progression, and invasion via binding to miRNAs or RNA binding proteins. Moreover, changes in circRNA expression are associated with pathological and clinical features of GC highlighting their potentials as diagnostic or prognostic biomarkers in GC. In the current study, the recent findings on the significance of circRNAs in the development and progression of GC are reviewed. We focus on the implications of circRNAs as potential diagnostic or prognostic biomarkers in this malignancy.
Collapse
Affiliation(s)
- F Khanipouyani
- Department of Biology, Faculty of Science, Razi University, kermanshah, Iran
| | - H Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M R Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Setia N, Wang CX, Lager A, Maron S, Shroff S, Arndt N, Peterson B, Kupfer SS, Ma C, Misdraji J, Catenacci D, Hart J. Morphologic and molecular analysis of early-onset gastric cancer. Cancer 2021; 127:103-114. [PMID: 33048355 DOI: 10.1002/cncr.33213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Evidence suggests that early-onset gastric cancers are distinct from traditional gastric cancers; however, detailed genomic and morphologic characterization of these cancers has not been performed. METHODS Genomic analysis was performed for 81 patients with gastric cancer who were 50 years old or younger; pathology slides were available for 53 of these patients, and they were re-reviewed to perform a morphologic-molecular correlation analysis. The results were compared with corresponding cBioPortal data and The Cancer Genome Atlas (TCGA) analysis, which represent traditional gastric cancers. The TP53 molecular signature was established to determine the pattern of somatic mutational damage. Variants of potential germline origin were also identified from next-generation sequencing data. RESULTS A higher rate of CDH1 mutations (22.2% of early-onset gastric cancers vs 11.4% of traditional gastric cancers; P = .0042) but a similar rate of TP53 mutations (63% of early-onset gastric cancers vs 56.6% of traditional gastric cancers; P = .2674) were seen in early-onset cancers in comparison with traditional gastric cancers. The diffuse/mixed types correlated with the TCGA genomically stable type, and the remaining Lauren types correlated with the TCGA chromosomal instability type. Diffuse and indeterminate histologic types (overall survival, 26.25 months for the intestinal type, 20.5 months for the mixed type, 12.62 months for the diffuse type, and 9 months for the indeterminate type; P = .027) and the presence of a CDH1 gene mutation (overall survival, 9 months for mutant CDH1 and 22 months for wild-type CDH1; P = .013) significantly correlated with worse survival. The TP53 gene frequently showed transition mutations (65.5%) involving the CpG sites (49%). Variants of potential germline origin were seen in high-penetrance genes (CDH1 and APC) and moderate-penetrance genes (ATM, NBN, and MUTYH) in 9.9% of cancers. CONCLUSIONS Early-onset gastric cancer has distinct genomic alterations, such as CDH1 mutations, but shares with traditional gastric cancers a high frequency of TP53 mutations and the TP53 mutagenic signature. Diffuse and indeterminate histologic types and the presence of a CDH1 mutation are associated with worse overall survival. Endogenous factors leading to cytosine deamination and potential germline alterations in moderate-penetrance cancer susceptibility genes may be implicated in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Namrata Setia
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Cindy X Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Angela Lager
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Steve Maron
- Section of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stuti Shroff
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicole Arndt
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Bryan Peterson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sonia S Kupfer
- Department of Gastroenterology, University of Chicago, Chicago, Illinois
| | - Changqing Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Joseph Misdraji
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel Catenacci
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Aumpan N, Vilaichone RK, Nunanan P, Chonprasertsuk S, Siramolpiwat S, Bhanthumkomol P, Pornthisarn B, Uchida T, Vilaichone V, Wongcha-Um A, Yamaoka Y, Mahachai V. Predictors for development of complete and incomplete intestinal metaplasia (IM) associated with H. pylori infection: A large-scale study from low prevalence area of gastric cancer (IM-HP trial). PLoS One 2020; 15:e0239434. [PMID: 33002050 PMCID: PMC7529201 DOI: 10.1371/journal.pone.0239434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Gastric intestinal metaplasia (IM) is precancerous lesion of gastric cancer related to H. pylori infection. There has been limited data about IM and associated risk factors. This study aimed to determine risk factors related to development of IM to guide proper management. Methods 1,370 patients undergoing UGI endoscopy at Thammasat University Hospital, Thailand were included between January 2018-August 2019. Patients’ data including baseline characteristics, laboratory results, and histopathology from medical database were extensively reviewed. Immunohistochemical staining for p53 expression from gastric biopsies was also performed. Results Overall H. pylori prevalence was 43.8%. Mean age was 60.7 years and 45% of whom were males. Chronic gastritis was observed in 1,064(77.7%) patients, while 223(16.3%) had IM. Of 223 patients with IM, 194(87%) patients had complete IM, while 29 (13%) had incomplete IM. In groups of complete and incomplete IM, current H. pylori infection rates were 66.5% and 58.6%, respectively. The BMI of incomplete IM group(27.4) was significantly higher than BMI of complete IM group (23.6). Overweight and obese patients (BMI ≥23 kg/m2) were significantly associated with higher risk for the development of incomplete IM (OR 3.25; 95%CI 1.14–9.27, p = 0.027). Males, age >50 years, and current H. pylori infection were significantly higher in IM than chronic gastritis group with OR 1.43 (95%CI 1.01–2.03, p = 0.048), OR 1.67 (95% CI 1.08–2.57, p = 0.021), and OR 3.14 (95% CI 2.29–4.30, p<0.001), respectively. During 20 months of study, there were 15 patients (1.1%) diagnosed with gastric cancer and 1-year survival rate was only 60%. Conclusions Males, age >50 years, and current H. pylori infection are significant predictors for the presence of intestinal metaplasia. BMI might be beneficial for using as a predictive risk factor to reduce the development of incomplete intestinal metaplasia. H. pylori eradication could be an effective way to prevent the development of gastric precancerous lesions.
Collapse
Affiliation(s)
- Natsuda Aumpan
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Ratha-Korn Vilaichone
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
- Digestive Diseases Research Center (DRC), Thammasat University Hospital, Pathumthani, Thailand
- * E-mail:
| | - Pongjarat Nunanan
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Soonthorn Chonprasertsuk
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Sith Siramolpiwat
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Patommatat Bhanthumkomol
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Bubpha Pornthisarn
- Department of Medicine, Gastroenterology Unit, Faculty of Medicine, Thammasat University Hospital, Pathumthani, Thailand
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Japan
| | - Virunpat Vilaichone
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Arti Wongcha-Um
- Department of Medicine, Chulabhorn International College of Medicine (CICM) at Thammasat University, Pathumthani, Thailand
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Varocha Mahachai
- Digestive Diseases Research Center (DRC), Thammasat University Hospital, Pathumthani, Thailand
- Gastrointestinal and Liver Center, Bangkok Medical Center, Bangkok, Thailand
| |
Collapse
|
26
|
Schoop I, Maleki SS, Behrens HM, Krüger S, Haag J, Röcken C. p53 immunostaining cannot be used to predict TP53 mutations in gastric cancer: results from a large Central European cohort. Hum Pathol 2020; 105:53-66. [PMID: 32971129 DOI: 10.1016/j.humpath.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022]
Abstract
Four molecular subgroups of gastric cancer (GC) have been proposed, ie, Epstein-Barr virus (EBV)-positive, microsatellite instable, chromosomal instable (CIN), and genomically stable GC. Based on the complex relationship between chromosomal instability and TP53 mutational status, we hypothesized that the typical clinicopathological characteristics caused by chromosomal instability are correlated with the p53 expression that is detected by immunohistochemistry. Four hundred sixty-seven whole-tissue sections of patients with therapy-naive GC were stained with anti-p53 antibody. The histoscore and staining pattern were analyzed for each slide. Different algorithms of immunohistochemistry evaluation were formed and correlated with clinicopathological characteristics. The algorithms were validated by assessing the mutational status of TP53 in 111 cases. Four hundred forty-two GCs were p53 positive, and 25 were negative, including 414 GCs with a homogeneous pattern and 53 GCs with a heterogeneous staining pattern. There was no correlation with overall or tumor-specific survival. In comparison with clinicopathological characteristics, the algorithm high versus low showed correlations with microsatellite instability, hepatocyte growth factor receptor (MET), and TP53 mutational status. The algorithm Q1/Q4 versus Q2/Q3 appeared to be correlated with the phenotype as per the Laurén classification, microsatellite instability, EBV status, and p53 expression pattern. The algorithm <90% = 0 and <50% = 3+ versus ≥90% = 0 or ≥50% = 3+ showed correlations with the EBV status, microsatellite instability, grading, and p53 expression pattern. The algorithm homogeneous versus heterogeneous did not correlate with any clinicopathological characteristic. Our results showed that the immunohistochemistry of p53, TP53 mutational status, and CIN subtype were connected. However, different algorithms for p53 immunohistochemical evaluation cannot be used to predict TP53 mutations in CIN GCs in individual cases.
Collapse
Affiliation(s)
- Isabelle Schoop
- Department of Pathology, Christian-Albrechts-University, D-24105 Kiel, Germany
| | - Saffiyeh Saboor Maleki
- Department of Pathology, Christian-Albrechts-University, D-24105 Kiel, Germany; Institute for Cardiovascular Prevention, Ludwig Maximilians University, D-80336 Munich, Germany
| | | | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, D-24105 Kiel, Germany
| | - Jochen Haag
- Department of Pathology, Christian-Albrechts-University, D-24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, D-24105 Kiel, Germany.
| |
Collapse
|
27
|
Zhang G, Li L, Bi J, Wu Y, Li E. Targeting DNA and mutant p53 by a naphthalimide derivative, NA20, exhibits selective inhibition in gastric tumorigenesis by blocking mutant p53-EGFR signaling pathway. Eur J Pharmacol 2020; 887:173584. [PMID: 32950500 DOI: 10.1016/j.ejphar.2020.173584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Mutations of p53 in cancer cells not only subvert its antiproliferative properties but can also promote various oncogenic responses through a gain-of-function activity. Pharmacological manipulation of the mutant p53 pathway by specific compounds could be an effective strategy for cancer therapy. We show here that gain-of-function p53 mutation in gastric cancer cells promotes tumorigenesis by enhancing p53-EGFR (epidermal growth factor receptor) signaling pathway, and such process can be blocked by small molecule NA20, a naphthalimide derivative that exhibited selective inhibition in p53 mutant gastric cancer cell lines. We found that targeting DNA and blocking the mutant p53-drived carcinogenicity accounted for the primary antitumor effect of NA20 in gastric tumor models. NA20 bound to DNA and p53 identified by a combination of drug tracking, DNA relaxation assay and coimmunoprecipitation-mass spectrometry (CoIP-MS) detection, which led to the p21 activation and the suppression of EGFR signal cascading, thereby evoking cell cycle arrest and cell apoptosis, finally leading to cancer cell inhibition both in vitro and in vivo. Taken together, these results suggest that NA20 may be a potential candidate for gastric cancer therapy.
Collapse
Affiliation(s)
- Guohai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Jingai Bi
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Yiming Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
28
|
Fujita Y, Uesugi N, Sugimoto R, Eizuka M, Toya Y, Akasaka R, Matsumoto T, Sugai T. Analysis of clinicopathological and molecular features of crawling-type gastric adenocarcinoma. Diagn Pathol 2020; 15:111. [PMID: 32943104 PMCID: PMC7500034 DOI: 10.1186/s13000-020-01026-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Crawling-type adenocarcinoma (CRA) is an important gastric cancer (GC) subtype that exhibits a specific histological pattern and has characteristic clinicopathological findings. Despite its characteristic histology, little is known about the molecular characteristics of CRA. METHODS We examined 177 GC cases, including 51 cases of CRA and 126 cases having conventional differentiated adenocarcinomas (CDAs). Results for immunohistochemistry (mucin phenotype; Muc5AC, Muc6, Muc2 and CD10, CDX-2, MLH-1, p53 and β-catenin), mutation analysis (TP53, KRAS and BRAF), microsatellite instability (BAT25, BAT26, D2S123, D5S346 and D17S250), DNA methylation status by a two-panel method (RUNX3, MINT31, LOX, NEUROG1, ELMO1 and THBD), MLH-1 promoter methylation, and allelic imbalance (AI; 1p, 3p, 4p, 5q, 8p, 9p, 13q, TP53, 18q and 22q) were examined. RESULTS CRAs were more likely to occur in the middle third of the stomach, in younger patients and to be macroscopically depressed. Nuclear accumulation of β-catenin and loss of MLH-1 expression were less frequent among CRA cases compared to CDA cases. At a molecular level, CRA is often characterized by the deletion mutation c.529_546 (18-base pair deletion at codon 177-182 in exon 5) in the TP53 gene (10 cases). Although the low methylation epigenotype was significantly more frequent for CRAs compared to CDAs, multiple AIs were more often seen in CRAs relative to CDAs. CONCLUSIONS The results demonstrated that TP53 mutations, particularly c.529_546del, and multiple AIs are closely associated with CRA carcinogenesis. Our results suggest that CRA is an independent entity of GC in terms of clinicopathologic and molecular findings.
Collapse
Affiliation(s)
- Yasuko Fujita
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Noriyuki Uesugi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan.
| |
Collapse
|
29
|
Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12082116. [PMID: 32751679 PMCID: PMC7463778 DOI: 10.3390/cancers12082116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.
Collapse
|
30
|
High-Throughput Sequencing of Gastric Cancer Patients: Unravelling Genetic Predispositions Towards an Early-Onset Subtype. Cancers (Basel) 2020; 12:cancers12071981. [PMID: 32708070 PMCID: PMC7409326 DOI: 10.3390/cancers12071981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Gastric cancer is the fourth most common cause of cancer-related death. Currently, it is broadly accepted that the molecular complexity and heterogeneity of gastric cancer, both inter- and intra-tumor, display important barriers for finding specific biomarkers for the early detection and diagnosis of this malignancy. Early-onset gastric cancer is not as prevalent as conventional gastric carcinoma, but it is a preferable model for studying the genetic background, as young patients are less exposed to environmental factors, which influence cancer development. Aim: The main objective of this study was to reveal age-dependent genotypic characteristics of gastric cancer subtypes, as well as conduct mutation profiling for the most frequent alterations in gastric cancer development, using targeted next-generation sequencing technology. Patients and methods: The study group included 53 patients, consisting of 18 patients with conventional gastric cancer and 35 with an early-onset subtype. The DNA of all index cases was used for next-generation sequencing, employing a panel of 94 genes and 284 single nucleotide polymorphisms (SNPs) (TruSight Cancer Panel, Illumina), which is characteristic for common and rare types of cancer. Results: From among the 53 samples processed for sequencing, we were able to identify seven candidate genes (STK11, RET, FANCM, SLX4, WRN, MEN1, and KIT) and nine variants among them: one splice_acceptor, four synonymous, and four missense variants. These were selected for the age-dependent differentiation of gastric cancer subtypes. We found four variants with C-Score ≥ 10, as 10% of the most deleterious substitutions: rs1800862 (RET), rs10138997 (FANCM), rs2230009 (WRN), and rs2959656 (MEN1). We identified 36 different variants, among 24 different genes, which were the most frequent genetic alterations among study subjects. We found 16 different variants among the genes that were present in 100% of the total cohort: SDHB (rs2746462), ALK (rs1670283), XPC (rs2958057), RECQL4 (rs4925828; rs11342077, rs398010167; rs2721190), DDB2 (rs326212), MEN1 (rs540012), AIP (rs4930199), ATM (rs659243), HNF1A (rs1169305), BRCA2 (rs206075; rs169547), ERCC5 (rs9514066; rs9514067), and FANCI (rs7183618). Conclusions: The technology of next-generation sequencing is a useful tool for studying the development and progression of gastric carcinoma in a high-throughput way. Our study revealed that early-onset gastric cancer has a different mutation frequency profile in certain genes compared to conventional subtype.
Collapse
|
31
|
Saito T, Chambers JK, Nakashima K, Nibe K, Ohno K, Tsujimoto H, Uchida K, Nakayama H. Immunohistochemical analysis of beta-catenin, E-cadherin and p53 in canine gastrointestinal epithelial tumors. J Vet Med Sci 2020; 82:1277-1286. [PMID: 32655099 PMCID: PMC7538321 DOI: 10.1292/jvms.20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wnt/beta-catenin signaling, E-cadherin and p53 reportedly play important roles in the development and/or progression of human gastrointestinal cancer. The present study evaluated the roles of beta-catenin, E-cadherin and p53 in canine gastrointestinal tumors. Endoscopic biopsy or
surgically resected samples, a total of 131, including 38 gastric, 13 small intestinal and 80 large intestinal tumors, were obtained from 95 dogs. Those specimens were examined pathologically. Immunohistochemically, nuclear beta-catenin expression was found in 88% (42/48) of polypoid type
adenocarcinomas. Most cases of non-polypoid type adenocarcinomas lacked nuclear expression of beta-catenin with the exception of one case (6%, 1/17). Nuclear beta-catenin expression was not observed in signet ring cell carcinomas (0/15), mucinous adenocarcinomas (0/7) and undifferentiated
carcinomas (0/4). The findings indicate that nuclear translocation of beta-catenin is closely related to the development of polypoid type adenocarcinomas but not that of non-polypoid type malignant tumors. The immunoreactivity of E-cadherin for tumor cells tended to decline overall in most
of cases including benign tumors. Significant immunoreactivity for p53 was not found in 61% of tumors examined (80/131), including malignant tumors (63%, 57/91), while intense p53-immunoreactivity was rarely found in a few cases of malignant tumors (8%, 7/91). We could not conclude clearly
significant correlations between histopathological tumor types and immunohistochemical results of E-cadherin or p53. This paper indicates the importance of the nuclear translocation of beta-catenin for the tumorigenesis of canine intestinal polypoid type adenocarcinomas, especially in the
colorectum.
Collapse
Affiliation(s)
- Tsubasa Saito
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ko Nakashima
- Japan Small Animal Medical Center, 2-27-4 Nakatomi-minami, Tokorozawa, Saitama 359-0003, Japan
| | - Kazumi Nibe
- Japan Animal Referral Medical Center, 2-5-8 Kuji, Takatsu-ku, Kawasaki, Kanagawa 213-0032, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Wang Z, Wu W, Guan X, Guo S, Li C, Niu R, Gao J, Jiang M, Bai L, Leung EL, Hou Y, Jiang Z, Bai G. 20( S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis. Acta Pharm Sin B 2020; 10:1020-1035. [PMID: 32642409 PMCID: PMC7332671 DOI: 10.1016/j.apsb.2020.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA–proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and “Warburg effect”. The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions, which further induced a series of omics changes.
Collapse
|
33
|
DpdtC-Induced EMT Inhibition in MGC-803 Cells Was Partly through Ferritinophagy-Mediated ROS/p53 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9762390. [PMID: 32256964 PMCID: PMC7091554 DOI: 10.1155/2020/9762390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in which epithelial cells are partially transformed into stromal cells, which endows the polarized epithelium cells more invasive feature and contributes cancer metastasis and drug resistance. Ferritinophagy is an event of ferritin degradation in lysosomes, which contributes Fenton-mediated ROS production. In addition, some studies have shown that ROS participates in EMT process, but the effect of ROS stemmed from ferritin degradation on EMT has not been fully established. A novel iron chelator, DpdtC (2,2'-di-pyridylketone dithiocarbamate), which could induce ferritinophagy in HepG2 cell in our previous study, was used to investigate its effect on EMT in gastric cancer cells. The proliferation assay showed that DpdtC treatment resulted in growth inhibition and morphologic alteration in MGC-803 cell (IC50 = 3.1 ± 0.3 μM), and its action involved ROS production that was due to the occurrence of ferritinophagy. More interestingly, DpdtC could also inhibit EMT, leading to the upregulation of E-cadherin and the downregulation of vimentin; however, the addition of NAC and 3-MA could attenuate (or neutralize) the action of DpdtC on ferritinophagy induction and EMT inhibition, supporting that the enhanced ferritinophagic flux contributed to the EMT inhibition. Since the degradation of ferritin may trigger the production of ROS and induce the response of p53, we next studied the role of p53 in the above two-cell events. As expected, an upregulation of p53 was observed after DpdtC insulting; however, the addition of a p53 inhibitor, PFT-α, could significantly attenuate the action of DpdtC on ferritinophagy induction and EMT inhibition. In addition, autophagy inhibitors or NAC could counteract the effect of DpdtC and restore the level of p53 to the control group, indicating that the upregulation of p53 was caused by ferritinophagy-mediated ROS production. In conclusion, our data demonstrated that the inhibition of EMT induced by DpdtC was realized through ferritinophagy-mediated ROS/p53 pathway, which supported that the activation of ferritinophagic flux was the main driving force in EMT inhibition in gastric cancer cells, and further strengthening the concept that NCOA4 participates in EMT process.
Collapse
|
34
|
|
35
|
Camargo MC, Kim KM, Matsuo K, Torres J, Liao LM, Morgan D, Michel A, Waterboer T, Song M, Gulley ML, Dominguez RL, Yatabe Y, Kim S, Cortes-Martinez G, Lissowska J, Zabaleta J, Pawlita M, Rabkin CS. Circulating Antibodies against Epstein-Barr Virus (EBV) and p53 in EBV-Positive and -Negative Gastric Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:414-419. [PMID: 31719065 PMCID: PMC8272980 DOI: 10.1158/1055-9965.epi-19-0790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 11/04/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-positive gastric cancers have clinicopathologic differences from EBV-negative tumors and lack TP53 mutation. Serologic profiles may inform viral contribution to carcinogenesis. METHODS We compared humoral responses of EBV-positive (n = 67) and EBV-negative (n = 137) patients with gastric cancer from the International EBV-Gastric Cancer Consortium. Serum antibodies against four EBV proteins, nuclear (EBNA), viral capsid (VCA), early-diffuse (EA-D), and Zta replication activator (ZEBRA), and to p53 were assessed by multiplex assays. OR of antibody level tertiles (T1-T3) were adjusted by logistic regression. We also conducted a meta-analysis of reported anti-p53 seropositivity in gastric cancer. RESULTS Consistent with EBV's ubiquity, 99% of patients were seropositive for anti-EBNA and 98% for anti-VCA, without difference by tumor EBV status. Seropositivity varied between patients with EBV-positive and EBV-negative tumors for anti-EA-D (97% vs. 67%, respectively, P < 0.001) and anti-ZEBRA (97% vs. 85%, respectively, P = 0.009). Adjusted ORs (vs. T1) for patients with EBV-positive versus EBV-negative tumors were significantly elevated for higher antibodies against EBNA (2.6 for T2 and 13 for T3), VCA (1.8 for T2 and 2.4 for T3), EA-D (6.0 for T2 and 44 for T3), and ZEBRA (4.6 for T2 and 12 for T3). Antibodies to p53 were inversely associated with EBV positivity (3% vs. 15%; adjusted OR = 0.16, P = 0.021). Anti-p53 prevalence from the literature was 15%. CONCLUSIONS These serologic patterns suggest viral reactivation in EBV-positive cancers and identify variation of p53 seropositivity by subtype. IMPACT Anti-EBV and anti-p53 antibodies are differentially associated with tumor EBV positivity. Serology may identify EBV-positive gastric cancer for targeted therapies.
Collapse
Affiliation(s)
- M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
| | - Kyoung-Mee Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center, Nagoya, Japan
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, CMN SXXI, Instituto Mexicano del Seguro Social, México City, México
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Douglas Morgan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Angelika Michel
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Margaret L Gulley
- Department of Pathology and Laboratory Medicine and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ricardo L Dominguez
- Department of Medicine, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gustavo Cortes-Martinez
- Servicio de Cirugía, Hospital de Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, México City, México
| | - Jolanta Lissowska
- Division of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DFKZ), Heidelberg, Germany
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
36
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
37
|
High Proportion of Potential Candidates for Immunotherapy in a Chilean Cohort of Gastric Cancer Patients: Results of the FORCE1 Study. Cancers (Basel) 2019; 11:cancers11091275. [PMID: 31480291 PMCID: PMC6770659 DOI: 10.3390/cancers11091275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease. This heterogeneity applies not only to morphological and phenotypic features but also to geographical variations in incidence and mortality rates. As Chile has one of the highest mortality rates within South America, we sought to define a molecular profile of Chilean GCs (ClinicalTrials.gov identifier: NCT03158571/(FORCE1)). Solid tumor samples and clinical data were obtained from 224 patients, with subsets analyzed by tissue microarray (TMA; n = 90) and next generation sequencing (NGS; n = 101). Most demographic and clinical data were in line with previous reports. TMA data indicated that 60% of patients displayed potentially actionable alterations. Furthermore, 20.5% were categorized as having a high tumor mutational burden, and 13% possessed micro-satellite instability (MSI). Results also confirmed previous studies reporting high Epstein-Barr virus (EBV) positivity (13%) in Chilean-derived GC samples suggesting a high proportion of patients could benefit from immunotherapy. As expected, TP53 and PIK3CA were the most frequently altered genes. However, NGS demonstrated the presence of TP53, NRAS, and BRAF variants previously unreported in current GC databases. Finally, using the Kendall method, we report a significant correlation between EBV+ status and programmed death ligand-1 (PDL1)+ and an inverse correlation between p53 mutational status and MSI. Our results suggest that in this Chilean cohort, a high proportion of patients are potential candidates for immunotherapy treatment. To the best of our knowledge, this study is the first in South America to assess the prevalence of actionable targets and to examine a molecular profile of GC patients.
Collapse
|
38
|
Choi RSY, Lai WYX, Lee LTC, Wong WLC, Pei XM, Tsang HF, Leung JJ, Cho WCS, Chu MKM, Wong EYL, Wong SCC. Current and future molecular diagnostics of gastric cancer. Expert Rev Mol Diagn 2019; 19:863-874. [PMID: 31448971 DOI: 10.1080/14737159.2019.1660645] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Gastric cancer (GC) is the fifth most common cancer and confers the second-highest mortality among other cancers. Improving the survival rates of GC patients requires prompt and accurate diagnosis and effective treatment which is often preceded by the poorly understood pathogenic mechanisms. Area covered: This literature review aims to summarize current understanding of genetic and molecular alterations that promote carcinogenesis including (1) activation of oncogenes, (2) overexpression of growth factors, receptors and matrix metalloproteinases, (3) inactivation of tumor suppressor genes, DNA repair genes, and cell adhesion molecules and (4) alterations of cell-cycle regulators that regulate biological characteristics of cancer cells. Moreover, the significance of molecular biomarkers such as micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) and advanced molecular techniques including droplet digital polymerase chain reaction (ddPCR), quantitative PCR (qPCR) and next-generation sequencing (NGS) are also discussed. Expert opinion: A GC-specific panel of biomarkers based on the NGS or ddPCR has the potential for diagnosis, prognosis, and monitoring treatment response in GC patients. Despite the requirements for validation in larger population in clinical studies, race-specific differences in the gene panel have also to be examined by performing the clinical trials in subjects with different races.
Collapse
Affiliation(s)
- Rachel Sin-Yu Choi
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Yin Xenia Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Lok Ting Claire Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Wing Lam Christa Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Joel Johnson Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital , Kowloon , Hong Kong Special Administrative Region, China
| | - Man Kee Maggie Chu
- Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong Special Administrative Region, China
| | - Elaine Yue Ling Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University , Hong Kong , Hong Kong Special Administrative Region, China
| |
Collapse
|
39
|
Imamura T, Komatsu S, Ichikawa D, Miyamae M, Okajima W, Ohashi T, Kiuchi J, Nishibeppu K, Kosuga T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H, Otsuji E. Overexpression of ZRF1 is related to tumor malignant potential and a poor outcome of gastric carcinoma. Carcinogenesis 2018; 39:263-271. [PMID: 29228320 DOI: 10.1093/carcin/bgx139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Zuotin-related factor 1 (ZRF1) is a recently characterized epigenetic factor involved in transcriptional regulation and is highly overexpressed in several malignancies, but it is not known whether it plays a role in gastric cancer (GC). In this study, we investigated whether ZRF1 acts as a cancer-promoting gene through its activation/overexpression in GC. We analyzed five GC cell lines and 133 primary tumors, which had been curatively resected in our hospital between 2001 and 2003. Overexpression of ZRF1 was detected in GC cell lines (four out of five lines, 80.0%) and was detected in primary tumor samples of GC (52 out of 133 cases, 39.1%) and significantly correlated with differentiated histological type, venous invasion, lymphatic invasion, advanced stage and a higher recurrence rate. ZRF1-overexpressing tumors had a worse survival rate than those with non-expressing tumors (P < 0.01, log-rank test). ZRF1 positivity was independently associated with a worse outcome in the multivariate analysis (P < 0.01; hazard ratio 4.92; 95% confidence interval: 1.6-21.1). In ZRF1-overexpressing GC cells, knockdown of ZRF1 using specific siRNAs inhibited the cell proliferation, migration and invasion and induced apoptosis in a p53-dependent manner. These findings suggest that ZRF1 plays a crucial role in tumor malignant potential through its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Mahito Miyamae
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Wataru Okajima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hitoshi Tsuda
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kawaramachihirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
40
|
Pan X, Ji X, Zhang R, Zhou Z, Zhong Y, Peng W, Sun N, Xu X, Xia L, Li P, Lu J, Tu J. Landscape of somatic mutations in gastric cancer assessed using next-generation sequencing analysis. Oncol Lett 2018; 16:4863-4870. [PMID: 30250552 PMCID: PMC6144630 DOI: 10.3892/ol.2018.9314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a highly heterogeneous disease and the second leading cause of cancer-associated mortality. However, the genomic basis of gastric cancer is not completely understood and the underlying genetic heterogeneity has not been well studied. In the present study, 1,021 genes were sequenced and the somatic mutations of 45 formalin-fixed, paraffin-embedded gastric adenocarcinoma samples were assessed using next-generation sequencing technologies. In the present study, a median sequencing coverage depth of 708-fold was achieved. Somatic genomic alterations were detected in 37/45 patients (82.4%) and the most frequent genetic alterations identified were tumor protein P53 (TP53) gene mutations. Mutations in MLL4, ERBB3, FBXW7, MLL3, MTOR, NOTCH1, PIK3CA, KRAS, ERBB4 and EGFR were also detected. Patients with TP53 mutations had a higher number of somatic mutations, and the total number of somatic mutations was weakly correlated with patient age. These results provided data on the intratumoral heterogeneity of gastric cancer and may be used in order to develop personalized cancer therapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaozhi Ji
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China.,Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Renmin Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China.,Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhaofei Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yuejiao Zhong
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Sun
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xinyu Xu
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Lei Xia
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Pansong Li
- Department of Research and Development, Geneplus-Beijing Institute, Beijing 102206, P.R. China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| |
Collapse
|
41
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-30. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
42
|
The pseudogene-derived long non-coding RNA SFTA1P suppresses cell proliferation, migration, and invasion in gastric cancer. Biosci Rep 2018. [PMID: 29523596 PMCID: PMC5968191 DOI: 10.1042/bsr20171193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudogenes were once regarded as transcriptionally inactive and without specific molecular function. However, current evidence shows that pseudogene-derived long non-coding RNAs (lncRNAs) may be crucial regulators of human cancer development, including gastric cancer (GC). In the present study, we report that a pseudogene-derived lncRNA named surfactant associated 1, pseudogene (SFTA1P), which is 693-nt long, was significantly down-regulated in GC tissues compared with that in the adjacent normal tissues. In addition, decreased SFTA1P expression was strongly correlated with advanced tumor lymph node metastasis (TNM) stage, larger tumor size, lymphatic metastasis, and poor prognosis of patients with GC. Moreover, gain-of-function experiments revealed that the overexpression of SFTA1P inhibits cell proliferation, migration, and invasion, thus verifying the tumor inhibitory role of SFTA1P in GC. Furthermore, we investigated the potential action mechanism of SFTA1P. Our results showed that down-regulation of SFTA1P may be associated with decreased TP53 expression. In summary, our work suggests that the pseudogene-derived lncRNA SFTA1P functions as a tumor suppressor in GC and thus may act as a potential diagnostic and therapeutic target of GC.
Collapse
|
43
|
Moron RA, Jacob CE, Bresciani CJC, Simões K, Alves VAF, Irya K, Gama-Rodrigues J, Cecconello I, Longatto-Filho A, Zilberstein B. Characterization of oncogene suppressor marker expression in patients with submucosal gastric carcinoma. Mol Clin Oncol 2018; 8:477-482. [PMID: 29468062 DOI: 10.3892/mco.2017.1545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the clinical significance of p53 and p21ras p21wafl, p27kip1 and p16ink4a expression in cases of early gastric cancer. A total of 81 patients who had undergone gastrectomy with D2 lymphadenectomy between 1971 and 2004 were retrospectively investigated. The immunohistochemical expression of p21ras, p53, p21waf1/cip1, p27kip1 and p16ink4a in the tissues was evaluated. In normal, metaplastic and tumoral mucosa, p53 was positive in 53, 87.3, and 87.1% of the cases, respectively. In the same tissues, p21ras was positivE in 85.3, 86 and 96.8%, respectively. Positivity FOR p16ink4a was DETECTED IN 46.3, 91.1 and 86% OF THE CASES, respectively, WHEREAS p27kip1 WAS positiVE IN 60, 94.7 and 95.3%, and p21wafl/cip1 WAS positivE IN 32.4, 72.7 and 71.4% OF THE CASES, respectively. All THE tumors WERE positive for p53. Tumors with lymph node invasion presented WITH OVERexpression (+4) of p53 in 47% of the cases VS. 17% OF patients who DID not HAVE lymph node involvement. THEREFORE, higher expression of p53, p21ras and p21wafl/cip1 IN the tumor exhibited a statistically significant association with lymph node involvement.
Collapse
Affiliation(s)
- Roberson A Moron
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Carlos Eduardo Jacob
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | | | - Kleber Simões
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | | | - Kyoshi Irya
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Joaquim Gama-Rodrigues
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Ivan Cecconello
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| | - Adhemar Longatto-Filho
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil.,Department of Laboratory of Medical Investigation (LIM) 14, Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Zilberstein
- Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, SP 14784-400, Brazil
| |
Collapse
|
44
|
Saberi Anvar M, Minuchehr Z, Shahlaei M, Kheitan S. Gastric cancer biomarkers; A systems biology approach. Biochem Biophys Rep 2018; 13:141-146. [PMID: 29556568 PMCID: PMC5857180 DOI: 10.1016/j.bbrep.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Gastric cancer is one of the most fatal cancers in the world. Many efforts in recent years have attempted to find effective proteins in gastric cancer. By using a comprehensive list of proteins involved in gastric cancer, scientists were able to retrieve interaction information. The study of protein-protein interaction networks through systems biology based analysis provides appropriate strategies to discover candidate proteins and key biological pathways. In this study, we investigated dominant functional themes and centrality parameters including betweenness as well as the degree of each topological clusters and expressionally active sub-networks in the resulted network. The results of functional analysis on gene sets showed that neurotrophin signaling pathway, cell cycle and nucleotide excision possess the strongest enrichment signals. According to the computed centrality parameters, HNF4A, TAF1 and TP53 manifested as the most significant nodes in the interaction network of the engaged proteins in gastric cancer. This study also demonstrates pathways and proteins that are applicable as diagnostic markers and therapeutic targets for future attempts to overcome gastric cancer. A systematic study of protein-protein interaction networks through comprehensive extracted list of proteins involved in gastric cancer. Dominant functional theme and pathways of each topological clusters and expressionally active subnetworks were reported. The most effective proteins in gastric cancer formation were proposed according to the computed centrality parameters. HNF4A, TAF1and TP53 were mentioned as the key proteins in gastric cancer.
Collapse
Affiliation(s)
- Mohammad Saberi Anvar
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Kheitan
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
45
|
Ohtsuka J, Oshima H, Ezawa I, Abe R, Oshima M, Ohki R. Functional loss of p53 cooperates with the in vivo microenvironment to promote malignant progression of gastric cancers. Sci Rep 2018; 8:2291. [PMID: 29396430 PMCID: PMC5797237 DOI: 10.1038/s41598-018-20572-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022] Open
Abstract
p53 mutations are frequently detected in malignant gastric cancers. However, the molecular mechanisms by which loss of p53 function promotes gastric cancer are not clear. We utilized Gan mice (K19-Wnt1/C2mE), which have functional p53 and develop intestinal-type gastric tumors, to investigate the role of p53 in gastric cancer progression by knocking out p53. We found that gastric epithelial cells acquire tumorigenicity in the subcutis of C57BL/6 mice as a result of Wnt activation, COX-2 activation and p53 deficiency. With repeated allograft transfers, these gastric epithelial cells gradually acquired the properties of malignant gastric cancer. Loss of p53 conferred cell stemness and induced epithelial to mesenchymal transition (EMT) in gastric epithelial cells, and these properties were further enhanced by the in vivo microenvironment, ultimately leading to gastric cancer formation and metastasis. We also found that the in vivo microenvironment enhanced activation of the COX-2 pathway, which further contributed to cancer progression. With this system, we have succeeded in recapitulating the development of malignant gastric cancer from gastric epithelial cells in a normal immune environment.
Collapse
Affiliation(s)
- Junko Ohtsuka
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Issei Ezawa
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba, 278-0022, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
46
|
Zhu S, Chen Z, Wang L, Peng D, Belkhiri A, Lockhart AC, El-Rifai W. A Combination of SAHA and Quinacrine Is Effective in Inducing Cancer Cell Death in Upper Gastrointestinal Cancers. Clin Cancer Res 2018; 24:1905-1916. [PMID: 29386219 DOI: 10.1158/1078-0432.ccr-17-1716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/27/2017] [Accepted: 01/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to investigate the therapeutic efficacy of single agent and the combination of quinacrine and suberoylanilide hydroxamic acid (SAHA) in wt- and mut-p53 upper gastrointestinal cancer (UGC) cell models.Experimental Design: ATP-Glo, clonogenic cell survival, Annexin V, comet, DNA double-strand breaks (DSBs), qPCR, and Western blot analysis assays were utilized.Results: Using clonogenic cell survival, ATP-Glo cell viability, Annexin V, and sub-G0 population analysis, we demonstrated that a combination of quinacrine and SAHA significantly decreased colony formation and increased cancer cell death (range, 4-20 fold) in six UGC cell models, as compared with single-agent treatments, irrespective of the p53 status (P < 0.01). The combination of quinacrine and SAHA induced high levels of DSB DNA damage (>20-fold, P < 0.01). Western blot analysis showed activation of caspases-3, 9, and γ-H2AX in all cell models. Of note, although quinacrine treatment induced expression of wt-p53 protein, the combination of quinacrine and SAHA substantially decreased the levels of both wt-P53 and mut-P53. Furthermore, cell models that were resistant to cisplatin (CDDP) or gefitinib treatments were sensitive to this combination. Tumor xenograft data confirmed that a combination of quinacrine and SAHA is more effective than a single-agent treatment in abrogating tumor growth in vivo (P < 0.01).Conclusions: Our novel findings show that the combination of quinacrine and SAHA promotes DNA damage and is effective in inducing cancer cell death, irrespective of p53 status and resistance to CDDP or gefitinib in UGC models. Clin Cancer Res; 24(8); 1905-16. ©2018 AACR.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, University of Miami, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami, Miami, Florida
| | - Lihong Wang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dunfa Peng
- Department of Surgery, University of Miami, Miami, Florida
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - A Craig Lockhart
- Division of Medical Oncology, University of Miami, Miami, Florida
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida
| |
Collapse
|
47
|
Tahara T, Shibata T, Okamoto Y, Yamazaki J, Kawamura T, Horiguchi N, Okubo M, Nakano N, Ishizuka T, Nagasaka M, Nakagawa Y, Ohmiya N. Mutation spectrum of TP53 gene predicts clinicopathological features and survival of gastric cancer. Oncotarget 2018; 7:42252-60. [PMID: 27323394 PMCID: PMC5173132 DOI: 10.18632/oncotarget.9770] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background and aim TP53 gene is frequently mutated in gastric cancer (GC), but the relationship with clinicopathological features and prognosis is conflicting. Here, we screened TP53 mutation spectrum of 214 GC patients in relation to their clinicopathological features and prognosis. Results TP53 nonsilent mutations were detected in 80 cases (37.4%), being frequently occurred as C:G to T:A single nucleotide transitions at 5′-CpG-3′ sites. TP53 mutations occurred more frequently in differentiated histologic type than in undifferentiated type in the early stage (48.6% vs. 7%, P=0.0006), while the mutations correlated with venous invasion among advanced stage (47.7% vs. 20.7%, P=0.04). Subset of GC with TP53 hot spot mutations (R175, G245, R248, R273, R282) presented significantly worse overall survival and recurrence free survival compared to others (both P=0.001). Methods Matched biopsies from GC and adjacent tissues from 214 patients were used for the experiment. All coding regions of TP53 gene (exon2 to exon11) were examined using Sanger sequencing. Conclusion Our data suggest that GC with TP53 mutations seems to develop as differentiated histologic type and show aggressive biological behavior such as venous invasion. Moreover, our data emphasizes the importance of discriminating TP53 hot spot mutations (R175, G245, R248, R273, R282) to predict worse overall survival and recurrence free survival of GC patients.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuyuki Okamoto
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jumpei Yamazaki
- Laboratory of Molecular Medicine, Hokkaido University Graduate School of Veterinary Medicine, Sapporo, Japan
| | - Tomohiko Kawamura
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Okubo
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naoko Nakano
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takamitsu Ishizuka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
48
|
Youssef O, Sarhadi V, Ehsan H, Böhling T, Carpelan-Holmström M, Koskensalo S, Puolakkainen P, Kokkola A, Knuutila S. Gene mutations in stool from gastric and colorectal neoplasia patients by next-generation sequencing. World J Gastroenterol 2017; 23:8291-8299. [PMID: 29307989 PMCID: PMC5743500 DOI: 10.3748/wjg.v23.i47.8291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/01/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study cancer hotspot mutations by next-generation sequencing (NGS) in stool DNA from patients with different gastrointestinal tract (GIT) neoplasms.
METHODS Stool samples were collected from 87 Finnish patients diagnosed with various gastric and colorectal neoplasms, including benign tumors, and from 14 healthy controls. DNA was isolated from stools by using the PSP® Spin Stool DNA Plus Kit. For each sample, 20 ng of DNA was used to construct sequencing libraries using the Ion AmpliSeq Cancer Hotspot Panel v2 or Ion AmpliSeq Colon and Lung Cancer panel v2. Sequencing was performed on Ion PGM. Torrent Suite Software v.5.2.2 was used for variant calling and data analysis.
RESULTS NGS was successful in assaying 72 GIT samples and 13 healthy controls, with success rates of the assay being 78% for stomach neoplasia and 87% for colorectal tumors. In stool specimens from patients with gastric neoplasia, five hotspot mutations were found in APC, CDKN2A and EGFR genes, in addition to seven novel mutations. From colorectal patients, 20 mutations were detected in AKT1, APC, ERBB2, FBXW7, KIT, KRAS, NRAS, SMARCB1, SMO, STK11 and TP53. Healthy controls did not exhibit any hotspot mutations, except for two novel ones. APC and TP53 were the most frequently mutated genes in colorectal neoplasms, with five mutations, followed by KRAS with two mutations. APC was the most commonly mutated gene in stools of patients with premalignant/benign GIT lesions.
CONCLUSION Our results show that in addition to colorectal neoplasms, mutations can also be assayed from stool specimens of patients with gastric neoplasms.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Virinder Sarhadi
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Homa Ehsan
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Tom Böhling
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki 00014, Finland
| | | | - Selja Koskensalo
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Pauli Puolakkainen
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Arto Kokkola
- The HUCH Gastrointestinal Clinic, University Central Hospital of Helsinki, Helsinki 00290, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
49
|
Taniyama D, Taniyama K, Kuraoka K, Zaitsu J, Saito A, Nakatsuka H, Sakamoto N, Sentani K, Oue N, Yasui W. Long-term follow-up study of gastric adenoma; tumor-associated macrophages are associated to carcinoma development in gastric adenoma. Gastric Cancer 2017; 20:929-939. [PMID: 28321517 DOI: 10.1007/s10120-017-0713-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Some gastric adenomas may progress to adenocarcinoma in a short time, but others remain as adenoma for a long time. METHODS Among 1138 cases diagnosed as adenoma by biopsy at Kure Medical Association Hospital between 1990 and 2010, 51 adenomas were enrolled. Of these, 28 adenomas (group A) were followed for 60 months or longer with no progression to adenocarcinoma within 60 months, and the other 23 adenomas (group B) were upgraded to carcinoma by consecutive biopsies performed within 1 year after the first biopsy. These adenomas were compared clinicopathologically and immunohistochemically. RESULTS Macroscopically, the mean size of group B adenomas was significantly larger than that of group A adenomas (18.6 vs. 9.9 mm) at the first biopsy. The frequency of a depressed area in the adenoma was significantly higher in group B than group A. Microscopically none of group A but 7 (30.4%) of 23 group B adenomas showed severe atypia. Each of a highly proliferative gland measured by Ki-67 labeling, cellular atypical grade, gastric phenotype defined by MUC5AC and MUC6 and CD204-positive tumor-associated macrophage (TAM) was a significant risk factor for adenocarcinoma development in gastric adenoma by univariate analysis. Only moderate or severe atypia of adenoma cells and the TAM number in the stroma of adenomas were independent risk factors by multivariate analysis. CONCLUSIONS As independent risk factors, cellular atypia may reconfirm the importance of morphological analysis, and the TAM number may indicate the significance of TAM function in gastric adenoma.
Collapse
Affiliation(s)
- Daiki Taniyama
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan.,Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure, 737-0023, Japan.,Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Kiyomi Taniyama
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan. .,Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure, 737-0023, Japan. .,Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan.
| | - Kazuya Kuraoka
- Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure, 737-0023, Japan.,Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Junichi Zaitsu
- Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure, 737-0023, Japan.,Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | - Akihisa Saito
- Institute for Clinical Research, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama-cho, Kure, 737-0023, Japan.,Department of Diagnostic Pathology, National Hospital Organization, Kure Medical Center and Chugoku Cancer Center, Kure, Japan
| | | | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
50
|
Diagnostic, Predictive, Prognostic, and Therapeutic Molecular Biomarkers in Third Millennium: A Breakthrough in Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7869802. [PMID: 29094049 PMCID: PMC5637861 DOI: 10.1155/2017/7869802] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 02/08/2023]
Abstract
Introduction Gastric cancer is the fifth most common cancer and the third cause of cancer death. The clinical outcomes of the patients are still not encouraging with a low rate of 5 years' survival. Often the disease is diagnosed at advanced stages and this obviously negatively affects patients outcomes. A deep understanding of molecular basis of gastric cancer can lead to the identification of diagnostic, predictive, prognostic, and therapeutic biomarkers. Main Body This paper aims to give a global view on the molecular classification and mechanisms involved in the development of the tumour and on the biomarkers for gastric cancer. We discuss the role of E-cadherin, HER2, fibroblast growth factor receptor (FGFR), MET, human epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (HGFR), mammalian target of rapamycin (mTOR), microsatellite instability (MSI), PD-L1, and TP53. We have also considered in this manuscript new emerging biomarkers as matrix metalloproteases (MMPs), microRNAs, and long noncoding RNAs (lncRNAs). Conclusions Identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers will have a huge impact on patients outcomes as they will allow early detection of tumours and also guide the choice of a targeted therapy based on specific molecular features of the cancer.
Collapse
|