1
|
Vallabh NA, Lane B, Simpson D, Fuchs M, Choudhary A, Criddle D, Cheeseman R, Willoughby C. Massively parallel sequencing of mitochondrial genome in primary open angle glaucoma identifies somatically acquired mitochondrial mutations in ocular tissue. Sci Rep 2024; 14:26324. [PMID: 39487142 PMCID: PMC11530638 DOI: 10.1038/s41598-024-72684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 11/04/2024] Open
Abstract
Glaucoma is a sight threatening neurodegenerative condition of the optic nerve head associated with ageing and marked by the loss of retinal ganglion cells. Mitochondrial dysfunction plays a crucial role in the pathogenesis of neurodegeneration in the most prevalent type of glaucoma: primary open angle glaucoma (POAG). All previous mitochondrial genome sequencing studies in POAG analyzed mitochondrial DNA (mtDNA) isolated from peripheral blood leukocytes and have not evaluated cells derived from ocular tissue, which better represent the glaucomatous disease context. In this study, we evaluated mitochondrial genome variation and heteroplasmy using massively parallel sequencing of mtDNA in a cohort of patients with POAG, and in a subset assess the role of somatic mitochondrial genome mutations in disease pathogenesis using paired samples of peripheral blood leukocytes and ocular tissue (Tenon's ocular fibroblasts). An enrichment of potentially pathogenic nonsynonymous mtDNA variants was identified in Tenon's ocular fibroblasts from participants with POAG. The absence of oxidative DNA damage and predominance of transition variants support the concept that errors in mtDNA replication represent the predominant mutation mechanism in Tenon's ocular fibroblasts from patients with POAG. Pathogenic somatic mitochondrial genome mutations were observed in people with POAG. This supports the role of somatic mitochondrial genome variants in the etiology of glaucoma.
Collapse
Affiliation(s)
- Neeru Amrita Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK.
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, M20 4BX, UK
| | - David Simpson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Marc Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Anshoo Choudhary
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - David Criddle
- Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool, L69 7BE, UK
| | - Robert Cheeseman
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Colin Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK.
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
2
|
Mertens J, Belva F, van Montfoort APA, Regin M, Zambelli F, Seneca S, Couvreu de Deckersberg E, Bonduelle M, Tournaye H, Stouffs K, Barbé K, Smeets HJM, Van de Velde H, Sermon K, Blockeel C, Spits C. Children born after assisted reproduction more commonly carry a mitochondrial genotype associating with low birthweight. Nat Commun 2024; 15:1232. [PMID: 38336715 PMCID: PMC10858059 DOI: 10.1038/s41467-024-45446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.
Collapse
Affiliation(s)
- Joke Mertens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florence Belva
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Aafke P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sara Seneca
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Herman Tournaye
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Biology of the Testis, Faculty of Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Kurt Barbé
- Interfaculty Center Data Processing & Statistics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
- MHeNs School Institute for Mental Health and Neuroscience, GROW Institute for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Hilde Van de Velde
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Research Group Reproduction and Immunology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christophe Blockeel
- Brussels IVF, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
- Department of Obstetrics and Gynaecology, School of Medicine, University of Zagreb, Šalata 3, Zagreb, 10000, Croatia
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Wang Z, Zhao G, Zhu Z, Wang Y, Xiang X, Zhang S, Luo T, Zhou Q, Qiu J, Tang B, Xia K, Li B, Li J. VarCards2: an integrated genetic and clinical database for ACMG-AMP variant-interpretation guidelines in the human whole genome. Nucleic Acids Res 2024; 52:D1478-D1489. [PMID: 37956311 PMCID: PMC10767961 DOI: 10.1093/nar/gkad1061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
VarCards, an online database, combines comprehensive variant- and gene-level annotation data to streamline genetic counselling for coding variants. Recognising the increasing clinical relevance of non-coding variations, there has been an accelerated development of bioinformatics tools dedicated to interpreting non-coding variations, including single-nucleotide variants and copy number variations. Regrettably, most tools remain as either locally installed databases or command-line tools dispersed across diverse online platforms. Such a landscape poses inconveniences and challenges for genetic counsellors seeking to utilise these resources without advanced bioinformatics expertise. Consequently, we developed VarCards2, which incorporates nearly nine billion artificially generated single-nucleotide variants (including those from mitochondrial DNA) and compiles vital annotation information for genetic counselling based on ACMG-AMP variant-interpretation guidelines. These annotations include (I) functional effects; (II) minor allele frequencies; (III) comprehensive function and pathogenicity predictions covering all potential variants, such as non-synonymous substitutions, non-canonical splicing variants, and non-coding variations and (IV) gene-level information. Furthermore, VarCards2 incorporates 368 820 266 documented short insertions and deletions and 2 773 555 documented copy number variations, complemented by their corresponding annotation and prediction tools. In conclusion, VarCards2, by integrating over 150 variant- and gene-level annotation sources, significantly enhances the efficiency of genetic counselling and can be freely accessed at http://www.genemed.tech/varcards2/.
Collapse
Affiliation(s)
- Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhaopo Zhu
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xudong Xiang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shiyu Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jian Qiu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, & Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
4
|
Grigalionienė K, Burnytė B, Ambrozaitytė L, Utkus A. Wide diagnostic and genotypic spectrum in patients with suspected mitochondrial disease. Orphanet J Rare Dis 2023; 18:307. [PMID: 37784170 PMCID: PMC10544509 DOI: 10.1186/s13023-023-02921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Mitochondrial Diseases (MDs) are a diverse group of neurometabolic disorders characterized by impaired mitochondrial oxidative phosphorylation and caused by pathogenic variants in more than 400 genes. The implementation of next-generation sequencing (NGS) technologies helps to increase the understanding of molecular basis and diagnostic yield of these conditions. The purpose of the study was to investigate diagnostic and genotypic spectrum in patients with suspected MD. The comprehensive analysis of mtDNA variants using Sanger sequencing was performed in the group of 83 unrelated individuals with clinically suspected mitochondrial disease. Additionally, targeted next generation sequencing or whole exome sequencing (WES) was performed for 30 patients of the study group. RESULTS The overall diagnostic rate was 21.7% for the patients with suspected MD, increasing to 36.7% in the group of patients where NGS methods were applied. Mitochondrial disease was confirmed in 11 patients (13.3%), including few classical mitochondrial syndromes (MELAS, MERRF, Leigh and Kearns-Sayre syndrome) caused by pathogenic mtDNA variants (8.4%) and MDs caused by pathogenic variants in five nDNA genes. Other neuromuscular diseases caused by pathogenic variants in seven nDNA genes, were confirmed in seven patients (23.3%). CONCLUSION The wide spectrum of identified rare mitochondrial or neurodevelopmental diseases proves that MD suspected patients would mostly benefit from an extensive genetic profiling allowing rapid diagnostics and improving the care of these patients.
Collapse
Affiliation(s)
- Kristina Grigalionienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania.
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariškių Str. 2, Vilnius, LT-08661, Lithuania
| |
Collapse
|
5
|
Bianco SD, Parca L, Petrizzelli F, Biagini T, Giovannetti A, Liorni N, Napoli A, Carella M, Procaccio V, Lott MT, Zhang S, Vescovi AL, Wallace DC, Caputo V, Mazza T. APOGEE 2: multi-layer machine-learning model for the interpretable prediction of mitochondrial missense variants. Nat Commun 2023; 14:5058. [PMID: 37598215 PMCID: PMC10439926 DOI: 10.1038/s41467-023-40797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.
Collapse
Affiliation(s)
- Salvatore Daniele Bianco
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Parca
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
- Italian Space Agency, Rome, Italy
| | - Francesco Petrizzelli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Agnese Giovannetti
- Clinical Genomics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Niccolò Liorni
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Massimo Carella
- Medical Genetics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, (FG), Italy
| | - Vincent Procaccio
- University of Angers, Genetics Department CHU Angers, Mitolab UMR CNRS 6015-INSERM U1083, F-49000, Angers, France
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Angelo Luigi Vescovi
- ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Fondazione IRCSS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo (FG), Italy.
| |
Collapse
|
6
|
Wang X, Gan M, Dong X, Lu Y, Zhou W. An Integrated Pipeline for Trio-Rapid Genome Sequencing in Critically Ill Infants. Curr Protoc 2023; 3:e706. [PMID: 36971344 DOI: 10.1002/cpz1.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Trio-rapid genome sequencing (trio-rGS) can assist the genetic diagnosis of critically ill infants given its ability to detect a broad range of pathogenic variants, as well as microbes, simultaneously with high efficiency. To achieve more comprehensive clinical diagnoses, it is essential to propose a recommended protocol in clinical practice. Here, we introduced an integrated pipeline to detect germline variants and microorganisms simultaneously from trio-RGS in critically ill infants, which provides step-by-step criteria for the semi-automatic processing procedures. With this pipeline in clinical application, only 1 ml of peripheral blood is needed for clinicians to provide both genetic and infectious causal information to a patient. The establishment and clinical practice of the method is of great significance for further mining of high-throughput sequencing data and for assisting clinicians in promoting diagnosis efficiency and accuracy. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Experimental pipeline for rapid whole-genome sequencing for the simultaneous detection of germline variants and microorganisms Basic Protocol 2: Computational pipeline for rapid whole-genome sequencing for the simultaneous detection of germline variants and microorganisms.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mingyu Gan
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Center for Big Data in Clinical Research, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
7
|
Jayasekera LP, Ranasinghe R, Senathilake KS, Kotelawala JT, de Silva K, Abeygunasekara PH, Goonesinghe R, Tennekoon KH. Mitochondrial genome in sporadic breast cancer: A case control study and a proteomic analysis in a Sinhalese cohort from Sri Lanka. PLoS One 2023; 18:e0281620. [PMID: 36758048 PMCID: PMC9910733 DOI: 10.1371/journal.pone.0281620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Breast cancer is the commonest malignancy in women and the majority occurs sporadically with no hereditary predisposition. However, sporadic breast cancer has been studied less intensively than the hereditary form and to date hardly any predictive biomarkers exist for the former. Furthermore, although mitochondrial DNA variants have been reported to be associated with breast cancer, findings have been inconsistent across populations. Thus we carried out a case control study on sporadic breast cancer patients and healthy controls of Sinhalese ethnicity (N = 60 matched pairs) in order to characterize coding region variants associated with the disease and to identify any potential biomarkers. Mitochondrial genome was fully sequenced in 30 pairs and selected regions were sequenced in the remaining 30 pairs. Several in-silico tools were used to assess functional significance of the variants observed. A number of variants were identified among the patients and the controls. Missense variants identified were either polymorphisms or rare variants. Their prevalence did not significantly differ between patients and the healthy controls (matched for age, body mass index and menopausal status). MT-CYB, MT-ATP6 and MT-ND2 genes showed a higher mutation rate. A higher proportion of pre-menopausal patients carried missense and pathogenic variants. Unique combinations of missense variants were seen within genes and these occurred mostly in MT-ATP6 and MT-CYB genes. Such unique combinations that occurred exclusively among the patients were common in obese patients. Mitochondrial DNA variants may have a role in breast carcinogenesis in obesity and pre-menopause. Molecular dynamic simulations suggested the mutants, G78S in MT-CO3 gene and T146A in MT-ATP6 gene are likely to be more stable than their wild type counterparts.
Collapse
Affiliation(s)
- Lakshika P. Jayasekera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka S. Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Joanne T. Kotelawala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | | | | | - Kamani H. Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
8
|
Caporali L, Fiorini C, Palombo F, Romagnoli M, Baccari F, Zenesini C, Visconti P, Posar A, Scaduto MC, Ormanbekova D, Battaglia A, Tancredi R, Cameli C, Viggiano M, Olivieri A, Torroni A, Maestrini E, Rochat MJ, Bacchelli E, Carelli V, Maresca A. Dissecting the multifaceted contribution of the mitochondrial genome to autism spectrum disorder. Front Genet 2022; 13:953762. [PMID: 36419830 PMCID: PMC9676943 DOI: 10.3389/fgene.2022.953762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous class of neurodevelopmental conditions with a strong, albeit complex, genetic basis. The genetic architecture of ASD includes different genetic models, from monogenic transmission at one end, to polygenic risk given by thousands of common variants with small effects at the other end. The mitochondrial DNA (mtDNA) was also proposed as a genetic modifier for ASD, mostly focusing on maternal mtDNA, since the paternal mitogenome is not transmitted to offspring. We extensively studied the potential contribution of mtDNA in ASD pathogenesis and risk through deep next generation sequencing and quantitative PCR in a cohort of 98 families. While the maternally-inherited mtDNA did not seem to predispose to ASD, neither for haplogroups nor for the presence of pathogenic mutations, an unexpected influence of paternal mtDNA, apparently centered on haplogroup U, came from the Italian families extrapolated from the test cohort (n = 74) when compared to the control population. However, this result was not replicated in an independent Italian cohort of 127 families and it is likely due to the elevated paternal age at time of conception. In addition, ASD probands showed a reduced mtDNA content when compared to their unaffected siblings. Multivariable regression analyses indicated that variants with 15%-5% heteroplasmy in probands are associated to a greater severity of ASD based on ADOS-2 criteria, whereas paternal super-haplogroups H and JT were associated with milder phenotypes. In conclusion, our results suggest that the mtDNA impacts on ASD, significantly modifying the phenotypic expression in the Italian population. The unexpected finding of protection induced by paternal mitogenome in term of severity may derive from a role of mtDNA in influencing the accumulation of nuclear de novo mutations or epigenetic alterations in fathers' germinal cells, affecting the neurodevelopment in the offspring. This result remains preliminary and needs further confirmation in independent cohorts of larger size. If confirmed, it potentially opens a different perspective on how paternal non-inherited mtDNA may predispose or modulate other complex diseases.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Baccari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Agatino Battaglia
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Raffaella Tancredi
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali Jane Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
9
|
Petrizzelli F, Biagini T, Bianco SD, Liorni N, Napoli A, Castellana S, Mazza T. Connecting the dots: A practical evaluation of web-tools for describing protein dynamics as networks. FRONTIERS IN BIOINFORMATICS 2022; 2:1045368. [PMID: 36438625 PMCID: PMC9689706 DOI: 10.3389/fbinf.2022.1045368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Protein Structure Networks (PSNs) are a well-known mathematical model for estimation and analysis of the three-dimensional protein structure. Investigating the topological architecture of PSNs may help identify the crucial amino acid residues for protein stability and protein-protein interactions, as well as deduce any possible mutational effects. But because proteins go through conformational changes to give rise to essential biological functions, this has to be done dynamically over time. The most effective method to describe protein dynamics is molecular dynamics simulation, with the most popular software programs for manipulating simulations to infer interaction networks being RING, MD-TASK, and NAPS. Here, we compare the computational approaches used by these three tools-all of which are accessible as web servers-to understand the pathogenicity of missense mutations and talk about their potential applications as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Francesco Petrizzelli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Biagini
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Niccolò Liorni
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Tommaso Mazza,
| |
Collapse
|
10
|
Müller-Nedebock AC, Pfaff AL, Pienaar IS, Kõks S, van der Westhuizen FH, Elson JL, Bardien S. Mitochondrial DNA variation in Parkinson’s disease: Analysis of “out-of-place” population variants as a risk factor. Front Aging Neurosci 2022; 14:921412. [PMID: 35912088 PMCID: PMC9330142 DOI: 10.3389/fnagi.2022.921412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA (mtDNA), a potential source of mitochondrial dysfunction, has been implicated in Parkinson’s disease (PD). However, many previous studies investigating associations between mtDNA population variation and PD reported inconsistent or contradictory findings. Here, we investigated an alternative hypothesis to determine whether mtDNA variation could play a significant role in PD risk. Emerging evidence suggests that haplogroup-defining mtDNA variants may have pathogenic potential if they occur “out-of-place” on a different maternal lineage. We hypothesized that the mtDNA of PD cases would be enriched for out-of-place variation in genes encoding components of the oxidative phosphorylation complexes. We tested this hypothesis with a unique dataset comprising whole mitochondrial genomes of 70 African ancestry PD cases, two African ancestry control groups (n = 78 and n = 53) and a replication group of 281 European ancestry PD cases and 140 controls from the Parkinson’s Progression Markers Initiative cohort. Significantly more African ancestry PD cases had out-of-place variants than controls from the second control group (P < 0.0125), although this association was not observed in the first control group nor the replication group. As the first mtDNA study to include African ancestry PD cases and to explore out-of-place variation in a PD context, we found evidence that such variation might be significant in this context, thereby warranting further replication in larger cohorts.
Collapse
Affiliation(s)
- Amica C. Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Ilse S. Pienaar
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | | | - Joanna L. Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Soraya Bardien,
| |
Collapse
|
11
|
Lake NJ, Zhou L, Xu J, Lek M. MitoVisualize: a resource for analysis of variants in human mitochondrial RNAs and DNA. Bioinformatics 2022; 38:2967-2969. [PMID: 35561159 DOI: 10.1093/bioinformatics/btac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 11/14/2022] Open
Abstract
SUMMARY We present MitoVisualize, a new tool for analysis of the human mitochondrial DNA (mtDNA). MitoVisualize enables visualization of: (i) the position and effect of variants in mitochondrial transfer RNA and ribosomal RNA secondary structures alongside curated variant annotations, (ii) data across RNA structures, such as to show all positions with disease-associated variants or with post-transcriptional modifications and (iii) the position of a base, gene or region in the circular mtDNA map, such as to show the location of a large deletion. All visualizations can be easily downloaded as figures for reuse. MitoVisualize can be useful for anyone interested in exploring mtDNA variation, though is designed to facilitate mtDNA variant interpretation in particular. AVAILABILITY AND IMPLEMENTATION MitoVisualize can be accessed via https://www.mitovisualize.org/. The source code is available at https://github.com/leklab/mito_visualize/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Murdoch Children's Research Institute, Melbourne 3052, Australia
| | - Lily Zhou
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jenny Xu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Liu Q, Iqbal MF, Yaqub T, Firyal S, Zhao Y, Stoneking M, Li M. The Transmission of Human Mitochondrial DNA in Four-Generation Pedigrees. Hum Mutat 2022; 43:1259-1267. [PMID: 35460575 DOI: 10.1002/humu.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Muhammad Faaras Iqbal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Firyal
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
13
|
Ip EKK, Troup M, Xu C, Winlaw DS, Dunwoodie SL, Giannoulatou E. Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application. Front Genet 2022; 13:692257. [PMID: 35350246 PMCID: PMC8957813 DOI: 10.3389/fgene.2022.692257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity, from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a percentage of mtDNA copies and can be detected with levels as low as 1%. The large number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In recent years, specialized variant calling algorithms have been developed that are tailored to identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few studies have systematically evaluated and compared these methods for the detection of both homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the commonly used Genome Analysis Toolkit “best practices” pipeline, which is included in most current WGS pipelines. We also used WGS data from 126 trios and calculated the percentage of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic variants. We additionally compared multiple pathogenicity prediction resources for mtDNA variants. Although the accuracy of homoplasmic variant detection was high for the majority of the callers with high concordance across callers, we found a very low concordance rate between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for heteroplasmy thresholds of 5% and 1%. Overall, Mutserve showed the best performance using the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed low concordance in prediction results. We have shown that while homoplasmic variant calling is consistent between callers, there remains a significant discrepancy in heteroplasmic variant calling. We found that resources like population frequency databases and pathogenicity predictors are now available for variant annotation but still need refinement and improvement. With its peculiarities, the mitochondria require special considerations, and we advocate that caution needs to be taken when analyzing mtDNA data from WGS data.
Collapse
Affiliation(s)
- Eddie K K Ip
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Colin Xu
- School of Computer Science and Engineering, Sydney, NSW, Australia
| | - David S Winlaw
- Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Centre, Heart Institute, Cincinnati, OH, United States
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| |
Collapse
|
14
|
Liu C, Fetterman JL, Sun X, Yan K, Liu P, Luo Y, Ding J, Zhu J, Levy D. Comparison of mitochondrial DNA sequences from whole blood and lymphoblastoid cell lines. Sci Rep 2022; 12:1801. [PMID: 35110616 PMCID: PMC8810874 DOI: 10.1038/s41598-022-05814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2022] [Indexed: 01/19/2023] Open
Abstract
Lymphoblastoid cell lines (LCLs) provide an unlimited source of genomic DNA for genetic studies. Here, we compared mtDNA sequence variants, heteroplasmic or homplasmic, between LCL (sequenced by mitoRCA-seq method) and whole blood samples (sequenced through whole genome sequencing approach) of the same 130 participants in the Framingham Heart Study. We applied harmonization of sequence coverages and consistent quality control to mtDNA sequences. We identified 866 variation sites in the 130 LCL samples and 666 sites in the 130 blood samples. More than 94% of the identified homoplasmies were present in both LCL and blood samples while more than 70% of heteroplasmic sites were uniquely present either in LCL or in blood samples. The LCL and whole blood samples carried a similar number of homoplasmic variants (p = 0.45) per sample while the LCL carried a greater number of heteroplasmic variants than whole blood per sample (p < 2.2e-16). Furthermore, the LCL samples tended to accumulate low level heteroplasmies (heteroplasmy level in 3-25%) than their paired blood samples (p = 0.001). These results suggest that cautions should be taken in the interpretation and comparison of findings when different tissues/cell types or different sequencing technologies are applied to obtain mtDNA sequences.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA.
| | | | - Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Kaiyu Yan
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Jun Zhu
- System Biology Center, NHLBI/NIH, Bethesda, MD, 20892, USA
| | - Daniel Levy
- Population Sciences Branch, NHLBI/NIH, Bethesda, MD, 20892, USA.
- Framingham Heart Study, Framingham, MA, 01702, USA.
| |
Collapse
|
15
|
Wang Y, Zhao G, Fang Z, Pan H, Zhao Y, Wang Y, Zhou X, Wang X, Luo T, Zhang Y, Wang Z, Chen Q, Dong L, Huang Y, Zhou Q, Xia L, Li B, Guo J, Xia K, Tang B, Li J. Genetic landscape of human mitochondrial genome using whole genome sequencing. Hum Mol Genet 2021; 31:1747-1761. [PMID: 34897451 DOI: 10.1093/hmg/ddab358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022] Open
Abstract
Increasing evidences suggest that mitochondrial dysfunction is implicated in diseases and aging, and whole-genome sequencing (WGS) is the most unbiased method in analyzing the mitochondrial genome (mtDNA). However, the genetic landscape of mtDNA in the Chinese population has not been fully examined. Here, we described the genetic landscape of mtDNA using WGS data from Chinese individuals (n = 3241). We identified 3892 mtDNA variants, of which 3349 (86%) were rare variants. Interestingly, we observed a trend toward extreme heterogeneity of mtDNA variants. Our study observed a distinct purifying selection on mtDNA, which inhibits the accumulation of harmful heteroplasmies at the individual level: (1) mitochondrial dN/dS ratios were much less than 1; (2) the dN/dS ratio of heteroplasmies was higher than homoplasmies; (3) heteroplasmies had more indels and predicted deleterious variants than homoplasmies. Furthermore, we found that haplogroup M (20.27%) and D (20.15%) had the highest frequencies in the Chinese population, followed by B (18.51%) and F (16.45%). The number of variants per individual differed across haplogroup groups, with a higher number of homoplasmies for the M lineage. Meanwhile, mtDNA copy number was negatively correlated with age but positively correlated with the female sex. Finally, we developed an mtDNA variation database of Chinese populations called MTCards (http://genemed.tech/mtcards/) to facilitate the query of mtDNA variants in this study. In summary, these findings contribute to different aspects of understanding mtDNA, providing a better understanding of the genetic basis of mitochondrial-related diseases.
Collapse
Affiliation(s)
- Yijing Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhenghuan Fang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaomeng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Tengfei Luo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lijie Dong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Yuanfeng Huang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jifeng Guo
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
16
|
Kumar R, K Rajput N, Jolly B, Narwade A, Bhardwaj A. MitoLink: A generic integrated web-based workflow system to evaluate genotype-phenotype correlations in human mitochondrial diseases: Observations from the GenomeAsia Pilot project. Mitochondrion 2021; 61:54-61. [PMID: 34571248 DOI: 10.1016/j.mito.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
MitoLink is a generic, scalable and modular web-based workflow system developed to study genotype-phenotype correlations in human mitochondrial diseases. MitoLink integrates applications for assessment of genomic variation and currently houses genome-wide datasets from GenomeAsia Pilot project, gnomAD, ClinVar and DisGenNet. In this study, a reference list of nearly 3975 proteins (both nuclear and mitochondrial encoded) with mitochondrial function is reported. This protein set is mapped to disease associated variants in the GenomeAsia Pilot Project and DisGenNet and evaluated for pathogenicity as defined by ClinVar. Observations of shared genetic components in potential comorbidities are discussed from gene-disease network in Asian population, however, the platform is generic and can be applied to any population dataset. MitoLink is a unique customized workflow system that allows for systematic storage, extraction, analysis and visualization of genomic variation to understand genotype-phenotype correlations for mitochondrial diseases. Given the modularity of tool and data integration, MitoLink is a scalable system that can accommodate a diverse set of applications linked via standard data structure within the framework of Galaxy. MitoLink is built on FAIR principles and supports creation of reproducible workflows towards understanding genotype-phenotype correlations across several disease phenotypes globally.
Collapse
Affiliation(s)
- Rakesh Kumar
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj K Rajput
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Bani Jolly
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Amol Narwade
- CSIR-Open Source Drug Discovery Consortium, Delhi, India
| | - Anshu Bhardwaj
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Liu C, Fetterman JL, Qian Y, Sun X, Blackwell TW, Pitsillides A, Cade BE, Wang H, Raffield LM, Lange LA, Anugu P, Abecasis G, Adrienne Cupples L, Redline S, Correa A, Vasan RS, Wilson JG, Ding J, Levy D. Presence and transmission of mitochondrial heteroplasmic mutations in human populations of European and African ancestry. Mitochondrion 2021; 60:33-42. [PMID: 34303007 PMCID: PMC8464516 DOI: 10.1016/j.mito.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/13/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
We investigated the concordance of mitochondrial DNA heteroplasmic mutations (heteroplasmies) in 6745 maternal pairs of European (EA, n = 4718 pairs) and African (AA, n = 2027 pairs) Americans in whole blood. Mother-offspring pairs displayed the highest concordance rate, followed by sibling-sibling and more distantly-related maternal pairs. The allele fractions of concordant heteroplasmies exhibited high correlation (R2 = 0.8) between paired individuals. Discordant heteroplasmies were more likely to be in coding regions, be nonsynonymous or nonsynonymous-deleterious (p < 0.001). The number of deleterious heteroplasmies was significantly correlated with advancing age (20-44, 45-64, and ≥65 years, p-trend = 0.01). One standard deviation increase in heteroplasmic burden (i.e., the number of heteroplasmies carried by an individual) was associated with 0.17 to 0.26 (p < 1e - 23) standard deviation decrease in mtDNA copy number, independent of age. White blood cell count and differential count jointly explained 0.5% to 1.3% (p ≤ 0.001) variance in heteroplasmic burden. A genome-wide association and meta-analysis identified a region at 11p11.12 (top signal rs779031139, p = 2.0e - 18, minor allele frequency = 0.38) associated with the heteroplasmic burden. However, the 11p11.12 region is adjacent to a nuclear mitochondrial DNA (NUMT) corresponding to a 542 bp area of the D-loop. This region was no longer significant after excluding heteroplasmies within the 542 bp from the heteroplasmic burden. The discovery that blood mtDNA heteroplasmies were both inherited and somatic origins and that an increase in heteroplasmic burden was strongly associated with a decrease in average number of mtDNA copy number in blood are important findings to be considered in association studies of mtDNA with disease traits.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA.
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA 20118, USA
| | - Yong Qian
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Achilleas Pitsillides
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Leslie A Lange
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pramod Anugu
- Coordinating Center, University of Mississippi of Medical Center, Jackson, MS 39216, USA
| | - Goncalo Abecasis
- TOPMed Informatics Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA 01702, USA; Sections of Preventive Medicine and Epidemiology, and Cardiovascular Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jun Ding
- Longitudinal Studies Section, Translational Gerontology Branch, NIA/NIH, Baltimore, MD 21224, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA; Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Shen L, McCormick EM, Muraresku CC, Falk MJ, Gai X. Clinical Bioinformatics in Precise Diagnosis of Mitochondrial Disease. Clin Lab Med 2021; 40:149-161. [PMID: 32439066 DOI: 10.1016/j.cll.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clinical bioinformatics system is well-established for diagnosing genetic disease based on next-generation sequencing, but requires special considerations when being adapted for the next-generation sequencing-based genetic diagnosis of mitochondrial diseases. Challenges are caused by the involvement of mitochondrial DNA genome in disease etiology. Heteroplasmy and haplogroup are key factors in interpreting mitochondrial DNA variant effects. Data resources and tools for analyzing variant and sequencing data are available at MSeqDR, MitoMap, and HmtDB. Revised specifications of the American College of Medical Genetics/Association of Molecular Pathology standards and guidelines for mitochondrial DNA variant interpretation are proposed by the MSeqDr Consortium and community experts.
Collapse
Affiliation(s)
- Lishuang Shen
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Colleen Clarke Muraresku
- Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Marni J Falk
- CHOP Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, ARC 1002c, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Xiaowu Gai
- Keck School of Medicine of USC, Center for Personalized Medicine, Children's Hospital Los Angeles, Suite 300, 2100 West 3rd Street, Los Angeles, CA 90057, USA.
| |
Collapse
|
19
|
A high mutation load of m.14597A>G in MT-ND6 causes Leigh syndrome. Sci Rep 2021; 11:11123. [PMID: 34045482 PMCID: PMC8160132 DOI: 10.1038/s41598-021-90196-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder associated with mitochondrial deficiency. m.14597A>G (p.Ile26Thr) in the MT-ND6 gene was reported to cause Leberʼs hereditary optic neuropathy (LHON) or dementia/dysarthria. In previous reports, less than 90% heteroplasmy was shown to result in adult-onset disease. Here, by whole mitochondrial sequencing, we identified m.14597A>G mutation of a patient with LS. PCR–RFLP analysis on fibroblasts from the patient revealed a high mutation load (> 90% heteroplasmy). We performed functional assays using cybrid cell models generated by fusing mtDNA-less rho0 HeLa cells with enucleated cells from patient fibroblasts carrying the m.14597A>G variant. Cybrid cell lines bearing the m.14597A>G variant exhibited severe effects on mitochondrial complex I activity. Additionally, impairment of cell proliferation, decreased ATP production and reduced oxygen consumption rate were observed in the cybrid cell lines bearing the m.14597A>G variant when the cells were metabolically stressed in medium containing galactose, indicating mitochondrial respiratory chain defects. These results suggest that a high mutation load of m.14597A>G leads to LS via a mitochondrial complex I defect, rather than LHON or dementia/dysarthria.
Collapse
|
20
|
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Nucleic Acids Res 2021; 49:D1282-D1288. [PMID: 33300029 PMCID: PMC7779045 DOI: 10.1093/nar/gkaa1032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.
Collapse
Affiliation(s)
- Stefano Castellana
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Tommaso Biagini
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Luca Parca
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angelo Luigi Vescovi
- ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) 71013, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| |
Collapse
|
21
|
Possible A2E Mutagenic Effects on RPE Mitochondrial DNA from Innovative RNA-Seq Bioinformatics Pipeline. Antioxidants (Basel) 2020; 9:antiox9111158. [PMID: 33233726 PMCID: PMC7699917 DOI: 10.3390/antiox9111158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/10/2023] Open
Abstract
Mitochondria are subject to continuous oxidative stress stimuli that, over time, can impair their genome and lead to several pathologies, like retinal degenerations. Our main purpose was the identification of mtDNA variants that might be induced by intense oxidative stress determined by N-retinylidene-N-retinylethanolamine (A2E), together with molecular pathways involving the genes carrying them, possibly linked to retinal degeneration. We performed a variant analysis comparison between transcriptome profiles of human retinal pigment epithelial (RPE) cells exposed to A2E and untreated ones, hypothesizing that it might act as a mutagenic compound towards mtDNA. To optimize analysis, we proposed an integrated approach that foresaw the complementary use of the most recent algorithms applied to mtDNA data, characterized by a mixed output coming from several tools and databases. An increased number of variants emerged following treatment. Variants mainly occurred within mtDNA coding sequences, corresponding with either the polypeptide-encoding genes or the RNA. Time-dependent impairments foresaw the involvement of all oxidative phosphorylation complexes, suggesting a serious damage to adenosine triphosphate (ATP) biosynthesis, that can result in cell death. The obtained results could be incorporated into clinical diagnostic settings, as they are hypothesized to modulate the phenotypic expression of mtDNA pathogenic variants, drastically improving the field of precision molecular medicine.
Collapse
|
22
|
McCormick EM, Lott MT, Dulik MC, Shen L, Attimonelli M, Vitale O, Karaa A, Bai R, Pineda-Alvarez DE, Singh LN, Stanley CM, Wong S, Bhardwaj A, Merkurjev D, Mao R, Sondheimer N, Zhang S, Procaccio V, Wallace DC, Gai X, Falk MJ. Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum Mutat 2020; 41:2028-2057. [PMID: 32906214 DOI: 10.1002/humu.24107] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.
Collapse
Affiliation(s)
- Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew C Dulik
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lishuang Shen
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Ornella Vitale
- Department of Biosciences, Biotechnology, and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Amel Karaa
- Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christine M Stanley
- Variantyx, Inc, Framingham, Massachusetts, USA.,QNA Diagnostics, Cambridge, Massachusetts, USA
| | | | - Anshu Bhardwaj
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Rong Mao
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Neal Sondheimer
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vincent Procaccio
- Department of Biochemistry and Genetics, MitoVasc Institute, UMR CNRS 6015- INSERM U1083, CHU Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Costain G, Walker S, Marano M, Veenma D, Snell M, Curtis M, Luca S, Buera J, Arje D, Reuter MS, Thiruvahindrapuram B, Trost B, Sung WWL, Yuen RKC, Chitayat D, Mendoza-Londono R, Stavropoulos DJ, Scherer SW, Marshall CR, Cohn RD, Cohen E, Orkin J, Meyn MS, Hayeems RZ. Genome Sequencing as a Diagnostic Test in Children With Unexplained Medical Complexity. JAMA Netw Open 2020; 3:e2018109. [PMID: 32960281 PMCID: PMC7509619 DOI: 10.1001/jamanetworkopen.2020.18109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Importance Children with medical complexity (CMC) represent a growing population in the pediatric health care system, with high resource use and associated health care costs. A genetic diagnosis can inform prognosis, anticipatory care, management, and reproductive planning. Conventional genetic testing strategies for CMC are often costly, time consuming, and ultimately unsuccessful. Objective To evaluate the analytical and clinical validity of genome sequencing as a comprehensive diagnostic genetic test for CMC. Design, Setting, and Participants In this cohort study of the prospective use of genome sequencing and comparison with standard-of-care genetic testing, CMC were recruited from May 1, 2017, to November 30, 2018, from a structured complex care program based at a tertiary care pediatric hospital in Toronto, Canada. Recruited CMC had at least 1 chronic condition, technology dependence (child is dependent at least part of each day on mechanical ventilators, and/or child requires prolonged intravenous administration of nutritional substances or drugs, and/or child is expected to have prolonged dependence on other device-based support), multiple subspecialist involvement, and substantial health care use. Review of the care plans for 545 CMC identified 143 suspected of having an undiagnosed genetic condition. Fifty-four families met inclusion criteria and were interested in participating, and 49 completed the study. Probands, similarly affected siblings, and biological parents were eligible for genome sequencing. Exposures Genome sequencing was performed using blood-derived DNA from probands and family members using established methods and a bioinformatics pipeline for clinical genome annotation. Main Outcomes and Measures The primary study outcome was the diagnostic yield of genome sequencing (proportion of CMC for whom the test result yielded a new diagnosis). Results Genome sequencing was performed for 138 individuals from 49 families of CMC (29 male and 20 female probands; mean [SD] age, 7.0 [4.5] years). Genome sequencing detected all genomic variation previously identified by conventional genetic testing. A total of 15 probands (30.6%; 95% CI 19.5%-44.6%) received a new primary molecular genetic diagnosis after genome sequencing. Three individuals had novel diseases and an additional 9 had either ultrarare genetic conditions or rare genetic conditions with atypical features. At least 11 families received diagnostic information that had clinical management implications beyond genetic and reproductive counseling. Conclusions and Relevance This study suggests that genome sequencing has high analytical and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior investigations. This clinical population may be enriched for ultrarare and novel genetic disorders. Genome sequencing is a potentially first-tier genetic test for CMC.
Collapse
Affiliation(s)
- Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maria Marano
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Veenma
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meaghan Snell
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meredith Curtis
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie Luca
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason Buera
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Arje
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miriam S. Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wilson W. L. Sung
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan K. C. Yuen
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - D. James Stavropoulos
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Christian R. Marshall
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ronald D. Cohn
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Eyal Cohen
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Julia Orkin
- Division of Paediatric Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - M. Stephen Meyn
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Center for Human Genomics and Precision Medicine, University of Wisconsin, Madison
| | - Robin Z. Hayeems
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, Falparado Ahmad A, Abdullah MA, Teh LK, Maniam S. Mitochondrial DNA mutations in Malaysian female breast cancer patients. PLoS One 2020; 15:e0233461. [PMID: 32442190 PMCID: PMC7244147 DOI: 10.1371/journal.pone.0233461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
Collapse
Affiliation(s)
- Raevathi Omasanggar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Choo Yee Yu
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Geik Yong Ang
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Aina Emran
- Department of General Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Normayah Kitan
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | - Anita Baghawi
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
25
|
Attimonelli M, Preste R, Vitale O, Lott MT, Procaccio V, Shiping Z, Wallace DC. Bioinformatics resources, databases, and tools for human mtDNA. THE HUMAN MITOCHONDRIAL GENOME 2020:277-304. [DOI: 10.1016/b978-0-12-819656-4.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Barrett A, Arbeithuber B, Zaidi A, Wilton P, Paul IM, Nielsen R, Makova KD. Pronounced somatic bottleneck in mitochondrial DNA of human hair. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190175. [PMID: 31787049 PMCID: PMC6939377 DOI: 10.1098/rstb.2019.0175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heteroplasmy is the presence of variable mitochondrial DNA (mtDNA) within the same individual. The dynamics of heteroplasmy allele frequency among tissues of the human body is not well understood. Here, we measured allele frequency at heteroplasmic sites in two to eight hairs from each of 11 humans using next-generation sequencing. We observed a high variance in heteroplasmic allele frequency among separate hairs from the same individual—much higher than that for blood and cheek tissues. Our population genetic modelling estimated the somatic bottleneck during embryonic follicle development of separate hairs to be only 11.06 (95% confidence interval 0.6–34.0) mtDNA segregating units. This bottleneck is much more drastic than somatic bottlenecks for blood and cheek tissues (136 and 458 units, respectively), as well as more drastic than, or comparable to, the germline bottleneck (equal to 25–32 or 7–10 units, depending on the study). We demonstrated that hair undergoes additional genetic drift before and after the divergence of mtDNA lineages of individual hair follicles. Additionally, we showed a positive correlation between donor's age and variance in heteroplasmy allele frequency in hair. These findings have important implications for forensics and for our understanding of mtDNA dynamics in the human body. This article is part of the theme issue ‘Linking the mitochondrial genotype to phenotype: a complex endeavour’.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Biology, Penn State University, University Park, PA, USA
| | | | - Arslan Zaidi
- Department of Biology, Penn State University, University Park, PA, USA
| | - Peter Wilton
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Ian M Paul
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kateryna D Makova
- Department of Biology, Penn State University, University Park, PA, USA
| |
Collapse
|
27
|
Mani MS, Chakrabarty S, Mallya SP, Kabekkodu SP, Jayaram P, Varghese VK, Dsouza HS, Satyamoorthy K. Whole mitochondria genome mutational spectrum in occupationally exposed lead subjects. Mitochondrion 2019; 48:60-66. [PMID: 31029642 DOI: 10.1016/j.mito.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
|
28
|
Hübner A, Wachsmuth M, Schröder R, Li M, Eis-Hübinger AM, Madea B, Stoneking M. Sharing of heteroplasmies between human liver lobes varies across the mtDNA genome. Sci Rep 2019; 9:11219. [PMID: 31375696 PMCID: PMC6677727 DOI: 10.1038/s41598-019-47570-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial DNA (mtDNA) heteroplasmy (intra-individual variation) varies among different human tissues and increases with age, suggesting that the majority of mtDNA heteroplasmies are acquired, rather than inherited. However, the extent to which heteroplasmic sites are shared across a tissue remains an open question. We therefore investigated heteroplasmy in two liver samples (one from each primary lobe) from 83 Europeans, sampled at autopsy. Minor allele frequencies (MAF) at heteroplasmic sites were significantly correlated between the two liver samples from an individual, with significantly more sharing of heteroplasmic sites in the control region than in the non-control region. We show that this increased sharing for the control region cannot be explained by recent mutations at just a few specific heteroplasmic sites or by the possible presence of 7S DNA. Moreover, we carried out simulations to show that there is significantly more sharing than would be predicted from random genetic drift from a common progenitor cell. We also observe a significant excess of non-synonymous vs. synonymous heteroplasmies in the protein-coding region, but significantly more sharing of synonymous heteroplasmies. These contrasting patterns for the control vs. the non-control region, and for non-synonymous vs. synonymous heteroplasmies, suggest that selection plays a role in heteroplasmy sharing.
Collapse
Affiliation(s)
- Alexander Hübner
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Manja Wachsmuth
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Roland Schröder
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Anna Maria Eis-Hübinger
- Institut für Virologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany
| | - Burkhard Madea
- Institut für Rechtsmedizin, Universitätsklinikum Bonn, Stiftsplatz 12, D-53111, Bonn, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| |
Collapse
|
29
|
Veyrat-Durebex C, Bris C, Codron P, Bocca C, Chupin S, Corcia P, Vourc'h P, Hergesheimer R, Cassereau J, Funalot B, Andres CR, Lenaers G, Couratier P, Reynier P, Blasco H. Metabo-lipidomics of Fibroblasts and Mitochondrial-Endoplasmic Reticulum Extracts from ALS Patients Shows Alterations in Purine, Pyrimidine, Energetic, and Phospholipid Metabolisms. Mol Neurobiol 2019; 56:5780-5791. [PMID: 30680691 DOI: 10.1007/s12035-019-1484-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by a wide metabolic remodeling, as shown by recent metabolomics and lipidomics studies performed in samples from patient cohorts and experimental animal models. Here, we explored the metabolome and lipidome of fibroblasts from sporadic ALS patients (n = 13) comparatively to age- and sex-matched controls (n = 11), and the subcellular fraction containing the mitochondria and endoplasmic reticulum (mito-ER), given that mitochondrial dysfunctions and ER stress are important features of ALS patho-mechanisms. We also assessed the mitochondrial oxidative respiration and the mitochondrial genomic (mtDNA) sequence, although without yielding significant differences. Compared to controls, ALS fibroblasts did not exhibit a mitochondrial respiration defect nor an increased proportion of mitochondrial DNA mutations. In addition, non-targeted metabolomics and lipidomics analyses identified 124 and 127 metabolites, and 328 and 220 lipids in whole cells and the mito-ER fractions, respectively, along with partial least-squares-discriminant analysis (PLS-DA) models being systematically highly predictive of the disease. The most discriminant metabolomic features were the alteration of purine, pyrimidine, and energetic metabolisms, suggestive of oxidative stress and of pro-inflammatory status. The most important lipidomic feature in the mito-ER fraction was the disturbance of phosphatidylcholine PC (36:4p) levels, which we had previously reported in the cerebrospinal fluid of ALS patients and in the brain from an ALS mouse model. Thus, our results reveal that fibroblasts from sporadic ALS patients share common metabolic remodeling, consistent with other metabolic studies performed in ALS, opening perspectives for further exploration in this cellular model in ALS.
Collapse
Affiliation(s)
- Charlotte Veyrat-Durebex
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France. .,Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France. .,Laboratoire de Biochimie et Biologie Moléculaire, CHRU Hôpital Bretonneau, 2, Bd Tonnellé, 37044, Tours, France.
| | - Céline Bris
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France.,Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France
| | - Philippe Codron
- Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France.,Centre de Ressources et de Compétences SLA, Service de Neurologie, CHU Angers, Angers, France
| | - Cinzia Bocca
- Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Philippe Corcia
- Université de Tours, Inserm U1253, Tours, France.,Centre de Référence SLA, Service de Neurologie, CHRU Bretonneau, Tours, France.,Fédération des CRCSLA Tours et Limoges, LITORALS, Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Hôpital Bretonneau, 2, Bd Tonnellé, 37044, Tours, France.,Université de Tours, Inserm U1253, Tours, France
| | | | - Julien Cassereau
- Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France.,Centre de Ressources et de Compétences SLA, Service de Neurologie, CHU Angers, Angers, France
| | - Benoit Funalot
- Fédération des CRCSLA Tours et Limoges, LITORALS, Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Hôpital Bretonneau, 2, Bd Tonnellé, 37044, Tours, France.,Université de Tours, Inserm U1253, Tours, France
| | - Guy Lenaers
- Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France
| | | | - Pascal Reynier
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France.,Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France
| | - Hélène Blasco
- Unité Mixte de Recherche MITOVASC, CNRS 6015-INSERM 1083, Université d'Angers, Angers, France. .,Laboratoire de Biochimie et Biologie Moléculaire, CHRU Hôpital Bretonneau, 2, Bd Tonnellé, 37044, Tours, France. .,Université de Tours, Inserm U1253, Tours, France.
| |
Collapse
|
30
|
Bris C, Goudenege D, Desquiret-Dumas V, Charif M, Colin E, Bonneau D, Amati-Bonneau P, Lenaers G, Reynier P, Procaccio V. Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing. Front Genet 2018; 9:632. [PMID: 30619459 PMCID: PMC6297213 DOI: 10.3389/fgene.2018.00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
The development of next generation sequencing (NGS) has greatly enhanced the diagnosis of mitochondrial disorders, with a systematic analysis of the whole mitochondrial DNA (mtDNA) sequence and better detection sensitivity. However, the exponential growth of sequencing data renders complex the interpretation of the identified variants, thereby posing new challenges for the molecular diagnosis of mitochondrial diseases. Indeed, mtDNA sequencing by NGS requires specific bioinformatics tools and the adaptation of those developed for nuclear DNA, for the detection and quantification of mtDNA variants from sequence alignment to the calling steps, in order to manage the specific features of the mitochondrial genome including heteroplasmy, i.e., coexistence of mutant and wildtype mtDNA copies. The prioritization of mtDNA variants remains difficult, relying on a limited number of specific resources: population and clinical databases, and in silico tools providing a prediction of the variant pathogenicity. An evaluation of the most prominent bioinformatics tools showed that their ability to predict the pathogenicity was highly variable indicating that special efforts should be directed at developing new bioinformatics tools dedicated to the mitochondrial genome. In addition, massive parallel sequencing raised several issues related to the interpretation of very low mtDNA mutational loads, discovery of variants of unknown significance, and mutations unrelated to patient phenotype or the co-occurrence of mtDNA variants. This review provides an overview of the current strategies and bioinformatics tools for accurate annotation, prioritization and reporting of mtDNA variations from NGS data, in order to carry out accurate genetic counseling in individuals with primary mitochondrial diseases.
Collapse
Affiliation(s)
- Céline Bris
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - David Goudenege
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Valérie Desquiret-Dumas
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Majida Charif
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Estelle Colin
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Dominique Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Patrizia Amati-Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Vincent Procaccio
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| |
Collapse
|
31
|
Whole sequence of the mitochondrial DNA genome of Kearns Sayre Syndrome patients: Identification of deletions and variants. Gene 2018; 688:171-181. [PMID: 30528267 DOI: 10.1016/j.gene.2018.11.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Mitochondria both produce the energy of the cell as ATP via respiration and regulate cellular metabolism. Accordingly, any deletion or mutation in the mitochondrial DNA (mtDNA) may result in a disease. One of these diseases is Kearns Sayre syndrome (KSS), described for the first time in 1958, where different large-scale deletions of different sizes and at different positions have been reported in the mitochondrial genome of patients with similar clinical symptoms. In this study, sequences of the mitochondrial genome of three patients with clinic features of KSS were analyzed. Our results revealed the position, heteroplasmy percentage, size of deletions, and their haplogroups. Two patients contained deletions reported previously and one patient showed a new deletion not reported previously. These results display for the first time a systematic analysis of mtDNA variants in the whole mtDNA genome of patients with KSS to help to understand their association with the disease.
Collapse
|
32
|
Baker KT, Nachmanson D, Kumar S, Emond MJ, Ussakli C, Brentnall TA, Kennedy SR, Risques RA. Mitochondrial DNA Mutations are Associated with Ulcerative Colitis Preneoplasia but Tend to be Negatively Selected in Cancer. Mol Cancer Res 2018; 17:488-498. [PMID: 30446624 DOI: 10.1158/1541-7786.mcr-18-0520] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023]
Abstract
The role of mitochondrial DNA (mtDNA) mutations in cancer remains controversial. Ulcerative colitis is an inflammatory bowel disease that increases the risk of colorectal cancer and involves mitochondrial dysfunction, making it an ideal model to study the role of mtDNA in tumorigenesis. Our goal was to comprehensively characterize mtDNA mutations in ulcerative colitis tumorigenesis using Duplex Sequencing, an ultra-accurate next-generation sequencing method. We analyzed 46 colon biopsies from non-ulcerative colitis control patients and ulcerative colitis patients with and without cancer, including biopsies at all stages of dysplastic progression. mtDNA was sequenced at a median depth of 1,364x. Mutations were classified by mutant allele frequency: clonal > 0.95, subclonal 0.01-0.95, and very low frequency (VLF) < 0.01. We identified 208 clonal and subclonal mutations and 56,764 VLF mutations. Mutations were randomly distributed across the mitochondrial genome. Clonal and subclonal mutations increased in number and pathogenicity in early dysplasia, but decreased in number and pathogenicity in cancer. Most clonal, subclonal, and VLF mutations were C>T transitions in the heavy strand of mtDNA, which likely arise from DNA replication errors. A subset of VLF mutations were C>A transversions, which are probably due to oxidative damage. VLF transitions and indels were less abundant in the non-D-loop region and decreased with progression. Our results indicate that mtDNA mutations are frequent in ulcerative colitis preneoplasia but negatively selected in cancers. IMPLICATIONS: While mtDNA mutations might contribute to early ulcerative colitis tumorigenesis, they appear to be selected against in cancer, suggesting that functional mitochondria might be required for malignant transformation in ulcerative colitis.
Collapse
Affiliation(s)
- Kathryn T Baker
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - Shilpa Kumar
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Cigdem Ussakli
- Department of Pathology, University of Washington, Seattle, Washington.,Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Teresa A Brentnall
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, Washington
| | - Rosa Ana Risques
- Department of Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
33
|
Piotrowska-Nowak A, Kosior-Jarecka E, Schab A, Wrobel-Dudzinska D, Bartnik E, Zarnowski T, Tonska K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp Eye Res 2018; 178:186-197. [PMID: 30312593 DOI: 10.1016/j.exer.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide. However, the cause of retinal ganglion cell loss and damage of the optic nerve in its pathogenesis is largely unknown. The high energy demands of these cells may reflect their strong dependence on mitochondrial function and thus sensitivity to mitochondrial defects. To address this issue, we studied whole mitochondrial genome variation in normal tension glaucoma patients and control individuals from the Polish population using next generation sequencing. Our findings indicate that few features of mitochondrial DNA variation are different for glaucoma patients and control subjects. New insights into normal tension glaucoma development are discussed. We provide also a comprehensive approach for mitochondrial DNA analysis and variant evaluation.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Aleksandra Schab
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Dominika Wrobel-Dudzinska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Tomasz Zarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Katarzyna Tonska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| |
Collapse
|
34
|
Dong HL, Ma Y, Li QF, Du YC, Yang L, Chen S, Wu ZY. Genetic and clinical features of Chinese patients with mitochondrial ataxia identified by targeted next-generation sequencing. CNS Neurosci Ther 2018; 25:21-29. [PMID: 29756269 DOI: 10.1111/cns.12972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
AIM To characterize the mutations in mitochondrial DNA (mtDNA) and mitochondrion-related nuclear genes (nDNA), and clinical features in Chinese patients with mitochondrial ataxia. METHODS Targeted next-generation sequencing (NGS) technology was performed to screen the whole mtDNA sequence and nDNA genes in a cohort of 33 unrelated ataxia patients. RESULTS A total of 5 pedigrees were finally genetically diagnosed as mitochondrial ataxia, with 3 pathogenic mutations (m.8344A>G, m.9176T>C, and m.9185T>C), one likely pathogenic mutation (m.3995A>G) in mtDNA, and one pathogenic mutation (c.1159_1162dupAAGT, p.Ser388Terfs) in PDHA1. The prevalence of mitochondrial ataxia in our patient cohort is 15.2%. In addition, all 4 patients with mtDNA mutations experienced symptoms of ataxia with age at onset ranging from 12 to 39 years (21 ± 12.2) and developed extrapyramidal symptoms during the disease course. One male patient with pyruvate dehydrogenase deficiency showed an acute intermittent ataxia phenotype. CONCLUSIONS Our results implicate that mitochondrial ataxia might not be as rare in Chinese as previously assumed. This study firstly defines the mutations of mitochondrial ataxia in a Chinese population by targeted NGS, which broadens the clinical spectrum of mtDNA mutations and highlights the importance of screening mtDNA and nDNA mutations among undefined ataxia patients.
Collapse
Affiliation(s)
- Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Ma
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Chu Du
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Chen
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Caporali L, Iommarini L, La Morgia C, Olivieri A, Achilli A, Maresca A, Valentino ML, Capristo M, Tagliavini F, Del Dotto V, Zanna C, Liguori R, Barboni P, Carbonelli M, Cocetta V, Montopoli M, Martinuzzi A, Cenacchi G, De Michele G, Testa F, Nesti A, Simonelli F, Porcelli AM, Torroni A, Carelli V. Peculiar combinations of individually non-pathogenic missense mitochondrial DNA variants cause low penetrance Leber's hereditary optic neuropathy. PLoS Genet 2018; 14:e1007210. [PMID: 29444077 PMCID: PMC5828459 DOI: 10.1371/journal.pgen.1007210] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/27/2018] [Accepted: 01/21/2018] [Indexed: 12/23/2022] Open
Abstract
We here report on the existence of Leber’s hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband’s fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach. Leber’s hereditary optic neuropathy (LHON) is a common cause of maternally inherited vision loss. In the large majority of cases LHON is due to mitochondrial DNA (mtDNA) point mutations, clearly distinct from common polymorphisms normally found in the general population, affecting the mitochondrial function, thus defined as pathogenic. For the first time, we here demonstrate, on the genetic and functional ground, that unusual combinations of otherwise polymorphic and non-pathogenic mtDNA variants are sufficient for causing low-penetrance maternally inherited optic neuropathy in pedigrees fitting the LHON clinical diagnosis. Our findings bridge the blurry border between “pathogenic” and “neutral” mutations in an overall continuum that truly depends on the specific and sometime unique combination of variants characterizing each mitogenome. As a result, we conclude that, for an accurate diagnosis of LHON and possibly of other mitochondrial diseases, the only approach that can disclose all possible causative sources is complete mitogenome sequencing.
Collapse
Affiliation(s)
- Leonardo Caporali
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Chiara La Morgia
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandra Maresca
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Maria Lucia Valentino
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Francesca Tagliavini
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Valentina Del Dotto
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Rocco Liguori
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Michele Carbonelli
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Studio Oculistico D’Azeglio, Bologna, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Andrea Martinuzzi
- IRCCS "E. Medea" Scientific Institute Conegliano-Pieve di Soligo Research Center, Pieve di Soligo, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giuseppe De Michele
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples “Federico II”, Naples, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anna Nesti
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Bologna, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Valerio Carelli
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
36
|
Li D, Du X, Guo X, Zhan L, Li X, Yin C, Chen C, Li M, Li B, Yang H, Xing J. Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:168. [PMID: 29179728 PMCID: PMC5704541 DOI: 10.1186/s13046-017-0638-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous studies have indicated that tumor mitochondrial DNA (mtDNA) mutations are primarily shaped by relaxed negative selection, which is contradictory to the critical roles of mtDNA mutations in tumorigenesis. Therefore, we hypothesized that site-specific selection may influence tumor mtDNA mutations. METHODS To test our hypothesis, we developed the largest collection of tumor mtDNA mutations to date and evaluated how natural selection shaped mtDNA mutation patterns. RESULTS Our data demonstrated that both positive and negative selections acted on specific positions or functional units of tumor mtDNAs, although the landscape of these mutations was consistent with the relaxation of negative selection. In particular, mutation rate (mutation number in a region/region bp length) in complex V and tRNA coding regions, especially in ATP8 within complex V and in loop and variable regions within tRNA, were significantly lower than those in other regions. While the mutation rate of most codons and amino acids were consistent with the expectation under neutrality, several codons and amino acids had significantly different rates. Moreover, the mutations under selection were enriched for changes that are predicted to be deleterious, further supporting the evolutionary constraints on these regions. CONCLUSION These results indicate the existence of site-specific selection and imply the important role of the mtDNA mutations at some specific sites in tumor development.
Collapse
Affiliation(s)
- Deyang Li
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Xiaohong Du
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Lei Zhan
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xin Li
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Cheng Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | | | - Bingshan Li
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hushan Yang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
37
|
Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 2017; 20:435-443. [PMID: 28771251 PMCID: PMC5895460 DOI: 10.1038/gim.2017.119] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/09/2017] [Indexed: 02/08/2023] Open
Abstract
Purpose Genetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use. Methods We prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing. Results WGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24% P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A. Conclusion WGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.
Collapse
|
38
|
Mikkelsen LH, Andreasen S, Melchior LC, Persson M, Andersen JD, Pereira V, Toft PB, Morling N, Stenman G, Heegaard S. Genomic and immunohistochemical characterisation of a lacrimal gland oncocytoma and review of literature. Oncol Lett 2017; 14:4176-4182. [PMID: 28943925 PMCID: PMC5604129 DOI: 10.3892/ol.2017.6713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/21/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to report the genetic and immunohistochemical profile of a rare case of lacrimal gland oncocytoma. A 20-year-old male underwent magnetic resonance imaging (MRI) due to viral encephalitis. Notably, the MRI revealed a multicystic tumor in the left lacrimal gland. A lateral orbitotomy was performed and the tumor was completely excised. Four months following surgery, the patient was free of symptoms. Histopathologically, the tumor was composed of large, eosinophilic and polyhedral cells with small round nuclei. The tumor cells stained strongly for antimitochondrial antibody MU213-UC, cytokeratin (CK) 5/6, CK 7, CK 17, CK 8/18 and CK 19. The final diagnosis was an oncocytoma of the lacrimal gland without any signs of malignancy. Array-based comparative genomic hybridisation demonstrated a gain of one copy of chromosome 8 and loss of one copy of chromosome 22 as the sole genomic imbalances. These chromosomal alterations have not previously been identified in oncocytoma and may be specific to lacrimal gland oncocytoma. Sequencing of the mitochondrial genome demonstrated multiple alterations of the NADH-ubiquinone oxidoreductase chain 5 (ND5) gene involved in mitochondrial oxidative phosphorylation. This may support the notion of a common genetic background of oncocytic lesions in the lacrimal gland and other anatomical sites.
Collapse
Affiliation(s)
- Lauge Hjorth Mikkelsen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark.,Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Linea Cecilie Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Marta Persson
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Vania Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Peter Bjerre Toft
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Göran Stenman
- Department of Pathology and Genetics, Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
39
|
High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLoS Comput Biol 2017. [PMID: 28640805 PMCID: PMC5501658 DOI: 10.1371/journal.pcbi.1005628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.
Collapse
|
40
|
Patowary A, Nesbitt R, Archer M, Bernier R, Brkanac Z. Next Generation Sequencing Mitochondrial DNA Analysis in Autism Spectrum Disorder. Autism Res 2017; 10:1338-1343. [PMID: 28419775 PMCID: PMC5573912 DOI: 10.1002/aur.1792] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022]
Abstract
Autism is a complex genetic disorder where both de-novo and inherited genetics factors play a role. Next generation sequencing approaches have been extensively used to identify rare variants associated with autism. To date, all such studies were focused on nuclear genome; thereby leaving the role of mitochondrial DNA (mtDNA) variation in autism unexplored. Recently, analytical tools have been developed to evaluate mtDNA in whole-exome data. We have analyzed the mtDNA sequence derived from whole-exome sequencing in 10 multiplex families. In one of the families we have identified two variants of interest in MT-ND5 gene that were previously determined to impair mitochondrial function. In addition in a second family we have identified two VOIs; mtDNA variant in MT-ATP6 and nuclear DNA variant in NDUFS4, where both VOIs are within mitochondrial Respiratory Chain Complex. Our findings provide further support for the role of mitochondria in ASD and confirm that whole-exome sequencing allows for analysis of mtDNA, which sets a stage for further comprehensive genetic investigations of the role of mitochondria in autism. Autism Res 2017, 10: 1338-1343. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashok Patowary
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Ryan Nesbitt
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Marilyn Archer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA
| |
Collapse
|
41
|
Biagini T, Chillemi G, Mazzoccoli G, Grottesi A, Fusilli C, Capocefalo D, Castellana S, Vescovi AL, Mazza T. Molecular dynamics recipes for genome research. Brief Bioinform 2017; 19:853-862. [DOI: 10.1093/bib/bbx006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics unit, viale Regina Margherita, Rome, Italy
| |
Collapse
|
42
|
Garlid AO, Polson JS, Garlid KD, Hermjakob H, Ping P. Equipping Physiologists with an Informatics Tool Chest: Toward an Integerated Mitochondrial Phenome. Handb Exp Pharmacol 2017; 240:377-401. [PMID: 27995389 DOI: 10.1007/164_2016_93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the complex involvement of mitochondrial biology in disease development often requires the acquisition, analysis, and integration of large-scale molecular and phenotypic data. An increasing number of bioinformatics tools are currently employed to aid in mitochondrial investigations, most notably in predicting or corroborating the spatial and temporal dynamics of mitochondrial molecules, in retrieving structural data of mitochondrial components, and in aggregating as well as transforming mitochondrial centric biomedical knowledge. With the increasing prevalence of complex Big Data from omics experiments and clinical cohorts, informatics tools have become indispensable in our quest to understand mitochondrial physiology and pathology. Here we present an overview of the various informatics resources that are helping researchers explore this vital organelle and gain insights into its form, function, and dynamics.
Collapse
Affiliation(s)
- Anders Olav Garlid
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Jennifer S Polson
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA.
| | - Keith D Garlid
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Henning Hermjakob
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Department of Physiology, University of California, Los Angeles, CA, 90095, USA
- Molecular Systems Cluster, European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Peipei Ping
- The NIH BD2K Center of Excellence in Biomedical Computing at UCLA, Departments of Physiology, Medicine, and Bioinformatics, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
43
|
Phylogenetic and population-based approaches to mitogenome variation do not support association with male infertility. J Hum Genet 2016; 62:361-371. [PMID: 27904151 DOI: 10.1038/jhg.2016.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/08/2022]
Abstract
Infertility has a complex multifactorial etiology and a high prevalence worldwide. Several studies have pointed to variation in the mitochondrial DNA (mtDNA) molecule as a factor responsible for the different disease phenotypes related to infertility. We analyzed 53 mitogenomes of infertile males from Galicia (northwest Spain), and these haplotypes were meta-analyzed phylogenetically with 43 previously reported from Portugal. Taking advantage of the large amount of information available, we additionally carried out association tests between patient mtDNA single-nucleotide polymorphisms (mtSNPs) and haplogroups against Iberian matched controls retrieved from The 1000 Genomes Project and the literature. Phylogenetic and association analyses did not reveal evidence of association between mtSNPs/haplogroups and infertility. Ratios and patterns in patients of nonsynonymous/synonymous changes, and variation at homoplasmic, heteroplasmic and private variants, fall within expected values for healthy individuals. Moreover, the haplogroup background of patients was variable and fits well with patterns typically observed in healthy western Europeans. We did not find evidence of association of mtSNPs or haplogroups pointing to a role for mtDNA in male infertility. A thorough review of the literature on mtDNA variation and infertility revealed contradictory findings and methodological and theoretical problems that overall undermine previous positive findings.
Collapse
|
44
|
Diroma MA, Lubisco P, Attimonelli M. A comprehensive collection of annotations to interpret sequence variation in human mitochondrial transfer RNAs. BMC Bioinformatics 2016; 17:338. [PMID: 28185569 PMCID: PMC5123245 DOI: 10.1186/s12859-016-1193-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The abundance of biological data characterizing the genomics era is contributing to a comprehensive understanding of human mitochondrial genetics. Nevertheless, many aspects are still unclear, specifically about the variability of the 22 human mitochondrial transfer RNA (tRNA) genes and their involvement in diseases. The complex enrichment and isolation of tRNAs in vitro leads to an incomplete knowledge of their post-transcriptional modifications and three-dimensional folding, essential for correct tRNA functioning. An accurate annotation of mitochondrial tRNA variants would be definitely useful and appreciated by mitochondrial researchers and clinicians since the most of bioinformatics tools for variant annotation and prioritization available so far cannot shed light on the functional role of tRNA variations. RESULTS To this aim, we updated our MToolBox pipeline for mitochondrial DNA analysis of high throughput and Sanger sequencing data by integrating tRNA variant annotations in order to identify and characterize relevant variants not only in protein coding regions, but also in tRNA genes. The annotation step in the pipeline now provides detailed information for variants mapping onto the 22 mitochondrial tRNAs. For each mt-tRNA position along the entire genome, the relative tRNA numbering, tRNA type, cloverleaf secondary domains (loops and stems), mature nucleotide and interactions in the three-dimensional folding were reported. Moreover, pathogenicity predictions for tRNA and rRNA variants were retrieved from the literature and integrated within the annotations provided by MToolBox, both in the stand-alone version and web-based tool at the Mitochondrial Disease Sequence Data Resource (MSeqDR) website. All the information available in the annotation step of MToolBox were exploited to generate custom tracks which can be displayed in the GBrowse instance at MSeqDR website. CONCLUSIONS To the best of our knowledge, specific data regarding mitochondrial variants in tRNA genes were introduced for the first time in a tool for mitochondrial genome analysis, supporting the interpretation of genetic variants in specific genomic contexts.
Collapse
Affiliation(s)
- Maria Angela Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Paolo Lubisco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70126, Italy.
| |
Collapse
|
45
|
Wang Y, Picard M, Gu Z. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder. PLoS Genet 2016; 12:e1006391. [PMID: 27792786 PMCID: PMC5085253 DOI: 10.1371/journal.pgen.1006391] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD), but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA) sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy), using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903) where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015), which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028) as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016) in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively), and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.
Collapse
Affiliation(s)
- Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, New York, United States of America
- Department of Neurology, Division of Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, New York, United States of America
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
46
|
Souren NYP, Gerdes LA, Kümpfel T, Lutsik P, Klopstock T, Hohlfeld R, Walter J. Mitochondrial DNA Variation and Heteroplasmy in Monozygotic Twins Clinically Discordant for Multiple Sclerosis. Hum Mutat 2016; 37:765-75. [PMID: 27119776 DOI: 10.1002/humu.23003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/10/2016] [Indexed: 12/22/2022]
Abstract
We examined the debated link between mitochondrial DNA (mtDNA) variation and multiple sclerosis (MS) using 49 monozygotic (MZ) twin pairs clinically discordant for MS, which enables to associate de novo mtDNA variants, skewed heteroplasmy, and mtDNA copy number with MS manifestation. Ultra-deep sequencing of blood-derived mtDNA revealed 25 heteroplasmic variants with potentially pathogenic features in 18 pairs. All variants were pair-specific and had low and/or similar heteroplasmy levels in both cotwins. In one pair, a confirmed pathogenic variant (m.11778G>A, heteroplasmy ∼50%) associated with Leber hereditary optic neuropathy was detected. Detailed diagnostic investigation revealed subclinical MS signs in the prior nondiseased cotwin. Moreover, neither mtDNA deletions nor copy-number variations were involved. Furthermore, the majority of heteroplasmic variants were shared among MZ twins and exhibited more similar heteroplasmy levels in the same tissue of MZ twins as compared with different tissues of the same individual. Heteroplasmy levels were also more similar within MZ twins compared with nonidentical siblings. Our analysis excludes mtDNA variation as a major driver of the discordant clinical manifestation of MS in MZ twins, and provides valuable insights into the occurrence and distribution of heteroplasmic variants within MZ twins and nonidentical siblings, and across different tissues.
Collapse
Affiliation(s)
- Nicole Y P Souren
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Lisa A Gerdes
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pavlo Lutsik
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Medical Campus Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
47
|
Comparative sequence analyses of rhodopsin and RPE65 reveal patterns of selective constraint across hereditary retinal disease mutations. Vis Neurosci 2016; 33:e002. [DOI: 10.1017/s0952523815000322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractRetinitis pigmentosa (RP) comprises several heritable diseases that involve photoreceptor, and ultimately retinal, degeneration. Currently, mutations in over 50 genes have known links to RP. Despite advances in clinical characterization, molecular characterization of RP remains challenging due to the heterogeneous nature of causal genes, mutations, and clinical phenotypes. In this study, we compiled large datasets of two important visual genes associated with RP: rhodopsin, which initiates the phototransduction cascade, and the retinoid isomerase RPE65, which regenerates the visual cycle. We used a comparative evolutionary approach to investigate the relationship between interspecific sequence variation and pathogenic mutations that lead to degenerative retinal disease. Using codon-based likelihood methods, we estimated evolutionary rates (dN/dS) across both genes in a phylogenetic context to investigate differences between pathogenic and nonpathogenic amino acid sites. In both genes, disease-associated sites showed significantly lower evolutionary rates compared to nondisease sites, and were more likely to occur in functionally critical areas of the proteins. The nature of the dataset (e.g., vertebrate or mammalian sequences), as well as selection of pathogenic sites, affected the differences observed between pathogenic and nonpathogenic sites. Our results illustrate that these methods can serve as an intermediate step in understanding protein structure and function in a clinical context, particularly in predicting the relative pathogenicity (i.e., functional impact) of point mutations and their downstream phenotypic effects. Extensions of this approach may also contribute to current methods for predicting the deleterious effects of candidate mutations and to the identification of protein regions under strong constraint where we expect pathogenic mutations to occur.
Collapse
|
48
|
A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants. Methods Mol Biol 2016; 1415:423-40. [PMID: 27115646 DOI: 10.1007/978-1-4939-3572-7_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing has provided extraordinary opportunities to investigate the massive human genetic variability. It helped identifying several kinds of genomic mismatches from the wild-type reference genome sequences and to explain the onset of several pathogenic phenotypes and diseases susceptibility. In this context, distinguishing pathogenic from functionally neutral amino acid changes turns out to be a task as useful as complex, expensive, and time-consuming.Here, we present an exhaustive and up-to-dated survey of the algorithms and software packages conceived for the estimation of the putative pathogenicity of mutations, along with a description of the most popular mutation datasets that these tools used as training sets. Finally, we present and describe software for the prediction of cancer-related mutations.
Collapse
|
49
|
Santorsola M, Calabrese C, Girolimetti G, Diroma MA, Gasparre G, Attimonelli M. A multi-parametric workflow for the prioritization of mitochondrial DNA variants of clinical interest. Hum Genet 2015; 135:121-36. [PMID: 26621530 PMCID: PMC4698288 DOI: 10.1007/s00439-015-1615-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023]
Abstract
Assigning a pathogenic role to mitochondrial DNA (mtDNA) variants and unveiling the potential involvement of the mitochondrial genome in diseases are challenging tasks in human medicine. Assuming that rare variants are more likely to be damaging, we designed a phylogeny-based prioritization workflow to obtain a reliable pool of candidate variants for further investigations. The prioritization workflow relies on an exhaustive functional annotation through the mtDNA extraction pipeline MToolBox and includes Macro Haplogroup Consensus Sequences to filter out fixed evolutionary variants and report rare or private variants, the nucleotide variability as reported in HmtDB and the disease score based on several predictors of pathogenicity for non-synonymous variants. Cutoffs for both the disease score as well as for the nucleotide variability index were established with the aim to discriminate sequence variants contributing to defective phenotypes. The workflow was validated on mitochondrial sequences from Leber’s Hereditary Optic Neuropathy affected individuals, successfully identifying 23 variants including the majority of the known causative ones. The application of the prioritization workflow to cancer datasets allowed to trim down the number of candidate for subsequent functional analyses, unveiling among these a high percentage of somatic variants. Prioritization criteria were implemented in both standalone (http://sourceforge.net/projects/mtoolbox/) and web version (https://mseqdr.org/mtoolbox.php) of MToolBox.
Collapse
Affiliation(s)
- Mariangela Santorsola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.,Department of Science and Technologies, University of Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Claudia Calabrese
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Maria Angela Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, Medical Genetics, University of Bologna Medical School, via Massarenti 9, 40138, Bologna, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E.Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
50
|
Kloss-Brandstätter A, Weissensteiner H, Erhart G, Schäfer G, Forer L, Schönherr S, Pacher D, Seifarth C, Stöckl A, Fendt L, Sottsas I, Klocker H, Huck CW, Rasse M, Kronenberg F, Kloss FR. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0135643. [PMID: 26262956 PMCID: PMC4532422 DOI: 10.1371/journal.pone.0135643] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. METHODS We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). RESULTS We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. CONCLUSIONS We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.
Collapse
Affiliation(s)
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Dominic Pacher
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Stöckl
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Sottsas
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Michael Rasse
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank R. Kloss
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|