1
|
Butera A, De Simone R, Potenza RL, Sanchez M, Armida M, Campanile D, Di Carlo N, Trenta F, Boirivant M, Ricceri L. Effects of a gut-selective integrin-targeted therapy in male mice exposed to early immune activation, a model for the study of autism spectrum disorder. Brain Behav Immun 2024; 115:89-100. [PMID: 37793488 DOI: 10.1016/j.bbi.2023.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
To clarify the role of gut mucosal immunity in ASD, we evaluated, in the early-life immune activation (EIA) mouse model, the effects of administration of a monoclonal antibody directed against the integrin alpha4 beta7 (α4β7 mAb), blocking the leukocyte homing into the gut mucosa. EIA is a double-hit variant of the maternal immune-activation (MIA) model, including both prenatal (Poly I:C) and postnatal (LPS) immune challenges. In C57BL6/J EIA male adult offspring mice, IL-1β and IL-17A mRNA colonic tissue content increased when compared with controls. Cytofluorimetric analyses of lymphocytes isolated from mesenteric lymph-nodes (MLN) and spleens of EIA mice show increased percentage of total and CD4+α4β7+, unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in MLN and CD4+α4β7+ unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in the spleen. Treatment with anti-α4β7 mAb in EIA male mice was associated with colonic tissue IL-1β, and IL-17A mRNA content and percentage of CD4+ IL-17A+ and IFN-γ+ lymphocytes in MLN and spleens comparable to control mice. The anti-α4β7 mAb treatment rescue social novelty deficit showed in the three-chamber test by EIA male mice. Increased levels of IL-6 and IL-1β and decreased CD68 and TGF-β mRNAs were also observed in hippocampus and prefrontal cortex of EIA male mice together with a reduction of BDNF mRNA levels in all brain regions examined. Anti-α4β7 mAb treatment restored the expression of BDNF, TGF-β and CD68 in hippocampus and prefrontal cortex. Improvement of the gut inflammatory status, obtained by a pharmacological agent acting exclusively at gut level, ameliorates some ASD behavioral features and the neuroinflammatory status. Data provide the first preclinical indication for a therapeutic strategy against gut-immune activation in ASD subjects with peripheral increase of gut-derived (α4β7+) lymphocytes expressing IL-17A.
Collapse
Affiliation(s)
- Alessia Butera
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit-Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Doriana Campanile
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Nazzareno Di Carlo
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Trenta
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Badran YR, Zou F, Durbin SM, Dutra BE, Abu-Sbeih H, Thomas AS, Altan M, Thompson JA, Qiao W, Leet DE, Lai PY, Horick NK, Postow MA, Faleck DM, Wang Y, Dougan M. Concurrent immune checkpoint inhibition and selective immunosuppressive therapy in patients with immune-related enterocolitis. J Immunother Cancer 2023; 11:e007195. [PMID: 37349130 PMCID: PMC10314704 DOI: 10.1136/jitc-2023-007195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
PURPOSE Immune checkpoint inhibitor (ICI) therapy is often suspended because of immune-related enterocolitis (irEC). We examined the effect of resumption of ICIs with or without concurrent selective immunosuppressive therapy (SIT) on rates of symptom recurrence and survival outcomes. METHODS This retrospective, multicenter study examined patients who were treated with ICI and developed irEC requiring SIT (infliximab or vedolizumab) for initial symptom control or to facilitate steroid tapering between May 2015 and June 2020. After symptom resolution, patients were restarted either on ICI alone or on concurrent ICI and SIT at the discretion of the treating physicians. The associations between irEC recurrence and treatment group were assessed via univariate analyses and multivariate logistic regression. Cox proportional hazards model was used for survival analysis. RESULTS Of the 138 included patients who required SIT for initial irEC symptom control, 61 (44.2%) patients resumed ICI without concurrent SIT (control group) and 77 (55.8%) patients resumed ICI therapy with concurrent SIT: 33 with infliximab and 44 with vedolizumab. After symptom resolution, patients in the control group were more commonly restarted on a different ICI regimen (65.6%) compared with those receiving SIT (31.2%) (p<0.001). The total number of ICI doses administered after irEC resolution and ICI resumption was similar in both groups (four to five doses). Recurrence of severe colitis or diarrhea after ICI resumption was seen in 34.4% of controls compared with 20.8% of patients receiving concurrent SIT. Concurrent SIT was associated with reduced risk of severe irEC recurrence after ICI resumption in a multivariate logistic regression model (OR 0.34; 95% CI 0.13 to 0.92; p=0.034). There was no difference in survival outcomes between patients in the control group and patients concurrently treated with SIT. CONCLUSION After resolution of irEC symptoms, reinitiation of ICI with concurrent SIT is safe, reduces severe irEC recurrence, and has no negative impact on survival outcomes.
Collapse
Affiliation(s)
- Yousef R Badran
- Division of Gastroenterology, Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| | - Fangwen Zou
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Sienna M Durbin
- Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Barbara E Dutra
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hamzah Abu-Sbeih
- Department of Internal Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Anusha S Thomas
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mehmet Altan
- Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John A Thompson
- Department of Medicine, Division of Oncology, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, University of Washington, Seattle, Washington, USA
| | - Wei Qiao
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donna E Leet
- Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, University of California San Francisco, San Francisco, California, USA
| | - Po-Ying Lai
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Nora K Horick
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - David M Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Egozi A, Olaloye O, Werner L, Silva T, McCourt B, Pierce RW, An X, Wang F, Chen K, Pober JS, Shouval D, Itzkovitz S, Konnikova L. Single-cell atlas of the human neonatal small intestine affected by necrotizing enterocolitis. PLoS Biol 2023; 21:e3002124. [PMID: 37205711 PMCID: PMC10234541 DOI: 10.1371/journal.pbio.3002124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a gastrointestinal complication of premature infants with high rates of morbidity and mortality. A comprehensive view of the cellular changes and aberrant interactions that underlie NEC is lacking. This study aimed at filling in this gap. We combine single-cell RNA sequencing (scRNAseq), T-cell receptor beta (TCRβ) analysis, bulk transcriptomics, and imaging to characterize cell identities, interactions, and zonal changes in NEC. We find an abundance of proinflammatory macrophages, fibroblasts, endothelial cells as well as T cells that exhibit increased TCRβ clonal expansion. Villus tip epithelial cells are reduced in NEC and the remaining epithelial cells up-regulate proinflammatory genes. We establish a detailed map of aberrant epithelial-mesenchymal-immune interactions that are associated with inflammation in NEC mucosa. Our analyses highlight the cellular dysregulations of NEC-associated intestinal tissue and identify potential targets for biomarker discovery and therapeutics.
Collapse
Affiliation(s)
- Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Lael Werner
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tatiana Silva
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Blake McCourt
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard W. Pierce
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojing An
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Fujing Wang
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Kong Chen
- Department of Medicine, University of Pittsburgh Medical Center Montefiore Hospital, Pittsburgh, Pennsylvania, United States of America
| | - Jordan S. Pober
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dror Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel, affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
4
|
Ligon MM, Joshi CS, Fashemi BE, Salazar AM, Mysorekar IU. Effects of aging on urinary tract epithelial homeostasis and immunity. Dev Biol 2023; 493:29-39. [PMID: 36368522 PMCID: PMC11463731 DOI: 10.1016/j.ydbio.2022.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.
Collapse
Affiliation(s)
- Marianne M Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chetanchandra S Joshi
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bisiayo E Fashemi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Arnold M Salazar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Microbiology and Virology, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Cluny NL, Nyuyki KD, Almishri W, Griffin L, Lee BH, Hirota SA, Pittman QJ, Swain MG, Sharkey KA. Recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. J Neuroinflammation 2022; 19:73. [PMID: 35379260 PMCID: PMC8981853 DOI: 10.1186/s12974-022-02431-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Behavioral comorbidities, such as anxiety and depression, are a prominent feature of IBD. The signals from the inflamed gut that cause changes in the brain leading to these behavioral comorbidities remain to be fully elucidated. We tested the hypothesis that enhanced leukocyte–cerebral endothelial cell interactions occur in the brain in experimental colitis, mediated by α4β7 integrin, to initiate neuroimmune activation and anxiety-like behavior. Methods Female mice treated with dextran sodium sulfate were studied at the peak of acute colitis. Circulating leukocyte populations were determined using flow cytometry. Leukocyte–cerebral endothelial cell interactions were examined using intravital microscopy in mice treated with anti-integrin antibodies. Brain cytokine and chemokines were assessed using a multiplex assay in animals treated with anti-α4β7 integrin. Anxiety-like behavior was assessed using an elevated plus maze in animals after treatment with an intracerebroventricular injection of interleukin 1 receptor antagonist. Results The proportion of classical monocytes expressing α4β7 integrin was increased in peripheral blood of mice with colitis. An increase in the number of rolling and adherent leukocytes on cerebral endothelial cells was observed, the majority of which were neutrophils. Treatment with anti-α4β7 integrin significantly reduced the number of rolling leukocytes. After anti-Ly6C treatment to deplete monocytes, the number of rolling and adhering neutrophils was significantly reduced in mice with colitis. Interleukin-1β and CCL2 levels were elevated in the brain and treatment with anti-α4β7 significantly reduced them. Enhanced anxiety-like behavior in mice with colitis was reversed by treatment with interleukin 1 receptor antagonist. Conclusions In experimental colitis, α4β7 integrin-expressing monocytes direct the recruitment of neutrophils to the cerebral vasculature, leading to elevated cytokine levels. Increased interleukin-1β mediates anxiety-like behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02431-z.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kewir D Nyuyki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wagdi Almishri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Benjamin H Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
6
|
IL-36 cytokines imprint a colitogenic phenotype on CD4 + T helper cells. Mucosal Immunol 2022; 15:491-503. [PMID: 35177818 PMCID: PMC9038530 DOI: 10.1038/s41385-022-00488-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
Abstract
IL-36 cytokines are emerging as potent orchestrators of intestinal inflammation and are being implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the mechanisms through which these cytokines mediate these effects remain to be fully uncovered. Here, we report specifically elevated expression of IL-36α, and not IL-36β or IL-36γ in the serum of newly diagnosed, treatment naïve, paediatric IBD patients and identify T cells as primary cellular mediators of IL-36 responses in the inflamed gut. IL-36R expression on CD4+ T cells was found to promote intestinal pathology in a murine model of colitis. Consistent with these effects, IL-36R can act as a potent instructor of CD4+ T cell differentiation in vivo, enhancing Th1 responses, while inhibiting the generation of Tregs. In addition, loss of IL-36 responsiveness significantly reduced the migration of pathogenic CD4+ T cells towards intestinal tissues and IL-36 was found to act, uniquely among IL-1 family members, to induce the expression of gut homing receptors in proinflammatory murine and human CD4+ T cells. These data reveal an important role for IL-36 cytokines in driving the colitogenic potential of CD4+ T cells and identify a new mechanism through which they may contribute to disease pathogenesis.
Collapse
|
7
|
Caballol B, Gudiño V, Panes J, Salas A. Ulcerative colitis: shedding light on emerging agents and strategies in preclinical and early clinical development. Expert Opin Investig Drugs 2021; 30:931-946. [PMID: 34365869 DOI: 10.1080/13543784.2021.1965122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an inflammatory disease of the large intestine. Progress in preclinical therapeutic target discovery and clinical trial design has resulted in the approval of new therapies. Nonetheless, remission rates remain below 30% thus underlining the need for novel, more effective therapies. AREAS COVERED This paper reviews current experimental techniques available for drug testing in intestinal inflammation and examines new therapies in clinical development for the treatment of UC. The authors searched the literature for 'ulcerative colitis' AND 'preclinical' OR 'drug target/drug name' (i.e. infliximab, vedolizumab, IL-12, IL-23, JAK, etc.). Studies that included preclinical in vivo or in vitro experiments are discussed. The clinicaltrial.gov site was searched for 'ulcerative colitis' AND 'Recruiting' OR 'Active, not recruiting' AND 'Interventional (Clinical Trial)' AND 'early phase 1' OR 'phase 1' OR 'phase 2' OR 'phase 3.' EXPERT OPINION Using in vivo, ex vivo, and/or in vitro models could increase the success rates of drugs moving to clinical trials, and hence increase the efficiency of this costly process. Selective JAK1 inhibitors, S1P modulators, and anti-p19 antibodies are the most promising options to improve treatment effectiveness. The development of drugs with gut-restricted exposure may provide increased efficacy and an improved safety.
Collapse
Affiliation(s)
- Berta Caballol
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
8
|
Wiendl M, Becker E, Müller TM, Voskens CJ, Neurath MF, Zundler S. Targeting Immune Cell Trafficking - Insights From Research Models and Implications for Future IBD Therapy. Front Immunol 2021; 12:656452. [PMID: 34017333 PMCID: PMC8129496 DOI: 10.3389/fimmu.2021.656452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC) are multifactorial diseases with still unknown aetiology and an increasing prevalence and incidence worldwide. Despite plentiful therapeutic options for IBDs, the lack or loss of response in certain patients demands the development of further treatments to tackle this unmet medical need. In recent years, the success of the anti-α4β7 antibody vedolizumab highlighted the potential of targeting the homing of immune cells, which is now an important pillar of IBD therapy. Due to its complexity, leukocyte trafficking and the involved molecules offer a largely untapped resource for a plethora of potential therapeutic interventions. In this review, we aim to summarise current and future directions of specifically interfering with immune cell trafficking. We will comment on concepts of homing, retention and recirculation and particularly focus on the role of tissue-derived chemokines. Moreover, we will give an overview of the mode of action of drugs currently in use or still in the pipeline, highlighting their mechanisms and potential to reduce disease burden.
Collapse
Affiliation(s)
- Maximilian Wiendl
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tanja M. Müller
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Caroline J. Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Bilsborough J, Fiorino MF, Henkle BW. Select animal models of colitis and their value in predicting clinical efficacy of biological therapies in ulcerative colitis. Expert Opin Drug Discov 2020; 16:567-577. [PMID: 33245673 DOI: 10.1080/17460441.2021.1851185] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Advancing new therapies from discovery to development usually requires proof-of-concept in animal models to justify the costs of continuing the program. While animal models are useful for understanding the mechanism of action (MOA) of a target, limitations of many published colitis models restrict their value to predict clinical efficacy.Areas covered: The authors focused their literature search on published studies of chronic animal models used to evaluate the pre-clinical efficacy of therapeutic molecules subsequently evaluated in clinical trials for UC. The UC therapies evaluated were anti-α4β7, anti-IL13, anti-IL12p40, and anti-IL23p19. The models of chronic colitis evaluating these molecules were: mdra1a-/-, chronic dextran sulfate sodium (DSS), chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS), and the T cell transfer model.Expert opinion: While some models provide insight into target MOA in UC, none is consistently superior in predicting efficacy. Evaluation of multiple models, with varying mechanisms of colitis induction, is needed to understand potential drug efficacy. Additional models of greater complexity, reflecting the disease chronicity/heterogeneity seen in humans, are needed. Although helpful in prioritizing targets, animal models alone will likely not improve outcomes of UC clinical trials. Transformational changes to clinical efficacy will likely only occur when precision medicine approaches are employed.
Collapse
Affiliation(s)
- Janine Bilsborough
- IBD Drug Discovery and Development Unit, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marie F Fiorino
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bradley W Henkle
- IBD Drug Discovery and Development Unit, F. Widjaja Foundation Inflammatory Bowel and Immunbiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Veny M, Garrido-Trigo A, Corraliza AM, Masamunt MC, Bassolas-Molina H, Esteller M, Arroyes M, Tristán E, Fernández-Clotet A, Ordás I, Ricart E, Esteve M, Panés J, Salas A. Dissecting Common and Unique Effects of Anti-α4β7 and Anti-Tumor Necrosis Factor Treatment in Ulcerative Colitis. J Crohns Colitis 2020; 15:441-452. [PMID: 32926095 PMCID: PMC7944518 DOI: 10.1093/ecco-jcc/jjaa178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Vedolizumab is an anti-α4β7 antibody approved for the treatment of ulcerative colitis [UC]. Although it is assumed that vedolizumab blocks intestinal homing of lymphocytes, its effects on different intestinal cell populations are not fully stablished. In order to establish the unique mechanisms of action of vedolizumab in UC patients, we compared its effects to those induced by anti-tumour necrosis factor [TNF]. METHODS Patients with active UC [endoscopic Mayo score >1] starting vedolizumab [n = 33] or anti-TNF [n = 45] and controls [n = 22] were included. Colon biopsies [at weeks 0, 14 and 46] and blood samples [at weeks 0, 2, 6, 14, 30 and 46] were used for cell phenotyping, transcriptional analysis [qPCR], and to measure receptor occupancy. RESULTS Vedolizumab, in contrast to anti-TNF, significantly reduced the proportion of α4β7+ cells within intestinal T subsets while preserving the percentage of α4β7+ plasma cells. The marked decrease in α4β7 did not change the percentage of colonic αEβ7+ cells [at 46 weeks]. Both vedolizumab and anti-TNF significantly downregulated inflammation-related genes in the colon of responders [Mayo score < 2]. Moreover, both treatments significantly decreased the percentage of intestinal, but not blood, total lymphocytes [T and plasma cells], as well as the proportion of α4β1+ cells within intestinal T lymphocytes. CONCLUSIONS Our data show that while vedolizumab and anti-TNF block two unrelated targets, they induce remarkably similar effects. On the other hand, vedolizumab's unique mechanism of action relies on blocking intestinal trafficking of α4β7 T cells, despite effectively binding to B and plasma cells that express α4β7.
Collapse
Affiliation(s)
- Marisol Veny
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Maria C Masamunt
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Helena Bassolas-Molina
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Montserrat Arroyes
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Eva Tristán
- Hospital Universitari Mutua Terrassa, CIBERehd, Department of Gastroenterology, Terrassa, Spain
| | - Agnès Fernández-Clotet
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Maria Esteve
- Hospital Universitari Mutua Terrassa, CIBERehd, Department of Gastroenterology, Terrassa, Spain
| | - Julian Panés
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,Corresponding author: Azucena Salas, PhD, Center Esther Koplowitz, Rossello 149–153, Barcelona 08036, Spain. Tel: 34 93 2275400 ext 2436;
| |
Collapse
|
11
|
Tindemans I, Joosse ME, Samsom JN. Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD. Cells 2020; 9:E110. [PMID: 31906479 PMCID: PMC7016883 DOI: 10.3390/cells9010110] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Infiltration of the lamina propria by inflammatory CD4+ T-cell populations is a key characteristic of chronic intestinal inflammation. Memory-phenotype CD4+ T-cell frequencies are increased in inflamed intestinal tissue of IBD patients compared to tissue of healthy controls and are associated with disease flares and a more complicated disease course. Therefore, a tightly controlled balance between regulatory and inflammatory CD4+ T-cell populations is crucial to prevent uncontrolled CD4+ T-cell responses and subsequent intestinal tissue damage. While at steady state, T-cells display mainly a regulatory phenotype, increased in Th1, Th2, Th9, Th17, and Th17.1 responses, and reduced Treg and Tr1 responses have all been suggested to play a role in IBD pathophysiology. However, it is highly unlikely that all these responses are altered in each individual patient. With the rapidly expanding plethora of therapeutic options to inhibit inflammatory T-cell responses and stimulate regulatory T-cell responses, a crucial need is emerging for a robust set of immunological assays to predict and monitor therapeutic success at an individual level. Consequently, it is crucial to differentiate dominant inflammatory and regulatory CD4+ T helper responses in patients and relate these to disease course and therapy response. In this review, we provide an overview of how intestinal CD4+ T-cell responses arise, discuss the main phenotypes of CD4+ T helper responses, and review how they are implicated in IBD.
Collapse
Affiliation(s)
| | | | - Janneke N. Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
12
|
Zeissig S, Rosati E, Dowds CM, Aden K, Bethge J, Schulte B, Pan WH, Mishra N, Zuhayra M, Marx M, Paulsen M, Strigli A, Conrad C, Schuldt D, Sinha A, Ebsen H, Kornell SC, Nikolaus S, Arlt A, Kabelitz D, Ellrichmann M, Lützen U, Rosenstiel PC, Franke A, Schreiber S. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut 2019; 68:25-39. [PMID: 29730603 DOI: 10.1136/gutjnl-2018-316023] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Vedolizumab, a monoclonal antibody directed against the integrin heterodimer α4β7, is approved for the treatment of Crohn's disease and ulcerative colitis. The efficacy of vedolizumab has been suggested to result from inhibition of intestinal T cell trafficking although human data to support this conclusion are scarce. We therefore performed a comprehensive analysis of vedolizumab-induced alterations in mucosal and systemic immunity in patients with inflammatory bowel disease (IBD), using anti-inflammatory therapy with the TNFα antibody infliximab as control. DESIGN Immunophenotyping, immunohistochemistry, T cell receptor profiling and RNA sequencing were performed using blood and colonic biopsies from patients with IBD before and during treatment with vedolizumab (n=18) or, as control, the anti-TNFα antibody infliximab (n=20). Leucocyte trafficking in vivo was assessed using single photon emission computed tomography and endomicroscopy. RESULTS Vedolizumab was not associated with alterations in the abundance or phenotype of lamina propria T cells and did not affect the mucosal T cell repertoire or leucocyte trafficking in vivo. Surprisingly, however, α4β7 antibody treatment was associated with substantial effects on innate immunity including changes in macrophage populations and pronounced alterations in the expression of molecules involved in microbial sensing, chemoattraction and regulation of the innate effector response. These effects were specific to vedolizumab, not observed in response to the TNFα antibody infliximab, and associated with inhibition of intestinal inflammation. CONCLUSION Our findings suggest that modulation of innate immunity contributes to the therapeutic efficacy of vedolizumab in IBD. TRIAL REGISTRATION NUMBER NCT02694588.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - C Marie Dowds
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Konrad Aden
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes Bethge
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berenice Schulte
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wei Hung Pan
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marlies Marx
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maren Paulsen
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anne Strigli
- Department of Medicine I, Universitätsklinikum Carl Gustav Carus Dresden, Technische Universität (TU) Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Claudio Conrad
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dörthe Schuldt
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anupam Sinha
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henriette Ebsen
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanna Nikolaus
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Mark Ellrichmann
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Diagnostic Imaging and Therapy, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip C Rosenstiel
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
13
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
14
|
Lamb CA, O'Byrne S, Keir ME, Butcher EC. Gut-Selective Integrin-Targeted Therapies for Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:S653-S668. [PMID: 29767705 DOI: 10.1093/ecco-jcc/jjy060] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4β7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEβ7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the β7 integrin subunit [etrolizumab] and the α4β7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.
Collapse
Affiliation(s)
- Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sharon O'Byrne
- Global Medical Affairs, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Mary E Keir
- Genentech Research & Early Development, South San Francisco, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
15
|
Rosario M, Dirks NL, Milch C, Parikh A, Bargfrede M, Wyant T, Fedyk E, Fox I. A Review of the Clinical Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Vedolizumab. Clin Pharmacokinet 2018; 56:1287-1301. [PMID: 28523450 PMCID: PMC5648740 DOI: 10.1007/s40262-017-0546-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vedolizumab is a humanized anti-α4β7 integrin monoclonal antibody that selectively blocks trafficking of memory T cells to inflamed gut tissue by inhibiting the α4β7-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) interaction. Approved for treating patients with moderately to severely active ulcerative colitis (UC) or Crohn’s disease (CD), vedolizumab is administered as a 300 mg intravenous infusion. Vedolizumab undergoes a rapid, saturable, non-linear, target-mediated elimination process at low concentrations and a slower, linear, non-specific elimination process at higher concentrations. At therapeutic concentrations, vedolizumab primarily undergoes linear elimination. From population pharmacokinetic modeling, the vedolizumab terminal elimination half-life (t½β) was estimated to be 25.5 days; linear clearance (CLL) was similar for patients with UC (0.159 L/day) and CD (0.155 L/day). Extreme low albumin concentrations and extreme high body weight values were potentially clinically important predictors of vedolizumab CLL. Other factors, including concomitant therapy use (methotrexate, azathioprine, mercaptopurine, or aminosalicylates) or prior tumor necrosis factor-α (TNF-α) antagonist use, had no clinically relevant effects on CLL. A positive exposure–efficacy relationship for clinical remission and clinical response was apparent for vedolizumab induction therapy in patients with UC or CD. On average, patients with higher albumin, lower fecal calprotectin (UC only), lower C-reactive protein (CD only), and no prior TNF-α antagonist use had a higher probability of remission. Off drug, 10% of patients with UC or CD were positive for anti-drug antibodies. This article provides a comprehensive review of the clinical pharmacokinetics, pharmacodynamics, exposure–efficacy relationships, and immunogenicity of vedolizumab.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/blood
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Colitis, Ulcerative/blood
- Colitis, Ulcerative/drug therapy
- Crohn Disease/blood
- Crohn Disease/drug therapy
- Drug Interactions
- Gastrointestinal Agents/blood
- Gastrointestinal Agents/immunology
- Gastrointestinal Agents/pharmacokinetics
- Gastrointestinal Agents/pharmacology
- Humans
- Remission Induction
Collapse
Affiliation(s)
- Maria Rosario
- Takeda Development Center Americas, Inc., Cambridge, MA, USA.
| | | | - Catherine Milch
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Asit Parikh
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | | - Eric Fedyk
- Takeda Pharmaceuticals International Inc., Deerfield, IL, USA
| | - Irving Fox
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| |
Collapse
|
16
|
Binder MT, Becker E, Wiendl M, Schleier L, Fuchs F, Leppkes M, Atreya R, Neufert C, Atreya I, Neurath MF, Zundler S. Similar Inhibition of Dynamic Adhesion of Lymphocytes From IBD Patients to MAdCAM-1 by Vedolizumab and Etrolizumab-s. Inflamm Bowel Dis 2018; 24:1237-1250. [PMID: 29788362 DOI: 10.1093/ibd/izy077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although anti-adhesion therapies are a novel mainstay in the treatment of inflammatory bowel diseases (IBDs), the mechanisms controlling integrin-dependent gut homing are poorly elucidated, and the available techniques for translational functional investigations are limited. METHODS We used dynamic adhesion assays to study adhesion of CD4+ T cells, CD8+ T cells, CD19+ B cells, and granulocytes to the addressins MAdCAM-1, VCAM-1, and ICAM-1. The effects of vedolizumab, natalizumab, etrolizumab-s, anti-CD11a, and anti-CD18 antibodies were explored. RESULTS Adhesion of peripheral blood leukocytes from IBD patients and control donors could be validly assessed, and integrin-mediated addressin adhesion could be specifically inhibited by anti-integrin antibodies. Numbers of adhering cells were partly, but not completely, related to integrin expression. Vedolizumab and etrolizumab-s resulted in similar reduction of adhesion to MAdCAM-1, and preliminary data proposed an association of dynamic adhesion to MAdCAM-1 with response to vedolizumab therapy. CONCLUSIONS Dynamic adhesion assays are an easy and broadly applicable method for IBD research that is useful for future translational studies and potentially also for supporting clinical treatment decisions. 10.1093/ibd/izy077_video1izy077_Video_15786486962001.
Collapse
Affiliation(s)
- Marie-Theres Binder
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Emily Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Lena Schleier
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Friederike Fuchs
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research and Translational Research Center, Erlangen, Germany
| |
Collapse
|
17
|
Calenda G, Keawvichit R, Arrode-Brusés G, Pattanapanyasat K, Frank I, Byrareddy SN, Arthos J, Cicala C, Grasperge B, Blanchard JL, Gettie A, Reimann KA, Ansari AA, Martinelli E. Integrin α 4β 7 Blockade Preferentially Impacts CCR6 + Lymphocyte Subsets in Blood and Mucosal Tissues of Naive Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 200:810-820. [PMID: 29196458 DOI: 10.4049/jimmunol.1701150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/31/2017] [Indexed: 01/27/2023]
Abstract
Infusion of a simianized anti-α4β7 mAb (Rh-α4β7) just before and following SIV infection protected rhesus macaques from developing AIDS and partially from vaginal SIV acquisition. Recently, short-term treatment with Rh-α4β7 in combination with cART was found to lead to prolonged viral suppression after withdrawal of all therapeutic interventions. The humanized form of Rh-α4β7, vedolizumab, is a highly effective treatment for inflammatory bowel disease. To clarify the mechanism of action of Rh-α4β7, naive macaques were infused with Rh-α4β7 and sampled in blood and tissues before and after treatment to monitor several immune cell subsets. In blood, Rh-α4β7 increased the CD4+ and CD8+ T cell counts, but not B cell counts, and preferentially increased CCR6+ subsets while decreasing CD103+ and CD69+ lymphocytes. In mucosal tissues, surprisingly, Rh-α4β7 did not impact integrin α4+ cells, but decreased the frequencies of CCR6+ and CD69+ CD4+ T cells and, in the gut, Rh-α4β7 transiently decreased the frequency of memory and IgA+ B cells. In summary, even in the absence of inflammation, Rh-α4β7 impacted selected immune cell subsets in different tissues. These data provide new insights into the mechanisms by which Rh-α4β7 may mediate its effect in SIV-infected macaques with implications for understanding the effect of treatment with vedolizumab in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY 10065
| | - Rassamon Keawvichit
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322.,Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Kovit Pattanapanyasat
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY 10065
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neurosciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433
| | - James L Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016; and
| | - Keith A Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, MA 02126
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY 10065;
| |
Collapse
|
18
|
Löfroos AB, Kadivar M, Resic Lindehammer S, Marsal J. Colorectal cancer-infiltrating T lymphocytes display a distinct chemokine receptor expression profile. Eur J Med Res 2017; 22:40. [PMID: 29020986 PMCID: PMC5637168 DOI: 10.1186/s40001-017-0283-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 10/02/2017] [Indexed: 02/08/2023] Open
Abstract
Background T lymphocytes exert important homeostatic functions in the healthy intestinal mucosa, whereas in case of colorectal cancer (CRC), infiltration of T lymphocytes into the tumor is crucial for an effective anti-tumor immune response. In both situations, the recruitment mechanisms of T lymphocytes into the tissues are essential for the immunological functions deciding the outcome. The recruitment of T lymphocytes is largely dependent on their expression of various chemokine receptors. The aim of this study was to identify potential chemokine receptors involved in the recruitment of T lymphocytes to normal human colonic mucosa and to CRC tissue, respectively, by examining the expression of 16 different chemokine receptors on T lymphocytes isolated from these tissues. Methods Tissues were collected from patients undergoing bowel resection for CRC. Lymphocytes were isolated through enzymatic tissue degradation of CRC tissue and nearby located unaffected mucosa, respectively. The expression of a broad panel of chemokine receptors on the freshly isolated T lymphocytes was examined by flow cytometry. Results In the normal colonic mucosa, the frequencies of cells expressing CCR2, CCR4, CXCR3, and CXCR6 differed significantly between CD4+ and CD8+ T lymphocytes, suggesting that the molecular mechanisms mediating T lymphocyte recruitment to the gut differ between CD4+ and CD8+ T lymphocytes. In CRC, the frequencies of cells expressing CCR2 and CXCR5 were significantly lower in both the CD4+ and CD8+ T lymphocyte populations compared to unaffected colonic mucosa, and the frequency of CCR9+ cytotoxic T lymphocytes was significantly decreased in CRC tissue. Conclusions With regard to the normal gut mucosa, the results suggest that the molecular mechanisms mediating T lymphocyte recruitment differ between CD4+ and CD8+ T lymphocytes, which are important for understanding gut homeostasis. Importantly, T lymphocytes from CRC compared to normal colonic tissue displayed a distinct chemokine receptor expression profile, suggesting that mechanisms for recruitment of T lymphocytes to CRC tissue are skewed compared to normal colonic mucosa. Understanding these mechanisms could help in developing new strategies in cancer immunotherapy and to optimize already available alternatives such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Ann-Britt Löfroos
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Immunology Section, Lund University, Lund, Sweden
| | | | - Sabina Resic Lindehammer
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Immunology Section, Lund University, Lund, Sweden
| | - Jan Marsal
- Department of Clinical Sciences, Lund University, Lund, Sweden. .,Immunology Section, Lund University, Lund, Sweden. .,Department of Gastroenterology, Skane University Hospital, 22185, Lund, Sweden.
| |
Collapse
|
19
|
Műzes G, Kiss AL, Tulassay Z, Sipos F. Cell-free DNA-induced alteration of autophagy response and TLR9-signaling: Their relation to amelioration of DSS-colitis. Comp Immunol Microbiol Infect Dis 2017; 52:48-57. [PMID: 28673462 DOI: 10.1016/j.cimid.2017.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/21/2017] [Accepted: 06/04/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The influence of cell-free DNA (fDNA) administration on the TLR9-autophagy regulatory crosstalk within inflammatory circumstances remains unclear. AIMS To examine the immunobiologic effects of iv. fDNA injection on the TLR9-mediated autophagy response in murine DSS-colitis. METHODS Different types of modified fDNAs were administered to DSS-colitic mice. Disease and histological activities, spleen index were measured. Changes of the TLR9-associated and autophagy-related gene expression profiles of lamina proprial cells and splenocytes were assayed by quantitative real-time PCR, and validated by immunohistochemistries. Ultrastructural changes of the colon were examined by transmission electron microscopy (TEM). RESULTS A single intravenous injection of colitic fDNA (C-DNA) exhibited beneficial clinical and histological effects on DSS-colitis, compared to normal (N-DNA). C-DNA administration displayed a more prominent impact on the outcome of the TLR9-autophagy response than N-DNA. C-DNA resulted in a decreased spleen index in DSS-colitic mice. C-DNA treatment of normal mice resulted in a downregulation of Beclin1 and ATG16L1 mRNA and protein expression in the colon. These as well as LC3B were downregulated in the spleen. In contrast, the Beclin1, ATG16L1 and LC3B gene and protein expressions were upregulated in both the colon and the spleen by C-DNA injection. Moreover, C-DNA administration to DSS-colitic mice resulted in a remarkable increase of epithelial autophagic vacuoles representing an intensified macroautophagy. CONCLUSIONS The effect of intravenously administered fDNA on the TLR9-mediated autophagy response is expressly dependent on the origin of fDNA (i.e. inflammatory or not) and on the characteristics of the local immunobiologic milieu (i.e. inflammatory or not, as well).
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary.
| | - Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, 1051, Hungary
| | - Ferenc Sipos
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
20
|
Heiseke AF, Jeuk BH, Markota A, Straub T, Lehr HA, Reindl W, Krug AB. IRAK1 Drives Intestinal Inflammation by Promoting the Generation of Effector Th Cells with Optimal Gut-Homing Capacity. THE JOURNAL OF IMMUNOLOGY 2015; 195:5787-94. [DOI: 10.4049/jimmunol.1501874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
|
21
|
Affiliation(s)
- Janine Bilsborough
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joanne L Viney
- Immunology Research, Biogen Idec, Cambridge, Massachusetts, USA
| |
Collapse
|
22
|
Nguyen LP, Pan J, Dinh TT, Hadeiba H, O'Hara E, Ebtikar A, Hertweck A, Gökmen MR, Lord GM, Jenner RG, Butcher EC, Habtezion A. Role and species-specific expression of colon T cell homing receptor GPR15 in colitis. Nat Immunol 2015; 16:207-213. [PMID: 25531831 PMCID: PMC4338558 DOI: 10.1038/ni.3079] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/02/2014] [Indexed: 02/08/2023]
Abstract
Lymphocyte recruitment maintains intestinal immune homeostasis but also contributes to inflammation. The orphan chemoattractant receptor GPR15 mediates regulatory T cell homing and immunosuppression in the mouse colon. We show that GPR15 is also expressed by mouse TH17 and TH1 effector cells and is required for colitis in a model that depends on the trafficking of these cells to the colon. In humans GPR15 is expressed by effector cells, including pathogenic TH2 cells in ulcerative colitis, but is expressed poorly or not at all by colon regulatory T (Treg) cells. The TH2 transcriptional activator GATA-3 and the Treg-associated transcriptional repressor FOXP3 robustly bind human, but not mouse, GPR15 enhancer sequences, correlating with receptor expression. Our results highlight species differences in GPR15 regulation and suggest it as a potential therapeutic target for colitis.
Collapse
Affiliation(s)
- Linh P Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Junliang Pan
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Theresa Thanh Dinh
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Edward O'Hara
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Ahmad Ebtikar
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
| | - Arnulf Hertweck
- UCL Cancer Institute, University College London, London, W1T 4JF, United Kingdom
| | - M Refik Gökmen
- Department of Experimental Immunobiology and NIHR Comprehensive Biomedical Research Centre, Guy's and St. Thomas' Hospital and King's College London, London, SE1 9RT, United Kingdom
| | - Graham M Lord
- Department of Experimental Immunobiology and NIHR Comprehensive Biomedical Research Centre, Guy's and St. Thomas' Hospital and King's College London, London, SE1 9RT, United Kingdom
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London, W1T 4JF, United Kingdom
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, California 94304, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Blanc V, Park E, Schaefer S, Miller M, Lin Y, Kennedy S, Billing AM, Hamidane HB, Graumann J, Mortazavi A, Nadeau JH, Davidson NO. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol 2014; 15:R79. [PMID: 24946870 PMCID: PMC4197816 DOI: 10.1186/gb-2014-15-6-r79] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA editing encompasses a post-transcriptional process in which the genomically templated sequence is enzymatically altered and introduces a modified base into the edited transcript. Mammalian C-to-U RNA editing represents a distinct subtype of base modification, whose prototype is intestinal apolipoprotein B mRNA, mediated by the catalytic deaminase Apobec-1. However, the genome-wide identification, tissue-specificity and functional implications of Apobec-1-mediated C-to-U RNA editing remain incompletely explored. RESULTS Deep sequencing, data filtering and Sanger-sequence validation of intestinal and hepatic RNA from wild-type and Apobec-1-deficient mice revealed 56 novel editing sites in 54 intestinal mRNAs and 22 novel sites in 17 liver mRNAs, all within 3' untranslated regions. Eleven of 17 liver RNAs shared editing sites with intestinal RNAs, while 6 sites are unique to liver. Changes in RNA editing lead to corresponding changes in intestinal mRNA and protein levels for 11 genes. Analysis of RNA editing in vivo following tissue-specific Apobec-1 adenoviral or transgenic Apobec-1 overexpression reveals that a subset of targets identified in wild-type mice are restored in Apobec-1-deficient mouse intestine and liver following Apobec-1 rescue. We find distinctive polysome profiles for several RNA editing targets and demonstrate novel exonic editing sites in nuclear preparations from intestine but not hepatic apolipoprotein B RNA. RNA editing is validated using cell-free extracts from wild-type but not Apobec-1-deficient mice, demonstrating that Apobec-1 is required. CONCLUSIONS These studies define selective, tissue-specific targets of Apobec-1-dependent RNA editing and show the functional consequences of editing are both transcript- and tissue-specific.
Collapse
Affiliation(s)
- Valerie Blanc
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Eddie Park
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Sabine Schaefer
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Melanie Miller
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Yiing Lin
- Departments of Surgery, Washington University St Louis, St Louis, MO 63110, USA
| | - Susan Kennedy
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| | - Anja M Billing
- Proteomics Core, Weill Cornell Medical College in Qatar, Doha, Qatar
| | | | - Johannes Graumann
- Proteomics Core, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Ali Mortazavi
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University St Louis, St Louis, MO 63110, USA
| |
Collapse
|
24
|
Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis. Mediators Inflamm 2014; 2014:837107. [PMID: 24891768 PMCID: PMC4033481 DOI: 10.1155/2014/837107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 01/11/2023] Open
Abstract
Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.
Collapse
|
25
|
Abstract
Intestinal CD4+ T cells are essential mediators of immune homeostasis and inflammation. Multiple subsets of CD4+ T cells have been described in the intestine, which represents an important site for the generation and regulation of cells involved in immune responses both within and outside of the gastrointestinal tract. Recent advances have furthered our understanding of the biology of such cells in the intestine. Appreciation of the functional roles for effector and regulatory populations in health and disease has revealed potential translational targets for the treatment of intestinal diseases, including inflammatory bowel disease. Furthermore, the role of dietary and microbiota-derived factors in shaping the intestinal CD4+ T-cell compartment is becoming increasingly understood. Here, we review recent advances in understanding the multifaceted roles of CD4+ T cells in intestinal immunity.
Collapse
Affiliation(s)
- Matthew Shale
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
26
|
Christophi GP, Rong R, Holtzapple PG, Massa PT, Landas SK. Immune markers and differential signaling networks in ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2012; 18:2342-56. [PMID: 22467146 PMCID: PMC3407828 DOI: 10.1002/ibd.22957] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cytokine signaling pathways play a central role in the pathogenesis of inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD) have unique as well as overlapping phenotypes, susceptibility genes, and gene expression profiles. This study aimed to delineate patterns within cytokine signaling pathways in colonic mucosa of UC and CD patients, explore molecular diagnostic markers, and identify novel immune mediators in IBD pathogenesis. METHODS We quantified 70 selected immune genes that are important in IBD signaling from formalin-fixed, paraffin-embedded (FFPE) colon biopsy samples from normal control subjects and UC and CD patients having either severe colitis or quiescent disease (n = 98 subjects). We utilized and validated a new modified real-time reverse-transcription polymerase chain reaction (RT-PCR) technique for gene quantification. RESULTS Expression levels of signaling molecules including IL-6/10/12/13/17/23/33, STAT1/3/6, T-bet, GATA3, Foxp3, SOCS1/3, and downstream inflammatory mediators such as chemokines CCL-2/11/17/20, oxidative stress inducers, proteases, and mucosal genes were differentially regulated between UC and CD and between active and quiescent disease. We also document the possible role of novel genes in IBD, including SHP-1, IRF-1,TARC, Eotaxin, NOX2, arginase I, and ADAM 8. CONCLUSIONS This comprehensive approach to quantifying gene expression provides insights into the pathogenesis of IBD by elucidating distinct immune signaling networks in CD and UC. Furthermore, this is the first study demonstrating that gene expression profiling in FFPE colon biopsies might be a practical and effective tool in the diagnosis and prognosis of IBD and may help identify molecular markers that can predict and monitor response to individualized therapeutic treatments.
Collapse
Affiliation(s)
- George P. Christophi
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
,Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
,Corresponding Author: Mailing Address: Washington University School of Medicine Department of Internal Medicine, 660 S. Euclid Ave., Box 8121, St. Louis, MO 63110, , Tel: 314-956-9640
| | - Rong Rong
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| | | | - Paul T. Massa
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse NY
| | - Steve K. Landas
- Department of Pathology, SUNY Upstate Medical University, Syracuse NY
| |
Collapse
|
27
|
Maccaferri S, Vitali B, Klinder A, Brigidi P, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn's disease: an in vitro approach using a continuous culture colonic model system--authors' response. J Antimicrob Chemother 2011. [DOI: 10.1093/jac/dkr080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|