1
|
Jo AR, Kwon BR, Lee I, Min J, Choi S, Park NY, Kho Y, Park J, Kim H, Choi K. A novel approach for unveiling co-occurrence patterns of UV filter mixtures in sunscreens: Prioritization for hazard and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117527. [PMID: 39709705 DOI: 10.1016/j.ecoenv.2024.117527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
In recent years, concerns regarding the toxicity of organic UV filters in sunscreen products have increased. While sunscreen products contain multiple UV filters in combination, current understanding on their co-occurrence patterns and mixture toxicities is still limited. This study utilized a public database, "Hwahae", and analyzed 2183 sunscreen products marketed in South Korea as of 2019, using an association rule mining (ARM) to elucidate their co-occurrence patterns. We identified twenty-two UV filters in the sunscreen products, with titanium dioxide (TiO2) being the most prevalent (68 %), followed by ethylhexyl methoxycinnamate (EHMC, 60 %) and ethylhexyl salicylate (EHS, 49 %). Sunscreen products typically contained a median of five UV filters per product. Usage patterns of UV filter mixtures varied by the target user group of the product, i.e., general, susceptible, and male users. EHMC and EHS were commonly combined in most products, except those marketed for susceptible users. For susceptible users, inorganic UV filters such as TiO2 and zinc oxide (ZnO) were dominantly used. Combinations of UV filters that provide protection against different types of UV light, e.g., butyl methoxydibenzoylmethane (BMDBM) for UVA, and octocrylene (OCT), EHS, or homosalate (HS) for UVB, were also frequently used together, with high lift values. In conclusion, our study demonstrated that ARM approach can be useful to identify major combinations of UV filters present in sunscreen products, and prioritize the UV filter combinations requiring safety assessment and regulatory attention.
Collapse
Affiliation(s)
- Ah-Reum Jo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ba Reum Kwon
- Department of Environmental Science, College of Arts and Sciences, Baylor University, Waco, TX, USA
| | - Inae Lee
- Department of Public Health, Keimyung University, Daegu 42601, South Korea
| | - Jieun Min
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Sohyeon Choi
- Department of Environmental Health Sciences, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Na-Youn Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, South Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, South Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, College of Natural Sciences, Soonchunhyang University, Asan, South Korea
| | - Ho Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Sarti C, Falcon L, Cincinelli A, Martellini T, Chianella I. Development of molecularly imprinted polymer-based electrochemical sensors for the detection of UV filters in aquatic ecosystems. Talanta 2024; 285:127375. [PMID: 39671997 DOI: 10.1016/j.talanta.2024.127375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The presence of organic UV filters (OUVAs) has been detected worldwide in aquatic ecosystems. These pollutants, originating from various anthropogenic sources, can persist and transform within wastewater treatment plants (WWTPs), posing a potential environmental hazard. In this framework, this research presents electrochemical sensors based on molecularly imprinted polymers (MIPs) for the selective detection of Benzophenone-3 (BP-3) and Octocrylene (OC), two of the OUVA most spread in the aquatic environment, to overcome the analytical challenges related to the quantification of this class of contaminants in wastewater samples. Key parameters, including the selection of the electropolymerization conditions, the template washing, polymer surface blocking, and analyte re-binding conditions, were optimized to maximize the selectivity and sensitivity. Electrochemical detection was performed using electrochemical impedance spectroscopy (EIS) supported by an electrochemical probe. In addition, cross-reactivity tests were carried out in the presence of possible interferents, selected based on their size, chemical structure, and occurrence in wastewater samples. The sensors demonstrated significant selectivity and sensitivity for the target analytes, with detection limits of 30 nM for BP-3 and 1 nM for OC, while tests on complex wastewater samples showed recovery rates of 77 % and 101 % for BP-3 and OC, respectively. The study yielded interesting results that could lead to a specific, cost-effective approach to enable widespread monitoring and support early detection of these increasingly relevant contaminants in wastewater samples.
Collapse
Affiliation(s)
- Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom.
| | - Lea Falcon
- Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) unità locale Università degli Studi di Firenze, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Iva Chianella
- Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom
| |
Collapse
|
3
|
Németh Z, Svigruha R, Ács A, Farkas A, Tapolczai K, Elekes K, Fodor I, Pirger Z. Developmental, behavioral, and biochemical effects of chronic exposure to sublethal concentrations of organic UV-filter compounds on a freshwater model species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107134. [PMID: 39488149 DOI: 10.1016/j.aquatox.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The prevalence of organic/chemical UV-filter compounds in aquatic ecosystems represents a growing environmental issue. The long-term toxicity risks of many UV-filters at environmentally relevant concentrations to aquatic biota are still less studied, especially in the case of invertebrates. This study was designed to evaluate the chronic toxicity of avobenzone (AVO), octocrylene (OCTO), and octinoxate (OCTI), three UV-filters which frequently occur in the aquatic environment, to the water flea (Daphnia magna) at an environmentally relevant concentration of 200 ng l-1 in a 21-day exposure. Potential alterations in the growth, reproduction, and heart rate were continuously monitored during the treatments. Filtration rate, swimming, and the state of the antioxidant- and metabolic functions were evaluated at the end of exposures. Avobenzone significantly increased the reproductive output, heart rate, and filtration rate, while evoked a significant decrease of swimming behavior, and inhibited the activity of catalase (CAT) and glutathione S-transferase (GST) enzymes. The body size, reproduction, heart rate, and superoxide dismutase (SOD) activity were significantly increased whereas the activity of GST and CAT was significantly reduced by OCTO. OCTI significantly increased reproduction, heart rate, CAT and SOD activity but significantly decreased the swimming behavior. Our results confirmed that chronic exposure to organic UV-filters even at environmentally relevant concentrations affect basic physiological traits and cellular defense pathways in D. magna. Highlighting, our observations revealed previously unknown physiological changes (e.g., altered heart rate, filtration rate, SOD activity) caused by the investigated UV-filter compounds. Future research is to be aimed at investigating the mixture effects of these compounds and at the understanding of the potential cellular and molecular mechanisms underlying the changes induced.
Collapse
Affiliation(s)
- Zoltán Németh
- Doctoral School of Environmental Sciences, Eötvös Loránd University, Budapest, Hungary; Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Réka Svigruha
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Kálmán Tapolczai
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Károly Elekes
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Zsolt Pirger
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| |
Collapse
|
4
|
Sobańska AW, Banerjee A, Roy K. Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions-In Silico Studies of Drug-Likeness and Human Placental Transport. Int J Mol Sci 2024; 25:12373. [PMID: 39596438 PMCID: PMC11595199 DOI: 10.3390/ijms252212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and "ARKA" models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract. The drug-likeness of the studied compounds (expressed as a binary descriptor, Lipinski) is closely related to their ability to cross the placenta (most likely by a passive diffusion mechanism). The organic sunscreens and their degradation products are likely to cross the placenta, except for very bulky and highly lipophilic 1,3,5-triazine derivatives; an avobenzone degradation product, 1,2-bis(4-tert-butylphenyl)ethane-1,2-dione; diethylamino hydroxybenzoyl hexyl benzoate; and dimerization products of sunscreens from the 4-methoxycinnamate group.
Collapse
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Arkaprava Banerjee
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| |
Collapse
|
5
|
Reum Kwon B, Jo AR, Lee I, Lee G, Joo Park Y, Pyo Lee J, Park NY, Kho Y, Kim S, Ji K, Choi K. Thyroid, neurodevelopmental, and kidney toxicities of common organic UV filters in embryo-larval zebrafish (Danio rerio), and their potential links. ENVIRONMENT INTERNATIONAL 2024; 192:109030. [PMID: 39341038 DOI: 10.1016/j.envint.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Organic UV filters (OUVFs) have been commonly used in sunscreen and many consumer products. Following dermal application, these compounds can enter circulation and may cause systemic effects in humans. In the present study, we chose four OUVFs frequently detected in the environment, i.e., avobenzone (AVB), benzophenone-3 (BP-3), octocrylene (OC), and octyl methoxycinnamate (OMC), and evaluated their thyroid, neurodevelopmental, and kidney toxicities. For this purpose, zebrafish embryos (<4 h post fertilization, hpf) were exposed to sublethal concentrations of AVB, BP-3, OC, or OMC until 120 hpf. Exposure to all OUVFs decreased thyroid hormone (TH) levels, probably by enhanced metabolism and excretion of THs (ugt1ab and/or sult1 st5) in the larval fish. Exposure to the OUVFs also induced hypoactivities and/or anxiety-like behaviors: Regulatory changes of mbp, gfap, c-fos, syn2a, sty1a, and stxbp1b genes, support the changes in normal neurobehavior of the larval fish. Moreover, the OUVFs exposure caused increased proteinuria in the fish, along with transcriptional changes of wt1, nephrin, podocin, and cdh17 genes, which could explain the observed reduction in kidney functions. Principal component analysis (PCA) implied the potential interplay of THs with neurogenesis, or podocyte differentiation of the larval fish. Toxicological consequences of altered TH homeostasis, neurobehavior, and kidney function at the early life stage warrant further investigations not only in humans but also in aquatic ecosystems.
Collapse
Affiliation(s)
- Ba Reum Kwon
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ah-Reum Jo
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Gowoon Lee
- Department of Safety Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Na-Youn Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Gyeonggi 13135, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Yongin University, Yongin, Gyeonggi 17092, Republic of Korea; Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi 17092, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Sánchez-Suárez J, Villamil L, Coy-Barrera E, Díaz L. Photoprotection-related properties of a raw extract from Gordonia hongkongensis EUFUS-Z928: A culturable rare actinomycete associated with the Caribbean octocoral Eunicea fusca. Sci Prog 2024; 107:368504241272454. [PMID: 39119690 PMCID: PMC11311175 DOI: 10.1177/00368504241272454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
UV filters in current sunscreen formulations can have negative effects on human health, such as endocrine disruption and allergic reactions, as well as on the environment, including bioaccumulation and coral health toxicity. As a result, there is a need to find alternative compounds that serve as safer and more ecofriendly active ingredients. This study successfully isolated actinomycetes from the octocoral Eunicea fusca and assessed their potential as producers of photoprotective compounds. The use of bio-based chemical agents, particularly natural products, has been a highly effective strategy for discovering bioactive compounds, especially in marine invertebrates and their associated microbiota. Eighteen bacterial isolates were obtained and subsequently employed to prepare raw methanolic extracts from seven-day submerged cultures in Zobell marine broth. The resulting extracts were screened for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity and characterized by total phenolic and flavonoid content measurements. After screening, the Gordonia hongkongensis EUFUS-Z928-derived raw extract exhibited the best antioxidant profile, i.e. DPPH and ABTS radical scavenging of 4.93 and 6.00 µmol Trolox per gram of extract, respectively, and selected for further photoprotection-related analysis. Thus, this extract demonstrated a UV-absorbing capacity of 46.33% of the in vitro sun protection factor calculated for 30 µg/mL oxybenzone but did not exhibit any cytotoxicity on human dermal fibroblasts (HDFa cell line) at concentrations up to 500 µg/mL. The liquid chromatography-mass spectrometry chemical characterization of this extract showed compounds with structural features associated with free radical scavenging and UV absorption (i.e. photoprotection-related activities). These findings highlighted the potential of the microbiota associated with E. fusca and confirmed the feasibility of exploiting its metabolites for photoprotection-related purposes.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Ecology and Biogeography Research Group, Department of Biology, School of Basic Sciences, Universidad de Pamplona, Pamplona, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Luis Díaz
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
7
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
8
|
Chen HC, Huang YF, Wu CT. Concentrations, compositional profiles, and health risks of benzophenones among the Taiwanese population based on analysis of 23 daily consumed foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134077. [PMID: 38574654 DOI: 10.1016/j.jhazmat.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
In this study, we analyzed the occurrence and distribution of 11 benzophenone-type ultraviolet filters (BPs) in 893 food samples spanning 7 food categories in Taiwan. We conducted a Monte Carlo simulation to determine the carcinogenic and noncarcinogenic risks of BPs. The results indicated that cornflakes had the highest mean level of BPs (103 ng/g), followed by bread (101 ng/g) and pastries (59 ng/g). BP was the most prevalent category, followed by 4-methylbenzophenone (4-MBP), 2-hydroxybenzophenone, and benzophenone-3. Estimation of the lifetime cancer risk (LTCR) of BP (average life expectancy of 80 years) placed them in the 50th and 97.5th percentiles [P50 (P97.5)] LTCR of 1.9 × 10-7 (5.7 × 10-6), indicating that BP in food poses a low renal hazard to the Taiwanese population. The noncarcinogenic risk of BPs was evaluated using a hazard quotient and combined margin of exposure (MOET), revealing a P50 (P97.5) hazard index of < 1 for BP, 4-MBP, and methyl-2-benzoylbenzoate. Although the P50 MOET values for all age groups were within the moderate range of concern, with a more conservative extreme (P2.5), the MOET values for the 0-3, 3-6, and 6-12 age groups fell below 100, indicating a high concern for renal degeneration and hyperplasia.
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chen-Ting Wu
- Institute of Food Safety and Health Science Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Lee WJ, Hwang JM, Jo JH, Jang SI, Jung EJ, Bae JW, Ha JJ, Kim DH, Kwon WS. Adverse Effects of Avobenzone on Boar Sperm Function: Disruption of Protein Kinase A Activity and Tyrosine Phosphorylation. Reprod Toxicol 2024; 125:108559. [PMID: 38378073 DOI: 10.1016/j.reprotox.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Avobenzone (AVO), an ultraviolet (UV) filter, is frequently used as an ingredient in personal cosmetics. This UV filter has been found to be easily exposed in swimming pools and beaches, and it has been detected in human urine and blood. Moreover, numerous studies have demonstrated that AVO exhibits endocrine-disrupting properties. Nevertheless, the effects of AVO on male fertility have not yet fully understood. Therefore, this study aimed to assess the effects of AVO on various sperm functions during capacitation. First, boar spermatozoa were treated with various AVO concentrations. After treatment, sperm motility and kinetic characteristics, capacitation status, intracellular adenosine triphosphate (ATP) levels, and sperm viability were evaluated. Moreover, Western blot analysis w.as conducted to evaluate protein kinase A (PKA) activity and tyrosine phosphorylation. As a result, AVO treatment significantly decreased total motility, progressive motility, and several kinetic characteristics at high concentrations (50 and 100 μM). Furthermore, the capacitation status dose-dependently decreased. Conversely, no significant differences in acrosome reaction, cell viability, and intracellular ATP levels were observed. However, the intracellular ATP level tended to decrease. In addition, AVO dose-dependently induced abnormal changes in PKA activity and tyrosine phosphorylation. Although AVO did not directly exert a toxic effect on cell viability, it ultimately negatively affected sperm functions through abnormal alterations in PKA activity and tyrosine phosphorylation. Thus, the potential implications on male fertility must be considered when contemplating the safe utilization of AVO.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do 36052, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
10
|
Lam TK, Law JCF, Leung KSY. Hybrid radical coupling during MnO 2-mediated transformation of a mixture of organic UV filters: Chemistry and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170121. [PMID: 38232841 DOI: 10.1016/j.scitotenv.2024.170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Manganese oxide (MnO2) is one of the most abundant metal oxides, and it is renowned for its ability to degrade various phenolic micropollutants. However, under MnO2-mediated transformation, BP-3 transforms into 12 different radical-coupled transformation products (TPs) out of 15 identified TPs. These radical-coupled TPs are reported with adverse environmental impacts. This study explored the effects of MnO2 on organic UV filter mixtures and different water constituents (i.e., bicarbonate ion (HCO3-), humic acid (HA) and halide ions) in terms of degradation efficiency and transformation chemistry. When a mixture of benzophenone-3 (BP-3) and avobenzone (AVO) underwent transformation by MnO2, hybrid radical-coupled TPs derived from both organic UV filters were generated. These hybrid radical-coupled TPs were evaluated by an in silico prediction tool and Vibrio fischeri bioluminescence inhibition assay (VFBIA). Results showed that these TPs were potentially toxic to aquatic organisms, even more so than their parent compounds. The higher the concentration of HCO3-, HA, chloride ion (Cl-) and bromide ion (Br-), the greater the reduction in the efficiencies of degrading BP-3 and AVO. Contrastingly, in the presence of iodide ion (I-), degradation efficiencies of BP-3 and AVO were enhanced; however, iodinated TPs and iodinated radical-coupled TPs were formed, with questionable toxicity. This study has revealed the environmental risks of hybrid radical-coupled TPs, iodinated TPs and iodinated radical-coupled TPs when the organic UV filters BP-3 and AVO are transformed by MnO2.
Collapse
Affiliation(s)
- Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, PR China.
| |
Collapse
|
11
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
12
|
Bury D, Weber T, Ebert KE, Zülz S, Brüning T, Koch HM, Kolossa-Gehring M. Increasing exposure to the UV filters octocrylene and 2-ethylhexyl salicylate in Germany from 1996 to 2020: Human biomonitoring in 24-h urine samples of the German Environmental Specimen Bank (ESB). ENVIRONMENT INTERNATIONAL 2023; 182:108334. [PMID: 38029623 DOI: 10.1016/j.envint.2023.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
The UV filters octocrylene (OC) and 2-ethylhexyl salicylate (EHS) are commonly used in sunscreens and frequently detected in environmental media. However, knowledge on human exposures is scarce. In this human biomonitoring (HBM) study, we analyzed concentrations of exposure biomarkers specific to OC (CPAA, DOCCA, 5OH-OC) and EHS (5OH-EHS, 5oxo-EHS, 5cx-EPS) in 24-h urine samples (n = 420) from the German Environmental Specimen Bank (ESB). These samples were collected from German students (20-29 years; 30 males/30 females per year) between 1996 and 2020 (4-year intervals; collection in winter). We found continuously increasing OC and EHS exposures (Jonckheere-Terpstra; p < 0.001) documented by very few to no samples with concentrations of the most sensitive biomarkers CPAA and 5cx-EPS above the limit of quantification (LOQ) in 1996 (5 % and 0 %, respectively) and reaching 100 % and 93 % above the LOQ in 2016, with median concentrations of 4.79 and 0.071 µg/L, respectively. In 2020, biomarker concentrations slightly decreased to 3.12 µg/L CPAA (97 %>LOQ) and 0.060 µg/L 5cx-EPS (88 %>LOQ). This general trend was confirmed by the other biomarkers, however at lower detection rates. Based on metabolite excretion in the 24-h urine samples and human toxicokinetic data, we calculated maximum daily intakes (DI) of 17 µg/(kg bw * d) OC and 59 µg/(kg bw * d) EHS. Based on a derived no-effect level (DNEL) of 0.8 mg/(kg bw * d), the OC exposures of individuals in our study did not indicate any health risk. Similarly, for EHS all biomarker concentrations were well below the HBM-I values of 12 µg/L 5OH-EHS and 11 µg/L 5cx-EPS. Our data proves the general applicability of specific OC and EHS metabolites for HBM in the general population and shows clearly increasing exposures. Higher (co-)exposures must be expected in populations with increased sunscreen use such as (summer) vacationers, children and outdoor workers.
Collapse
Affiliation(s)
- Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Katharina E Ebert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Stephanie Zülz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | | |
Collapse
|
13
|
de Albuquerque Vita N, Rodrigues de Souza I, Di Pietro Micali Canavez A, Brohem CA, Cristine Marios Ferreira Pinto D, Schuck DC, Leme DM, Lorencini M. The development and application of a novel hazard scoring tool for assessing impacts of cosmetic ingredients on aquatic ecosystems: A case study of rinse-off cosmetics. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1619-1635. [PMID: 36919679 DOI: 10.1002/ieam.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The cosmetic industry has been committed to promoting less hazardous products to reduce the environmental impacts of cosmetic ingredients. This requires identifying safer cosmetic ingredients for developing cosmetic formulations that are less harmful to the environment. However, one of the challenges in developing eco-friendly cosmetics relies on integrating all environmental hazard (EH) information of cosmetic ingredients to select the most eco-friendly ones (i.e., ingredients least harmful to the aquatic environment). Thus, we developed a hazard scoring tool (IARA matrix), which integrates data on biodegradation, bioaccumulation, and acute aquatic toxicity, providing a hazard index to classify cosmetic ingredients (raw materials) into categories of EH (low, moderate, high, or very high). The classification of the IARA was based on parameters established by Cradle to Cradle (C2C), the US Environmental Protection Agency (USEPA), and European Regulation 1272/2008, considering the most conservative values of each source. The Leopold matrix was employed as a model for the tool, using a numerical scale from 0 to 6 (lowest to highest EH). According to the IARA, we have successfully demonstrated that ultraviolet (UV) filter ingredients have the highest EH out of 41 cosmetic ingredients commonly used for rinse-off products. In addition to UV filters, triclosan (bactericide) and dimethicone (emollient) presented the second-highest EH for aquatic ecosystems, and humectants presented the lowest hazard index. By applying the IARA in the case study of rinse-off products, we have estimated that the aquatic hazard of cosmetic products can be reduced 46% by identifying less hazardous ingredients and combining them into a cosmetic formulation. In summary, the IARA tool allows the estimation of the EH of cosmetic ingredients, provides safer products, and helps achieve sustainability for cosmetic products. Integr Environ Assess Manag 2023;19:1619-1635. © 2023 SETAC.
Collapse
Affiliation(s)
- Natália de Albuquerque Vita
- Grupo Boticário, Safety of Product Department, São José dos Pinhais, Paraná, Brazil
- Graduate Program, Masters in Industrial Biotechnology, Positivo University (Universidade Positivo), Curitiba, Paraná, Brazil
| | | | | | - Carla A Brohem
- Grupo Boticário, Safety of Product Department, São José dos Pinhais, Paraná, Brazil
| | | | | | | | - Márcio Lorencini
- Grupo Boticário, Safety of Product Department, São José dos Pinhais, Paraná, Brazil
| |
Collapse
|
14
|
Hain E, He K, Batista-Andrade JA, Feerick A, Tarnowski M, Timm A, Blaney L. Geospatial and co-occurrence analysis of antibiotics, hormones, and UV filters in the Chesapeake Bay (USA) to confirm inputs from wastewater treatment plants, septic systems, and animal feeding operations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132405. [PMID: 37651932 DOI: 10.1016/j.jhazmat.2023.132405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Previous studies have reported select contaminants of emerging concern (CECs) in limited areas of the Chesapeake Bay (USA), but no comprehensive efforts have been conducted. In this work, 43 antibiotics, 9 hormones, 11 UV filters, and sucralose, were measured in matched water, sediment, and oyster samples from 58 sites. The highest sucralose concentration was 3051 ng L-1 in a subwatershed with 4.43 million liters of wastewater effluent per day (MLD) and 4385 septic systems. Although antibiotic occurrence was generally low in subwatersheds located in less populated areas, 102 ng L-1 ciprofloxacin was detected downstream of 0.58 MLD wastewater effluent and 10 animal feeding operations. Hormones were not regularly detected in water (2%) or oysters (37%), but the high detection frequencies in sediment (74%) were associated with septic systems. UV filters were ubiquitously detected in oysters, and octisalate exhibited the highest concentration (423 ng g-1). Oyster-phase oxybenzone and aqueous-phase sucralose concentrations were significantly correlated to wastewater effluent and septic systems, respectively. Toxicity outcomes were predicted for homosalate and octisalate throughout the Bay, and antimicrobial resistance concerns were noted for the Chester River. The geospatial and co-occurrence relationships constitute crucial advances to understanding CEC occurrence in the Chesapeake Bay and elsewhere.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Jahir A Batista-Andrade
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Anna Feerick
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Mitchell Tarnowski
- Maryland Department of Natural Resources, 580 Taylor Ave, B-2, Annapolis, MD 21401, USA
| | - Anne Timm
- USDA Forest Service, Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
15
|
Brown AK, Farenhorst A. Quantitation of Canadian organic ultraviolet filters using polarity switching and ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1704:464132. [PMID: 37302251 DOI: 10.1016/j.chroma.2023.464132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Ultraviolet filters (UVFs) absorb UV light and are comprised of numerous classes of compounds including inorganic and organic. They have been used for decades in protecting humans from skin damage and cancer. Recent studies have shown that UVFs are found in many phases of abiotic and biotic systems with their physical-chemical characteristics determining environmental fate and potential biological impacts such as bioaccumulation. This study developed a unified method to quantify eight UVFs (avobenzone, dioxybenzone, homosalate, octinoxate, octisalate, octocrylene, oxybenzone, and sulisobenzone) by solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry using polarity switching. The validated method resulted in accuracies ranging from 75 to 112%, MLD/MLQs of 0.00015/ 0.00049 to 0.0020/ 0.0067 ng mL-1, and precisions of 1.8 to 22.6% (intraday) and 1.3 to 17.2% (interday). The method was applied to chlorinated outdoor pool waters in the City of Winnipeg, Manitoba, Canada. This method could be adapted for a variety of chlorinated and unchlorinated waters such as drinking water, wastewater, and surface waters.
Collapse
Affiliation(s)
- Alistair K Brown
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
16
|
HAN L, ZHANG X, HU X, ZHANG H, QIU T, LIN X, ZHU Y. [Determination of 12 typical personal care products in human urine samples by ultra performance liquid chromatography-tandem mass spectrometry]. Se Pu 2023; 41:312-322. [PMID: 37005918 PMCID: PMC10071352 DOI: 10.3724/sp.j.1123.2022.05032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 04/04/2023] Open
Abstract
A rapid and sensitive method based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of 12 typical personal care products (PCPs) in human urine. These PCPs included five paraben preservatives (PBs), five benzophenone UV absorbers (BPs), and two antibacterial agents. Accordingly, 1 mL of the urine sample was mixed with 500 μL of β-glucuronidase-ammonium acetate buffer solution (enzymatic activities are 500 units/mL) and 75 μL of a mixed internal standard working solution (internal standard contents are 7.5 ng), followed by enzymatic hydrolysis overnight (≥16 h) at 37 ℃ in a water bath. The 12 targeted analytes were enriched and cleaned up using an Oasis HLB solid phase extraction column. Separation was performed on an Acquity BEH C18 column (100 mm×2.1 mm, 1.7 μm) using an acetonitrile-water system as the mobile phase, in negative electrospray ionization (ESI-) multiple reaction monitoring (MRM) mode, for target detection and stable isotope internal standard quantification. The optimal MS conditions were established by optimizing the instrument parameters and comparing two analytical columns (Acquity BEH C18 and Acquity UPLC HSS T3) as well as different types of mobile phases (methanol or acetonitrile as the organic phase) to achieve better chromatographic separation. In order to obtain higher enzymatic and extraction efficiency, different enzymatic conditions, solid phase extraction columns, and elution conditions were investigated. The final results showed that methyl parabens (MeP), benzophenone-3 (BP-3), and triclosan (TCS) showed good linearities in the ranges of 4.00-800, 4.00-800 and 5.00-200 μg/L, respectively, the other targeted compounds showed good linearities in the ranges of 1.00-200 μg/L. The correlation coefficients were all greater than 0.999. The method detection limits (MDLs) were in the range of 0.06-1.09 μg/L, and the method quantification limits (MQLs) ranged from 0.08 to 3.63 μg/L. At three spiked levels, the average recoveries of the 12 targeted analytes ranged from 89.5% to 111.8%. The intra-day and inter-day precisions were 3.7%-8.9% and 2.0%-10.6%, respectively. The results of the matrix effect assessment showed that MeP, ethyl paraben (EtP), and benzophenone-2 (BP-2) exhibited strong matrix effects (26.7%-103.8%); propyl paraben (PrP) exhibited moderate matrix effects (79.2%-112.0%); and the other eight target analytes exhibited weak matrix effects (83.3%-113.8%). The matrix effects of the 12 targeted analytes after correction using the stable isotopic internal standard method ranged from 91.9% to 110.1%. The developed method was successfully applied to the determination of the 12 PCPs in 127 urine samples. Ten typical PCPs were detected, with the overall detection rates ranging from 1.7% to 99.7%, except for benzyl paraben (BzP) and benzophenone-8 (BP-8). The results revealed that the population in this area was widely exposed to PCPs, especially MeP, EtP and PrP; the detection rates and concentrations of these PCPs were found to be very high. Our analytical method is simple and sensitive, and it is expected to be an effective tool for biomonitoring PCPs in human urine samples as part of environmental health studies.
Collapse
|
17
|
Tao J, Yang Q, Jing M, Sun X, Tian L, Huang X, Huang X, Wan W, Ye H, Zhang T, Hong F. Embryonic benzophenone-3 exposure inhibited fertility in later-life female zebrafish and altered developmental morphology in offspring embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49226-49236. [PMID: 36773251 DOI: 10.1007/s11356-023-25843-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Benzophenone-3 (BP3), an organic UV filter widely used in personal care products, is ubiquitous in aquatic environments. Previous studies have shown that BP3 can interfere with oocytes development in the ovary. The current study was conducted to evaluate the effects of embryonic BP3 exposure on reproductive outcomes in later life. Zebrafish embryos were exposed to different concentrations of BP3 (0, 1, 10, 100 μg/L) for 5 days in the developmental stage and subsequently fed for 4 months without any toxins. The body length, body weight, and ovary weight in F0 female adult zebrafish and morphology indices in F1 offspring embryos were measured. The reproductive behaviors of adult zebrafish were recorded by a digital camera. HE staining was used to estimate the development of oocytes and the proportion of different phases was calculated. qPCR was used to detect the expression levels of reproduction-related genes of the hypothalamic-pituitary-gonadal (HPG) axis. Our findings revealed that the body length and body weight were not changed with embryonic BP3 exposure, but BP3 exposure inhibited the development and maturation of ovaries in later-life female zebrafish, accompanied by an increased proportion of follicles in the primary growth and early vitellogenic stages, and a decline in the full-growth stage in ovaries. Meanwhile, reduced egg production, delayed hatching rate, altered somite count and increased mortality rate were observed at 100 μg/L in offspring embryos. Behavioral results showed that BP3 exposure reduced the frequency of chasing, touching, entering the spawning area, and the duration of fish entering the spawning area later in life, qPCR analysis showed that the expression levels of reproduction-related genes of the HPG axis were downregulated in females, following a decreasing trend in plasma E2 and 11-KT levels. These results suggested that embryonic BP3 exposure negatively affected the fertility of fish and the development of their offspring embryos, which may cause potential risks to aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Junyan Tao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qinyuan Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Min Jing
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaowei Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Linxuan Tian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xin Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoli Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Wenlu Wan
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Hui Ye
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ting Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Analytical methods for investigating the presence, photoisomerisation-, and degradation kinetics of the UV-A filter avobenzone under aqueous conditions to ensure a more realistic environmental measurement. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
19
|
Young AS, Herkert N, Stapleton HM, Coull BA, Hauser R, Zoeller T, Behnisch PA, Felzel E, Brouwer A, Allen JG. Hormone receptor activities of complex mixtures of known and suspect chemicals in personal silicone wristband samplers worn in office buildings. CHEMOSPHERE 2023; 315:137705. [PMID: 36592838 PMCID: PMC9937064 DOI: 10.1016/j.chemosphere.2022.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Humans are exposed to increasingly complex mixtures of hormone-disrupting chemicals from a variety of sources, yet, traditional research methods only evaluate a small number of chemicals at a time. We aimed to advance novel methods to investigate exposures to complex chemical mixtures. Silicone wristbands were worn by 243 office workers in the USA, UK, China, and India during four work shifts. We analyzed extracts of the wristbands for: 1) 99 known (targeted) chemicals; 2) 1000+ unknown chemical features, tentatively identified through suspect screening; and 3) total hormonal activities towards estrogen (ER), androgen (AR), and thyroid hormone (TR) receptors in human cell assays. We evaluated associations of chemicals with hormonal activities using Bayesian kernel machine regression models, separately for targeted versus suspect chemicals (with detection ≥50%). Every wristband exhibited hormonal activity towards at least one receptor: 99% antagonized TR, 96% antagonized AR, and 58% agonized ER. Compared to men, women were exposed to mixtures that were more estrogenic (180% higher, adjusted for country, age, and skin oil abundance in wristband), anti-androgenic (110% higher), and complex (median 836 detected chemical features versus 780). Adjusted models showed strong associations of jointly increasing chemical concentrations with higher hormonal activities. Several targeted and suspect chemicals were important co-drivers of overall mixture effects, including chemicals used as plasticizers, fragrance, sunscreen, pesticides, and from other or unknown sources. This study highlights the role of personal care products and building microenvironments in hormone-disrupting exposures, and the substantial contribution of chemicals not often identifiable or well-understood to those exposures.
Collapse
Affiliation(s)
- Anna S Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Morrill Science Center, Amherst 01003, USA
| | - Peter A Behnisch
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Emiel Felzel
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, Netherlands
| | - Joseph G Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
20
|
Li HM, Zhang YC, Li YY, Zhu QQ, Li J, Xu HM, Xiong YM, Qin ZF. Low concentrations of benzophenone-type UV-filters impair testis development in the amphibian Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106371. [PMID: 36529091 DOI: 10.1016/j.aquatox.2022.106371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Benzophenone-type UV filters (BPs) are ubiquitous contaminants in aquatic environments, possibly posing ecological risks to aquatic populations. So far, little is known about the potential adverse effects of BPs on amphibians. Given their potential estrogenic property, we investigated the detrimental effects of the commonly used BPs, BP-3, BP-2, and BP-1, on testis development in amphibians using Xenopus laevis as a model species. Following exposure to 10, 100, 1000 nM BP-3, BP-2, or BP-1 from stages 45/46 to 52, tadpoles presented morphological abnormal testes, characterized by reduced gonomere size and testis area, coupled with suppressed cell proliferation. Meanwhile, the downregulation of testis-biased gene expression and the upregulation of ovary-biased gene expression were observed in BPs-treated testes. Moreover, the estrogen receptor (ER) antagonist ICI 182780 significantly antagonized ovary-biased gene upregulation caused by BPs, suggesting that the effects of BPs on testis differentiation could be mediated by ER, at least partially. Of note, the effects of BPs were not concentration-dependent, but the lowest concentration generally exerted significant effects. Altogether, these observations indicate that the three BPs inhibited testis differentiation and exerted feminizing effects. Importantly, when BP-2 exposure was extended to two months post-metamorphosis, testes of froglets were generally less-developed, with relatively fewer spermatocytes, more spermatogonia, and poorly formed seminiferous tubules. Considering the fact that the lowest concentration (10 nM) of BPs in this study are detectable in aquatic environments, we conclude that BP-3, BP-2, and BP-1, even at environmentally relevant concentrations, can retard testis differentiation at pre-metamorphic stages and cause testis dysgenesis after metamorphosis in the amphibian X. laevis. Our findings suggest that ubiquitous BPs in aquatic environments could pose a potential risk to amphibians.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ying-Chi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing-Qing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hai-Ming Xu
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
de Paula VDCS, Gomes MF, Martins LRR, Yamamoto FY, de Freitas AM. Acute toxicity characterization of organic UV-filters and chronic exposure revealing multigenerational effects in DAPHNIA MAGNA. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1413-1425. [PMID: 36264527 DOI: 10.1007/s10646-022-02598-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Organic ultraviolet (UV) filters have often been detected in aquatic ecosystems in concentrations ranging from ng/L to μg/L. However, both their acute and chronic effects on aquatic organisms have been insufficiently explored. This study aimed to evaluate acute toxicity of some of the main UV filters used worldwide (2-ethylhexyl,4-methoxycinnamate/EHMC, avobenzone/AVO, benzophenone-3/BP-3, and octocrylene/OC), in three aquatic organisms (Artemia salina, Desmodesmus subspicatus, and Daphnia magna), and to further investigate multigenerational effects in D. magna. After acute toxicity was confirmed, daphnids were chronically exposed to environmentally relevant concentrations of UV filters for two consecutive generations (F0 and F1), and reproductive endpoints, as well as catalase (CAT) and glutathione-S-transferase (GST) activities, were assessed. EHMC showed the most toxic potential, with the lowest EC50 values for the three organisms. On the other hand, reproductive delays and a decrease in the reproduction rate were observed in the F1 generation exposed to AVO (4.4 µg/L), BP-3 (0.17 µg/L), EHMC (0.2 µg/L), and MIX. An increase of the CAT activity in organisms exposed to BP-3 and EHMC suggested induction of the antioxidant system. Although no reproductive effect was observed in the first generation, toxic effects obtained in the F1 revealed the importance of multigenerational studies and the potential harm of UV filters to the life cycle of D. magna, even at environmentally relevant concentrations. This emphasizes the need for further studies considering these levels of exposure and more realistic experimental designs to better understand their potential risks. Environmentally relevant concentrations of Organic UV filters are not lethal to aquatic organisms, however may affect reproductive parameters in Daphnia magna though multigenerational exposures.
Collapse
Affiliation(s)
- Vinícius de C S de Paula
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Monike F Gomes
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Lucia Regina R Martins
- Multiuser Laboratory of Environmental Analysis, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil
| | - Flávia Y Yamamoto
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | - Adriane Martins de Freitas
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil.
- Multiuser Laboratory of Environmental Analysis, Federal University of Technology-Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
22
|
Klančič V, Gobec M, Jakopin Ž. Environmental contamination status with common ingredients of household and personal care products exhibiting endocrine-disrupting potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73648-73674. [PMID: 36083363 DOI: 10.1007/s11356-022-22895-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The continuous use of household and personal care products (HPCPs) produces an immense amount of chemicals, such as parabens, bisphenols, benzophenones and alkylphenol ethoxylates, which are of great concern due to their well-known endocrine-disrupting properties. These chemicals easily enter the environment through man-made activities, thus contaminating the biota, including soil, water, plants and animals. Thus, on top of the direct exposure on account of their presence in HPCPs, humans are also susceptible to secondary indirect exposure attributed to the ubiquitous environmental contamination. The aim of this review was therefore to examine the sources and occurrence of these noteworthy contaminants (i.e. parabens, bisphenols, benzophenones, alkylphenol ethoxylates), to summarise the available research on their environmental presence and to highlight their bioaccumulation potential. The most notable environmental contaminants appear to be MeP and PrP among parabens, BPA and BPS among bisphenols, BP-3 among benzophenones and NP among alkylphenols. Their maximum detected concentrations in the environment are mostly in the range of ng/L, while in human tissues, their maximum concentrations achieved μg/L due to bioaccumulation, with BP-3 and nonylphenol showing the highest potential to bioaccumulate. Finally, of another great concern is the fact that even the unapproved parabens and benzophenones have been detected in the environment.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Li Y, He Y, Lam CH, Nah T. Environmental photochemistry of organic UV filter butyl methoxydibenzoylmethane: Implications for photochemical fate in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156145. [PMID: 35613640 DOI: 10.1016/j.scitotenv.2022.156145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
With the widespread use of sunscreen and other personal care products, organic ultraviolet filters (OUVFs) have become widely detected in the aquatic environment. Direct and indirect photolysis are important transformation pathways of OUVFs in aquatic environments, so their transformation products (TPs) are also chemicals of concern. Butyl methoxydibenzoylmethane (BMDBM) is one of the most commonly used OUVFs worldwide due to its ability to absorb ultraviolet light across a wide range of wavelengths, and it is ubiquitously detected in aquatic environments. In this study, we investigated the photodegradation of BMDBM through direct photolysis and hydroxyl radical (•OH) photooxidation. TPs were identified using ultrahigh performance liquid chromatography-high resolution mass spectrometry, and reaction mechanisms were proposed. Our results showed that the photodegradation rates for both enol and keto tautomer forms of BMDBM during direct photolysis and •OH photooxidation were similar. The formation of TPs resulted from α-cleavage and decarbonylation reactions involving the keto form of BMDBM. Comparisons of the kinetic data and TPs revealed that the direct photolysis mechanism was a significant sink for BMDBM even during •OH photooxidation. Evaluations of environmental properties based on the predicted physicochemical properties of BMDBM and TPs suggests that some of the TPs will have higher mobility than BMDBM. The quantitative structure-activity relationship (QSAR) approach was used to evaluate the ecotoxicity of BMDBM and the identified TPs. Most TPs were found to be less ecotoxic than BMDBM; however, TPs that had a diphenyl ring structure could be more ecotoxic than BMDBM. Overall, this study provides new insights into the photochemical behavior and ecotoxicity of BMDBM and its TPs, which are important for assessing the fate, persistence, accumulation, and adverse impacts of these compounds in aquatic environments.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Chun Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Huang CW, Kung ZY, Wei CC. UV-filter octyl methoxycinnamate causes reproductive toxicity associated with germline apoptosis and vitellogenin decrease in Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106149. [PMID: 35397382 DOI: 10.1016/j.aquatox.2022.106149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Octyl methoxycinnamate (OMC) is a common UV filter found in personal care products such as sunscreen and cosmetics. However, OMC's presence in wastewater has raised concerns that it could potentially pollute aquatic ecosystems because of its limited biodegradability and its estrogenic disrupting properties. In this study, we investigated the environmental toxicity of OMC and its potential biomarkers using the nematode Caenorhabditis elegans. Our results showed that body length, eggs in utero, and total brood size decreased with increasing dose (experimental concentrations = 0, 1, 5, 10, 100, 500 μM for body length and eggs in utero, and 0, 5, 10 μM for total brood size) in C. elegans after L1 larval stage (the first larval stage for 0 - 12 hours post-hatching) larval stage exposure to OMC. The minimum effective concentrations were 1, 5, and 10 μM, respectively. Modeling results demonstrated that the threshold concentration of OMC inducing 10% inhibited eggs in utero was 0.33 μM (95.11 μg/L). Furthermore, germline apoptosis was induced in 10 μM OMC-treated worms (experimental concentrations = 0, 5, 10 μM). Decreased mRNA levels of vitellogenin-related genes (vit-2 and vit-6) and increased mRNA levels of apoptosis-related genes (egl-1 and ced-3) were observed in 10 μM OMC-treated C. elegans (experimental concentrations = 0, 10 μM), suggesting that reproductive toxicity was associated with decreased vitellogenin levels and germline apoptosis. In summary, our study shows that OMC is reproductively toxic and leads to reduced egg formation and decreased brood size in C. elegans by reducing vitellogenin levels and promoting germline apoptosis.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Zhi-Ying Kung
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan.
| |
Collapse
|
25
|
Gan Y, Zhu Y. Multi-Residue Analysis of Chemical Additives in Edible Vegetable Oils Using QuEChERS Extraction Method Followed by Supercritical Fluid Chromatography. Molecules 2022; 27:molecules27051681. [PMID: 35268782 PMCID: PMC8911653 DOI: 10.3390/molecules27051681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the quality and safety of food highly depend on its preservation and protection, the use of food packaging materials increases the risk of chemical contamination of the packaged food by migration. Herein, we focused on antioxidants, photoinitiators, UV absorbers and plasticizers which are extensive additives used in food packaging materials. In the present study, a rapid, simple, green and reliable method was developed and validated for the determination of twelve chemical additives in edible vegetable oils using SFC together with a modified QuEChERS procedure. Under the optimum conditions, twelve additives were separated within 10 min, and the consumption of the organic solvent was significantly reduced, which improved the environmentally friendliness. The performance of the developed method was evaluated. Good linearity (r > 0.999) was obtained in the range of 0.20−20.0 µg/mL and 0.50−20.0 µg/mL, respectively. The limits of detection and limits of quantification of the twelve additives in vegetable oils were 0.05−0.15 µg/mL and 0.15−0.50 µg/mL, respectively. Recoveries of all the chemical additives for the spiked samples were between 60.9% and 106.4%, with relative standard deviations (RSD) lower than 9.9%. The results demonstrated that the proposed method was efficient, reliable and robust for the routine analysis of additives in edible vegetable oils and can be an alternative to the multi-residue analysis of chemical additives for other packaged foods.
Collapse
Affiliation(s)
- Yaping Gan
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China;
| | - Yan Zhu
- Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, China
- Correspondence:
| |
Collapse
|