1
|
Guo H, Zhang L, Su H, Yang J, Lei J, Li X, Zhang S, Zhang X. Exploring tumor microenvironment in molecular subtyping and prognostic signatures in ovarian cancer and identification of SH2D1A as a key regulator of ovarian cancer carcinogenesis. Heliyon 2024; 10:e38014. [PMID: 39347397 PMCID: PMC11437944 DOI: 10.1016/j.heliyon.2024.e38014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction A deadly gynecological cancer, ovarian cancer (OV), has a poor prognosis because of late-stage diagnosis and few targeted therapies. Addressing the tumor microenvironment (TME) in solid tumors has shown promise since it is crucial in promoting cancer progression. Methods We obtained bulk RNA-seq data from TCGA-OV, GSE26712, GSE102073, and ICGC cohorts, as well as scRNA-seq data from EMTAB8107, GSE118828, GSE130000, and GSE154600 cohorts using the TISCH2 database. The ConsensusClusterPlus package was used to cluster the OV tumor tissues hierarchically to determine two molecularly different groups (C1 and C2). A total of ten different types of machine learning techniques with 101 combinations were used for prognostic model construction. Using eight TME algorithms integrated into the IOBR R package, the bulk RNA-seq dataset was analyzed. For in vitro experiments, OVCAR3 and SKOV3, two OV cell lines, were used. The migratory potential of the ovarian cancer cells was assessed using Transwell assay, while proliferation was assessed using CCK8 assay. Results Based on TME-related gene set expression, two distinct molecular subgroups (C1 and C2) were identified through consensus clustering, with C1 showing higher TME activity. Further analysis indicated that C1 had increased cancer-associated fibroblasts (CAFs), M1 macrophages, and CD8+ T cells, suggesting a more activated and pro-inflammatory TME. Drug sensitivity analysis revealed that 5-Fluorouracil might be beneficial to C1 patients. Functional differences between C1 and C2 were identified, including cell adhesion, mononuclear cell differentiation, and leukocyte migration. A machine learning model was developed to create a TME-related prognostic signature, demonstrating strong prognostic capabilities across multiple datasets. High-risk patients showed a more immune-suppressive TME and higher tumor stemness. ScRNA-seq disclosed a highly activated TME-related signature in OV. Cancer cell lines had significantly higher SH2D1A mRNA expression than normal ovarian epithelial cells. We observed that SH2D1A knockdown in 2 ovarian cancer cell lines (OVCAR3 and SKOV3) reduced migration and proliferation through a series of in-vitro experiments. Conclusion TME-associated genes were efficient in ovarian cancer molecular subtyping. A TME-based prognosis model was constructed for vigorous prognostic stratification efficacy across multiple datasets. Moreover, we identified a pivotal role of SH2D1A in promoting proliferation and migration in ovarian cancer.
Collapse
Affiliation(s)
- Hongrui Guo
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - liwen Zhang
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Huancheng Su
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaolin Yang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Lei
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaoli Li
- Department of Gynecology, The Children's Hospital of Shanxi, Taiyuan, 030001, China
| | - Sanyuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xinglin Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Gene Profile Expression Related to Type I Interferons in HT-29 Cells Exposed to Cryptosporidium parvum. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.63071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Kozireva S, Rudevica Z, Baryshev M, Leonciks A, Kashuba E, Kholodnyuk I. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program. Viruses 2018; 10:v10050239. [PMID: 29751565 PMCID: PMC5977232 DOI: 10.3390/v10050239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/19/2022] Open
Abstract
CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV) infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL) tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.
Collapse
Affiliation(s)
- Svetlana Kozireva
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Zhanna Rudevica
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Mikhail Baryshev
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| | - Ainars Leonciks
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str k-1, 1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 16 Nobelsväg, Box 280, 171 77 Stockholm, Sweden.
- R.E. Kavetsky Institute of Experimental Pathology, Oncology, and Radiobiology, NASU, 45 Vasylkivska str, 03022 Kyiv, Ukraine.
| | - Irina Kholodnyuk
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, 5 Ratsupites Str, 1067 Riga, Latvia.
| |
Collapse
|
5
|
Yoon H, Ko YH. LMP1+SLAMF1high cells are associated with drug resistance in Epstein-Barr virus-positive Farage cells. Oncotarget 2018; 8:24621-24634. [PMID: 28445949 PMCID: PMC5421874 DOI: 10.18632/oncotarget.15600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
How Epstein-Barr virus (EBV) affects the clinical outcome of EBV-positive diffuse large B-cell lymphoma (DLBCL) remains largely unknown. The viral oncogene LMP1 is at the crux of tumorigenesis and cell survival. Therefore, we examined the association between LMP1high cells drug resistance. We first assessed SLAMF1 as a surrogate marker for LMP1high cells. LMP1 and its target gene CCL22 were highly expressed in SLAMF1high Farage cells. These cells survived longer following treatment with a combination of cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP). Genes associated with interferon-alpha, allograft rejection, NF-κB and STAT3 were also overexpressed in the surviving Farage cells. Specifically, CHOP treatment increased IL10, LMP1 and pSTAT3 expression levels in a dose-dependent fashion. Addition of exogenous IL4 greatly increased the levels of LMP1 and pSTAT3, which rendered the Farage cells more resistant to CHOP by up-regulating the anti-apoptotic genes BCL-XL and MCL1. The Farage cells were sensitive to Velcade and STAT3, 5, and 6 inhibitors. Inhibition of NF-κB and STAT3, in combination with CHOP, decreased LMP1 levels and effectively induced cell death in the Farage cells. We suggest that LMP1high cells are responsible for the poor drug response of EBV+ DLBCL and that perturbation of the NF-κB and STAT signaling pathways increases toxicity in these cells.
Collapse
Affiliation(s)
- Heejei Yoon
- Clinical Research Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Klein E, Nagy N, Rasul E. Modification of cell differentiation, one of the mechanisms in the surveillance of malignancy. Cancer Immunol Res 2015; 3:97-102. [PMID: 25660552 DOI: 10.1158/2326-6066.cir-14-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most humans carry the potentially life-endangering Epstein-Barr virus (EBV). The immediate danger after infection is imposed by proliferation of the B cells that carry the viral genome. Although a number of different cell types can be infected with EBV, B lymphocytes are exceptionally sensitive; they express a set of virus-encoded proteins, which collaborate with host proteins to induce proliferation. This phenomenon can be demonstrated in vitro with experimentally infected B cells. These viral genes are expressed only in B lymphocytes and are restricted to a defined differentiation stage. This limitation is of high importance for the maintenance of the controlled EBV-carrier state of humans. The emergence of EBV-induced B-cell malignancies is counteracted by highly efficient immunologic mechanisms. Recognition of EBV-transformed immunoblasts in an MHC class I-restricted manner by cytotoxic CD8 T cells and, to a lesser extent, by CD4 T cells, is thought to play the major role. The in vitro experimental results are in accordance with the emergence of EBV(+) B-cell malignancies in immunosuppressive conditions. In this Masters primer, we emphasize that in addition to eliminating B cells that carry the virus genome, the regulatory circuit of the immune response also operates in surveillance, particularly in the early phase of infection. This mechanism involves T-cell-mediated regulation of B-cell differentiation. Because of the strict dependence of the viral growth program on the expression of host cell factors, altering the differentiation state can curb the proliferation of B cells that harbor the viral genome.
Collapse
Affiliation(s)
- Eva Klein
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden.
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Eahsan Rasul
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Takeda S, Kanbayashi D, Kurata T, Yoshiyama H, Komano J. Enhanced susceptibility of B lymphoma cells to measles virus by Epstein-Barr virus type III latency that upregulates CD150/signaling lymphocytic activation molecule. Cancer Sci 2014; 105:211-8. [PMID: 24238277 PMCID: PMC4317819 DOI: 10.1111/cas.12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023] Open
Abstract
Measles virus (MV) is one of the candidates for the application of oncolytic virotherapy (OVT). Although an advanced clinical study has been reported on a T-cell lymphoma, the potential of MV OVT against B-cell lymphomas remains to be clarified. We found that an EBV-transformed B lymphoblastoid cell line, a model for diffuse large B-cell lymphoma, and EBV-positive Burkitt's lymphoma cells bearing type III latency were highly susceptible to the cytolysis induced by an MV vaccine strain CAM-70. As analyzed by EBV-positive and -negative counterparts of the same cytogenetic background, type III EBV latency, not type I, was shown to augment the susceptibility of B lymphoma cells to MV-induced cytolysis. Cell surface levels of CD150/signaling lymphocytic activation molecule, a receptor of MV, were upregulated in B lymphoma cell lines with type III EBV latency by 3.8-fold, on average. The cytolytic activity of CD150-tropic WT MV was akin to that of CD46- and CD150-tropic CAM-70, suggesting that CD150 is critical for the susceptibility to MV-induced cytolysis. Among EBV-encoded genes, latent membrane protein 1 was responsible for the CD150 upregulation. It was notable that the majority of B lymphoma cell lines of type III EBV latency showed higher susceptibility to the non-Edmonston-derived CAM-70 than to the Edmonston-derived Schwarz strain. This is the first report indicating the potential of non-Edmonston MV strain for the application of OVT. Furthermore, a cellular regulator of MV replication was implicated that functions in a vaccine strain-specific fashion. Altogether, the MV OVT should serve as an alternative therapy against EBV-positive diffuse large B-cell lymphoma with type III EBV latency.
Collapse
Affiliation(s)
- Satoshi Takeda
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | |
Collapse
|
8
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein G, Klein E, Nagy N. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP. Cell Cycle 2012; 11:4563-9. [PMID: 23165210 DOI: 10.4161/cc.22810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lack of functional SAP protein, due to gene deletion or mutation, is the cause of X-linked lymphoproliferative disease (XLP), characterized by functionally impaired T and NK cells and a high risk of lymphoma development. We have demonstrated earlier that SAP has a pro-apoptotic function in T and B cells. Deficiency of this function might contribute to the pathogenesis of XLP. We have also shown that SAP is a target of p53 in B cell lines. In the present study, we show that activated primary T cells express p53, which induces SAP expression. p53 is functional as a transcription factor in activated T cells and induces the expression of p21, PUMA and MDM2. PARP cleavage in the late phase of activation indicates that T cells expressing high levels of SAP undergo apoptosis. Modifying p53 levels using Nutlin-3, which specifically dissociates the MDM2-p53 interaction, was sufficient to upregulate SAP expression, indicating that SAP is a target of p53 in T cells. We also demonstrated p53's role as a transcription factor for SAP in activated T cells by ChIP assays. Our result suggests that p53 contributes to T cell homeostasis through the induction of the pro-apoptotic SAP. A high level of SAP is necessary for the activation-induced cell death that is pivotal in termination of the T cell response.
Collapse
Affiliation(s)
- Harsha S Madapura
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Klein G, Klein E, Kashuba E. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396:67-73. [PMID: 20494113 DOI: 10.1016/j.bbrc.2010.02.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Collapse
Affiliation(s)
- George Klein
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S17177 Stockholm, Sweden.
| | | | | |
Collapse
|
10
|
Nagy N, Klein E. Deficiency of the proapoptotic SAP function in X-linked lymphoproliferative disease aggravates Epstein-Barr virus (EBV) induced mononucleosis and promotes lymphoma development. Immunol Lett 2010; 130:13-8. [DOI: 10.1016/j.imlet.2010.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Nagy N, Klein G, Klein E. To the genesis of Burkitt lymphoma: Regulation of apoptosis by EBNA-1 and SAP may determine the fate of Ig-myc translocation carrying B lymphocytes. Semin Cancer Biol 2009; 19:407-10. [DOI: 10.1016/j.semcancer.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 01/23/2023]
|
12
|
Abstract
Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional so-called spontaneous tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their nontransformed counterparts. For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency, and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of preexisting anti-measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in 50 years of human experience, reversion of attenuated measles to a wild-type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.
Collapse
Affiliation(s)
- Stephen J. Russell
- Mayo Clinic Department of Molecular Medicine, 200 1 Street SW, Rochester, MN 55905, Phone: 507-824-8384, Fax: 507-284-8388,
| | - Kah Whye Peng
- Mayo Clinic Department of Molecular Medicine, 200 1Street SW, Rochester, MN 55905, Phone: 507-824-8357, Fax: 507-284-8388,
| |
Collapse
|
13
|
Birmann BM, Breen EC, Stuver S, Cranston B, Martínez-Maza O, Falk KI, Okayama A, Hanchard B, Mueller N, Hisada M. Population differences in immune marker profiles associated with human T-lymphotropic virus type I infection in Japan and Jamaica. Int J Cancer 2008; 124:614-21. [PMID: 18989900 DOI: 10.1002/ijc.24012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The natural history of human T-lymphotropic virus type I (HTLV-I) has been shown to differ markedly by geographic area. The differences include contrasting patterns of risk of adult T-cell lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), which may be due in part to differences in host immune response to infection. To characterize variations in host immunity across populations, we compared serologic immune marker patterns in HTLV-I-endemic populations in Japan and Jamaica. We matched 204 participants with archived blood from the Miyazaki Cohort Study (Japan) and the Food Handlers Study (Jamaica)-i.e., 51 HTLV-I-positive ("carriers") and 51 HTLV-I-negative individuals ("noncarriers") from each population-by age, sex and blood collection year. We compared plasma concentrations of markers of T-cell-mediated (antigen-specific) and nonspecific immunity using regression models and correlation coefficients. Compared to Jamaican HTLV-I noncarriers, Japanese noncarriers had higher covariate-adjusted mean levels of T-cell activation markers, including antibody to Epstein-Barr virus nuclear antigen-1 (reciprocal titer 27 vs. 71, respectively, p=0.005), soluble interleukin-2 receptor-alpha (477 vs. 623 pg/mL, p=0.0008) and soluble CD30 (34 vs. 46 U/mL, p=0.0001) and lower levels of C-reactive protein (1.1 vs. 0.43 microg/mL, p=0.0004). HTLV-I infection was associated with activated T-cell immunity in Jamaicans but with diminished T-cell immunity in Japanese persons. The observed population differences in background and HTLV-I-related host immunity correspond closely to the divergent natural histories of infection observed among HTLV-I carriers in Japan and Jamaica and corroborate a role for host immune status in the contrasting patterns of ATL and HAM/TSP risk.
Collapse
Affiliation(s)
- Brenda M Birmann
- Department of Epidemiology, Brigham and Women's Hospital and Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ostrakhovitch EA, Wang Y, Li SSC. SAP binds to CD22 and regulates B cell inhibitory signaling and calcium flux. Cell Signal 2008; 21:540-50. [PMID: 19150402 DOI: 10.1016/j.cellsig.2008.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 01/25/2023]
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein (SAP or SH2D1A) is an important regulator of immune function which, when mutated or deleted, causes the X-linked lymphoproliferative syndrome (XLP). Because B cell lymphoma is a major phenotype of XLP, it is important to understand the function of SAP in B cells. Here we report that SAP is expressed endogenously in mouse splenic B cells, is inducibly expressed in the human BJAB cells, and co-localizes and interacts with CD22. We also show that SAP binding to the inhibitory immunoreceptor CD22 regulates calcium mobilization in B cells. Moreover, forced expression of SAP leads to constitutive CD22 tyrosine phosphorylation and decreased Ca(2+) response in B cells. Biochemical analysis reveals that, in response to IgM cross-linking, the phosphorylation of Syk, Blnk, or PLCgamma2 and their interactions with one another were either diminished or completely abolished in SAP-expressing cells compared to cells that lack SAP. Collectively our work identifies a novel role for SAP in B cells and extends its function to inhibitory immunoreceptor signaling and calcium mobilization.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|
15
|
Ostrakhovitch EA, Li SSC. The role of SLAM family receptors in immune cell signaling. Biochem Cell Biol 2007; 84:832-43. [PMID: 17215871 DOI: 10.1139/o06-191] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The signaling lymphocyte-activating molecule (SLAM) family immunoreceptors are expressed in a wide array of immune cells, including both T and B lymphocytes. By virtue of their ability to transduce tyrosine phosphorylation signals through the so-called ITSM (immunoreceptor tyrosine-based switch motif) sequences, they play an important part in regulating both innate and adaptive immune responses. The critical role of the SLAM immunoreceptors in mediating normal immune reactions was highlighted in recent findings that SAP, a SLAM-associated protein, modulates the activities of various immune cells through interactions with different members of the SLAM family expressed in these cells. Importantly, mutations or deletions of the sap gene in humans result in the X-linked lymphoproliferative syndrome. In this review, we summarize current knowledge and survey the latest developments in signal transduction events triggered by the activation of SLAM family receptors in different cell types.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
16
|
Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M, Scholtz B, Mooney J, Lee CH, Shin MS, Rajnavölgyi E, Schatzle J, Morse HC, Terhorst C, Lanyi A. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Immunogenetics 2006; 58:15-25. [PMID: 16425036 DOI: 10.1007/s00251-005-0056-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/20/2005] [Indexed: 12/28/2022]
Abstract
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Antigens, CD/analysis
- Cells, Cultured
- Chromosomes, Artificial, Bacterial
- Expressed Sequence Tags
- Glycoproteins/metabolism
- Immunoglobulins/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Molecular Sequence Data
- Phosphorylation
- Protein Binding/physiology
- Rats
- Receptors, Cell Surface
- Sequence Homology, Amino Acid
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family Member 1
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- src Homology Domains/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Silvia Calpe
- Division of Immunology BIDMC, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chuang HC, Lay JD, Hsieh WC, Wang HC, Chang Y, Chuang SE, Su IJ. Epstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome. Blood 2005; 106:3090-6. [PMID: 16002423 DOI: 10.1182/blood-2005-04-1406] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The primary infection of Epstein-Barr virus (EBV) may result in fatal infectious mononucleosis or hemophagocytic syndrome (HPS) in 2 diseases; that is, X-linked lymphoproliferative disorder (XLP) and hemophagocytic lymphohistiocytosis (HLH). XLP is linked to mutations of the SAP/SH2D1A gene with dysregulated T-cell activation in response to EBV infection. Patients with sporadic HLH, however, usually have no mutation of the SAP/SH2D1A gene, and EBV latent membrane protein-1 (LMP1) can up-regulate Th1 cytokines in EBV-infected T cells. Since both diseases share common manifestations of HPS, it is important to clarify whether a cross-talk exists between signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) and LMP1-mediated pathways to explain the common pathogenesis of HPS. In this study, no mutation of the SAP/SH2D1A gene at exon 2/3 was detected in 7 HLH cases. Interestingly, EBV LMP1 could transcriptionally inhibit the expression of SAP/SH2D1A and activate downstream molecules ERK and interferon-gamma (IFN-gamma). LMP1-mediated SAP/ERK/IFN-gamma signals appear to act via the TNF receptor-associated factor (TRAF)2,5/nuclear factor kappaB (NF-kappaB) pathway, since dominant-negative TRAF2/5 and NF-kappaB inhibitor could rescue SAP expression and downregulate IFN-gamma. Although HLH is genetically distinct from XLP, our data suggest that both diseases share a common signal pathway, through either the mutation or LMP1-mediated suppression of the SAP gene, leading to overt T-cell activation and enhanced Th1 cytokine secretion in response to EBV infection.
Collapse
Affiliation(s)
- Huai-Chia Chuang
- Division of Clinical Research, National Health Research Institutes, 12C, 138, Sheng-Li Rd, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG. Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 2005; 203:180-99. [PMID: 15661030 DOI: 10.1111/j.0105-2896.2005.00230.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-linked lymphoproliferative disease (XLP) is an inherited immune defect caused by mutations in the Src homology 2 domain-containing gene 1A, which encodes the adapter protein, signaling lymphocytic activation molecule (SLAM)-associated protein (SAP). SAP is expressed in T cells, natural killer (NK) cells, and NKT cells, where it binds to the cytoplasmic domain of the surface receptor SLAM (CD150) and the related receptors, 2B4 (CD244), CD84, Ly9 (CD229), NK-T-B-antigen, and CD2-like receptor-activating cytotoxic T cells. SAP also binds to the Src family tyrosine kinase Fyn and recruits it to SLAM, which leads to the generation of downstream phosphotyrosine signals. While the roles of the SLAM family receptors are only beginning to be understood, experiments suggest that these molecules regulate important aspects of lymphocyte function, such as proliferation, cytokine secretion, cytotoxicity, and antibody production. Thus, in XLP patients who lack functional SAP, the SLAM family receptors may not signal properly. This property likely contributes to the phenotypes of XLP, including fulminant infectious mononucleosis, lymphoma, and hypogammaglobulinemia. Further studies of SAP and the SLAM family receptors will provide insights into XLP and elucidate the signaling events regulating lymphocyte ontogeny and function.
Collapse
Affiliation(s)
- Kim E Nichols
- Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
19
|
Morra M, Barrington RA, Abadia-Molina AC, Okamoto S, Julien A, Gullo C, Kalsy A, Edwards MJ, Chen G, Spolski R, Leonard WJ, Huber BT, Borrow P, Biron CA, Satoskar AR, Carroll MC, Terhorst C. Defective B cell responses in the absence of SH2D1A. Proc Natl Acad Sci U S A 2005; 102:4819-23. [PMID: 15774582 PMCID: PMC555707 DOI: 10.1073/pnas.0408681102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Indexed: 11/18/2022] Open
Abstract
More than half of patients with X-linked lympho-proliferative disease, which is caused by a defect in the intracellular adapter protein SH2D1A, suffer from an extreme susceptibility to Epstein-Barr virus. One-third of these patients, however, develop dysgammaglobulenemia without an episode of severe mononucleosis. Here we show that in SH2D1A(-/-) mice, both primary and secondary responses of all Ig subclasses are severely impaired in response to specific antigens. Because germinal centers were absent in SH2D1A(-/-) mice upon primary immunization, and because SH2D1A was detectable in wt germinal center B cells, we examined whether SH2D1A(-/-) B cell functions were impaired. Using the adoptive cotransfer of B lymphocytes from hapten-primed SH2D1A(-/-) mice with CD4(+) T cells from primed wt mice into irradiated wt mice provided evidence that signal transduction events controlled by SH2D1A are essential for B cell activities resulting in antigen specific IgG production. Defects in naive SH2D1A(-/-) B cells became evident upon cotransfer with non-primed wt CD4(+) cells into Rag2(-/-) recipients. Thus, both defective T and B cells exist in the absence of SH2D1A, which may explain the progressive dysgammaglobulinemia in a subset of X-linked lympho-proliferative disease patients without involvement of Epstein-Barr virus.
Collapse
Affiliation(s)
- Massimo Morra
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nagy N, Takahara M, Nishikawa J, Bourdon JC, Kis LL, Klein G, Klein E. Wild-type p53 activates SAP expression in lymphoid cells. Oncogene 2004; 23:8563-70. [PMID: 15378026 DOI: 10.1038/sj.onc.1207908] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SAP is an adaptor molecule with one SH2 domain and it is expressed in activated T and NK cells, where it is required for the appropriate signaling from the SLAM family of surface receptors. Deleted or mutated SAP genes that encode functionally defective protein are associated with the X-linked lymphoproliferative disease (XLP). This primary immunodeficiency is characterized by extreme sensitivity to Epstein-Barr virus (EBV) infection, dysgammaglobulinemia and a high rate of lymphoma development. The vigorous T- and B-cell proliferation that follows EBV infection and the high incidence of lymphomas (30%) in XLP patients might reflect functional defects in cell cycle and/ or apoptosis control. Our experiments show that SAP is a target of p53. In Burkitt lymphoma (BL) lines transfected with a temperatur-sensitive (ts) p53, SAP mRNA and protein expression was dependent on wild-type (wt) p53. Activation of endogenous wt p53 in BLs and lymphoblastoid cell lines led to the induction of SAP and this was inhibited by the specific p53 inhibitor pifithrin-alpha. Cell lines that carried mutant p53 did not express SAP under similar conditions. Moreover, we have shown binding of wt p53 to the promoter region of SAP by ChIP assay. Our results suggest that SAP contributes to the execution of some p53 functions.
Collapse
Affiliation(s)
- N Nagy
- Microbiology and Tumor Biology Center, Karolinska Institute, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mikhalap SV, Shlapatska LM, Yurchenko OV, Yurchenko MY, Berdova GG, Nichols KE, Clark EA, Sidorenko SP. The adaptor protein SH2D1A regulates signaling through CD150 (SLAM) in B cells. Blood 2004; 104:4063-70. [PMID: 15315965 DOI: 10.1182/blood-2004-04-1273] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD150 receptor is expressed on activated T and B lymphocytes, dendritic cells, and monocytes. A TxYxxV/I motif in the CD150 cytoplasmic tail can bind different SH2-containing molecules, including tyrosine and inositol phosphatases, Src family kinases, and adaptor molecules. To analyze CD150-initiated signal transduction pathways, we used DT40 B-cell sublines deficient in these molecules. CD150 ligation on DT40 transfectants induced the extracellular signal-regulated kinase (ERK) pathway, which required SH2-containing inositol phosphatase (SHIP) but not SH2 domain protein 1A (SH2D1A). CD150-mediated Akt phosphorylation required Syk and SH2D1A, was negatively regulated by Lyn and Btk, but was SHIP independent. Lyn directly phosphorylated Y327 in CD150, but the Akt pathway did not depend on CD150 tyrosine phosphorylation and CD150-SHP-2 association. Analysis of CD150 and SH2D1A expression in non-Hodgkin and Hodgkin lymphomas revealed stages of B-cell differentiation where these molecules are expressed alone or coexpressed. Signaling studies in Hodgkin disease cell lines showed that CD150 is linked to the ERK and Akt pathways in neoplastic B cells. Our data support the hypothesis that CD150 and SH2D1A are coexpressed during a narrow window of B-cell maturation and SH2D1A may be involved in regulation of B-cell differentiation via switching of CD150-mediated signaling pathways.
Collapse
Affiliation(s)
- Svitlana V Mikhalap
- Signal Transduction Laboratory, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, 45 Vasylkivska St, Kiev 03022, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Nishikawa J, Kis LL, Liu A, Zhang X, Takahara M, Bandobashi K, Kiss C, Nagy N, Okita K, Klein G, Klein E. Upregulation of LMP1 expression by histone deacetylase inhibitors in an EBV carrying NPC cell line. Virus Genes 2004; 28:121-8. [PMID: 14739656 DOI: 10.1023/b:viru.0000012268.35297.ff] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES In about 60% of Epstein-Barr virus (EBV) carrying nasopharyngeal carcinomas (NPC) LMP1 expressing cells can be detected. The frequency of LMP1 positive cells and the expression level varies from cell to cell in the different tumors. Cell lines derived from EBV positive NPCs loose the virus during in vitro culture. The in vitro infected NPC cell line TWO3-EBV used in our study carries the neomycin-resistance gene containing EBV and expresses low level of LMP1. With this cell line it was thus possible to study the regulation of LMP1 expression by modification of chromatin acetylation state. STUDY DESIGN The TWO-EBV cell line was treated with n -butyrate (NB) or trichostatin A (TSA). RESULTS Shown by immunoblotting, the LMP1 level was elevated in the treated samples. Already 2 h after TSA exposure LMP1 expression was higher and it increased up to 24 h. Immunofluorescence staining showed that nearly all cells were LMP1 positive. Neither EBNA2 nor BZLF1 were induced. Tested first 2 h after the treatment, acetylated histone H3 and H4 were already detectable, and their level increased up to 8 h. Chromatin immunoprecipitation (ChIP) verified that the LMP1-promoter (LMP1p) (ED-L1) was acetylated after TSA treatment. CONCLUSION EBV carrying epithelial cells do not express EBNA-2. We showed that LMP1 expression was upregulated by histone deacetylase inhibitors in an in vitro infected, EBV carrier NPC cell line.
Collapse
Affiliation(s)
- Jun Nishikawa
- Microbiology and Tumor Biology Center, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kis LL, Nishikawa J, Takahara M, Nagy N, Matskova L, Takada K, Elmberger PG, Ohlsson A, Klein G, Klein E. In vitro EBV-infected subline of KMH2, derived from Hodgkin lymphoma, expresses only EBNA-1, while CD40 ligand and IL-4 induce LMP-1 but not EBNA-2. Int J Cancer 2004; 113:937-45. [PMID: 15514968 DOI: 10.1002/ijc.20654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In about 50% of classical Hodgkin lymphomas, the Hodgkin/Reed Sternberg (H/RS) cells carry Epstein-Barr virus (EBV). The viral gene expression in these cells is restricted to EBNA-1, EBERs, LMP-1 and LMP-2 (type II latency). The origin of H/RS cells was defined as crippled germinal center B cells that escaped apoptosis. In spite of numerous attempts, only few typical Hodgkin lymphoma (HL) lines have been established. This suggests that the cells require survival factors that they receive in the in vivo microenvironment. If EBV is expected to drive the cells for growth in culture, the absence of EBNA-2 may explain the incapacity of H/RS cells for in vitro proliferation. In EBV carrying B lymphocytes, functional EBNA-2 and LMP-1 proteins are required for in vitro growth. For analysis of the interaction between EBV and the H/RS cells, we infected the CD21-positive HL line KMH2 with the B958 and Akata viral strains. Only EBNA-1 expression was detected in a few cells in spite of the fact that all cells could be infected. Using a neomycin-resistance-tagged recombinant EBV strain (Akata-Neo) we established an EBV-positive subline that was carried on selective medium. In contrast to the type II EBV expression pattern of H/RS cells in vivo, the KMH2 EBV cells did not express LMP-1. The EBV expression pattern could be modified in this type I subline. LMP-1 could be induced by the histone deacetylase inhibitors TSA and n-butyrate, by 5-AzaC, a demethylating agent, and by phorbol ester. None of these treatments induced EBNA-2. Importantly, exposure to CD40 ligand and IL-4 induced LMP-1 without EBNA-2 expression and lytic replication. The KMH2 EBV cells expressed LMP-2A, but not LMP-2B mRNAs. This result is highly relevant for the type II expression pattern of H/RS cells in vivo, since these stimuli can be provided by the surrounding activated T lymphocytes.
Collapse
Affiliation(s)
- Loránd L Kis
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nishikawa J, Kiss C, Imai S, Takada K, Okita K, Klein G, Szekely L. Upregulation of the truncated basic hair keratin 1(hHb1-?N) in carcinoma cells by Epstein-Barr virus (EBV). Int J Cancer 2003; 107:597-602. [PMID: 14520698 DOI: 10.1002/ijc.11289] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate the role of Epstein-Barr virus (EBV) in epithelial tumors, we compared the expression pattern of cellular genes in the EBV-infected gastric carcinoma cell line, NU-GC-3, and its uninfected control. Subtractive suppression hybridization (SSH) was combined with high-density DNA array screening to identify differentially expressed genes. We have discovered that EBV infection upregulated a truncated variant of human basic hair keratin 1 (hHb1-DeltaN), a gene that had previously been identified in metastatic breast carcinoma. We verified the differential expression of hHb1-DeltaN in 3 independent EBV-positive and -negative NU-GC-3 clones by Northern blotting. We further verified the EBV-dependent upregulation of hHb1-DeltaN in 3 other carcinoma cell lines (AGS, TWO3 and DLD1) by RT-PCR. Inhibition of CpG methylation by 5-Aza-CdR induced hHb1-DeltaN mRNA expression in the EBV-negative clones but did not alter the expression in the EBV-positive clones. The expression of hHb1-DeltaN protein was detectable by immunofluorescence and Western blotting in EBV-positive but not in EBV-negative NU-GC-3 clones after proteasome inhibitor (MG132) treatment. hHb1-DeltaN protein formed fibrous structures in the cytoplasm and accumulated in distinct nuclear bodies in the euchromatic areas of the cell nucleus. We suggest that the unstable hHb1-DeltaN protein may inhibit some of the functions of the keratin cytoskeleton and/or interfere with transcription regulation. It also may establish a link between EBV and the low differentiated or anaplastic status of the carcinomas that carry the virus.
Collapse
Affiliation(s)
- Jun Nishikawa
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Kis LL, Nagy N, Klein G, Klein E. Expression of SH2D1A in five classical Hodgkin's disease-derived cell lines. Int J Cancer 2003; 104:658-61. [PMID: 12594824 DOI: 10.1002/ijc.10986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Src homology 2 domain protein 1A (SH2D1A) is a small, 128-amino acid protein consisting of a single SH2 domain; it is probably involved in signal regulation. It is expressed in activated T and natural killer (NK) cells, but not in B lymphocytes. It was discovered in studies on the rare hereditary condition X-linked lymphoproliferative disease (XLP). Individuals with this condition either lack or carry an altered protein. The serious symptoms (fatal mononucleosis) present almost exclusively at the first encounter with Epstein-Barr virus (EBV). The absence of SH2D1A in B cells, which are the targets of EBV, has to be reconciled with this clinical situation. In an earlier search for B lymphocytes expressing SH2D1A, we detected it in EBV-carrying type I Burkitt's lymphoma (BL) lines. We now show SH2D1A in 5 EBV-negative classical Hodgkin's disease (HD)-derived cell lines. Two lines belong to the T lineage and 3 to the B lineage. One B-HD line, which originated from nodular lymphocyte-predominant Hodgkin's lymphoma and differed in phenotype, was SH2D1A-negative. This finding is in accordance with the previously reported abundant SH2D1A mRNA in Hodgkin and Reed-Sternberg (HRS) cells. We thus found SH2D1A expression in lines of malignant origin assigned to the B lineage. Its presence in HRS cells may lead us closer to an understanding of the pathophysiology of the serious syndrome connected with EBV infection in XLP patients, because HRS-like cells have been detected in the lymphoid tissue of patients with infectious mononucleosis. It is likely therefore that in addition to the demonstrated functional defect of T and NK cells imposed by the SH2D1A mutation, the behavior of certain EBV-infected B lymphocytes is also modified.
Collapse
Affiliation(s)
- Loránd L Kis
- Microbiology and Tumor Biology Center (MTC), Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|