1
|
Ayoub NM, Sardiah S, Al-Share QY, Alkader MS. Exploring angiogenic pathways in breast cancer: Clinicopathologic correlations and prognostic implications based on gene expression profiles from a large-scale genomic dataset. PLoS One 2024; 19:e0310557. [PMID: 39302921 DOI: 10.1371/journal.pone.0310557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Angiogenesis inhibitors targeting VEGF, or its receptors have consistently produced disappointing clinical outcomes in breast cancer. Therefore, there is an urgent need to explore alternative angiogenic pathways in breast cancer. This study aimed to describe the gene expression of pivotal pro-angiogenic genes in breast cancer and to further analyze the associations with the clinicopathologic tumor features, prognostic factors, and overall survival. Such findings would expand the understanding of the role of different angiogenic pathways in breast cancer pathogenesis and identify patients at risk of more aggressive disease who could be eligible for intense treatment regimens. Additionally, exploring angiogenic pathways helps identify new potential drug targets for breast cancer. METHODS The mRNA expression levels for eight pro-angiogenic genes [VEGFA, HGF, FGF1, FGF2, ANGPT1, ANGPT2, PDGFA, and PDGFB] were obtained from the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset available at cBioPortal public domain. Pertinent demographic and tumor information were retrieved. RESULTS VEGFA and ANGPT2 genes had the highest expression levels with average mRNA log intensities of 7.18±0.7 and 7.11±0.53, respectively. VEGFA expression was not correlated with the expression of other pro-angiogenic genes, the clinicopathologic tumor features, and the overall survival of patients. FGF1, ANGPT1, and PDGFA mRNA levels were negatively correlated with the age of patients at diagnosis. The expression of FGF1 and FGF2 correlated inversely with tumor size and the Nottingham Prognostic Index (p = 0.03 and p = 0.002, respectively). Expression of HGF was significantly associated with advanced tumor stage (p<0.05). Expression of ANGPT1 and ANGPT2 was associated with hormone receptor-negative status and the non-luminal subtypes. PDGFB expression was significantly higher in patients with high-grade disease and HER2-positive status. Patients with high expression status of ANGPT2 and PDGFB had significantly reduced overall survival compared to those with low expression levels of these genes (p = 0.004 and p = 0.0001, respectively). CONCLUSIONS In this dataset of patients with breast cancer, the expression levels of 8 different pro-angiogenic genes revealed remarkable differences in terms of their association with clinicopathologic tumor characteristics and prognosis. The expression of ANGPTs and PDGFs was associated with adverse tumor features, worse prognosis, and reduced survival in patients. Targeting ANGPTs and PDGF pathways could provide new insights for effective anti-angiogenic drugs in breast cancer.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Salam Sardiah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Qusai Y Al-Share
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad S Alkader
- Department of Medical Oncology, Military Cancer Center, Jordanian Royal Medical Services, Amman, Jordan
| |
Collapse
|
2
|
Roweth HG, Becker IC, Malloy MW, Clarke EM, Munn SA, Kumar PL, Aivasovsky I, Tray K, Schmaier AA, Battinelli EM. Platelet Angiopoietin-1 Protects Against Murine Models of Tumor Metastasis. Arterioscler Thromb Vasc Biol 2024; 44:2024-2037. [PMID: 39051116 PMCID: PMC11335083 DOI: 10.1161/atvbaha.124.321189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND In addition to their fundamental roles in preserving vascular integrity, platelets also contribute to tumor angiogenesis and metastasis. However, despite being a reservoir for angiogenic and metastatic cytokines, platelets also harbor negative regulators of tumor progression. Angpt1 (angiopoietin-1) is a cytokine essential for developmental angiogenesis that also protects against tumor cell metastasis through an undefined mechanism. Although activated platelets release Angpt1 from α-granules into circulation, the contributions of platelet Angpt1 to tumor growth, angiogenesis, and metastasis have not been investigated. METHODS Using cytokine arrays and ELISAs, we first compared platelet Angpt1 levels in breast and melanoma mouse tumor models to tumor-free controls. We then assessed tumor growth and metastasis in mice lacking megakaryocyte and platelet Angpt1 (Angpt1Plt KO). The spontaneous metastasis of mammary-injected tumor cells to the lungs was quantified using RT-PCR (reverse transcription-polymerase chain reaction). The lung colonization of intravenously injected tumor cells and tumor cell extravasation were determined using fluorescent microscopy and flow cytometry. RESULTS Platelet Angpt1 is selectively upregulated in the PyMT (polyoma middle tumor antigen) breast cancer mouse model, and platelets are the principal source of Angpt1 in blood circulation. While primary tumor growth and angiogenesis were unaffected, Angpt1Plt KO mice had both increased spontaneous lung metastasis and tumor cell lung colonization following mammary or intravenous injection, respectively. Although platelet Angpt1 did not affect initial tumor cell entrapment in the lungs, Angpt1Plt KO mice had increased tumor cell retention and extravasation. Serum from Angpt1Plt KO mice increased endothelial permeability and reduced VE (vascular endothelial)-cadherin expression at endothelial junctions compared with serum from control mice (Angpt1WT). CONCLUSIONS Platelets provide an intravascular source of Angpt1 that restrains tumor metastasis by preserving the lung microvasculature to limit tumor cell extravasation.
Collapse
MESH Headings
- Animals
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-1/blood
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Female
- Lung Neoplasms/secondary
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/blood
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Mice, Knockout
- Neovascularization, Pathologic
- Mice, Inbred C57BL
- Melanoma, Experimental/pathology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/blood
- Melanoma, Experimental/secondary
- Melanoma, Experimental/genetics
- Cell Line, Tumor
- Mice
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/blood
- Tumor Burden
- Disease Models, Animal
Collapse
Affiliation(s)
- Harvey G. Roweth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Isabelle C. Becker
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, MA (I.C.B.)
| | - Michael W. Malloy
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Emily M. Clarke
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Sophie A. Munn
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
| | - Priya L. Kumar
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| | - Ivan Aivasovsky
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Kobe Tray
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Alec A. Schmaier
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA (I.A., K.T., A.A.S.)
| | - Elisabeth M. Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (H.G.R., M.W.M., E.M.C., S.A.M., P.L.K., E.M.B.)
- Harvard Medical School, Boston, MA (H.G.R., I.C.B., P.L.K., I.A., A.A.S., E.M.B.)
| |
Collapse
|
3
|
Zhang J, Su J, Zhou Y, Lu J. Evaluating the efficacy and safety of trebananib in treating ovarian cancer and non-ovarian cancer patients: a meta-analysis and systematic review. Expert Rev Anticancer Ther 2024; 24:881-891. [PMID: 38970210 DOI: 10.1080/14737140.2024.2377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Due to its anti-angiogenic properties, trebananib is frequently employed in the treatment of cancer patients, particularly those with ovarian cancer. We conducted a meta-analysis to assess the efficacy and safety profile of trebananib in combination with other drugs for treating both ovarian and non-ovarian cancer patients. METHODS Our search encompassed PubMed, Medline, Cochrane, and Embase databases, with a focus on evaluating study quality. Data extraction was conducted from randomized controlled trials (RCTs), and RevMan 5.3 facilitated result analysis. RESULTS Combining trebananib with other drugs extended progression-free survival (PFS) [HR 0.81, (95%CI: 0.65, 0.99), p = 0.04] and overall survival (OS) [HR 0.88, (95%CI: 0.79, 1.00), p = 0.04] in ovarian cancer patients. Ovarian cancer patients exhibited a higher objective response rate (ORR) with trebananib compared to non-ovarian cancer cohorts. Moreover, the incorporation of trebananib into the standard treatment regimen for malignant tumors did not significantly elevate drug-related adverse events [RR 1.05, (95% CI: 1.00, 1.11), p = 0.05]. CONCLUSION Trebananib plus other drugs can improve the PFS, OS and ORR in patients with cancer, especially ovarian cancer. Our recommendation is to use trebananib plus other drugs to treat advanced cancer, and to continuously monitor and manage drug-related adverse events. REGISTRATION PROSPERO (No. CRD42023466988).
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Yeyue Zhou
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
4
|
Zhou X, LeBleu VS, Fletcher-Sananikone E, Kim J, Dai J, Li B, Wu CC, Sugimoto H, Miyake T, Becker LM, Volpert OV, Lawson E, Espinosa Da Silva C, Patel SI, Kizu A, Ehsanipour EA, Sha D, Karam JA, McAndrews KM, Kalluri R. Vascular heterogeneity of tight junction Claudins guides organotropic metastasis. NATURE CANCER 2024; 5:1371-1389. [PMID: 39289595 DOI: 10.1038/s43018-024-00813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2024] [Indexed: 09/19/2024]
Abstract
Carcinomas are associated with metastasis to specific organs while sparing others. Breast cancer presents with lung metastasis but rarely kidney metastasis. Using this difference as an example, we queried the mechanism(s) behind the proclivity for organ-specific metastasis. We used spontaneous and implant models of metastatic mammary carcinoma coupled with inflammatory tissue fibrosis, single-cell sequencing analyses and functional studies to unravel the causal determinants of organ-specific metastasis. Here we show that lung metastasis is facilitated by angiopoietin 2 (Ang2)-mediated suppression of lung-specific endothelial tight junction protein Claudin 5, which is augmented by the inflammatory fibrotic microenvironment and prevented by anti-Ang2 blocking antibodies, while kidney metastasis is prevented by non-Ang2-responsive Claudins 2 and 10. Suppression of Claudins 2 and 10 was sufficient to induce the emergence of kidney metastasis. This study illustrates the influence of organ-specific vascular heterogeneity in determining organotropic metastasis, independent of cancer cell-intrinsic mechanisms.
Collapse
Affiliation(s)
- Xunian Zhou
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Eliot Fletcher-Sananikone
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiha Kim
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianli Dai
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toru Miyake
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa M Becker
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olga V Volpert
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica Lawson
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Espinosa Da Silva
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah I Patel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akane Kizu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehsan A Ehsanipour
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Di Sha
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose Antonio Karam
- Department of Urology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Sabolová G, Špaková I, Artimovič P, Bohuš P, Rabajdová M, Mareková M. The Pivotal Role of the Key Angiogenic Factors in the Development of Endometrioid Pathologies of the Uterus and Ovary. Cancers (Basel) 2024; 16:2772. [PMID: 39199545 PMCID: PMC11352877 DOI: 10.3390/cancers16162772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
A characteristic feature of uterine pathologies is a specific change in cell metabolism, which predominantly manifests as a shift in the need for nutrients, thereby directing cells to engage in different angiogenic marker activities. Angiogenesis is one of the main signals supporting the survival and development of cells and tissues not only under physiological conditions. Therefore, it is necessary that we understand pathological hyperactivation in all uterine diseases, from endometriosis through ovarian endometrioid adenocarcinoma to malignant transformed cells of the uterine epithelium and body. This work presents the gene expression results of selected angiogenesis targets (VEGF-A, TGF-β1, ANG1/2, and HIF-1α), cell migration, and cell-cell interaction determined in vitro. Our results suggest that angiogenesis varies in the tested pathological conditions (ectopic endometriosis-12Z; ovarian endometrioid adenocarcinoma-A2780; tumors-SK-UT-1 and RL-95-2) compared to physiological angiogenesis (HME1). The differential expression of angiogenic factors may contribute (or is a contributing factor) to the observed differences to acknowledge an inherent variability in angiogenesis among cell lines. Determining the genomic phenomena responsible for processes associated with inadequate angiogenesis in the pelvic region could help us to develop individual treatment strategies and explain resistance to treatment.
Collapse
Affiliation(s)
- Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia; (G.S.); (P.A.); (M.R.); (M.M.)
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia; (G.S.); (P.A.); (M.R.); (M.M.)
| | - Peter Artimovič
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia; (G.S.); (P.A.); (M.R.); (M.M.)
| | - Peter Bohuš
- Department of Pathology, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia;
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia; (G.S.); (P.A.); (M.R.); (M.M.)
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, SK-04011 Košice, Slovakia; (G.S.); (P.A.); (M.R.); (M.M.)
| |
Collapse
|
6
|
Roesler J, Spitzer D, Jia X, Aasen SN, Sommer K, Roller B, Olshausen N, Hebach NR, Albinger N, Ullrich E, Zhu L, Wang F, Macas J, Forster MT, Steinbach JP, Sevenich L, Devraj K, Thorsen F, Karreman MA, Plate KH, Reiss Y, Harter PN. Disturbance in cerebral blood microcirculation and hypoxic-ischemic microenvironment are associated with the development of brain metastasis. Neuro Oncol 2024:noae094. [PMID: 38831719 DOI: 10.1093/neuonc/noae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/05/2024] Open
Abstract
Brain metastases (BM) constitute an increasing challenge in oncology due to their impact on neurological function, limited treatment options, and poor prognosis. BM occur through extravasation of circulating tumor cells across the blood-brain barrier. However, the extravasation processes are still poorly understood. We here propose a brain colonization process which mimics infarction-like microenvironmental reactions, that is dependent on Angiopoietin (Ang-2) and vascular endothelial growth factor (VEGF). In this study, intracardiac BM models were used, and cerebral blood microcirculation was monitored by 2-photon microscopy through a cranial window. BM formation was observed using cranial magnetic resonance, bioluminescent imaging, and post-mortem autopsy. Ang-2/VEGF targeting strategies and Ang-2 gain-of-function (GOF) mice were employed to interfere with BM formation. In addition, vascular and stromal factors as well as clinical outcome were analyzed in BM patients. Blood vessel occlusions by cancer cells were detected, accompanied by significant disturbances of cerebral blood microcirculation, and focal stroke-like histological signs. Cerebral endothelial cells showed an elevated Ang-2 expression both in mouse and human BM. Ang-2 GOF resulted in an increased BM burden. Combined anti-Ang-2/anti-VEGF therapy led to a decrease in brain metastasis size and number. Ang-2 expression in tumor vessels of established human brain metastases negatively correlated with survival. Our observations revealed a relationship between disturbance of cerebral blood microcirculation and brain metastasis formation. This suggests that vessel occlusion by tumor cells facilitates brain metastatic extravasation and seeding, while combined inhibition of microenvironmental effects of Ang-2 and VEGF prevent the outgrowth of macrometastases.
Collapse
Affiliation(s)
- Jenny Roesler
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Daniel Spitzer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Xiaoxiong Jia
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Neurosurgery Department, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Synnøve Nymark Aasen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, Kristian Gerhard Jebsen Brain Tumour Research Centre, University of Bergen, Bergen, Norway
| | - Kathleen Sommer
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Bastian Roller
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
| | - Niels Olshausen
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils R Hebach
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nawid Albinger
- Goethe University, University Hospital, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Evelyn Ullrich
- Goethe University, University Hospital, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
| | - Ling Zhu
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Fan Wang
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Jadranka Macas
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Marie-Therese Forster
- Goethe University, University Hospital, Department of Neurosurgery, Frankfurt, Germany
| | - Joachim P Steinbach
- Goethe University, University Hospital, Dr. Senckenberg Institute for Neurooncology, Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Lisa Sevenich
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Frankfurt, Germany
| | - Kavi Devraj
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
| | - Frits Thorsen
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl H Plate
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Yvonne Reiss
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Goethe University, University Hospital, Institute of Neurology (Edinger Institute), Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, Frankfurt, Germany
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians- Universität München, Munich, Germany
| |
Collapse
|
7
|
Chen-Li G, Martinez-Archer R, Coghi A, Roca JA, Rodriguez FJ, Acaba-Berrocal L, Berrocal MH, Wu L. Beyond VEGF: Angiopoietin-Tie Signaling Pathway in Diabetic Retinopathy. J Clin Med 2024; 13:2778. [PMID: 38792322 PMCID: PMC11122151 DOI: 10.3390/jcm13102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Complications from diabetic retinopathy such as diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) constitute leading causes of preventable vision loss in working-age patients. Since vascular endothelial growth factor (VEGF) plays a major role in the pathogenesis of these complications, VEGF inhibitors have been the cornerstone of their treatment. Anti-VEGF monotherapy is an effective but burdensome treatment for DME. However, due to the intensive and burdensome treatment, most patients in routine clinical practice are undertreated, and therefore, their outcomes are compromised. Even in adequately treated patients, persistent DME is reported anywhere from 30% to 60% depending on the drug used. PDR is currently treated by anti-VEGF, panretinal photocoagulation (PRP) or a combination of both. Similarly, a number of eyes, despite these treatments, continue to progress to tractional retinal detachment and vitreous hemorrhage. Clearly there are other molecular pathways other than VEGF involved in the pathogenesis of DME and PDR. One of these pathways is the angiopoietin-Tie signaling pathway. Angiopoietin 1 (Ang1) plays a major role in maintaining vascular quiescence and stability. It acts as a molecular brake against vascular destabilization and inflammation that is usually promoted by angiopoietin 2 (Ang2). Several pathological conditions including chronic hyperglycemia lead to Ang2 upregulation. Recent regulatory approval of the bi-specific antibody, faricimab, may improve long term outcomes in DME. It targets both the Ang/Tie and VEGF pathways. The YOSEMITE and RHINE were multicenter, double-masked, randomized non-inferiority phase 3 clinical trials that compared faricimab to aflibercept in eyes with center-involved DME. At 12 months of follow-up, faricimab demonstrated non-inferior vision gains, improved anatomic outcomes and a potential for extended dosing when compared to aflibercept. The 2-year results of the YOSEMITE and RHINE trials demonstrated that the anatomic and functional results obtained at the 1 year follow-up were maintained. Short term outcomes of previously treated and treatment-naive eyes with DME that were treated with faricimab during routine clinical practice suggest a beneficial effect of faricimab over other agents. Targeting of Ang2 has been reported by several other means including VE-PTP inhibitors, integrin binding peptide and surrobodies.
Collapse
Affiliation(s)
- Genesis Chen-Li
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Rebeca Martinez-Archer
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | - Andres Coghi
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
| | | | | | - Luis Acaba-Berrocal
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | | | - Lihteh Wu
- Asociados de Mácula Vitreo y Retina de Costa Rica, San José 60612, Costa Rica (R.M.-A.); (A.C.)
- Department of Ophthalmology, Illinois Eye and Ear Infirmary, School of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Lee E, O’Keefe S, Leong A, Park HR, Varadarajan J, Chowdhury S, Hiner S, Kim S, Shiva A, Friedman RA, Remotti H, Fojo T, Yang HW, Thurston G, Kim M. Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment. J Clin Invest 2023; 133:e167994. [PMID: 37843277 PMCID: PMC10575726 DOI: 10.1172/jci167994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Tito Fojo
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Minah Kim
- Department of Pathology and Cell Biology
| |
Collapse
|
9
|
Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B 2023; 13:3583-3597. [PMID: 37719370 PMCID: PMC10501874 DOI: 10.1016/j.apsb.2023.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many new structures and target combinations being created. The boom in bsAbs has led to the successive issuance of industry guidance for their development in the US and China. However, there is a high degree of similarity in target selection, which could affect the development of diversity in bsAbs. This review presents a classification of various bsAbs for cancer therapy based on structure and target selection and examines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have identified the preferences of available bsAbs combinations, suggesting rational target selection options and warning of potential wastage of medical resources. We have also compared the US and Chinese guidelines for bsAbs in order to provide a reference for their development.
Collapse
Affiliation(s)
- Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
11
|
Dibekoğlu C, Uyanıkgil Y, Erbaş O. Sulfasalazine prevents lung injury due to intra-abdominal sepsis in rats: possible role of Nrf2 and angiopoietin-2. Braz J Med Biol Res 2023; 56:e12698. [PMID: 37255096 DOI: 10.1590/1414-431x2023e12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
This study aimed to investigate the effect of sulfasalazine in preventing and treating intra-abdominal sepsis-induced acute respiratory distress syndrome (ARDS) in a rat model. Forty male Wistar albino rats were used. The rats were randomly divided into four equal groups, and sepsis was induced in 30 rats by intraperitoneal administration of a fecal saline solution prepared from rat feces. Group 1: normal control (n=10) [non-surgical], Group 2: fecal intraperitoneal injection (FIP) (n=10) [untreated septic group], Group 3: FIP+saline (placebo) (n=10) [saline administered intraperitoneally], Group 4 (n=10): FIP+sulfasalazine [250 mg/kg per day administered intraperitoneally]. Computed tomography was performed and blood samples were collected for biochemical and blood gas analysis. The lungs were removed for histopathological studies. Statistically significant reductions in interleukin (IL)-6, IL1-β, tumor necrosis factor (TNF)-α, malondialdehyde (MDA), and angiopoietin-2 (ANG-2) levels were observed in the sulfasalazine group compared to the FIP+saline group (P<0.001). Nrf2 levels were significantly higher in the sulfasalazine-treated group than in the FIP and FIP+saline groups (P<0.01). Lung tissue scores were significantly reduced in the sulfasalazine group compared to the other sepsis groups. The Hounsfield unit (HU) value was significantly lower in the sulfasalazine group than in the FIP+saline group (P<0.001). PaO2 values were significantly higher in the sulfasalazine-treated group than in the FIP+saline-treated group (P<0.05). Sulfasalazine was shown to be effective in preventing and treating ARDS.
Collapse
Affiliation(s)
- C Dibekoğlu
- Department of General Surgery, Demiroğlu Bilim University, Istanbul, Turkey
| | - Y Uyanıkgil
- Department of Histology and Embryology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - O Erbaş
- Department of Physiology, Faculty of Medicine, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
12
|
Burciaga-Hernandez LA, Cueto-Villalobos CF, Ortega-Piñon N, Gonzalez-Curiel IE, Godina-Gonzalez S, Mendez-Frausto G, Aguilar-Esquivel AP, Maldonado-Lagunas V, Guerrero-de la Torre LE, Melendez-Zajgla J, Sanchez-Garcia EK, Mitre-Aguilar IB, Mendoza-Almanza G. Gene Expression Behavior of a Set of Genes in Platelet and Tissue Samples from Patients with Breast Cancer. Int J Mol Sci 2023; 24:ijms24098348. [PMID: 37176055 PMCID: PMC10179257 DOI: 10.3390/ijms24098348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or metastasis. Intravasated platelets (PLT) undergo changes in the TME that convert them into tumor-educated platelets (TEP), which supports the development of cancer, angiogenesis, and metastasis through the degranulation and release of biomolecules. Several authors have reported that the deregulation of PF4, VEGF, PDGF, ANG-1, WASF3, LAPTM4B, TPM3, and TAC1 genes participates in breast cancer progression, angiogenesis, and metastasis. The present work aimed to analyze the expression levels of this set of genes in tumor tissues and platelets derived from breast cancer patients by reverse transcription-quantitative polymerase chain reaction (RTqPCR) assays, in order to determine if there was an expression correlation between these sources and to take advantage of the new information to be used in possible diagnosis by liquid biopsy. Data from these assays showed that platelets and breast cancer tumors present similar expression levels of a subset of these genes' mRNAs, depending on the molecular subtype, comorbidities, and metastasis presence.
Collapse
Affiliation(s)
- Luis A Burciaga-Hernandez
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | | | - Nancy Ortega-Piñon
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Zacatecas 98068, Mexico
| | - Irma E Gonzalez-Curiel
- Laboratorio de InmunotoxicologÍa y Terapéutica Experimental, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Susana Godina-Gonzalez
- Laboratorio de Biomarcadores, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Gwendolyne Mendez-Frausto
- Laboratorio de InmunotoxicologÍa y Terapéutica Experimental, Unidad Académica de Ciencias QuÍmicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | | | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Luis E Guerrero-de la Torre
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Hospital General Zacatecas "Luz González Cosío", Zacatecas 98160, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Erika K Sanchez-Garcia
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
| | - Irma B Mitre-Aguilar
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran (INCMNSZ), Ciudad de México 14080, Mexico
| | - Gretel Mendoza-Almanza
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Ciudad de México 14610, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| |
Collapse
|
13
|
Moghimi V, Rahvarian J, Esmaeilzadeh Z, Mohammad-Pour N, Babaki D, Sadeghifar F, Esfehani RJ, Bidkhori HR, Roshan NM, Momeni-Moghaddam M, Naderi-Meshkin H. Adipose-derived human mesenchymal stem cells seeded on denuded or stromal sides of the amniotic membrane improve angiogenesis and collagen remodeling and accelerate healing of the full-thickness wound. Acta Histochem 2023; 125:152027. [PMID: 37062121 DOI: 10.1016/j.acthis.2023.152027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Several strategies have been proposed to enhance wound healing results. Along with other forms of wound dressing, the human amniotic membrane (HAM) has long been regarded as a biological wound dressing that decreases infection and enhances healing. This study investigates the feasibility and effectiveness of wound healing using decellularized HAM (dAM) and stromal HAM (sAM) in combination with adipose-derived human mesenchymal stem cells (AdMSCs). The dAM and sAM sides of HAM were employed as wound dressing scaffolds, and AdMSCs were seeded on top of either dAM or sAM. Sixty healthy Wistar rats were randomly divided into three groups: untreated wound, dAM/AdMSCs group, and sAM/AdMSCs group. The gene expression of VEGF and COL-I was measured in vitro. Wound healing was examined after wounding on days 3, 7, 14, and 21. The expression level of VEGF was significantly higher in sAM/AdMSCs than dAM/AdMSCs (P ≤ 0.05), but there was no significant difference in COL-I expression (P ≥ 0.05). In vivo research revealed that on day 14, wounds treated with sAM/AdMSCs had more vascularization than wounds treated with dAM/AdMSCs (P ≤ 0.01) and untreated wound groups on days 7 (P ≤ 0.05) and 14 (P ≤ 0.0001), respectively. On days 14 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), and 21 (P < 0.05 for sAM/AdMSCs, P < 0.01 for dAM/AdMSCs), the collagen deposition in the wound bed was significantly thicker in the sAM/AdMSCs and dAM/AdMSCs groups compared to untreated wounds. The study demonstrated that the combination of sAM and AdMSCs promotes wound healing by enhancing angiogenesis and collagen remodeling.
Collapse
Affiliation(s)
- Vahid Moghimi
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Jeiran Rahvarian
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Esmaeilzadeh
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Najmeh Mohammad-Pour
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Danial Babaki
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Fatemeh Sadeghifar
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Jafarzadeh Esfehani
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)- Khorasan Razavi, Mashhad, Iran
| | | | | | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran; Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK.
| |
Collapse
|
14
|
Jin J, Xie Y, Zhang JS, Wang JQ, Dai SJ, He WF, Li SY, Ashby CR, Chen ZS, He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist Updat 2023; 67:100929. [PMID: 36739809 DOI: 10.1016/j.drup.2023.100929] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Currently, renal cell carcinoma (RCC) is the most prevalent type of kidney cancer. Targeted therapy has replaced radiation therapy and chemotherapy as the main treatment option for RCC due to the lack of significant efficacy with these conventional therapeutic regimens. Sunitinib, a drug used to treat gastrointestinal tumors and renal cell carcinoma, inhibits the tyrosine kinase activity of a number of receptor tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), c-Kit, rearranged during transfection (RET) and fms-related receptor tyrosine kinase 3 (Flt3). Although sunitinib has been shown to be efficacious in the treatment of patients with advanced RCC, a significant number of patients have primary resistance to sunitinib or acquired drug resistance within the 6-15 months of therapy. Thus, in order to develop more efficacious and long-lasting treatment strategies for patients with advanced RCC, it will be crucial to ascertain how to overcome sunitinib resistance that is produced by various drug resistance mechanisms. In this review, we discuss: 1) molecular mechanisms of sunitinib resistance; 2) strategies to overcome sunitinib resistance and 3) potential predictive biomarkers of sunitinib resistance.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jin-Shi Zhang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shi-Jie Dai
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Wen-Fang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China
| | - Shou-Ye Li
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang 311258, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, Queens, NY 11439, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
15
|
Ferreira CS, Babitzki G, Klaman I, Krieter O, Lechner K, Bendell J, Vega Harring S, Heil F. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial. Front Oncol 2023; 13:1157596. [PMID: 37207143 PMCID: PMC10190963 DOI: 10.3389/fonc.2023.1157596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Angiopoetin-2 (Ang-2) is a key mediator of tumour angiogenesis. When upregulated it is associated with tumour progression and poor prognosis. Anti-vascular endothelial growth factor (VEGF) therapy has been widely used in the treatment of metastatic colorectal cancer (mCRC). The potential benefit of combined inhibition of Ang-2 and VEGF-A in previously untreated patients with mCRC was evaluated in the phase II McCAVE study (NCT02141295), assessing vanucizumab versus bevacizumab (VEGF-A inhibitor), both in combination with mFOLFOX-6 (modified folinic acid [leucovorin], fluorouracil and oxaliplatin) chemotherapy. To date, there are no known predictors of outcome of anti-angiogenic treatment in patients with mCRC. In this exploratory analysis, we investigate potential predictive biomarkers in baseline samples from McCAVE participants. Methods Tumour tissue samples underwent immunohistochemistry staining for different biomarkers, including Ang-2. Biomarker densities were scored on the tissue images using dedicated machine learning algorithms. Ang-2 levels were additionally assessed in plasma. Patients were stratified by KRAS mutation status determined using next generation sequencing. Median progression-free survival (PFS) for each treatment group by biomarker and KRAS mutation was estimated using Kaplan-Meier plots. PFS hazard ratios (and 95% confidence intervals) were compared using Cox regression. Results Overall low tissue baseline levels of Ang-2 were associated with longer PFS, especially in patients with wild-type KRAS status. In addition, our analysis identified a new subgroup of patients with KRAS wild-type mCRC and high levels of Ang-2 in whom vanucizumab/mFOLFOX-6 prolonged PFS significantly (log-rank p=0.01) by ~5.5 months versus bevacizumab/mFOLFOX-6. Similar findings were seen in plasma samples. Discussion This analysis demonstrates that additional Ang-2 inhibition provided by vanucizumab shows a greater effect than single VEGF-A inhibition in this subpopulation. These data suggest that Ang-2 may be both a prognostic biomarker in mCRC and a predictive biomarker for vanucizumab in KRAS wild-type mCRC. Thus, this evidence can potentially support the establishment of more tailored treatment approaches for patients with mCRC.
Collapse
Affiliation(s)
- Cláudia S. Ferreira
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
- *Correspondence: Cláudia S. Ferreira, ; Galina Babitzki,
| | - Galina Babitzki
- PHCS Biostatistics & Data Management, Roche Innovation Center Munich, Penzberg, Germany
- *Correspondence: Cláudia S. Ferreira, ; Galina Babitzki,
| | - Irina Klaman
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Oliver Krieter
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Katharina Lechner
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Johanna Bendell
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, United States
| | - Suzana Vega Harring
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Florian Heil
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
16
|
Kuang G, Shu Z, Zhu C, Li H, Zhang C. The promoting effect of modified Dioscorea pills on vascular remodeling in chronic cerebral hypoperfusion via the Ang/Tie signaling pathway. Transl Neurosci 2023; 14:20220302. [PMID: 37635842 PMCID: PMC10448306 DOI: 10.1515/tnsci-2022-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Objective The objective of this study was to investigate the effect of modified Dioscorea pills (MDP) on microcirculatory remodeling in the hippocampus of rats with chronic cerebral hypoperfusion (CCH) through the angiopoietin (Ang)/tyrosine kinase receptor tyrosine kinase with immunoglobulin-like and EGF-like domains (Ang receptor) 2 (Tie-2) signaling pathways, which may underlie the cognitive improvement observed in CCH rats. Methods Forty male Sprague-Dawley rats raised under specific pathogen-free conditions were randomly divided into three groups: control group (10 rats), model group (15 rats), and MDP group (15 rats). The rats in the model group and MDP group underwent bilateral common carotid artery occlusion using the 2-vessel occlusion (2-VO) method to induce CCH. Rats in the control group underwent the same surgical procedures as those in the model group, except for ligation and occlusion of the carotid arteries. After 1 week of 2-VO, rats in the MDP group were administered MDP condensed decoction intragastrically at a dose of 1 ml/100 g body weight (prepared by the Preparation Room of Hubei Provincial Hospital of Traditional Chinese Medicine) for 45 days, while rats in the other two groups received normal saline intragastrically with the same dose and duration as the MDP group. After the intervention, all rats were euthanized, and brain perfusion was performed to obtain the hippocampal tissue for analysis. Immunohistochemical staining for CD43 was performed to assess microvessel density (MVD); western blot and the reverse transcription-polymerase chain reaction (RT-PCR) were used to analyze the expression of proteins and genes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), Tie-2, and vascular endothelial growth factor (VEGF) proteins and genes in the hippocampal tissue and compute the Ang-1/Ang-2 ratio. Results MDP treatment reduced neuronal loss and promoted restoration of the damaged hippocampal structure in CCH rats. The model group showed significantly higher MVD (14.93 ± 1.92) compared to the control group (5.78 ± 1.65) (P < 0.01), whereas MDP treatment further increased MVD (21.19 ± 2.62). Western blot and RT-PCR analysis revealed that CCH significantly increased the expression of Ang-1, Ang-2, Tie-2, and VEGF proteins and genes, while MDP treatment further significantly upregulated the expression of these proteins and genes. In addition, MDP significantly elevated the gene and protein expression of the Ang-1/Ang-2 ratio compared to the control group (P = 0.041, P = 0.029). Conclusion CCH induces microvascular neogenesis in the hippocampus, and MDP promotes angiogenesis and microcirculation remodeling in CCH rats via the Ang/Tie signaling pathway, which may be an important mechanism for its restorative effects on hippocampal perfusion and improvement of cognitive function in CCH rats.
Collapse
Affiliation(s)
- Guiying Kuang
- Neurological Department, Wuhan Red Cross Hospital, Wuhan, Hubei Province, 436015, China
| | - Zhigang Shu
- Neurological Department, Ezhou Central Hospital, Ezhou, Hubei Province, 436000, China
| | - Chunli Zhu
- Neurological Department, Wuhan Red Cross Hospital, Wuhan, Hubei Province, 436015, China
| | - Hongbing Li
- Emergency Department, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, 550002, China
| | - Cheng Zhang
- Emergency Department, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, 550002, China
| |
Collapse
|
17
|
Paramythiotis D, Kyriakidis F, Karlafti E, Didangelos T, Oikonomou IM, Karakatsanis A, Poulios C, Chamalidou E, Vagionas A, Michalopoulos A. Adenosquamous carcinoma of the pancreas: two case reports and review of the literature. J Med Case Rep 2022; 16:395. [DOI: 10.1186/s13256-022-03610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Among the total reported cases of pancreatic duct adenocarcinomas, around 1–2.9% are adenosquamous carcinomas of the pancreas. Due to limited data, preoperative diagnosis is a great challenge for physicians, and it is usually set post-operational, based on the pathologist report. We operated on two cases of adenosquamous carcinoma of the pancreas, which we present alongside the operation and treatment planning.
Case report
A 69-year-old Caucasian female and a 63-year-old Caucasian male presented themselves with jaundice in our department. The abdomen computed tomography and magnetic resonance imaging scans revealed lesions of the pancreas. A pancreas–duodenumectomy was performed in both patients, and the post-operational histology analysis revealed adenosquamous carcinoma of the pancreas head. The patients were discharged in good condition and received further chemotherapy treatment after surgery.
Conclusions
Two case reports of adenosquamous carcinoma of the pancreas are described here, which both underwent surgery resection. The limited available literature on this topic substantially limits the knowledge and guidance on treatment. A summarization of the available literature is attempted, alongside a description of possible fields of future research.
Collapse
|
18
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
19
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
20
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
21
|
The natural compound atraric acid suppresses androgen-regulated neo-angiogenesis of castration-resistant prostate cancer through angiopoietin 2. Oncogene 2022; 41:3263-3277. [PMID: 35513564 PMCID: PMC9166678 DOI: 10.1038/s41388-022-02333-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is an aggressive lethal form of prostate cancer (PCa). Atraric acid (AA) not only inhibits the wild-type androgen receptor (AR) but also those AR mutants that confer therapy resistance to other clinically used AR antagonists, indicating a different mode of AR antagonism. AA induces cellular senescence and inhibits CRPC tumour growth in in vivo xenograft mouse model associated with reduced neo-angiogenesis suggesting the repression of intratumoural neo-angiogenesis by AA. In line with this, the secretome of CRPC cells mediates neo-angiogenesis in an androgen-dependent manner, which is counteracted by AA. This was confirmed by two in vitro models using primary human endothelial cells. Transcriptome sequencing revealed upregulated angiogenic pathways by androgen, being however VEGF-independent, and pointing to the pro-angiogenic factor angiopoietin 2 (ANGPT2) as a key driver of neo-angiogenesis induced by androgens and repressed by AA. In agreement with this, AA treatment of native patient-derived PCa tumour samples ex vivo inhibits ANGPT2 expression. Mechanistically, in addition to AA, immune-depletion of ANGPT2 from secretome or blocking ANGPT2-receptors inhibits androgen-induced angiogenesis. Taken together, we reveal a VEGF-independent ANGPT2-mediated angiogenic pathway that is inhibited by AA leading to repression of androgen-regulated neo-angiogenesis.
Collapse
|
22
|
Karabid NM, Wiedemann T, Gulde S, Mohr H, Segaran RC, Geppert J, Rohm M, Vitale G, Gaudenzi G, Dicitore A, Ankerst DP, Chen Y, Braren R, Kaissis G, Schilling F, Schillmaier M, Eisenhofer G, Herzig S, Roncaroli F, Honegger JB, Pellegata NS. Angpt2/Tie2 autostimulatory loop controls tumorigenesis. EMBO Mol Med 2022; 14:e14364. [PMID: 35266635 PMCID: PMC9081903 DOI: 10.15252/emmm.202114364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Invasive nonfunctioning (NF) pituitary neuroendocrine tumors (PitNETs) are non‐resectable neoplasms associated with frequent relapses and significant comorbidities. As the current therapies of NF‐PitNETs often fail, new therapeutic targets are needed. The observation that circulating angiopoietin‐2 (ANGPT2) is elevated in patients with NF‐PitNET and correlates with tumor aggressiveness prompted us to investigate the ANGPT2/TIE2 axis in NF‐PitNETs in the GH3 PitNET cell line, primary human NF‐PitNET cells, xenografts in zebrafish and mice, and in MENX rats, the only autochthonous NF‐PitNET model. We show that PitNET cells express a functional TIE2 receptor and secrete bioactive ANGPT2, which promotes, besides angiogenesis, tumor cell growth in an autocrine and paracrine fashion. ANGPT2 stimulation of TIE2 in tumor cells activates downstream cell proliferation signals, as previously demonstrated in endothelial cells (ECs). Tie2 gene deletion blunts PitNETs growth in xenograft models, and pharmacological inhibition of Angpt2/Tie2 signaling antagonizes PitNETs in primary cell cultures, tumor xenografts in mice, and in MENX rats. Thus, the ANGPT2/TIE2 axis provides an exploitable therapeutic target in NF‐PitNETs and possibly in other tumors expressing ANGPT2/TIE2. The ability of tumor cells to coopt angiogenic signals classically viewed as EC‐specific expands our view on the microenvironmental cues that are essential for tumor progression.
Collapse
Affiliation(s)
- Ninelia Minaskan Karabid
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Renu Chandra Segaran
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Geppert
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Milan, Italy
| | - Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Yiyao Chen
- Department of Mathematics, Technical University Munich, Garching, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Kaissis
- Institute for Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Mathias Schillmaier
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jürgen B Honegger
- Department of Neurosurgery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
23
|
Angiopoietin-2-induced lymphatic endothelial cell migration drives lymphangiogenesis via the β1 integrin-RhoA-formin axis. Angiogenesis 2022; 25:373-396. [PMID: 35103877 DOI: 10.1007/s10456-022-09831-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on β1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.
Collapse
|
24
|
Al-Shammari AM, Al-Mudhafr MA, Chalap Al- Grawi ED, Al-Hili ZA, Yaseen N. Newcastle disease virus suppresses angiogenesis in mammary adenocarcinoma models. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancer cells heavily utilise angiogenesis process to increase vascularisation for tumour mass growth and spread, so targeting this process is important to create an effective therapy. The AMHA1 strain of Newcastle disease virus (NDV) is an RNA virus with natural oncotropism. NDV induces direct tumour cytolysis, apoptosis, and immune stimulation. This work aimed to test NDV anti-angiogenic activity in a breast cancer model. To evaluate NDV’s antitumour effect in vivo, NDV was tested against mammary adenocarcinoma AN3 transplanted in syngeneic immunocompetent mice. In vivo antiangiogenic activity was evaluated by quantifying the blood vessels in treated and control tumour sections. In vitro experiments that exposed AMN3 mammary adenocarcinoma cells and Hep-2 laryngeal carcinoma cells to NDV at different time intervals were performed to identify the exact mechanism of anti-angiogenesis by using angiogenesis microarray slides. In vivo results showed significant tumour regression and significant decrease in blood vessel formation in treated tumour sections. The in vitro microarray analysis of 14 different angiogenesis factors revealed that NDV downregulated angiopoietin-1, angiopoietin-2, and epidermal growth factor in mammary adenocarcinoma cells. However, NDV elicited a different effect on Hep-2 as represented by the downregulation of inducible protein 10, intracellular adhesion molecule-1, and basic fibroblast growth factor beta in NDV-infected tumour cells. It was found out that microarray analysis results helped interpret the in vivo data. The results suggested that the NDV oncolytic strain reduced angiogenesis by interfering with angiogenesis factors that might reduce tumour cell proliferation, infiltration, and invasion.
Collapse
Affiliation(s)
- A. M. Al-Shammari
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - M. A. Al-Mudhafr
- University of Kufa, Faculty of Veterinary Medicine, Department of Microbiology
| | | | - Z. A. Al-Hili
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - N. Yaseen
- University of Mustansiriyah, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| |
Collapse
|
25
|
Macrophage and Neutrophil Interactions in the Pancreatic Tumor Microenvironment Drive the Pathogenesis of Pancreatic Cancer. Cancers (Basel) 2021; 14:cancers14010194. [PMID: 35008355 PMCID: PMC8750413 DOI: 10.3390/cancers14010194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The survival rates for patients with pancreatic adenocarcinoma are very low. This dismal prognosis is due in part to late detection and early development of metastases, and successful treatments for pancreatic adenocarcinoma are also lacking. One potential method of treatment is immunotherapy, which has been successfully implemented in several cancers. Despite success in other cancer types, there has been little progress in pancreatic adenocarcinoma. To understand these shortcomings, we explore the roles of macrophages and neutrophils, two prominent immune cell types in the pancreatic tumor environment. In this review, we discuss how macrophages and neutrophils lead to the harsh environment that is unique to pancreatic adenocarcinoma. We further explore how these immune cells can impact standard of care therapies and decrease their effectiveness. Macrophages and neutrophils could ultimately be targeted to improve outcomes for patients with pancreatic adenocarcinoma. Abstract Despite modest improvements in survival in recent years, pancreatic adenocarcinoma remains a deadly disease with a 5-year survival rate of only 9%. These poor outcomes are driven by failure of early detection, treatment resistance, and propensity for early metastatic spread. Uncovering innovative therapeutic modalities to target the resistance mechanisms that make pancreatic cancer largely incurable are urgently needed. In this review, we discuss the immune composition of pancreatic tumors, including the counterintuitive fact that there is a significant inflammatory immune infiltrate in pancreatic cancer yet anti-tumor mechanisms are subverted and immune behaviors are suppressed. Here, we emphasize how immune cell interactions generate tumor progression and treatment resistance. We narrow in on tumor macrophage (TAM) spatial arrangement, polarity/function, recruitment, and origin to introduce a concept where interactions with tumor neutrophils (TAN) perpetuate the microenvironment. The sequelae of macrophage and neutrophil activities contributes to tumor remodeling, fibrosis, hypoxia, and progression. We also discuss immune mechanisms driving resistance to standard of care modalities. Finally, we describe a cadre of treatment targets, including those intended to overcome TAM and TAN recruitment and function, to circumvent barriers presented by immune infiltration in pancreatic adenocarcinoma.
Collapse
|
26
|
Khan KA, Wu FTH, Cruz‐Munoz W, Kerbel RS. Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 2021; 13:e08253. [PMID: 34125494 PMCID: PMC8261516 DOI: 10.15252/emmm.201708253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-angiogenic drugs targeting the VEGF pathway are most effective in advanced metastatic disease settings of certain types of cancers, whereas they have been unsuccessful as adjuvant therapies of micrometastatic disease in numerous phase III trials involving early-stage (resectable) cancers. Newer investigational anti-angiogenic drugs have been designed to inhibit the Angiopoietin (Ang)-Tie pathway. Acting through Tie2 receptors, the Ang1 ligand is a gatekeeper of endothelial quiescence. Ang2 is a dynamically expressed pro-angiogenic destabilizer of endothelium, and its upregulation is associated with poor prognosis in cancer. Besides using Ang2 blockers as inhibitors of tumor angiogenesis, little attention has been paid to their use as stabilizers of blood vessels to suppress tumor cell extravasation and metastasis. In clinical trials, Ang2 blockers have shown limited efficacy in advanced metastatic disease settings. This review summarizes preclinical evidence suggesting the potential utility of Ang2 inhibitors or Tie2 activators as neoadjuvant or adjuvant therapies in the prevention or treatment of early-stage micrometastatic disease. We further discuss the rationale and potential of combining these strategies with immunotherapy, including immune checkpoint targeting antibodies.
Collapse
Affiliation(s)
- Kabir A Khan
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Florence TH Wu
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - William Cruz‐Munoz
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| | - Robert S Kerbel
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
- Biological Sciences PlatformSunnybrook Research InstituteTorontoONCanada
| |
Collapse
|
27
|
Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer. Free Radic Biol Med 2021; 170:150-178. [PMID: 33450375 PMCID: PMC8217091 DOI: 10.1016/j.freeradbiomed.2020.12.452] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
The homeostatic oxygen sensing system (HOSS) optimizes systemic oxygen delivery. Specialized tissues utilize a conserved mitochondrial sensor, often involving NDUFS2 in complex I of the mitochondrial electron transport chain, as a site of pO2-responsive production of reactive oxygen species (ROS). These ROS are converted to a diffusible signaling molecule, hydrogen peroxide (H2O2), by superoxide dismutase (SOD2). H2O2 exits the mitochondria and regulates ion channels and enzymes, altering plasma membrane potential, intracellular Ca2+ and Ca2+-sensitization and controlling acute, adaptive, responses to hypoxia that involve changes in ventilation, vascular tone and neurotransmitter release. Subversion of this O2-sensing pathway creates a pseudohypoxic state that promotes disease progression in pulmonary arterial hypertension (PAH) and cancer. Pseudohypoxia is a state in which biochemical changes, normally associated with hypoxia, occur despite normal pO2. Epigenetic silencing of SOD2 by DNA methylation alters H2O2 production, activating hypoxia-inducible factor 1α, thereby disrupting mitochondrial metabolism and dynamics, accelerating cell proliferation and inhibiting apoptosis. Other epigenetic mechanisms, including dysregulation of microRNAs (miR), increase pyruvate dehydrogenase kinase and pyruvate kinase muscle isoform 2 expression in both diseases, favoring uncoupled aerobic glycolysis. This Warburg metabolic shift also accelerates cell proliferation and impairs apoptosis. Disordered mitochondrial dynamics, usually increased mitotic fission and impaired fusion, promotes disease progression in PAH and cancer. Epigenetic upregulation of dynamin-related protein 1 (Drp1) and its binding partners, MiD49 and MiD51, contributes to the pathogenesis of PAH and cancer. Finally, dysregulation of intramitochondrial Ca2+, resulting from impaired mitochondrial calcium uniporter complex (MCUC) function, links abnormal mitochondrial metabolism and dynamics. MiR-mediated decreases in MCUC function reduce intramitochondrial Ca2+, promoting Warburg metabolism, whilst increasing cytosolic Ca2+, promoting fission. Epigenetically disordered mitochondrial O2-sensing, metabolism, dynamics, and Ca2+ homeostasis offer new therapeutic targets for PAH and cancer. Promoting glucose oxidation, restoring the fission/fusion balance, and restoring mitochondrial calcium regulation are promising experimental therapeutic strategies.
Collapse
Affiliation(s)
- Danchen Wu
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Austin D Read
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Rachel E T Bentley
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Ruaa Al-Qazazi
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Jeffrey D Mewburn
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elahe Alizadeh
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Queen's University, 116 Barrie Street, Kingston, ON, K7L 3J9, Canada
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Stephen L Archer
- Department of Medicine, Queen's University, 94 Stuart St., Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
28
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
29
|
Establishment of a Potential Serum Biomarker Panel for the Diagnosis and Prognosis of Cholangiocarcinoma Using Decision Tree Algorithms. Diagnostics (Basel) 2021; 11:diagnostics11040589. [PMID: 33806004 PMCID: PMC8064492 DOI: 10.3390/diagnostics11040589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Potential biomarkers which include S100 calcium binding protein A9 (S100A9), mucin 5AC (MUC5AC), transforming growth factor β1 (TGF-β1), and angiopoietin-2 have previously been shown to be effective for cholangiocarcinoma (CCA) diagnosis. This study attempted to measure the sera levels of these biomarkers compared with carbohydrate antigen 19-9 (CA19-9). A total of 40 serum cases of CCA, gastrointestinal cancers (non-CCA), and healthy subjects were examined by using an enzyme-linked immunosorbent assay. The panel of biomarkers was evaluated for their accuracy in diagnosing CCA and subsequently used as inputs to construct the decision tree (DT) model as a basis for binary classification. The findings showed that serum levels of S100A9, MUC5AC, and TGF-β1 were dramatically enhanced in CCA patients. In addition, 95% sensitivity and 90% specificity for CCA differentiation from healthy cases, and 70% sensitivity and 83% specificity for CCA versus non-CCA cases was obtained by a panel incorporating all five candidate biomarkers. In CCA patients with low CA19-9 levels, S100A9 might well be a complementary marker for improved diagnostic accuracy. The high levels of TGF-β1 and angiopoietin-2 were both associated with severe tumor stages and metastasis, indicating that they could be used as a reliable prognostic biomarkers panel for CCA patients. Furthermore, the outcome of the CCA burden from the Classification and Regression Tree (CART) algorithm using serial CA19-9 and S100A9 showed high diagnostic efficiency. In conclusion, results have shown the efficacy of CCA diagnosis and prognosis of the novel CCA-biomarkers panel examined herein, which may prove be useful in clinical settings.
Collapse
|
30
|
Agonistic CD40 Antibodies in Cancer Treatment. Cancers (Basel) 2021; 13:cancers13061302. [PMID: 33804039 PMCID: PMC8000216 DOI: 10.3390/cancers13061302] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary CD40 is a costimulatory molecule that is key for the activation of antigen-presenting cells and other innate immune cells. It plays an important role in anti-tumor immunity, and agonists of CD40 have been shown to eliminate tumors in both pre-clinical and clinical settings, alone and in combination with other treatment modalities. Here we assess the expression of CD40 and associations with other mediators of immunity in a variety of tumor types and review the potential of CD40 agonists for cancer treatment, given the promise of enhancing the interplay between innate and adaptive immunity. Abstract CD40 is expressed on a variety of antigen-presenting cells. Stimulation of CD40 results in inflammation by upregulation of other costimulatory molecules, increased antigen presentation, maturation (licensing) of dendritic cells, and activation of CD8+ T cells. Here we analyzed gene expression data from The Cancer Genome Atlas in melanoma, renal cell carcinoma, and pancreatic adenocarcinoma and found correlations between CD40 and several genes involved in antigen presentation and T cell function, supporting further exploration of CD40 agonists to treat cancer. Agonist CD40 antibodies have induced anti-tumor effects in several tumor models and the effect has been more pronounced when used in combination with other treatments (immune checkpoint inhibition, chemotherapy, and colony-stimulating factor 1 receptor inhibition). The reduction in tumor growth and ability to reprogram the tumor microenvironment in preclinical models lays the foundation for clinical development of agonistic CD40 antibodies (APX005M, ChiLob7/4, ADC-1013, SEA-CD40, selicrelumab, and CDX-1140) that are currently being evaluated in early phase clinical trials. In this article, we focus on CD40 expression and immunity in cancer, agonistic human CD40 antibodies, and their pre-clinical and clinical development. With the broad pro-inflammatory effects of CD40 and its ligand on dendritic cells and macrophages, and downstream B and T cell activation, agonists of this pathway may enhance the anti-tumor activity of other systemic therapies.
Collapse
|
31
|
Vestweber D. Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function. Physiology (Bethesda) 2021; 36:84-93. [PMID: 33595386 DOI: 10.1152/physiol.00026.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is a receptor-type PTP (RPTP), predominantly expressed in vascular endothelial cells. It regulates embryonic and tumor angiogenesis and controls vascular permeability and homeostasis in inflammation. Major substrates are the tyrosine kinase receptor Tie-2 and the adhesion molecule VE-cadherin. This review describes how VE-PTP controls vascular functions by its various substrates and the therapeutic potential of VE-PTP in various pathophysiological settings.
Collapse
|
32
|
Mishra VS, Kumar N, Raza M, Sehrawat S. Amalgamation of PI3K and EZH2 blockade synergistically regulates invasion and angiogenesis: combination therapy for glioblastoma multiforme. Oncotarget 2020; 11:4754-4769. [PMID: 33473259 PMCID: PMC7771717 DOI: 10.18632/oncotarget.27842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is known as the primary malignant and most devastating form of tumor in central nervous system of adult population. Amongst all CNS cancers, Glioblastoma multiforme GBM is a rare grade IV astrocytoma and it has the worst prognosis initiated by metastasis to supra-tentorial region of the brain. Current options for the treatment include surgery, radiation therapy and chemotherapy. Substantial information of its pathology and molecular signaling exposed new avenues for generating innovative therapies. In our study, we have undertaken a novel combination approach for GBM treatment. PI3K signaling participates in cancer progression and plays a significant role in metastasis. Here, we are targeting PI3K signaling pathways in glioblastoma along with EZH2, a known transcriptional regulator. We found that targeting transcriptional regulator EZH2 and PI3K affect cellular migration and morphological changes. These changes in signatory activities of cancerous cells led to inhibit its progression in vitro. With further analysis we confirmed the angiogenic inhibition and reduction in stem-ness potential of GBM. Later, cytokine proteome array analysis revealed several participants of metastasis and tumor induced angiogenesis using combination regime. This study provides a significant reduction in GBM progression investigated using Glioblastoma Multiforme U-87 cells with effective combination of pharmacological inhibitors PI-103 and EPZ-6438. This strategy will be further used to combat GBM more innovatively along with the existing therapies.
Collapse
Affiliation(s)
- Vishnu S Mishra
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Naveen Kumar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Masoom Raza
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| | - Seema Sehrawat
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| |
Collapse
|
33
|
Heil F, Babitzki G, Julien-Laferriere A, Ooi CH, Hidalgo M, Massard C, Martinez-Garcia M, Le Tourneau C, Kockx M, Gerber P, Rossomanno S, Krieter O, Lahr A, Wild N, Harring SV, Lechner K. Vanucizumab mode of action: Serial biomarkers in plasma, tumor, and skin-wound-healing biopsies. Transl Oncol 2020; 14:100984. [PMID: 33338877 PMCID: PMC7749407 DOI: 10.1016/j.tranon.2020.100984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Vanucizumab is a novel bispecific antibody inhibiting vascular endothelial growth factor (VEGF-A) and angiopoietin-2 (Ang-2) that demonstrated safety and anti-tumor activity in part I of a phase I study of 42 patients with advanced solid tumors. Part II evaluated the pharmacodynamic effects of vanucizumab 30 or 15 mg/kg every 2 weeks in 32 patients. Serial plasma samples, paired tumor, and skin-wound-healing biopsies were taken over 29 days to evaluate angiogenic markers. Vanucizumab was associated with marked post-infusion reductions in circulating unbound VEGF-A and Ang-2. By day 29, tumor samples revealed mean reductions in density of microvessels (-32.2%), proliferating vessels (-47.9%) and Ang-2 positive vessels (-62.5%). Skin biopsies showed a mean reduction in density of microvessels (-49.0%) and proliferating vessels (-25.7%). Gene expression profiling of tumor samples implied recruitment and potential activation of lymphocytes. Biopsies were safely conducted. Vanucizumab demonstrated a consistent biological effect on vascular-related biomarkers, confirming proof of concept. Skin-wound-healing biopsies were a valuable surrogate for studying angiogenesis-related mechanisms.
Collapse
Affiliation(s)
- Florian Heil
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Galina Babitzki
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | | | | | - Manuel Hidalgo
- Division of Hematology and Medical Oncology, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, USA.
| | | | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie, Paris & Saint-Cloud, France; INSERM U900 Research unit, Institut Curie, Saint-Cloud, France; Versailles-Saint-Quentin-en-Yvelines University, Montigny-le-Bretonneux, France.
| | | | - Peter Gerber
- Roche Innovation Center Basel, Basel, Switzerland.
| | | | - Oliver Krieter
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Angelika Lahr
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Norbert Wild
- Roche Centralized and Point of Care Solutions, Penzberg, Germany.
| | | | - Katharina Lechner
- Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| |
Collapse
|
34
|
Leong A, Kim M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int J Mol Sci 2020; 21:ijms21228689. [PMID: 33217955 PMCID: PMC7698611 DOI: 10.3390/ijms21228689] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.
Collapse
|
35
|
Gengenbacher N, Singhal M, Mogler C, Hai L, Milde L, Pari AAA, Besemfelder E, Fricke C, Baumann D, Gehrs S, Utikal J, Felcht M, Hu J, Schlesner M, Offringa R, Chintharlapalli SR, Augustin HG. Timed Ang2-Targeted Therapy Identifies the Angiopoietin-Tie Pathway as Key Regulator of Fatal Lymphogenous Metastasis. Cancer Discov 2020; 11:424-445. [PMID: 33106316 DOI: 10.1158/2159-8290.cd-20-0122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Milde
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Claudine Fricke
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Daniel Baumann
- Faculty of Biosciences, Heidelberg University, Mannheim, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Felcht
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany. .,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
36
|
Urosevic J, Blasco MT, Llorente A, Bellmunt A, Berenguer-Llergo A, Guiu M, Cañellas A, Fernandez E, Burkov I, Clapés M, Cartanà M, Figueras-Puig C, Batlle E, Nebreda AR, Gomis RR. ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer. Cancer Res 2020; 80:4668-4680. [PMID: 32816905 DOI: 10.1158/0008-5472.can-19-4028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Carcinoma development in colorectal cancer is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of colorectal cancer metastatic disease, yet how RAS-ERK signaling regulates colorectal cancer metastasis remains unknown. In this study, we used an unbiased screening approach based on selection of highly liver metastatic colorectal cancer cells in vivo to determine genes associated with metastasis. From this, an ERK1/2-controlled metastatic gene set (EMGS) was defined. EMGS was associated with increased recurrence and reduced survival in patients with colorectal cancer tumors. Higher levels of EMGS expression were detected in the colorectal cancer subsets consensus molecular subtype (CMS)1 and CMS4. ANGPT2 and CXCR4, two genes within the EMGS, were subjected to gain-of-function and loss-of-function studies in several colorectal cancer cell lines and then tested in clinical samples. The RAS-ERK1/2 axis controlled expression of the cytokine ANGPT2 and the cytokine receptor CXCR4 in colorectal cancer cells, which facilitated development of liver but not lung metastases, suggesting that ANGPT2 and CXCR4 are important for metastatic outgrowth in the liver. CXCR4 controlled the expression of cytokines IL10 and CXCL1, providing evidence for a causal role of IL10 in supporting liver colonization. In summary, these studies demonstrate that amplification of ERK1/2 signaling in KRAS-mutated colorectal cancer cells affects the cytokine milieu of the tumors, possibly affecting tumor-stroma interactions and favoring liver metastasis formation. SIGNIFICANCE: These findings identify amplified ERK1/2 signaling in KRAS-mutated colorectal cancer cells as a driver of tumor-stroma interactions that favor formation of metastases in the liver.
Collapse
Affiliation(s)
- Jelena Urosevic
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - María Teresa Blasco
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - Alicia Llorente
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Bellmunt
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antoni Berenguer-Llergo
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Guiu
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Adrià Cañellas
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain
| | - Esther Fernandez
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivan Burkov
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Clapés
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Cartanà
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Figueras-Puig
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,CIBERONC, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Angel R Nebreda
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Roger R Gomis
- Cancer Science Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,CIBERONC, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Montemagno C, Pagès G. Resistance to Anti-angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Front Cell Dev Biol 2020; 8:584. [PMID: 32775327 PMCID: PMC7381352 DOI: 10.3389/fcell.2020.00584] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting one, represents a critical process for oxygen and nutrient supply to proliferating cells, therefore promoting tumor growth and metastasis. The Vascular Endothelial Growth Factor (VEGF) pathway is one of the key mediators of angiogenesis in cancer. Therefore, several therapies including monoclonal antibodies or tyrosine kinase inhibitors target this axis. Although preclinical studies demonstrated strong antitumor activity, clinical studies were disappointing. Antiangiogenic drugs, used to treat metastatic patients suffering of different types of cancers, prolonged survival to different extents but are not curative. In this review, we focused on different mechanisms involved in resistance to antiangiogenic therapies from early stage resistance involving mainly tumor cells to late stages related to the adaptation of the microenvironment.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco.,CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Université Côte d'Azur, Nice, France.,INSERM U1081, Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco.,CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Université Côte d'Azur, Nice, France.,INSERM U1081, Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
38
|
Abdul Pari AA, Singhal M, Hübers C, Mogler C, Schieb B, Gampp A, Gengenbacher N, Reynolds LE, Terhardt D, Géraud C, Utikal J, Thomas M, Goerdt S, Hodivala-Dilke KM, Augustin HG, Felcht M. Tumor Cell-Derived Angiopoietin-2 Promotes Metastasis in Melanoma. Cancer Res 2020; 80:2586-2598. [PMID: 32303578 DOI: 10.1158/0008-5472.can-19-2660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 01/12/2023]
Abstract
The angiopoietin (Angpt)-TIE signaling pathway controls vascular maturation and maintains the quiescent phenotype of resting vasculature. The contextual agonistic and antagonistic Tie2 ligand ANGPT2 is believed to be exclusively produced by endothelial cells, disrupting constitutive ANGPT1-TIE2 signaling to destabilize the microvasculature during pathologic disorders like inflammation and cancer. However, scattered reports have also portrayed tumor cells as a source of ANGPT2. Employing ISH-based detection of ANGPT2, we found strong tumor cell expression of ANGPT2 in a subset of patients with melanoma. Comparative analysis of biopsies revealed a higher fraction of ANGPT2-expressing tumor cells in metastatic versus primary sites. Tumor cell-expressed Angpt2 was dispensable for primary tumor growth, yet in-depth analysis of primary tumors revealed enhanced intratumoral necrosis upon silencing of tumor cell Angpt2 expression in the absence of significant immune and vascular alterations. Global transcriptional profiling of Angpt2-deficient tumor cells identified perturbations in redox homeostasis and an increased response to cellular oxidative stress. Ultrastructural analyses illustrated a significant increase of dysfunctional mitochondria in Angpt2-silenced tumor cells, thereby resulting in enhanced reactive oxygen species (ROS) production and downstream MAPK stress signaling. Functionally, enhanced ROS in Angpt2-silenced tumor cells reduced colonization potential in vitro and in vivo. Taken together, these findings uncover the hitherto unappreciated role of tumor cell-expressed ANGPT2 as an autocrine-positive regulator of metastatic colonization and validate ANGPT2 as a therapeutic target for a well-defined subset of patients with melanoma. SIGNIFICANCE: This study reveals that tumor cells can be a source of ANGPT2 in the tumor microenvironment and that tumor cell-derived ANGPT2 augments metastatic colonization by protecting tumor cells from oxidative stress.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Mahak Singhal
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Corinne Hübers
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Benjamin Schieb
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Anja Gampp
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Nicolas Gengenbacher
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Louise E Reynolds
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Dorothee Terhardt
- Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany
| | - Cyrill Géraud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Thomas
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Sergij Goerdt
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kairbaan M Hodivala-Dilke
- Center for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Center, London, United Kingdom
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg (DKFZ-ZMBH Alliance), Germany.,German Cancer consortium, Heidelberg, Germany
| | - Moritz Felcht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,Department of Dermatology, Venerology und Allergology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
40
|
Yu X, Ye F. Role of Angiopoietins in Development of Cancer and Neoplasia Associated with Viral Infection. Cells 2020; 9:cells9020457. [PMID: 32085414 PMCID: PMC7072744 DOI: 10.3390/cells9020457] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin/tyrosine protein kinase receptor Tie-2 signaling in endothelial cells plays an essential role in angiogenesis and wound healing. Angiopoietin-1 (Ang-1) is crucial for blood vessel maturation while angiopoietin-2 (Ang-2), in collaboration with vascular endothelial growth factor (VEGF), initiates angiogenesis by destabilizing existing blood vessels. In healthy people, the Ang-1 level is sustained while Ang-2 expression is restricted. In cancer patients, Ang-2 level is elevated, which correlates with poor prognosis. Ang-2 not only drives tumor angiogenesis but also attracts infiltration of myeloid cells. The latter rapidly differentiate into tumor stromal cells that foster tumor angiogenesis and progression, and weaken the host’s anti-tumor immunity. Moreover, through integrin signaling, Ang-2 induces expression of matrix metallopeptidases (MMPs) to promote tumor cell invasion and metastasis. Many oncogenic viruses induce expression of Ang-2 to promote development of neoplasia associated with viral infection. Multiple Ang-2 inhibitors exhibit remarkable anti-tumor activities, further highlighting the importance of Ang-2 in cancer development.
Collapse
Affiliation(s)
- Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| | - Fengchun Ye
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (X.Y.); (F.Y.); Tel.: +086-27-88661237 (X.Y.); +216-368-8892 (F.Y.)
| |
Collapse
|
41
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
42
|
Liu J, Xu W, Li S, Sun R, Cheng W. Multi-omics analysis of tumor mutational burden combined with prognostic assessment in epithelial ovarian cancer based on TCGA database. Int J Med Sci 2020; 17:3200-3213. [PMID: 33173439 PMCID: PMC7646107 DOI: 10.7150/ijms.50491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Tumor mutation burden (TMB) is considered as a novel biomarker of response to immunotherapy and correlated with survival outcomes in various malignancies. Here, TMB-related genes (TRGs) expression signatures were constructed to investigate the association between TMB and prognosis in epithelial ovarian cancer (EOC), and the potential mechanism in immunoregulation was also explored. Methods: Based on somatic mutation data of 436 EOC samples from The Cancer Genome Atlas database, we examined the relationship between TMB level and overall survival (OS), as well as disease-free survival (DFS). Next, the TRGs signatures were constructed and validated. Differential abundance of immune cell infiltration, expression levels of immunomodulators and functional enrichment in high- and low-risk groups were also analyzed. Results: Higher TMB level revealed better OS and DFS, and correlated with earlier clinical stages in EOCs (P = 2.796e-04). The OS-related prognostic model constructed based on seven TRGs (B3GALT1, LIN7B, ANGPT2, D2HGDH, TAF13, PFDN4 and DNAJC19) significantly stratified EOC patients into high- and low-risk groups (P < 0.001). The AUC values of the seven-gene prognostic signature at 1 year, 3 years, and 5 years were 0.703, 0.758 and 0.777. While the DFS-related prognostic model was constructed based on the 4 TRGs (LPIN3, PXYLP1, IGSF23 and B3GALT1), with AUCs of 0.617, 0.756, and 0.731, respectively. Functional analysis indicated that immune-related pathways were enriched in low-risk groups. When considering the infiltration patterns of immune cells, we found higher proportions of follicular helper T (Tfh) cell and M1 macrophage, while lower infiltration of M0 macrophage in low-risk groups (P < 0.05). Accordingly, TMB levels of low-risk patients were significantly higher both in OS and DFS model (P < 0.01). Conclusions: Our TRGs-based models are reliable predictive tools for OS and DFS. High TMB may confer with an immunogenic microenvironment and predict favorable outcomes in EOCs.
Collapse
Affiliation(s)
- Jinhui Liu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wei Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Siyue Li
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Sun
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
43
|
Qin S, Yi M, Jiao D, Li A, Wu K. Distinct Roles of VEGFA and ANGPT2 in Lung Adenocarcinoma and Squamous Cell Carcinoma. J Cancer 2020; 11:153-167. [PMID: 31892982 PMCID: PMC6930396 DOI: 10.7150/jca.34693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (ANGPT2) are key mediators in angiogenesis. The expression and clinical significance of VEGFA and ANGPT2 have been investigated in lung cancer, but the results are controversial. The specific roles of VEGFA and ANGPT2 in adenocarcinoma (ADC) and squamous cell carcinoma (SQC) are still not fully understood. To characterize it, we conducted the current study. Materials and Methods: The relationships between clinic-pathological characteristics and the protein expressions of VEGFA and ANGPT2 were analyzed on tissue microarrays by immunohistochemistry (IHC) staining. Then public databases were used to evaluate the association of VEGFA and ANGPT2 mRNA expressions with clinic-pathological parameters and prognosis. Cobalt chloride (CoCl2) was adopted to mimic a hypoxic microenvironment and western blot was used to detect the expression of hypoxia inducible factor-1α (HIF-1α), VEGFA and ANGPT2 in lung cancer cell lines. Results: IHC staining revealed that the expressions of VEGFA and ANGPT2 were enriched in lung cancer tissues compared with normal tissues. Additionally, both VEGFA and ANGPT2 protein levels were significantly associated with the tumor size and lymph node metastasis only in ADC, not SQC. More importantly, increased VEGFA and ANGPT2 protein levels were negatively correlated with overall survival (OS) of ADC individuals. Meta-analyses of 22 gene expression omnibus (GEO) databases of lung cancer implicated that patients with higher VEGFA and ANGPT2 mRNA expressions tended to have advanced stage in ADC rather than SQC. Kaplan-Meier plot analyses further verified that high levels of VEGFA and ANGPT2 mRNA were associated with poor survival only in ADC. Moreover, the combination of VEGFA and ANGPT2 could more precisely predict prognosis in ADC. In hypoxia-mimicking conditions, induced expression of HIF-1α unregulated VEGFA and ANGPT2 proteins abundance. Conclusion: Our results showed hypoxia upregulated the protein levels of VEGFA and ANGPT2 in lung cancer cell lines, and the roles of VEGFA and ANGPT2 were distinct in ADC and SQC. Combined detections of VEGFA and ANGPT2 may be valuable prognostic biomarkers for ADC and double block of VEGFA and ANGPT2 may improve therapeutic outcome.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
44
|
Sethy C, Goutam K, Nayak D, Pradhan R, Molla S, Chatterjee S, Rout N, Wyatt MD, Narayan S, Kundu CN. Clinical significance of a pvrl 4 encoded gene Nectin-4 in metastasis and angiogenesis for tumor relapse. J Cancer Res Clin Oncol 2020; 146:245-259. [PMID: 31617074 DOI: 10.1007/s00432-019-03055-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE In the present study, we have systematically examined the clinical significance of Nectin-4 (encoded by the PVRL-4 gene), a marker for breast cancer stem cells (CSCs), in cancer metastasis and angiogenesis using a variety of human specimens, including invasive duct carcinoma (IDC) with multiple grades, several types of primary tumors to local and distant relapses, lymph node metastases and circulating tumor cells (CTCs). METHODS Nectin-4 was overexpressed in more than 92% of samples with 65.2% Nectin-4-positive cells. The level of expression was increased with increasing tumor grade (GI-III) and size (T1-4) of IDC specimens. RESULTS More induction of Nectin-4 was noted in relapsed samples from a variety of tumors (colon, tongue, liver, kidney, ovary, buccal mucosa) in comparison to primary tumors, while paired adjacent normal tissues do not express any Nectin-4. A high expression of Nectin-4 along with other representative markers in CTCs and lymph node metastasis was also observed in cancer specimens. An increased level of Nectin-4 along with representative metastatic (CD-44, Sca1, ALDH1, Nanog) and angiogenic (Ang-I, Ang-II, VEGF) markers were noted in metastatic tumors (local and distant) in comparison to primary tumors that were correlated with different grades of tumor progression. In addition, greater expression of Nectin-4 was observed in secondary tumors (distant metastasis, e.g., breast to liver or stomach to gall bladder) in comparison to primary tumors. CONCLUSION Our study demonstrated a significant correlation between Nectin-4 expression and tumor grade as well as stages (p < 0.001), suggesting its association with tumor progression. Nectin-4 was overexpressed at all stages of metastasis and angiogenesis, thus appearing to play a major role in tumor relapse through the PI3K-Akt-NFκβ pathway.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Female
- Humans
- Middle Aged
- NF-kappa B/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Kunal Goutam
- Department of Surgical Oncology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | - Deepika Nayak
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Rajalaxmi Pradhan
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Sefinew Molla
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | - Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
45
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
46
|
Tiainen L, Korhonen EA, Leppänen VM, Luukkaala T, Hämäläinen M, Tanner M, Lahdenperä O, Vihinen P, Jukkola A, Karihtala P, Aho S, Moilanen E, Alitalo K, Kellokumpu-Lehtinen PL. High baseline Tie1 level predicts poor survival in metastatic breast cancer. BMC Cancer 2019; 19:732. [PMID: 31340773 PMCID: PMC6657075 DOI: 10.1186/s12885-019-5959-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
Background Angiopoietin growth factors (Angs) regulate angiogenesis and lymphangiogenesis by binding to the endothelial Tie2 receptor. Ang2 expression is elevated in tissue hypoxia and inflammation, which also induce cleavage of the extracellular domain of the orphan Tie1 receptor. Here we have examined if the concentrations of Ang2 and the soluble extracellular domain of Tie1 in patient plasma are associated with the prognosis of patients with metastatic breast cancer. Methods Plasma Tie1 and Ang2 levels were measured in metastatic breast cancer patients treated in a phase II trial with a taxane-bevacizumab combination chemotherapy in the first-line treatment setting. They were analyzed before treatment, after 6 weeks and 6 months of treatment, and at the final study visit. Using the median concentrations as cutoffs, Tie1 and Ang2 data were dichotomized into low and high concentration groups. Additionally, we analyzed Tie1 concentrations in plasma from 10 healthy women participating in a breast cancer primary prevention study. Results Plasma samples were available from 58 (89%) of the 65 patients treated in the trial. The baseline Tie1 levels of the healthy controls were significantly lower than those of the metastatic patients (p < 0.001). The overall survival of the patients with a high baseline Tie1 level was significantly shorter (multivariate HR 3.07, 95% CI 1.39–6.79, p = 0.005). Additionally, the progression-free survival was shorter for patients with a high baseline Tie1 level (multivariate HR 3.78, 95% CI 1.57–9.09, p = 0.003). In contrast, the baseline Ang2 levels had no prognostic impact in a multivariate Cox proportional hazard regression analysis. The combined analysis of baseline Tie1 and Ang2 levels revealed that patients with both high Tie1 and high Ang2 baseline levels had a significantly shorter overall survival than the patients with low baseline levels of both markers (multivariate HR for overall survival 4.32, 95% CI 1.44–12.94, p = 0.009). Conclusions This is the first study to demonstrate the prognostic value of baseline Tie1 plasma concentration in patients with metastatic breast cancer. Combined with the results of the Ang2 analyses, the patients with both high Tie1 and Ang2 levels before treatment had the poorest survival. Trial registration Clinicaltrials.gov: NCT00979641, registration date 19-DEC-2008. The regional Ethics Committee: R08142M, registration date 18-NOV-2008.
Collapse
Affiliation(s)
- Leena Tiainen
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland. .,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Emilia A Korhonen
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Tiina Luukkaala
- Research, Development and Innovation Centre, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, P.O. Box 100, FI-33014, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Outi Lahdenperä
- Department of Oncology and Radiotherapy, Turku University Central Hospital, P.O. Box 52, 20521, Turku, Finland
| | - Pia Vihinen
- Department of Oncology and Radiotherapy, Turku University Central Hospital, P.O. Box 52, 20521, Turku, Finland
| | - Arja Jukkola
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 10, 90029 OYS, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 10, 90029 OYS, Oulu, Finland
| | - Sonja Aho
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, P.O. Box 100, FI-33014, Tampere, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, P.O. Box 63, FI-00014, Helsinki, Finland
| | - Pirkko-Liisa Kellokumpu-Lehtinen
- Department of Oncology, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, P.O. Box 100, FI-33014, Tampere, Finland.,Department of Oncology, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland
| |
Collapse
|
47
|
Zhang L, Qi Y, Min H, Ni C, Wang F, Wang B, Qin H, Zhang Y, Liu G, Qin Y, Duan X, Li F, Han X, Tao N, Zhang L, Qin Z, Zhao Y, Nie G. Cooperatively Responsive Peptide Nanotherapeutic that Regulates Angiopoietin Receptor Tie2 Activity in Tumor Microenvironment To Prevent Breast Tumor Relapse after Chemotherapy. ACS NANO 2019; 13:5091-5102. [PMID: 30986342 DOI: 10.1021/acsnano.8b08142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expressed in macrophages and endothelial cells, the receptor for angiopoietin, tyrosine kinase with immunoglobulin and epidermal growth factor homology-2 (Tie2), is required for the reconstruction of blood vessels in tumor recurrence after chemotherapy. Thus, small therapeutic peptides that target and block Tie2 activity are promising as a therapeutic for the prevention of tumor relapse after chemotherapy. However, such small peptides often have low bioavailability, undergo rapid enzymatic degradation, and exhibit a short circulation half-life, making them ineffective in cancer therapy. Herein, we designed a dual-responsive amphiphilic peptide (mPEG1000-K(DEAP)-AAN-NLLMAAS) to modify the small peptide T4 (NLLMAAS) as a Tie2 inhibitor, endowing it with the ability to endure in circulation and specifically target tumor tissue. The ultimate nanoformulation (P-T4) releases T4 in response to the combination of the acidic tumor microenvironment and the presence of legumain, which is commonly overexpressed in tumor tissue. Compared with free T4, P-T4 decreases vessel density significantly (free T4: 2.44 ± 1.20%, P-T4: 0.90 ± 0.75%), delays tumor regrowth after chemotherapy (free T4: 43.2 ± 11.8%, P-T4: 63.6 ± 13.9%), and reduces distant metastasis formation (free T4: 4.50 ± 2.40%, P-T4: 0.67 ± 0.32%). These effects of P-T4 are produced by the local blockage of Tie2 signals in Tie2-positive macrophages and endothelial cells. In addition to describing a potential strategy to enhance circulation half-life and the accumulation of an active peptide at tumor sites, our approach exemplifies the successful targeting of multiple cell types that overexpress a key molecule in conditions associated with tumors.
Collapse
Affiliation(s)
- Lijing Zhang
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Yingqiu Qi
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Chen Ni
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Fei Wang
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Bin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yue Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Xixi Duan
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Feng Li
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Xuexiang Han
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Lirong Zhang
- School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Zhihai Qin
- The First Affiliated Hospital , Zhengzhou University , Zhengzhou 450052 , China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
48
|
Monteiro AC, Muenzner JK, Andrade F, Rius FE, Ostalecki C, Geppert CI, Agaimy A, Hartmann A, Fujita A, Schneider-Stock R, Jasiulionis MG. Gene expression and promoter methylation of angiogenic and lymphangiogenic factors as prognostic markers in melanoma. Mol Oncol 2019; 13:1433-1449. [PMID: 31069961 PMCID: PMC6547615 DOI: 10.1002/1878-0261.12501] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023] Open
Abstract
The high mortality rate of melanoma is broadly associated with its metastatic potential. Tumor cell dissemination is strictly dependent on vascularization; therefore, angiogenesis and lymphangiogenesis play an essential role in metastasis. Hence, a better understanding of the players of tumor vascularization and establishing them as new molecular biomarkers might help to overcome the poor prognosis of melanoma patients. Here, we further characterized a linear murine model of melanoma progression and showed that the aggressiveness of melanoma cells is closely associated with high expression of angiogenic factors, such as Vegfc, Angpt2, and Six1, and that blockade of the vascular endothelial growth factor pathway by the inhibitor axitinib abrogates their tumorigenic potential in vitro and in the in vivo chicken chorioallantoic membrane assay. Furthermore, analysis of The Cancer Genome Atlas data revealed that the expression of the angiogenic factor ANGPT2 (P‐value = 0.044) and the lymphangiogenic receptor VEGFR‐3 (P‐value = 0.002) were independent prognostic factors of overall survival in melanoma patients. Enhanced reduced representation bisulfite sequencing‐based methylome profiling revealed for the first time a link between abnormal VEGFC, ANGPT2, and SIX1 gene expression and promoter hypomethylation in melanoma cells. In patients, VEGFC (P‐value = 0.031), ANGPT2 (P‐value < 0.001), and SIX1 (P‐value = 0.009) promoter hypomethylation were independent prognostic factors of shorter overall survival. Hence, our data suggest that these angio‐ and lymphangiogenesis factors are potential biomarkers of melanoma prognosis. Moreover, these findings strongly support the applicability of our melanoma progression model to unravel new biomarkers for this aggressive human disease.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.,Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Julienne K Muenzner
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Fernando Andrade
- Department of Computer Science, Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
| | - Flávia Eichemberger Rius
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Christian Ostalecki
- Department of Dermatology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
| | - Regine Schneider-Stock
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | | |
Collapse
|
49
|
Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019; 8:cells8050471. [PMID: 31108880 PMCID: PMC6562915 DOI: 10.3390/cells8050471] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Angiopoietins 1–4 (Ang1–4) represent an important family of growth factors, whose activities are mediated through the tyrosine kinase receptors, Tie1 and Tie2. The best characterized are angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 is a potent angiogenic growth factor signaling through Tie2, whereas Ang2 was initially identified as a vascular disruptive agent with antagonistic activity through the same receptor. Recent data demonstrates that Ang2 has context-dependent agonist activities. Ang2 plays important roles in physiological processes and the deregulation of its expression is characteristic of several diseases. In this review, we summarize the activity of Ang2 on blood and lymphatic endothelial cells, its significance in human physiology and disease, and provide a current view of the molecular signaling pathways regulated by Ang2 in endothelial cells.
Collapse
Affiliation(s)
- Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Md S Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Fatema T Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
50
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|