1
|
Saadh MJ, Allela OQB, Sattay ZJ, Al Zuhairi RAH, Ahmad H, Eldesoky GE, Adil M, Ali MS. Deciphering the functional landscape and therapeutic implications of noncoding RNAs in the TGF-β signaling pathway in colorectal cancer: A comprehensive review. Pathol Res Pract 2024; 255:155158. [PMID: 38320438 DOI: 10.1016/j.prp.2024.155158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Colorectal cancer (CRC) remains a major global health concern, necessitating an in-depth exploration of the intricate molecular mechanisms underlying its progression and potential therapeutic interventions. Transforming Growth Factor-β (TGF-β) signaling, a pivotal pathway implicated in CRC plays a dual role as a tumor suppressor in the early stages and a promoter of tumor progression in later stages. Recent research has shed light on the critical involvement of noncoding RNAs (ncRNAs) in modulating the TGF-β signaling pathway, introducing a new layer of complexity to our understanding of CRC pathogenesis. This comprehensive review synthesizes the current state of knowledge regarding the function and therapeutic potential of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in the context of TGF-β signaling in CRC. The intricate interplay between these ncRNAs and key components of the TGF-β pathway is dissected, revealing regulatory networks that contribute to the dynamic balance between tumor suppression and promotion. Emphasis is placed on how dysregulation of specific ncRNAs can disrupt this delicate equilibrium, fostering CRC initiation, progression, and metastasis. Moreover, the review provides a critical appraisal of the emerging therapeutic strategies targeting ncRNAs associated with TGF-β signaling in CRC. The potential of these ncRNAs as diagnostic and prognostic biomarkers is discussed, highlighting their clinical relevance. Additionally, the challenges and prospects of developing RNA-based therapeutics, such as RNA interference and CRISPR/Cas-based approaches, are explored in the context of modulating TGF-β signaling for CRC treatment. In conclusion, this review offers a comprehensive overview of the intricate interplay between ncRNAs and the TGF-β signaling pathway in CRC. By unraveling the functional significance of these regulatory elements, we gain valuable insights into the molecular landscape of CRC, paving the way for the development of novel and targeted therapeutic interventions aimed at modulating the TGF-β signaling cascade through the manipulation of ncRNAs.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Zahraa Jasim Sattay
- Department of Medical Laboratory Technology l, University of imam Jaafar Al-Sadiq, Iraq
| | | | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, Rome 00186, Italy; Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| | - Gaber E Eldesoky
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
2
|
Stern MC, Mendez JS, Kim AE, Obón-Santacana M, Moratalla-Navarro F, Martín V, Moreno V, Lin Y, Bien SA, Qu C, Su YR, White E, Harrison TA, Huyghe JR, Tangen CM, Newcomb PA, Phipps AI, Thomas CE, Kawaguchi ES, Lewinger JP, Morrison JL, Conti DV, Wang J, Thomas DC, Platz EA, Visvanathan K, Keku TO, Newton CC, Um CY, Kundaje A, Shcherbina A, Murphy N, Gunter MJ, Dimou N, Papadimitriou N, Bézieau S, van Duijnhoven FJB, Männistö S, Rennert G, Wolk A, Hoffmeister M, Brenner H, Chang-Claude J, Tian Y, Marchand LL, Cotterchio M, Tsilidis KK, Bishop DT, Melaku YA, Lynch BM, Buchanan DD, Ulrich CM, Ose J, Peoples AR, Pellatt AJ, Li L, Devall MAM, Campbell PT, Albanes D, Weinstein SJ, Berndt SI, Gruber SB, Ruiz-Narvaez E, Song M, Joshi AD, Drew DA, Petrick JL, Chan AT, Giannakis M, Peters U, Hsu L, Gauderman WJ. Genome-Wide Gene-Environment Interaction Analyses to Understand the Relationship between Red Meat and Processed Meat Intake and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2024; 33:400-410. [PMID: 38112776 PMCID: PMC11343583 DOI: 10.1158/1055-9965.epi-23-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND High red meat and/or processed meat consumption are established colorectal cancer risk factors. We conducted a genome-wide gene-environment (GxE) interaction analysis to identify genetic variants that may modify these associations. METHODS A pooled sample of 29,842 colorectal cancer cases and 39,635 controls of European ancestry from 27 studies were included. Quantiles for red meat and processed meat intake were constructed from harmonized questionnaire data. Genotyping arrays were imputed to the Haplotype Reference Consortium. Two-step EDGE and joint tests of GxE interaction were utilized in our genome-wide scan. RESULTS Meta-analyses confirmed positive associations between increased consumption of red meat and processed meat with colorectal cancer risk [per quartile red meat OR = 1.30; 95% confidence interval (CI) = 1.21-1.41; processed meat OR = 1.40; 95% CI = 1.20-1.63]. Two significant genome-wide GxE interactions for red meat consumption were found. Joint GxE tests revealed the rs4871179 SNP in chromosome 8 (downstream of HAS2); greater than median of consumption ORs = 1.38 (95% CI = 1.29-1.46), 1.20 (95% CI = 1.12-1.27), and 1.07 (95% CI = 0.95-1.19) for CC, CG, and GG, respectively. The two-step EDGE method identified the rs35352860 SNP in chromosome 18 (SMAD7 intron); greater than median of consumption ORs = 1.18 (95% CI = 1.11-1.24), 1.35 (95% CI = 1.26-1.44), and 1.46 (95% CI = 1.26-1.69) for CC, CT, and TT, respectively. CONCLUSIONS We propose two novel biomarkers that support the role of meat consumption with an increased risk of colorectal cancer. IMPACT The reported GxE interactions may explain the increased risk of colorectal cancer in certain population subgroups.
Collapse
Affiliation(s)
- Mariana C. Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joel Sanchez Mendez
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Andre E. Kim
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Vicente Martín
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- The Research Group in Gene – Environment and Health Interactions (GIIGAS) / Institut of Biomedicine (IBIOMED), Universidad de León, 24071 León, Spain
- Faculty of Health Sciences, Department of Biomedical Sciences, Area of Preventive Medicine and Public Health, Universidad de León, 24071 León, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Catherine M Tangen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Claire E Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Eric S. Kawaguchi
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John L Morrison
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David V Conti
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jun Wang
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Franzel JB van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | | | | | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute, Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Brigid M. Lynch
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew AM Devall
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte CA, USA
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amit D Joshi
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica L Petrick
- Slone Epidemiology Center at, Boston University, Boston, Massachusetts, USA
| | - Andrew T Chan
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - W. James Gauderman
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Herlo LF, Dumache R, Duta C, Vita O, Mercioni AM, Stelea L, Sirli R, Iurciuc S. Colorectal Cancer Risk Prediction Using the rs4939827 Polymorphism of the SMAD7 Gene in the Romanian Population. Diagnostics (Basel) 2024; 14:220. [PMID: 38275467 PMCID: PMC10814119 DOI: 10.3390/diagnostics14020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) is globally recognized as a prevalent malignancy known for its significant mortality rate. Recent years have witnessed a rising incidence trend in colorectal cancer, emphasizing the necessity for early diagnosis. Our study focused on examining the impact of the SMAD7 gene variant rs4939827 on the risk of colorectal cancer occurrence. The composition of our study group included 340 individuals, comprising 170 CRC diagnosed patients and 170 healthy controls. We performed genotyping of all biological samples using the TaqMan assay on the ABI 7500 Real-Time PCR System (Applied Biosystems, Waltham, MA, USA). This investigation focused on the rs4939827 gene variant, assessing its association with CRC risk and clinicopathological characteristics. Genotyping results for the SMAD7 gene variant rs4939827 revealed a 42.6% prevalence of the C allele in CRC patients (p = 0.245) and a 22.8% prevalence of the T allele in control subjects (p = 0.109). This study concluded that there was an elevated risk of CRC in the dominant model for CC/CT+TT, with a p-value of 0.113 and an odds ratio (OR) of 2.781, within a 95% confidence interval (CI) of 0.998 to 3.456. The findings of our research indicate a correlation between variants of the SMAD7 gene and the likelihood of developing colorectal cancer in our study population. Consequently, these results could be instrumental in facilitating early diagnosis of colorectal cancer utilizing information on single-nucleotide polymorphism (SNP) and genetic susceptibility to the disease.
Collapse
Affiliation(s)
- Lucian-Flavius Herlo
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Raluca Dumache
- Department of Forensic Medicine, Bioethics, Medical Ethics and Medical Law, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Ciprian Duta
- Department of Surgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Octavia Vita
- Department of Pathology, Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Adriana Marina Mercioni
- Faculty of Automation and Computer Science, Politehnica University, 300223 Timisoara, Romania;
| | - Lavinia Stelea
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Sirli
- Advanced Regional Research Center in Gastroenterology and Hepatology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Stela Iurciuc
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
Liu Z, Zhao Y, Song H, Miao H, Wang Y, Tu C, Fu T, Qin J, Du B, Qian M, Ren H. Identification and characterization of colorectal-cancer-associated SNPs on the SMAD7 locus. J Cancer Res Clin Oncol 2023; 149:16659-16668. [PMID: 37721570 DOI: 10.1007/s00432-023-05402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Genome-wide association studies have identified SMAD7 as a colorectal cancer (CRC) susceptibility gene. However, its underlying mechanism has not yet been characterized. This study screened functional SNPs (fSNPs) related to colorectal cancer through Reel-seq and obtained regulatory proteins on functional SNPs. METHODS The candidate fSNPs on the SMAD7 locus were screened by Reel-seq method. Eight SNPs such as rs8085824 were identified as functional SNPs by luciferase reporter assay and EMSA, SDCP-MS and AIDP-WB revealed that HNRNPK can specifically bind to the rs8085824-C allele. The knockdown of HNRNPK by RNAi proved that HNRNPK could affect cell function by regulating SMAD7. RESULTS Eight functional SNPs was found on the SMAD7 locus in linkage disequilibrium (LD) with R2 > 0.8, i.e., rs12953717, rs7227023, rs34007497, rs58920878, rs8085824, rs4991143, rs4939826, and rs7227023. We also identified allele-imbalanced binding of HNRNPK to rs8085824, H1-3 to rs12953717, THOC6 to rs7227023, and DDX21 to rs58920878. Further functional analysis revealed that these proteins are the regulatory proteins that modulate the expression of SMAD7 in the human colorectal cancer cell line DLD1. In particular, we discovered that siRNA knockdown of HNRNPK inhibits cell proliferation and cell clonal formation by downregulating SMAD7, as the decreased cell proliferation and cell clonal formation in the siRNA HNRNPK knockdown cells was restored by SMAD7 overexpression. CONCLUSION Our findings reveal a mechanism which underlies the contribution of the fSNP rs8085824 on the SMD7 locus to CRC susceptibility.
Collapse
Affiliation(s)
- Zhao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yihan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongli Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huaxue Miao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chuntian Tu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyun Fu
- School of Mathematical Sciences, East China Normal University, Shanghai, 200241, China
| | - Juliang Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, 201499, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
5
|
Cho HI, Jo S, Kim MS, Kim HB, Liu X, Xuan Y, Cho JW, Jang YK. SETD5 regulates the OGT-catalyzed O-GlcNAcylation of RNA polymerase II, which is involved in the stemness of colorectal cancer cells. Sci Rep 2023; 13:19885. [PMID: 37963940 PMCID: PMC10646014 DOI: 10.1038/s41598-023-46923-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023] Open
Abstract
The dosage-dependent recruitment of RNA polymerase II (Pol II) at the promoters of genes related to neurodevelopment and stem cell maintenance is required for transcription by the fine-tuned expression of SET-domain-containing protein 5 (SETD5). Pol II O-GlcNAcylation by O-GlcNAc transferase (OGT) is critical for preinitiation complex formation and transcription cycling. SETD5 dysregulation has been linked to stem cell-like properties in some cancer types; however, the role of SETD5 in cancer cell stemness has not yet been determined. We here show that aberrant SETD5 overexpression induces stemness in colorectal cancer (CRC) cells. SETD5 overexpression causes the upregulation of PI3K-AKT pathway-related genes and cancer stem cell (CSC) markers such as CD133, Kruppel-like factor 4 (KLF4), and estrogen-related receptor beta (ESRRB), leading to the gain of stem cell-like phenotypes. Our findings also revealed a functional relationship between SETD5, OGT, and Pol II. OGT-catalyzed Pol II glycosylation depends on SETD5, and the SETD5-Pol II interaction weakens in OGT-depleted cells, suggesting a SETD5-OGT-Pol II interdependence. SETD5 deficiency reduces Pol II occupancy at PI3K-AKT pathway-related genes and CD133 promoters, suggesting a role for SETD5-mediated Pol II recruitment in gene regulation. Moreover, the SETD5 depletion nullified the SETD5-induced stemness of CRC cells and Pol II O-GlcNAcylation. These findings support the hypothesis that SETD5 mediates OGT-catalyzed O-GlcNAcylation of RNA Pol II, which is involved in cancer cell stemness gain via CSC marker gene upregulation.
Collapse
Affiliation(s)
- Hye In Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sora Jo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Min Seong Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Han Byeol Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xingzhe Liu
- Department of Pathology, Yanbian University College of Medicine, No.977, Gongyuan Road, Yanji, 133002, China
| | - Yanhua Xuan
- Department of Pathology, Yanbian University College of Medicine, No.977, Gongyuan Road, Yanji, 133002, China.
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yeun Kyu Jang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Initiative for Biological Function & Systems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Pourali G, Zafari N, Velayati M, Mehrabadi S, Maftooh M, Hassanian SM, Mobarhan MG, Ferns GA, Avan A, Khazaei M. Therapeutic Potential of Targeting Transforming Growth Factor-beta (TGF-β) and Programmed Death-ligand 1 (PD-L1) in Pancreatic Cancer. Curr Drug Targets 2023; 24:1335-1345. [PMID: 38053355 DOI: 10.2174/0113894501264450231129042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
Pancreatic cancer (PC) is one the most lethal malignancies worldwide affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Transforming growth factor-beta (TGF-β) is a multifunctional factor acting as both a tumor promoter in early cancer stages and a tumor suppressor in advanced disease. Programmed death-ligand 1 (PD-L1) is a ligand of programmed death-1 (PD-1), an immune checkpoint receptor, allowing tumor cells to avoid elimination by immune cells. Recently, targeting the TGF-β signaling and PD-L1 pathways has emerged as a strategy for cancer therapy. In this review, we have summarized the current knowledge regarding these pathways and their contribution to tumor development with a focus on PC. Moreover, we have reviewed the role of TGF-β and PD-L1 blockade in the treatment of various cancer types, including PC, and discussed the clinical trials evaluating TGF-β and PD-L1 antagonists in PC patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Doctor, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
7
|
Rana PS, Soler DC, Kort J, Driscoll JJ. Targeting TGF-β signaling in the multiple myeloma microenvironment: Steering CARs and T cells in the right direction. Front Cell Dev Biol 2022; 10:1059715. [PMID: 36578789 PMCID: PMC9790996 DOI: 10.3389/fcell.2022.1059715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) remains a lethal hematologic cancer characterized by the expansion of transformed plasma cells within the permissive bone marrow (BM) milieu. The emergence of relapsed and/or refractory MM (RRMM) is provoked through clonal evolution of malignant plasma cells that harbor genomic, metabolic and proteomic perturbations. For most patients, relapsed disease remains a major cause of overall mortality. Transforming growth factors (TGFs) have pleiotropic effects that regulate myelomagenesis as well as the emergence of drug resistance. Moreover, TGF-β modulates numerous cell types present with the tumor microenvironment, including many immune cell types. While numerous agents have been FDA-approved over the past 2 decades and significantly expanded the treatment options available for MM patients, the molecular mechanisms responsible for drug resistance remain elusive. Multiple myeloma is uniformly preceded by a premalignant state, monoclonal gammopathy of unknown significance, and both conditions are associated with progressive deregulation in host immunity characterized by reduced T cell, natural killer (NK) cell and antigen-presenting dendritic cell (DC) activity. TGF-β promotes myelomagenesis as well as intrinsic drug resistance by repressing anti-myeloma immunity to promote tolerance, drug resistance and disease progression. Hence, repression of TGF-β signaling is a prerequisite to enhance the efficacy of current and future immunotherapeutics. Novel strategies that incorporate T cells that have been modified to express chimeric antigen receptor (CARs), T cell receptors (TCRs) and bispecific T cell engagers (BiTEs) offer promise to block TGF-β signaling, overcome chemoresistance and enhance anti-myeloma immunity. Here, we describe the effects of TGF-β signaling on immune cell effectors in the bone marrow and emerging strategies to overcome TGF-β-mediated myeloma growth, drug resistance and survival.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - David C. Soler
- The Brain Tumor and Neuro-Oncology Center, The Center of Excellence for Translational Neuro-Oncology, Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, United States
| | - Jeries Kort
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States,*Correspondence: James J. Driscoll,
| |
Collapse
|
8
|
Maslankova J, Vecurkovska I, Rabajdova M, Katuchova J, Kicka M, Gayova M, Katuch V. Regulation of transforming growth factor-β signaling as a therapeutic approach to treating colorectal cancer. World J Gastroenterol 2022; 28:4744-4761. [PMID: 36156927 PMCID: PMC9476856 DOI: 10.3748/wjg.v28.i33.4744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
According to data from 2020, Slovakia has long been among the top five countries with the highest incidence rate of colorectal cancer (CRC) worldwide, and the rate is continuing to rise every year. In approximately 80% of CRC cases, allelic loss (loss of heterozygosity, LOH) occurs in the long arm of chromosome 18q. The most important genes that can be silenced by 18q LOH or mutations are small mothers against decapentaplegic homolog (SMAD) 2 and SMAD4, which are intracellular mediators of transforming growth factor (TGF)-β superfamily signals. TGF-β plays an important role in the pro-oncogenic processes, including such properties as invasion, epithelial-mesenchymal transition (commonly known as EMT), promotion of angiogenesis, and immunomodulatory effects. Several recent studies have reported that activation of TGF-β signaling is related to drug resistance in CRC. Because the mechanisms of drug resistance are different between patients in different stages of CRC, personalized treatment is more effective. Therefore, knowledge of the activation and inhibition of factors that affect the TGF-β signaling pathway is very important.
Collapse
Affiliation(s)
- Jana Maslankova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Ivana Vecurkovska
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Miroslava Rabajdova
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Katuchova
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Milos Kicka
- First Department of Surgery, Medical Faculty of Safarik University, Kosice 04011, Kosicky kraj, Slovakia
| | - Michala Gayova
- Department of Burns and Reconstructive Surgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| | - Vladimir Katuch
- Department of Neurosurgery, Medical Faculty at Safarik University and University Hospital, Kosice 04011, Slovakia
| |
Collapse
|
9
|
Rosic J, Dragicevic S, Miladinov M, Despotovic J, Bogdanovic A, Krivokapic Z, Nikolic A. SMAD7 and SMAD4 expression in colorectal cancer progression and therapy response. Exp Mol Pathol 2021; 123:104714. [PMID: 34717960 DOI: 10.1016/j.yexmp.2021.104714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
Inhibitory SMAD7 and common mediator SMAD4 play crucial roles in SMAD-dependent TGF-β signaling that is often disrupted in colorectal cancer (CRC). This study aimed to profile the expression of SMAD7 and SMAD4 in primary and metastatic CRC and to evaluate their significance in disease progression and therapy response. The expression of SMAD7 and SMAD4 genes was analyzed by quantitative real-time PCR in tissues from 35 primary and metastatic CRC patients and in vitro in 7 human cell lines originating from colon tissue. Expression levels of SMAD7 and SMAD4, as well as their ratio, were determined and their association with tumor characteristics and response to therapy were evaluated. SMAD4 level was significantly lower in tumors compared to non-tumor tissues in both primary (p = 0.001) and metastatic (p = 0.001) CRC patients, while tumor expression of SMAD7 was significantly lower from non-tumor tissue only in metastatic patients (p = 0.017). SMAD7/SMAD4 ratio was elevated in CRC primary tumor tissues and cell lines compared to corresponding non-tumor tissues and cell line, respectively (p = 0.003). SMAD7 expression was significantly elevated in primary tumor tissues obtained from responders to neoadjuvant chemoradiotherapy (nCRT) compared to non-responders (p = 0.014). Alterations of expression and ratio of SMAD7 and SMAD4 in CRC cell lines, primary rectal cancer, and liver metastasis emphasize the importance of these genes in different stages of disease progression. Differential expression of SMAD7 in responders versus non-responders to nCRT should be further investigated for its potential predictive value.
Collapse
Affiliation(s)
- Jovana Rosic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia.
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Marko Miladinov
- Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Jovana Despotovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Aleksandar Bogdanovic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Zoran Krivokapic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia; Serbian Academy of Sciences and Arts, 11 000 Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| |
Collapse
|
10
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
11
|
Involvement of Smad7 in Inflammatory Diseases of the Gut and Colon Cancer. Int J Mol Sci 2021; 22:ijms22083922. [PMID: 33920230 PMCID: PMC8069188 DOI: 10.3390/ijms22083922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
In physiological conditions, the human intestinal mucosa is massively infiltrated with various subsets of immune cells, the activity of which is tightly regulated by several counter-regulatory factors. One of these factors is transforming growth factor-β1 (TGF-β1), a cytokine produced by multiple cell types and targeting virtually all the intestinal mucosal cells. Binding of TGF-β1 to its receptors triggers Smad2/3 signaling, thus culminating in the attenuation/suppression of immune–inflammatory responses. In patients with Crohn’s disease and patients with ulcerative colitis, the major human inflammatory bowel diseases (IBD), and in mice with IBD-like colitis, there is defective TGF-β1/Smad signaling due to high levels of the intracellular inhibitor Smad7. Pharmacological inhibition of Smad7 restores TGF-β1 function, thereby reducing inflammatory pathways in patients with IBD and colitic mice. On the other hand, transgenic over-expression of Smad7 in T cells exacerbates colitis in various mouse models of IBD. Smad7 is also over-expressed in other inflammatory disorders of the gut, such as refractory celiac disease, necrotizing enterocolitis and cytomegalovirus-induced colitis, even though evidence is still scarce and mainly descriptive. Furthermore, Smad7 has been involved in colon carcinogenesis through complex and heterogeneous mechanisms, and Smad7 polymorphisms could influence cancer prognosis. In this article, we review the data about the expression and role of Smad7 in intestinal inflammation and cancer.
Collapse
|
12
|
Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. J Hematol Oncol 2021; 14:55. [PMID: 33823905 PMCID: PMC8022551 DOI: 10.1186/s13045-021-01053-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
The TGF-β signaling pathway governs key cellular processes under physiologic conditions and is deregulated in many pathologies, including cancer. TGF-β is a multifunctional cytokine that acts in a cell- and context-dependent manner as a tumor promoter or tumor suppressor. As a tumor promoter, the TGF-β pathway enhances cell proliferation, migratory invasion, metastatic spread within the tumor microenvironment and suppresses immunosurveillance. Collectively, the pleiotropic nature of TGF-β signaling contributes to drug resistance, tumor escape and undermines clinical response to therapy. Based upon a wealth of preclinical studies, the TGF-β pathway has been pharmacologically targeted using small molecule inhibitors, TGF-β-directed chimeric monoclonal antibodies, ligand traps, antisense oligonucleotides and vaccines that have been now evaluated in clinical trials. Here, we have assessed the safety and efficacy of TGF-β pathway antagonists from multiple drug classes that have been evaluated in completed and ongoing trials. We highlight Vactosertib, a highly potent small molecule TGF-β type 1 receptor kinase inhibitor that is well-tolerated with an acceptable safety profile that has shown efficacy against multiple types of cancer. The TGF-β ligand traps Bintrafusp alfa (a bifunctional conjugate that binds TGF-β and PD-L1), AVID200 (a computationally designed trap of TGF-β receptor ectodomains fused to an Fc domain) and Luspatercept (a recombinant fusion that links the activin receptor IIb to IgG) offer new ways to fight difficult-to-treat cancers. While TGF-β pathway antagonists are rapidly emerging as highly promising, safe and effective anticancer agents, significant challenges remain. Minimizing the unintentional inhibition of tumor-suppressing activity and inflammatory effects with the desired restraint on tumor-promoting activities has impeded the clinical development of TGF-β pathway antagonists. A better understanding of the mechanistic details of the TGF-β pathway should lead to more effective TGF-β antagonists and uncover biomarkers that better stratify patient selection, improve patient responses and further the clinical development of TGF-β antagonists.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ehsan Malek
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - James J Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
13
|
Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules 2020; 11:biom11010017. [PMID: 33375423 PMCID: PMC7823508 DOI: 10.3390/biom11010017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract contains the largest population of immune cells in the body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could potentially promote tissue damage, in normal conditions the mucosal immune response is tightly controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7, an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
|
14
|
Thakur N, Hamidi A, Song J, Itoh S, Bergh A, Heldin CH, Landström M. Smad7 Enhances TGF-β-Induced Transcription of c-Jun and HDAC6 Promoting Invasion of Prostate Cancer Cells. iScience 2020; 23:101470. [PMID: 32888405 PMCID: PMC7520897 DOI: 10.1016/j.isci.2020.101470] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor β (TGF-β) enhances migration and invasion of cancer cells, causing life-threatening metastasis. Smad7 expression is induced by TGF-β to control TGF-β signaling in a negative feedback manner. Here we report an additional function of Smad7, i.e., to enhance TGF-β induction of c-Jun and HDAC6 via binding to their regulatory regions, promoting migration and invasion of prostate cancer cells. Lysine 102 in Smad7 is crucial for binding to specific consensus sites in c-Jun and HDAC6, even when endogenous Smad2, 3, and 4 were silenced by siRNA. A correlation between the mRNA expression of Smad7 and HDAC6, Smad7 and c-Jun, and c-Jun and HDAC6 was found in public databases from analyses of prostate cancer tissues. High expression of Smad7, HDAC6, and c-Jun correlated with poor prognosis for patients with prostate cancer. The knowledge that Smad7 can activate transcription of proinvasive genes leading to prostate cancer progression provides clinically relevant information.
Collapse
Affiliation(s)
- Noopur Thakur
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
| | - Anahita Hamidi
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Jie Song
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Maréne Landström
- Ludwig Institute for Cancer Research, Ltd., Science for Life Laboratory, Uppsala University, Box 595, 751 24 Uppsala, Sweden
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
15
|
Feld J, Navada SC, Silverman LR. Myelo-deception: Luspatercept & TGF-Beta ligand traps in myeloid diseases & anemia. Leuk Res 2020; 97:106430. [PMID: 32763582 DOI: 10.1016/j.leukres.2020.106430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Myelodysplastic syndromes (MDS) encompass a clinically heterogenous group of diseases defined by a clonal bone marrow failure state. Patients with lower-risk MDS primarily suffer from the consequences of anemia, with a subset having increased risks of bleeding and infection. There are few good therapeutic options for this patient population, as patients are dependent on cytokine support to improve hematopoiesis. Our review will discuss luspatercept, a transforming growth factor (TGF)-Beta ligand trap, the first new Food & Drug Administration (FDA)-approved treatment in MDS in over a decade. We will explore the different TGF-Beta ligand traps that have been developed for a number of diseases, with a focus on myeloid malignancies.
Collapse
Affiliation(s)
- Jonathan Feld
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| | - Shyamala C Navada
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| | - Lewis R Silverman
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1079, New York, NY, 10029, United States.
| |
Collapse
|
16
|
Wang H. MicroRNAs and Apoptosis in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21155353. [PMID: 32731413 PMCID: PMC7432330 DOI: 10.3390/ijms21155353] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death in the world, and its incidence is rising in developing countries. Treatment with 5-Fluorouracil (5-FU) is known to improve survival in CRC patients. Most anti-cancer therapies trigger apoptosis induction to eliminate malignant cells. However, de-regulated apoptotic signaling allows cancer cells to escape this signaling, leading to therapeutic resistance. Treatment resistance is a major challenge in the development of effective therapies. The microRNAs (miRNAs) play important roles in CRC treatment resistance and CRC progression and apoptosis. This review discusses the role of miRNAs in contributing to the promotion or inhibition of apoptosis in CRC and the role of miRNAs in modulating treatment resistance in CRC cells.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
17
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
18
|
Troncone E, Monteleone G. Smad7 and Colorectal Carcinogenesis: A Double-Edged Sword. Cancers (Basel) 2019; 11:cancers11050612. [PMID: 31052449 PMCID: PMC6563107 DOI: 10.3390/cancers11050612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinogenesis is a complex process in which many immune and non-immune cells and a huge number of mediators are involved. Among these latter factors, Smad7, an inhibitor of the transforming growth factor (TGF)-β1 signaling that has been involved in the amplification of the inflammatory process sustaining chronic intestinal inflammation, is supposed to make a valid contribution to the growth and survival of colorectal cancer (CRC) cells. Smad7 is over-expressed by tumoral cells in both sporadic CRC and colitis-associated CRC, where it sustains neoplastic processes through activation of either TGFβ-dependent or non-dependent pathways. Consistently, genome-wide association studies have identified single nucleotide polymorphisms of the Smad7 gene associated with CRC and shown that either amplification or deletion of the Smad7 gene associates with a poor prognosis or better outcome, respectively. On the other hand, there is evidence that over-expression of Smad7 in immune cells infiltrating the inflamed gut of patients with inflammatory bowel disease can elicit anti-tumor responses, with the down-stream effect of attenuating CRC cell growth. Taken together, these observations suggest a double role of Smad7 in colorectal carcinogenesis, which probably depends on the cell subset and the biological context analyzed. In this review, we summarize the available evidences about the role of Smad7 in both sporadic and colitis-associated CRC.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
19
|
Kaczorowski M, Biecek P, Donizy P, Pieniazek M, Matkowski R, Halon A. SMAD7 is a novel independent predictor of survival in patients with cutaneous melanoma. Transl Res 2019; 204:72-81. [PMID: 30342000 DOI: 10.1016/j.trsl.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022]
Abstract
Overexpression of SMAD7-a hallmark inhibitor of transforming growth factor β (TGFβ) signaling-has been documented and related with adverse prognosis in a number of epithelial malignancies, suggesting that it may be responsible for resistance to TGFβ-induced growth arrest of cancer cells. The involvement of SMAD7 in development and progression of malignant melanoma is unclear, and its expression has not been characterized so far at the protein level in clinical melanoma tissue samples. We evaluated SMAD7 expression in 205 skin melanoma primary tumors by immunohistochemistry and correlated the findings with clinicopathological profiles of patients. Melanocytic SMAD7 was evidenced in 204 cases, and the expression pattern was predominantly nuclear. High expression of SMAD7 was positively associated with several features of tumor aggressiveness, for example, presence of ulceration (P < 0.001), higher tumor thickness (P < 0.001), and mitotic rate (P < 0.001), but not presence of regional or distant metastases. Moreover, high SMAD7 expression independently predicted unfavorable outcome: melanoma-specific survival (hazard ratio = 3.16, P < 0.001) and recurrence-free survival (hazard ratio = 2.88, P < 0.001). Taken together, our results underline the importance of TGFβ signaling in cancer and define SMAD7 as a marker of aggressive tumor behavior and adverse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland; Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Soleimani A, Pashirzad M, Avan A, Ferns GA, Khazaei M, Hassanian SM. Role of the transforming growth factor-β signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2018; 120:8899-8907. [PMID: 30556274 DOI: 10.1002/jcb.28331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway plays an important role in cancer cell proliferation, growth, metastasis, and apoptosis. It has been shown that TGF-β acts as a tumor suppressor in the early stages of the disease, and as a tumor promoter in its late stages. Mutations in the TGF-β signaling components, the TGF-β receptors and cytoplasmic signaling transducers, are frequently observed in colorectal carcinomas. Exploiting specific TGF-β receptor agonist and antagonist with antitumor properties may be a way of controlling cancer progression. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
22
|
Wei W, Hu-Jie C. Association of the infiltration of tumor-associated macrophages, expression of Smad7 protein and prognosis in oral squamous cell carcinoma. Arch Oral Biol 2018; 95:22-29. [PMID: 30036733 DOI: 10.1016/j.archoralbio.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To explore the association between Smad7 expression and tumor-associated macrophage (TAM), and their relationship with clinicopathological features and prognosis in patients with oral squamous cell carcinoma (OSCC). METHODS This study collected cancer tissues from 314 OSCC patients from May 2002 to May 2012 at our hospital. Immunohistochemistry was carried out to detect the density of CD68+ cells and Smad7. RESULTS The densities of CD68TFMean and CD68TFHotspot shared a significant negative correlation with the immunoscore (IS) of Smad7, indicated that Smad7 was evidently increased with the decrease densities of CD68TFMean and CD68TFHotspot in OSCC tissues. Besides, low differentiation degree together with high TNM, T and N stage of OSCC patients presented decreased densities of CD68TFMean and CD68TFHotspot but increased expression of Smad7. Kaplan-Meier univariate survival analysis showed that the prognosis of OSCC patients was associated with differentiation degree, clinical stages, Smad7 expression, as well as densities of CD68TFMean and CD68TFHotspot. Cox regression analysis results demonstrated that N staging, the densities of CD68TFMean and CD68TFHotspot and Smad7 expression were independent risk factors influencing the survival rate of OSCC patients. CONCLUSION Decreased densities of CD68TFMean and CD68TFHotspot were negatively correlated with the increased Smad7 expression in OSCC tissues, both of which linked to clinicopathological features and prognosis of OSCC.
Collapse
Affiliation(s)
- Wei Wei
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434000, Hubei Province, PR China.
| | - Chen Hu-Jie
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou 434000, Hubei Province, PR China
| |
Collapse
|
23
|
Troncone E, Marafini I, Stolfi C, Monteleone G. Transforming Growth Factor-β1/Smad7 in Intestinal Immunity, Inflammation, and Cancer. Front Immunol 2018; 9:1407. [PMID: 29973939 PMCID: PMC6019438 DOI: 10.3389/fimmu.2018.01407] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
In physiological conditions, the activity of the intestinal immune system is tightly regulated to prevent tissue-damaging reactions directed against components of the luminal flora. Various factors contribute to maintain immune homeostasis and diminished production and/or function of such molecules trigger and/or propagate detrimental signals, which can eventually lead to chronic colitis and colon cancer. One such a molecule is transforming growth factor-β1 (TGF-β1), a cytokine produced by many inflammatory and non-inflammatory cells and targeting virtually all the intestinal mucosal cell types, with the down-stream effect of activating intracellular Smad2/3 proteins and suppressing immune reactions. In patients with inflammatory bowel diseases (IBD), there is defective TGF-β1/Smad signaling due to high Smad7, an inhibitor of TGF-β1 activity. Indeed, knockdown of Smad7 with a specific antisense oligonucleotide restores endogenous TGF-β1 activity, thereby inhibiting inflammatory pathways in patients with IBD and colitic mice. Consistently, mice over-expressing Smad7 in T cells develop severe intestinal inflammation in various experimental models. Smad7 expression is also upregulated in colon cancer cells, in which such a protein controls positively intracellular pathways that sustain neoplastic cell growth and survival. We here review the role of TGF-β1 and Smad7 in intestinal immunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
24
|
Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression. Cancers (Basel) 2018; 10:cancers10060159. [PMID: 29799477 PMCID: PMC6025439 DOI: 10.3390/cancers10060159] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance of this growth factor in fibrotic and neoplastic disorders, the TGF-β1 network is subject to extensive, multi-level negative controls that impact receptor function, mothers against decapentaplegic homolog 2/3 (SMAD2/3) activation, intracellular signal bifurcation into canonical and non-canonical pathways and target gene promotor engagement. Such negative regulators include phosphatase and tensin homologue (PTEN), protein phosphatase magnesium 1A (PPM1A), Klotho, bone morphogenic protein 7 (BMP7), SMAD7, Sloan-Kettering Institute proto-oncogene/ Ski related novel gene (Ski/SnoN), and bone morphogenetic protein and activin membrane-bound Inhibitor (BAMBI). The progression of certain cancers is accompanied by loss of expression, overexpression, mislocalization, mutation or deletion of several endogenous repressors of the TGF-β1 cascade, further modulating signal duration/intensity and phenotypic reprogramming. This review addresses how their aberrant regulation contributes to cellular plasticity, tumor progression/metastasis and reversal of cell cycle arrest and discusses the unexplored therapeutic value of restoring the expression and/or function of these factors as a novel approach to cancer treatment.
Collapse
|
25
|
Shaker OG, Mohammed SR, Mohammed AM, Mahmoud Z. Impact of microRNA-375 and its target gene SMAD-7 polymorphism on susceptibility of colorectal cancer. J Clin Lab Anal 2018; 32:e22215. [PMID: 28374902 PMCID: PMC6817095 DOI: 10.1002/jcla.22215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has a high morbidity and mortality. Many studies reported that mir-375 is frequently down-regulated in many cancers including esophageal cancer, hepatocellular carcinoma, breast cancer and leukemias. AIM Our aim was to study the expression of microRNA-375 and its target gene SMAD-7 polymorphisms (rs4939827) in CRC patients in comparison to control subjects and to correlate these results with clinical data of patients to elucidate their role in pathogenesis and early diagnosis of CRC. MATERIAL AND METHODS The present study was conducted on 122 subjects divided into 86 patients with CRC and 36 age- and sex-matched controls. The followings were done to all subjects: full history taking, full clinical examination, complete blood picture, serum (ALT, AST), serum albumin, CEA, TLC, PLT, and creatinine. Gene expression of miRNA-375 from serum was done by real-time PCR. Gene polymorphism SNPs of SMAD7 (rs4939827) was also done in DNA extracted from blood by real-time PCR. RESULTS As regards the polymorphism of SMAD7, we found that CC (wild) genotype has high percentage in controls compared to CRC cases (36.1% vs 15.1%). Meanwhile, the mutant and heterozygotes genotypes showed high percentage among cases compared to controls (33.7%, and 51.2% respectively) vs (22.2%, and 41.7% respectively) with no significant statistical analysis. There was a statistically significant high T-allelic frequency among cases and C-allelic frequency among controls. There was a statistically significant association between fold change in micro RNA (-375) and the susceptibility to CRC as there is down-regulation of the microRNA-375 in CRC group with fold change in 0.42±0.27. CONCLUSION Micro RNA-375 and rs4939827 SNP in SMAD7 could be considered as potential markers for detecting and early diagnosing CRC patients.
Collapse
Affiliation(s)
- Olfat Gamil Shaker
- Biochemistry and Molecular BiologyFaculty of MedicineCairo UniversityCairoEgypt
| | - Shereen Rashad Mohammed
- Departments of Medical Biochemistry and Molecular BiologyFaculty of MedicineFayoum UniversityAl FayoumEgypt
| | - Asmaa Mohammed Mohammed
- Departments of Medical Biochemistry and Molecular BiologyFaculty of MedicineFayoum UniversityAl FayoumEgypt
| | - Zeinab Mahmoud
- Departments of Tropical MedicineFaculty of MedicineCairo UniversityCairoEgypt
| |
Collapse
|
26
|
Fedorova MS, Snezhkina AV, Pudova EA, Abramov IS, Lipatova AV, Kharitonov SL, Sadritdinova AF, Nyushko KM, Klimina KM, Belyakov MM, Slavnova EN, Melnikova NV, Chernichenko MA, Sidorov DV, Kiseleva MV, Kaprin AD, Alekseev BY, Dmitriev AA, Kudryavtseva AV. Upregulation of NETO2 gene in colorectal cancer. BMC Genet 2017; 18:117. [PMID: 29297384 PMCID: PMC5751543 DOI: 10.1186/s12863-017-0581-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. RESULTS We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1, and FOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5, and SMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. CONCLUSIONS We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT.
Collapse
Affiliation(s)
- Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Belyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena N. Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Hu Y, Gaedcke J, Emons G, Beissbarth T, Grade M, Jo P, Yeager M, Chanock SJ, Wolff H, Camps J, Ghadimi BM, Ried T. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosomes Cancer 2017; 57:140-149. [PMID: 29119627 DOI: 10.1002/gcc.22512] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
To understand the molecular mechanism of rectal cancer and develop markers for disease prognostication, we generated and explored a dataset from 243 rectal cancer patients by gene expression microarray analysis of cancer samples and matched controls, and SNP-arrays of germline DNA. We found that two of the loci most strongly linked with colorectal cancer (CRC) risk, 8q24 (upstream of MYC) and 18q21 (in the intron of SMAD7), as well as 20q13 (in the intron of LAMA5), are tightly associated with the prognosis of rectal cancer patients. For SNPs on 18q21 (rs12953717 and rs4464148) and 20q13 (rs4925386), alleles that correlate with higher risk for the development of CRC are associated with shorter disease free survival (DFS). However, for rs6983267 on 8q24, the low risk allele is associated with a higher risk for recurrence and metastasis after surgery, and importantly, is strongly correlated with the resistance of CRC cell lines to chemoradiotherapy (CRT). We also found that although MYC expression is dramatically increased in cancer, patients with higher levels of MYC have a better prognosis. The expression of SMAD7 is weakly correlated with DFS. Notably, the presence of the 8q24 and 18q21 SNP alleles is not correlated with expression levels of MYC and SMAD7. rs4464148, and probably rs6983267 and rs4925386, are linked with overall survival time of patients. In conclusion, we show that several CRC risk SNPs detect subpopulations of rectal cancer patients with poor prognosis, and that rs6983267 probably affects prognosis through interfering with the resistance of cancer cells to CRT.
Collapse
Affiliation(s)
- Yue Hu
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Georg Emons
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892.,Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center, Göttingen, 37075, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Peter Jo
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850
| | - Hendrik Wolff
- Department of Radiation Oncology, University Medical Center, Göttingen, 37075, Germany
| | - Jordi Camps
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| |
Collapse
|
28
|
Chandrasinghe P, Cereser B, Moorghen M, Al Bakir I, Tabassum N, Hart A, Stebbing J, Warusavitarne J. Role of SMAD proteins in colitis-associated cancer: from known to the unknown. Oncogene 2017; 37:1-7. [DOI: 10.1038/onc.2017.300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
|
29
|
Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 2017; 44:1441-1454. [PMID: 27911726 DOI: 10.1042/bst20160065] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.
Collapse
|
30
|
Zhang C, Li X, Fu W, Wang Y, Wang T, Wang W, Chen S, Qin H, Zhang X. SMAD7 rs4939827 variant contributes to colorectal cancer risk in Chinese population. Oncotarget 2017; 8:41125-41131. [PMID: 28467803 PMCID: PMC5522279 DOI: 10.18632/oncotarget.17065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/11/2017] [Indexed: 01/10/2023] Open
Abstract
A genome-wide association study identified a common genetic variant rs4939827 at 18q21 in SMAD7 to be related with colorectal cancer (CRC) risk with OR=1.2 and P =7.80E-28. Until recently, several meta-analysis studies have been conducted, and reported significant association between rs4939827 and CRC risk. However none of these studies evaluated the potential association between rs4939827 and CRC risk in Chinese population. In this study, we evaluated this association by a meta-analysis using 12077 samples including 5816 CRC cases and 6261 controls. In the end, we identified the T allele of rs4939827 to be significantly related with an increase CRC risk (P=2.22E-05, OR=1.14, 95% CI 1.07-1.21) in Chinese population.
Collapse
Affiliation(s)
- Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xichuan Li
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Wenzheng Fu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yijia Wang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Tao Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Wenhong Wang
- Department of Imaging, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Hai Qin
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
31
|
Li J, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong Y, Lou J, Ke J, Zhang Y, Tian J, Zou D, Peng X, Chang J, Gong J, Zhong R, Zhou X, Miao X. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinog 2017; 56:1798-1807. [PMID: 28218435 DOI: 10.1002/mc.22637] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
The TGF-β pathway plays an essential role in regulating cell proliferation and differentiation. GWASs and candidate approaches have identified a battery of genetic variants in the TGF-β pathway contributing to colorectal cancer (CRC). However, most of the significant variants are common variants and their functions remain ambiguous. To identify causal variants with low-frequency in the TGF-β pathway contributing to CRC susceptibility in Chinese population, we performed targeted sequencing of 12 key genes in TGF-β signaling in CRC patients followed by a two-stage case-control study with a total of 5109 cases and 5169 controls. Bioinformatic annotations and biochemical experiments were applied to reveal the potential functions of significant variants. Seven low-frequency genetic variants were captured through targeted sequencing. The two stage association studies showed that missense variant rs3764482 (c. 83C>T; p. S28F) in the gene SMAD7 was consistently and significantly associated with CRC risk. Compared with the wild type, the ORs for variant allele were 1.37 (95%CI: 1.10-1.70, P = 0.005), 1.55 (95%CI: 1.30-1.86, P = 1.15 × 106 ), and 1.48 (1.29-1.70, P = 2.44 × 10;8 ) in stage 1, stage 2, and the combined analyses, respectively. Functional annotations revealed that the minor allele T of rs3764482 was more effective than the major allele C in blocking the TGF-β signaling and inhibiting the phosphorylation of receptor-regulated SMADs (R-SMADs). In conclusion, low-frequency coding variant rs3764482 in SMAD7 is associated with CRC risk in Chinese population. The rs3764482 variant may block the TGF-β signaling via impeding the activation of downstream genes, leading to cancer cell proliferation, thus contributing to CRC pathogenesis.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Li Zou
- Department of Health Care, Bao'an Maternal and Child Health Hospital, Shenzhen, China
| | - Ying Zhou
- Institute of Orthopaedics, the First Affiliated Hospital of Chinese PLA General Hospial, Beijing, China
| | - Lu Li
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jiang Chang
- Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| | - Xiaobo Zhou
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education & Ministry of Environmental Protection, Wuhan, China
| |
Collapse
|
32
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21. Biochem Biophys Res Commun 2017; 485:181-188. [PMID: 28192117 DOI: 10.1016/j.bbrc.2017.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/20/2022]
Abstract
Metastasis is one of the most decisive factors influencing CRC patient prognosis and current studies suggest that a molecular mechanism known as EMT broadly regulates cancer metastasis. NR2F2 is a key molecule in the development of CRC, but the roles and underlying mechanisms of NR2F2 in TGF-β induced EMT in CRC remain largely unknown. In the current study, we were interested to examine the role of NR2F2 in the TGF-β-induced EMT in CRC. Here, we found NR2F2 was upregulated in CRC cells and promotes TGF-β-induced EMT in CRC. Using comparative miRNA profiling TGF-β pre-treated CRC cells in which NR2F2 had been knocked down with that of control cells, we identified miR-21 as a commonly downregulated miRNA in HT29 cells treated with TGF-β and NR2F2 siRNA, and its downregulation inhibiting migration and invasion of CRC cells. Moreover, we found NR2F2 could transcriptional activated miR-21 expression by binding to miR-21 promoter in HT29 by ChIP and luciferase assay. In the last, our data demonstrated that Smad7 was the direct target of miR-21 in CRC cells. Thus, NR2F2 could promote TGF-β-induced EMT and inhibit Smad7 expression via transactivation of miR-21, and NR2F2 may be a new common therapeutic target for CRC.
Collapse
|
34
|
Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7:13884. [PMID: 27996004 PMCID: PMC5187443 DOI: 10.1038/ncomms13884] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor β (TGFβ) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) and metastasis. SMAD7 is both a transcriptional target and a negative regulator of TGFβ signalling, thus mediating a negative feedback loop that may potentially restrain TGFβ responses of cancer cells. Here, however, we show that TGFβ treatment induces SMAD7 transcription but not its protein level in a panel of cancer cells. Mechanistic studies reveal that TGFβ activates the expression of microRNA-182 (miR-182), which suppresses SMAD7 protein. miR-182 silencing leads to SMAD7 upregulation on TGFβ treatment and prevents TGFβ-induced EMT and invasion of cancer cells. Overexpression of miR-182 promotes breast tumour invasion and TGFβ-induced osteoclastogenesis for bone metastasis. Furthermore, miR-182 expression inversely correlates with SMAD7 protein in human tumour samples. Therefore, our data reveal the miR-182-mediated disruption of TGFβ self-restraint and provide a mechanism to explain the unleashed TGFβ responses in metastatic cancer cells. SMAD7 is a transcriptional target and a negative regulator of TGFβ signalling forming a negative feedback loop. Here the authors show that in cancer cells TGFβ activates the expression of microRNA-182 that suppresses SMAD7 protein, promoting TGFβ-mediated breast tumour invasion and bone metastasis.
Collapse
Affiliation(s)
- Jingyi Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueqian Zhuang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxun Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miguel F Segura
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Xue Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
35
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Su F, Li X, You K, Chen M, Xiao J, Zhang Y, Ma J, Liu B. Expression of VEGF-D, SMAD4, and SMAD7 and Their Relationship with Lymphangiogenesis and Prognosis in Colon Cancer. J Gastrointest Surg 2016; 20:2074-2082. [PMID: 27730400 DOI: 10.1007/s11605-016-3294-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 01/31/2023]
Abstract
AIM The vascular endothelial growth factor (VEGF) and TGF-β1 pathways play important roles in cancer. However, few studies have evaluated the expression and roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, and the conclusions remain controversial. To clarify the roles of VEGF-D, SMAD4, and SMAD7 in colon cancer, we examined their expression and evaluated correlations with lymphangiogenesis, prognosis, and chemotherapeutic outcome. METHODS The expression of VEGF-D, SMAD4, and SMAD7 was immunohistochemically examined in 251 primary colon cancer samples obtained from the Harbin Medical University. RESULTS The expression of VEGF-D, SMAD4, and SMAD7 was identified in 71.7, 41.0, and 69.7 % of samples, respectively. Positive expression of VEGF-D and SMAD7 and lost expression of SMAD4 were significantly correlated with lymph node metastasis and high lymphatic vessel density. VEGF-D and SMAD7 were found to be independent indicators of prognosis and chemotherapy outcome, and positive expression of either VEGF-D or SMAD7 was associated with significantly shorter overall survival and disease-free survival (OS and DFS) than negative expression in all 251 patients (P < 0.001 for OS and DFS) and patients following chemotherapy (P < 0.001 for OS and DFS). CONCLUSION VEGF-D, SMAD4, and SMAD7 were involved in lymphangiogenesis and lymph node metastasis. VEGF-D and SMAD7 can serve as predictors of prognosis and chemotherapeutic outcome in colon cancer.
Collapse
Affiliation(s)
- Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xuemei Li
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Kai You
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Mingwei Chen
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jianbing Xiao
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Yafang Zhang
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China
| | - Baoquan Liu
- Department of Anatomy, Harbin Medical University, 57 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
37
|
Erstad DJ, Tumusiime G, Cusack JC. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Ann Surg Oncol 2015. [DOI: 10.1245/s10434-015-4706-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Akbari Z, Safari-Alighiarloo N, Haghighi MM, Vahedi M, Mirtalebi H, Azimzadeh P, Milanizadeh S, Shemirani AI, Nazemalhosseini-Mojarad E, Aghdaei HA, Zali MR. Lack of influence of the SMAD7 gene rs2337107 polymorphism on risk of colorectal cancer in an Iranian population. Asian Pac J Cancer Prev 2015; 15:4437-41. [PMID: 24969865 DOI: 10.7314/apjcp.2014.15.11.4437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SMAD7 has been identified as a functional candidate gene for colorectal cancer (CRC). SMAD7 protein is a known antagonist of the transforming growth factor beta (TGF-β) signaling pathway which is involved in tumorigenesis. Polymorphisms in SMAD7 may thus alter cancer risk. The aim of this study was to investigate the influence of a SMAD7 gene polymorphism (rs2337107) on risk of CRC and clinicopathological features in an Iranian population. In total, 210 subjects including 105 patients with colorectal cancer and 105 healthy controls were recruited in our study. All samples were genotyped by TaqMan assay via an ABI 7500 Real Time PCR System (Applied Biosystems) with DNA from peripheral blood. The polymorphism was statistically analyzed to investigate the relationship with the risk of colorectal cancer and clinicopathological properties. Logistic regression analysis revealed that there was no significant association between rs2337107 and the risk of colorectal cancer. In addition, no significant association between genotypes and clinicopathological features was observed (p value>0.05). Although there was not any association between genotypes and disorder, CT was the most common genotype in this population. This genotype prevalence was also higher in the patients with well grade (54.9%) and colon (72.0%) tumors. Our results provide the first evidence that this polymorphism is not a potential contributor to the risk of colorectal cancer and clinicopathological features in an Iranian population, and suggests the need of a large-scale case-control study to validate our results.
Collapse
Affiliation(s)
- Zahra Akbari
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, E-mail :
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhu Z, Xu Y, Zhao J, Liu Q, Feng W, Fan J, Wang P. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway. Br J Cancer 2015; 112:1367-75. [PMID: 25867271 PMCID: PMC4402451 DOI: 10.1038/bjc.2015.102] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/08/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aberrant Smad7 expression contributes to the invasion and metastasis of pancreatic cancer cells. However, the potential mechanism underlying aberrant Smad7 expression in human pancreatic ductal adenocarcinoma (PDAC) remains largely unknown. METHODS Bioinformatic prediction programmes and luciferase reporter assay were used to identify microRNAs regulating Smad7. The association between miR-367 expression and the overall survival of PDAC patients was evaluated by Kaplan-Meier analysis. The effects of miR-367 and Smad7 on the invasion and metastasis of pancreatic cancer cells were investigated both in vitro and in vivo. RESULTS We found that miR-367 downregulated Smad7 expression by directly targeting its 3'-UTR in human pancreatic cancer cells. High level of miR-367 expression correlated with poor prognosis of PDAC patients. Functional studies showed that miR-367 promoted pancreatic cancer invasion in vitro and metastasis in vivo through downregulating Smad7. In addition, we showed that miR-367 promoted epithelial-to-mesenchymal transition by increasing transforming growth factor-β (TGF-β)-induced transcriptional activity. CONCLUSIONS The present study identified and characterised a signalling pathway, the miR-367/Smad7-TGF-β pathway, which is involved in the invasion and metastasis of pancreatic cancer cells. Our results suggest that miR-367 may be a promising therapeutic target for the treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Z Zhu
- 1] Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Y Xu
- 1] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China [2] Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China
| | - J Zhao
- 1] Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Q Liu
- 1] Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - W Feng
- 1] Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - J Fan
- Department of Pathology, Huashan Hospital, Fudan University, 12 Central Wulumuqi Road, Shanghai 200040, China
| | - P Wang
- 1] Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong An Road, Shanghai 200032, China [2] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai 200032, China
| |
Collapse
|
40
|
Gordian E, Li J, Pevzner Y, Mediavilla-Varela M, Luddy K, Ohaegbulam K, Daniel KG, Haura EB, Muñoz-Antonia T. Transforming growth factor β signaling overcomes dasatinib resistance in lung cancer. PLoS One 2014; 9:e114131. [PMID: 25501935 PMCID: PMC4263601 DOI: 10.1371/journal.pone.0114131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths. Despite recent advances in the development of targeted therapies, patients with advanced disease remain incurable, mostly because metastatic non-small cell lung carcinomas (NSCLC) eventually become resistant to tyrosine kinase inhibitors (TKIs). Kinase inhibitors have the potential for target promiscuity because the kinase super family is the largest family of druggable genes that binds to a common substrate (ATP). As a result, TKIs often developed for a specific purpose have been found to act on other targets. Drug affinity chromatography has been used to show that dasatinib interacts with the TGFβ type I receptor (TβR-I), a serine-threonine kinase. To determine the potential biological relevance of this association, we studied the combined effects of dasatinib and TGFβ on lung cancer cell lines. We found that dasatinib treatment alone had very little effect; however, when NSCLC cell lines were treated with a combination of TGFβ and dasatinib, apoptosis was induced. Combined TGFβ-1 + dasatinib treatment had no effect on the activity of Smad2 or other non-canonical TGFβ intracellular mediators. Interestingly, combined TGFβ and dasatinib treatment resulted in a transient increase in p-Smad3 (seen after 3 hours). In addition, when NSCLC cells were treated with this combination, the pro-apoptotic protein BIM was up-regulated. Knockdown of the expression of Smad3 using Smad3 siRNA also resulted in a decrease in BIM protein, suggesting that TGFβ-1 + dasatinib-induced apoptosis is mediated by Smad3 regulation of BIM. Dasatinib is only effective in killing EGFR mutant cells, which is shown in only 10% of NSCLCs. Therefore, the observation that wild-type EGFR lung cancers can be manipulated to render them sensitive to killing by dasatinib could have important implications for devising innovative and potentially more efficacious treatment strategies for this disease.
Collapse
Affiliation(s)
- Edna Gordian
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Yuri Pevzner
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Melanie Mediavilla-Varela
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kimberly Luddy
- Cancer Imaging & Metabolism Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kim Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States of America
| | - Kenyon G. Daniel
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Teresita Muñoz-Antonia
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
- * E-mail:
| |
Collapse
|
41
|
Brücher BLDM, Lyman G, van Hillegersberg R, Pollock RE, Lordick F, Yang HK, Ushijima T, Yeoh KG, Skricka T, Polkowski W, Wallner G, Verwaal V, Garofalo A, D'Ugo D, Roviello F, Steinau HU, Wallace TJ, Daumer M, Maihle N, Reid TJ, Ducreux M, Kitagawa Y, Knuth A, Zilberstein B, Steele SR, Jamall IS. Imagine a world without cancer. BMC Cancer 2014; 14:186. [PMID: 24629025 PMCID: PMC3995593 DOI: 10.1186/1471-2407-14-186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Background Since the “War on Cancer” was declared in 1971, the United States alone has expended some $300 billion on research, with a heavy focus on the role of genomics in anticancer therapy. Voluminous data have been collected and analyzed. However, in hindsight, any achievements made have not been realized in clinical practice in terms of overall survival or quality of life extended. This might be justified because cancer is not one disease but a conglomeration of multiple diseases, with widespread heterogeneity even within a single tumor type. Discussion Only a few types of cancer have been described that are associated with one major signaling pathway. This enabled the initial successful deployment of targeted therapy for such cancers. However, soon after this targeted approach was initiated, it was subverted as cancer cells learned and reacted to the initial treatments, oftentimes rendering the treatment less effective or even completely ineffective. During the past 30 plus years, the cancer classification used had, as its primary aim, the facilitation of communication and the exchange of information amongst those caring for cancer patients with the end goal of establishing a standardized approach for the diagnosis and treatment of cancers. This approach should be modified based on the recent research to affect a change from a service-based to an outcome-based approach. The vision of achieving long-term control and/or eradicating or curing cancer is far from being realized, but not impossible. In order to meet the challenges in getting there, any newly proposed anticancer strategy must integrate a personalized treatment outcome approach. This concept is predicated on tumor- and patient-associated variables, combined with an individualized response assessment strategy for therapy modification as suggested by the patient’s own results. As combined strategies may be outcome-orientated and integrate tumor-, patient- as well as cancer-preventive variables, this approach is likely to result in an optimized anticancer strategy. Summary Herein, we introduce such an anticancer strategy for all cancer patients, experts, and organizations: Imagine a World without Cancer.
Collapse
|
42
|
Stolfi C, De Simone V, Colantoni A, Franzè E, Ribichini E, Fantini MC, Caruso R, Monteleone I, Sica GS, Sileri P, MacDonald TT, Pallone F, Monteleone G. A functional role for Smad7 in sustaining colon cancer cell growth and survival. Cell Death Dis 2014; 5:e1073. [PMID: 24556688 PMCID: PMC3944263 DOI: 10.1038/cddis.2014.49] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
Initially identified as an inhibitor of transforming growth factor (TGF)-β mainly owing to its ability to bind TGF-β receptor type I and abrogate TGF-β-driven signaling, Smad7 can interact with additional intracellular proteins and regulate TGF-β-independent pathways, thus having a key role in the control of neoplastic processes in various organs. Genome-wide association studies have shown that common alleles of Smad7 influence the risk of colorectal cancer (CRC), even though the contribution of Smad7 in colon carcinogenesis is not fully understood. In this study, we assessed the expression and role of Smad7 in human and mouse models of sporadic CRC. We document a significant increase of Smad7 in human CRC relative to the surrounding nontumor tissues and show that silencing of Smad7 inhibits the growth of CRC cell lines both in vitro and in vivo after transplantation into immunodeficient mice. Knockdown of Smad7 results in enhanced phosphorylation of the cyclin-dependent kinase (CDK)2, accumulation of CRC cells in S phase and enhanced cell death. Smad7-deficient CRC cells have lower levels of CDC25A, a phosphatase that dephosphorylates CDK2, and hyperphosphorylated eukaryotic initiation factor 2 (eIF2)α, a negative regulator of CDC25 protein translation. Consistently, knockdown of Smad7 associates with inactivation of eIF2α, lower CDC25A expression and diminished fraction of proliferating cells in human CRC explants, and reduces the number of intestinal tumors in Apcmin/+ mice. Altogether, these data support a role for Smad7 in sustaining colon tumorigenesis.
Collapse
Affiliation(s)
- C Stolfi
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - V De Simone
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - A Colantoni
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - E Franzè
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - E Ribichini
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - M C Fantini
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - R Caruso
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - I Monteleone
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - G S Sica
- Department of Surgery, University of 'Tor Vergata', Rome, Italy
| | - P Sileri
- Department of Surgery, University of 'Tor Vergata', Rome, Italy
| | - T T MacDonald
- Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - F Pallone
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| | - G Monteleone
- Department of Systems Medicine, University of 'Tor Vergata', Rome, Italy
| |
Collapse
|
43
|
Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci 2013; 14:23774-90. [PMID: 24317436 PMCID: PMC3876077 DOI: 10.3390/ijms141223774] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Smad7 was initially identified as an inhibitor of Transforming growth factor (TGF)-β due mainly to its ability to bind TGF-β receptor type I and prevent TGF-β-associated Smad signaling. More recently, it has been demonstrated that Smad7 can interact with other intracellular proteins and regulate also TGF-β-independent signaling pathways thus making a valid contribution to the neoplastic processes in various organs. In particular, data emerging from experimental studies indicate that Smad7 may differently modulate the course of various tumors depending on the context analyzed. These observations, together with the demonstration that Smad7 expression is deregulated in many cancers, suggest that therapeutic interventions around Smad7 can help interfere with the development/progression of human cancers. In this article we review and discuss the available data supporting the role of Smad7 in the modulation of cancer growth and progression.
Collapse
Affiliation(s)
- Carmine Stolfi
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| | | | | | | | - Giovanni Monteleone
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| |
Collapse
|
44
|
Montemayor-Garcia C, Hardin H, Guo Z, Larrain C, Buehler D, Asioli S, Chen H, Lloyd RV. The role of epithelial mesenchymal transition markers in thyroid carcinoma progression. Endocr Pathol 2013; 24:206-12. [PMID: 24126800 PMCID: PMC3875396 DOI: 10.1007/s12022-013-9272-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Understanding the molecular mechanisms involved in thyroid cancer progression may provide targets for more effective treatment of aggressive thyroid cancers. Epithelial mesenchymal transition (EMT) is a major pathologic mechanism in tumor progression and is linked to the acquisition of stem-like properties of cancer cells. We examined expression of ZEB1 which activates EMT by binding to the E-box elements in the E-cadherin promoter, and expression of E-cadherin in normal and neoplastic thyroid tissues in a tissue microarray which included 127 neoplasms and 10 normal thyroid specimens. Thyroid follicular adenomas (n = 32), follicular thyroid carcinomas (n = 28), and papillary thyroid carcinomas (n = 57) all expressed E-cadherin and were mostly negative for ZEB1 while most anaplastic thyroid carcinomas (ATC, n = 10) were negative for E-cadherin, but positive for ZEB1. A validation set of 10 whole sections of ATCs showed 90 % of cases positive for ZEB1 and all cases were negative for E-cadherin. Analysis of three cell lines (normal thyroid, NTHY-OR13-1; PTC, TPC-1, and ATC, THJ-21T) showed that the ATC cell line expressed the highest levels of ZEB1 while the normal thyroid cell line expressed the highest levels of E-Cadherin. Quantitative RT-PCR analyses showed that Smad7 mRNA was significantly higher in ATC than in any other group (p < 0.05). These results indicate that ATCs show evidence of EMT including decreased expression of E-cadherin and increased expression of ZEB1 compared to well-differentiated thyroid carcinomas and that increased expression of Smad7 may be associated with thyroid tumor progression.
Collapse
Affiliation(s)
- Celina Montemayor-Garcia
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, K4/436 Clinical Science Center, Box 8550, 600 Highland Avenue, Madison, WI, 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sivadas VP, George NA, Kattoor J, Kannan S. Novel mutations and expression alterations inSMAD3/TGFBR2genes in oral carcinoma correlate with poor prognosis. Genes Chromosomes Cancer 2013; 52:1042-52. [DOI: 10.1002/gcc.22099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vadakke Peringode Sivadas
- Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer Research, Regional Cancer Centre; Thiruvananthapuram 695 011 Kerala India
| | - Nebu Abraham George
- Division of Surgical Oncology, Regional Cancer Centre; Thiruvananthapuram 695 011 Kerala India
| | - Jayasree Kattoor
- Division of Cytopathology, Regional Cancer Centre; Thiruvananthapuram 695 011 Kerala India
| | - S. Kannan
- Laboratory of Cell Cycle Regulation & Molecular Oncology, Division of Cancer Research, Regional Cancer Centre; Thiruvananthapuram 695 011 Kerala India
| |
Collapse
|
46
|
Kapoor S. Smad7 and its evolving role as a prognostic marker in gastro-intestinal malignancies. Eur J Cancer 2013; 49:2453-4. [DOI: 10.1016/j.ejca.2013.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 11/30/2022]
|
47
|
Jiang X, Castelao JE, Vandenberg D, Carracedo A, Redondo CM, Conti DV, Paredes Cotoré JP, Potter JD, Newcomb PA, Passarelli MN, Jenkins MA, Hopper JL, Gallinger S, Le Marchand L, Martínez ME, Ahnen DJ, Baron JA, Lindor NM, Haile RW, Gago-Dominguez M. Genetic variations in SMAD7 are associated with colorectal cancer risk in the colon cancer family registry. PLoS One 2013; 8:e60464. [PMID: 23560096 PMCID: PMC3616155 DOI: 10.1371/journal.pone.0060464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Background Recent genome-wide studies identified a risk locus for colorectal cancer at 18q21, which maps to the SMAD7 gene. Our objective was to confirm the association between SMAD7 SNPs and colorectal cancer risk in the multi-center Colon Cancer Family Registry. Materials and Methods 23 tagging SNPs in the SMAD7 gene were genotyped among 1,592 population-based and 253 clinic-based families. The SNP-colorectal cancer associations were assessed in multivariable conditional logistic regression. Results Among the population-based families, both SNPs rs12953717 (odds ratio, 1.29; 95% confidence interval, 1.12–1.49), and rs11874392 (odds ratio, 0.80; 95% confidence interval, 0.70–0.92) were associated with risk of colorectal cancer. These associations were similar among the population- and the clinic-based families, though they were significant only among the former. Marginally significant differences in the SNP-colorectal cancer associations were observed by use of nonsteroidal anti-inflammatory drugs, cigarette smoking, body mass index, and history of polyps. Conclusions SMAD7 SNPs were associated with colorectal cancer risk in the Colon Cancer Family Registry. There was evidence suggesting that the association between rs12953717 and colorectal cancer risk may be modified by factors such as smoking and use of nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuejuan Jiang
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - J. Esteban Castelao
- Oncology and Genetics Unit, Complejo Hospitalario Universitario de Vigo, Servicio Galego de Saude (SERGAS), Vigo, Spain
| | - David Vandenberg
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angel Carracedo
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Carmen M. Redondo
- Oncology and Genetics Unit, Complejo Hospitalario Universitario de Vigo, Servicio Galego de Saude (SERGAS), Vigo, Spain
| | - David V. Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jesus P. Paredes Cotoré
- Department of Surgery, University Hospital Santiago de Compostela, Santiago de Compostela, Spain
| | - John D. Potter
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Polly A. Newcomb
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael N. Passarelli
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population & Global Health, The University of Melbourne, Victoria, Australia
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population & Global Health, The University of Melbourne, Victoria, Australia
| | - Steven Gallinger
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Loic Le Marchand
- University of Hawaii Cancer Research Center, Honolulu, Hawaii, United States of America
| | - María E. Martínez
- University of California, San Diego Moores Cancer Center, San Diego, United States of America
| | - Dennis J. Ahnen
- Denver VA Medical Center and University of Colorado, Denver, Colorado, United States of America
| | - John A. Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Noralane M. Lindor
- Department of Health Science Research, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
48
|
Zhang H, Ma H, Xu Y, Li L. Association of SMAD7 rs12953717 polymorphism with cancer: a meta-analysis. PLoS One 2013; 8:e58170. [PMID: 23472153 PMCID: PMC3589366 DOI: 10.1371/journal.pone.0058170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/31/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Accumulating evidence has suggested that Mothers against decapentaplegic homolog 7 (SMAD7) rs12953717 polymorphism might be related to cancer risk. However, epidemiologic findings have been inconsistent. We therefore performed a meta-analysis to clarify the association between the SMAD7 rs12953717 polymorphism and cancer risk. METHODS A comprehensive search was conducted to identify all eligible studies of SMAD7 rs12953717 polymorphism and cancer risk. We used odds ratios (ORs) to assess the strength of the association, and 95% confidence intervals (CIs) to give a sense of the precision of the estimate. Heterogeneity, publication bias, and sensitivity analysis were also explored. RESULTS A total of 14 case-control studies, including 16928 cases and 14781 controls, were included in the present meta-analysis. The overall results showed that the variant genotypes were associated with a significantly increased risk of all cancer types (homozygote comparison, OR = 1.23, 95%CI = 1.10-1.38, P<0.01; heterozygote comparison, OR = 1.12, 95%CI = 1.02-1.22, P = 0.02; recessive model, OR = 1.17, 95%CI = 1.07-1.29, P<0.01; dominant model, OR = 1.15, 95%CI = 1.06-1.25, P<0.01; allelic model, OR = 1.12, 95%CI = 1.06-1.18, P<0.01). Further sensitivity analysis confirmed the significant association. In the subgroup analysis by ethnicity, SMAD7 rs12953717 polymorphism was significantly associated with cancer risk in both Caucasians and Asians. In the subgroup analysis by cancer types, SMAD7 rs12953717 polymorphism was significantly associated with colorectal cancer. CONCLUSIONS Our investigations demonstrate that rs12953717 polymorphism is associated with the susceptibility of cancer. Large-scale and well-designed case-control studies are necessary to validate the risk identified in the present meta-analysis.
Collapse
Affiliation(s)
- Hongtuan Zhang
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Hui Ma
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Liang Li
- Laboratory of Population and Quantitative Genetics, School of Life Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Zhong R, Liu L, Zou L, Sheng W, Zhu B, Xiang H, Chen W, Chen J, Rui R, Zheng X, Yin J, Duan S, Yang B, Sun J, Lou J, Liu L, Xie D, Xu Y, Nie S, Miao X. Genetic variations in the TGF signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis 2012; 34:936-42. [DOI: 10.1093/carcin/bgs395] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
50
|
Monteleone G, Caruso R, Pallone F. Role of Smad7 in inflammatory bowel diseases. World J Gastroenterol 2012; 18:5664-8. [PMID: 23155305 PMCID: PMC3484333 DOI: 10.3748/wjg.v18.i40.5664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/18/2012] [Accepted: 06/08/2012] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease and ulcerative colitis, the major forms of inflammatory bowel diseases (IBD) in man, are complex diseases in which genetic and environmental factors interact to promote an excessive mucosal immune response directed against normal components of the bacterial microflora. There is also evidence that the pathologic process is due to defects in counter-regulatory mechanisms, such as those involving the immunosuppressive cytokine transforming growth factor (TGF)-β1. Indeed, studies in human IBD tissues and murine models of colitis have documented a disruption of TGF-β1 signalling marked by a block in the phosphorylation of Smad3, a signalling molecule associated with the activated TGF-β receptor, due to up-regulation of Smad7, an intracellular inhibitor of Smad3 phosphorylation. Knock-down of Smad7 with a specific antisense oligonucleotide restores TGF-β1/Smad3 signalling, thus resulting in a marked suppression of inflammatory cytokine production and attenuation of murine colitis. These findings together with the demonstration that Smad7 antisense oligonucleotide is not toxic when administered in mice have paved the way for the development of a Smad7 antisense oligonucleotide-based pharmaceutical compound that is now ready to enter the clinics. In this article we review the available data supporting the pathogenic role of Smad7 in IBD and discuss whether and how Smad7 antisense therapy could help dampen the ongoing inflammation in IBD.
Collapse
|