1
|
Ta H, Yang YH, Zhu TT, Du NH, Hao Y, Fu J, Xu DD, Xu ZJ, Cheng AX, Lou HX. Catalytic divergence of O-methyltransferases shapes the chemo-diversity of polymethoxylated bibenzyls in Dendrobium catenatum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:29-44. [PMID: 39213173 DOI: 10.1111/tpj.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Erianin, crepidatin, and chrysotobibenzyl are typical medicinal polymethoxylated bibenzyls (PMBs) that are commercially produced in Dendrobium species. PMBs' chemo-diversity is mediated by the manifold combinations of O-methylation and hydroxylation in a definite order, which remains unsolved. To unequivocally elucidate the methylation mechanism of PMBs, 15 possible intermediates in the biosynthetic pathway of PMBs were chemically synthesized. DcOMT1-5 were highly expressed in tissues where PMBs were biosynthesized, and their expression patterns were well-correlated with the accumulation profiles of PMBs. Moreover, cell-free orthogonal tests based on the synthesized intermediates further confirmed that DcOMT1-5 exhibited distinct substrate preferences and displayed hydroxyl-group regiospecificity during the sequential methylation process. The stepwise methylation of PMBs was discovered from SAM to dihydro-piceatannol (P) in the following order: P → 3-MeP → 4-OH-3-MeP → 4-OH-3,5-diMeP → 3,3'(4'),5-triMeP → 3,4,4',5-tetraMeP (erianin) or 3,3',4,5-tetraMeP (crepidatin) → 3,3',4,4',5-pentaMeP (chrysotobibenzyl). Furthermore, the regioselectivities of DcOMTs were investigated by ligand docking analyses which corresponded precisely with the catalytic activities. In summary, the findings shed light on the sequential catalytic mechanisms of PMB biosynthesis and provide a comprehensive PMB biosynthetic network in D. catenatum. The knowledge gained from this study may also contribute to the development of plant-based medicinal applications and the production of high-value PMBs.
Collapse
Affiliation(s)
- He Ta
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ya-Hui Yang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ting-Ting Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ni-Hong Du
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Hao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jie Fu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dan-Dan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ze-Jun Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
2
|
Fialková V, Ďúranová H, Borotová P, Klongová L, Grabacka M, Speváková I. Natural Stilbenes: Their Role in Colorectal Cancer Prevention, DNA Methylation, and Therapy. Nutr Cancer 2024; 76:760-788. [PMID: 38950568 DOI: 10.1080/01635581.2024.2364391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
The resistance of colorectal cancer (CRC) to conventional therapeutic modalities, such as radiation therapy and chemotherapy, along with the associated side effects, significantly limits effective anticancer strategies. Numerous epigenetic investigations have unveiled that naturally occurring stilbenes can modify or reverse abnormal epigenetic alterations, particularly aberrant DNA methylation status, offering potential avenues for preventing or treating CRC. By modulating the activity of the DNA methylation machinery components, phytochemicals may influence the various stages of CRC carcinogenesis through multiple molecular mechanisms. Several epigenetic studies, especially preclinical research, have highlighted the effective DNA methylation modulatory effects of stilbenes with minimal adverse effects on organisms, particularly in combination therapies for CRC. However, the available preclinical and clinical data regarding the effects of commonly encountered stilbenes against CRC are currently limited. Therefore, additional epigenetic research is warranted to explore the preventive potential of these phytochemicals in CRC development and to validate their therapeutic application in the prevention and treatment of CRC. This review aims to provide an overview of selected bioactive stilbenes as potential chemopreventive agents for CRC with a focus on their modulatory mechanisms of action, especially in targeting alterations in DNA methylation machinery in CRC.
Collapse
Affiliation(s)
- Veronika Fialková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Petra Borotová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Lucia Klongová
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
3
|
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB, Shakibaei M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev 2024; 43:55-85. [PMID: 37507626 PMCID: PMC11016130 DOI: 10.1007/s10555-023-10126-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (Medbay), Education City, Qatar Foundation, 24144, Doha, Qatar
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
4
|
Das K, Kundu A, Sarkar K, Adhikari D, Maji B. Catalytic acceptorless dehydrogenative borylation of styrenes enabled by a molecularly defined manganese complex. Chem Sci 2024; 15:1098-1105. [PMID: 38239678 PMCID: PMC10793603 DOI: 10.1039/d3sc05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we employed a 3d metal complex as a catalyst to synthesize alkenyl boronate esters through the dehydrogenative coupling of styrenes and pinacolborane. The process generates hydrogen gas as the sole byproduct without requiring an acceptor, rendering it environmentally friendly and atom-efficient. This methodology demonstrated exceptional selectivity for dehydrogenative borylation over direct hydroboration. Additionally, it exhibited a preference for borylating aromatic alkenes over aliphatic ones. Notably, derivatives of natural products and bioactive molecules successfully underwent diversification using this approach. The alkenyl boronate esters served as precursors for the synthesis of various pharmaceuticals and potential anticancer agents. Our research involved comprehensive experimental and computational studies to elucidate the reaction pathway, highlighting the B-H bond cleavage as the rate-determining step. The catalyst's success was attributed to the hemilability and metal-ligand bifunctionality of the ligand backbone.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
5
|
Ruparelia KC, Zeka K, Beresford KJM, Wilsher NE, Potter GA, Androutsopoulos VP, Brucoli F, Arroo RRJ. CYP1-Activation and Anticancer Properties of Synthetic Methoxylated Resveratrol Analogues. Molecules 2024; 29:423. [PMID: 38257336 PMCID: PMC10818546 DOI: 10.3390/molecules29020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.
Collapse
Affiliation(s)
- Ketan C. Ruparelia
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Keti Zeka
- Zayed Centre for Research into Rare Disease in Children, University College London, London WC1E 6BT, UK
| | - Kenneth J. M. Beresford
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Nicola E. Wilsher
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Gerry A. Potter
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Vasilis P. Androutsopoulos
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (K.J.M.B.); (N.E.W.); (R.R.J.A.)
| |
Collapse
|
6
|
Józkowiak M, Kobylarek D, Bryja A, Gogola-Mruk J, Czajkowski M, Skupin-Mrugalska P, Kempisty B, Spaczyński RZ, Piotrowska-Kempisty H. Steroidogenic activity of liposomal methylated resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) in human luteinized granulosa cells in a primary three-dimensional in vitro model. Endocrine 2023; 82:681-694. [PMID: 37572199 PMCID: PMC10618382 DOI: 10.1007/s12020-023-03458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.
Collapse
Affiliation(s)
- Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
7
|
Li J, Li X, Zhou X, Yang L, Sun H, Kong L, Yan G, Han Y, Wang X. In Vivo Metabolite Profiling of DMU-212 in Apc Min/+ Mice Using UHPLC-Q/Orbitrap/LTQ MS. Molecules 2023; 28:3828. [PMID: 37175240 PMCID: PMC10180202 DOI: 10.3390/molecules28093828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
3,4,5,4'-Trans-tetramethoxystilbene (Synonyms: DMU-212) is a resveratrol analogue with stronger antiproliferative activity and more bioavailability. However, the metabolite characterization of this component remains insufficient. An efficient strategy was proposed for the comprehensive in vivo metabolite profiling of DMU-212 after oral administration in ApcMin/+ mice based on the effectiveness of the medicine. Ultra-high performance liquid chromatography-quadrupole/orbitrap/linear ion trap mass spectrometry (UHPLC-Q/Orbitrap/LTQ MS) in the AcquireXTM intelligent data acquisition mode, combining the exact mass and structural information, was established for the profiling and identification of the metabolites of DMU-212 in vivo, and the possible metabolic pathways were subsequently proposed after the oral dose of 240mg/kg for 3 weeks in the colorectal adenoma (CRA) spontaneous model ApcMin/+ mice. A total of 63 metabolites of DMU-212 were tentatively identified, including 48, 48, 34 and 28 metabolites in the ApcMin/+ mice's intestinal contents, liver, serum, and colorectal tissues, respectively. The metabolic pathways, including demethylation, oxidation, desaturation, methylation, acetylation, glucuronide and cysteine conjugation were involved in the metabolism. Additionally, further verification of the representative active metabolites was employed using molecular docking analysis. This study provides important information for the further investigation of the active constituents of DMU-212 and its action mechanisms for CRA prevention.
Collapse
Affiliation(s)
- Jing Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xinghua Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaohang Zhou
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China
| |
Collapse
|
8
|
Rudzińska A, Juchaniuk P, Oberda J, Wiśniewska J, Wojdan W, Szklener K, Mańdziuk S. Phytochemicals in Cancer Treatment and Cancer Prevention-Review on Epidemiological Data and Clinical Trials. Nutrients 2023; 15:nu15081896. [PMID: 37111115 PMCID: PMC10144429 DOI: 10.3390/nu15081896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are a non-nutritive substances that are present in plants and contribute significantly to their flavor and color. These biologically active compounds are classified into five major groups, namely phenolics, carotenoids, organosulfur compounds, nitrogen-containing compounds, and alkaloids, and are known for their potential health benefits in the prevention of various diseases, including cancer. The purpose of this review article is to explore the potential therapeutic benefits of the dietary phytochemicals, such as flavonoids, phenolic acids, phytosterols, carotenoids, and stilbenes, in cancer treatment and prevention based on the epidemiological studies and clinical trials. Although the majority of epidemiological studies report a significant advantage of the heightened phytochemical consumption and increased serum levels of these compounds, linking increased exposure with a lower cancer risk across most cancer types, these effects could not be replicated in the most available clinical trials. In fact, many of these trials were withdrawn early due to a lack of evidence and/or risk of harm. Despite the strong anticancer effect of phytochemicals, as well as their proven efficacy in multiple epidemiological studies, there is still a great need for human studies and clinical trials, with great caution regarding the safety measures. This review article provides an overview of the epidemiological and clinical evidence supporting the potential chemopreventive and anticancer properties of phytochemicals, with a focus on the need for further research in this area.
Collapse
Affiliation(s)
- Anna Rudzińska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Pola Juchaniuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jakub Oberda
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jolanta Wiśniewska
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Witold Wojdan
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
9
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Huang SB, Rivas P, Yang X, Lai Z, Chen Y, Schadler KL, Hu M, Reddick RL, Ghosh R, Kumar AP. SIRT1 inhibition-induced senescence as a strategy to prevent prostate cancer progression. Mol Carcinog 2022; 61:702-716. [PMID: 35452563 PMCID: PMC10161240 DOI: 10.1002/mc.23412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggests an important role for SIRT1, a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase in cancer development, progression and therapeutic resistance; making it a viable therapeutic target. Here, we examined the impact of resveratrol-mediated pharmacological activation of SIRT1 on the progression of HGPIN lesions (using the Pten-/- mouse model) and on prostate tumor development (using an orthotopic model of prostate cancer cells stably silenced for SIRT1). We show that precise SIRT1 modulation could benefit both cancer prevention and treatment. Positive effect of SIRT1 activation can prevent Pten deletion-driven development of HGPIN lesions in mice if resveratrol is administered early (pre-cancer stage) with little to no benefit after the establishment of HGPIN lesions or tumor cell implantation. Mechanistically, our results show that under androgen deprivation conditions, SIRT1 inhibition induces senescence as evidenced by decreased gene signature associated with negative regulators of senescence and increased senescence-associated β-galactosidase activity. Furthermore, pharmacological inhibition of SIRT1 potentiated growth inhibitory effects of clinical androgen receptor blockade agents and radiation. Taken together, our findings provide an explanation for the discrepancy regarding the role of SIRT1 in prostate tumorigenesis. Our results reveal that the bifurcated roles for SIRT1 may occur in stage and context-dependent fashion by functioning in an antitumor role in prevention of early-stage prostate lesion development while promoting tumor development and disease progression post-lesion development. Clinically, these data highlight the importance of precise SIRT1 modulation to provide benefits for cancer prevention and treatment including sensitization to conventional therapeutic approaches.
Collapse
Affiliation(s)
- Shih-Bo Huang
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Paul Rivas
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiaoyu Yang
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Department of Epidemiology and Biostatistics, UT Health at San Antonio Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, UT Health at San Antonio Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| | - Keri L Schadler
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Ming Hu
- College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Robert L Reddick
- Department of Pathology, The University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Rita Ghosh
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Department of Urology, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, The University of Texas Health San Antonio MD Anderson, San Antonio, Texas, USA
| | - Addanki P Kumar
- Department of Molecular Medicine, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Department of Urology, The University of Texas Health at San Antonio, San Antonio, Texas, USA.,Mays Cancer Center, The University of Texas Health San Antonio MD Anderson, San Antonio, Texas, USA.,South Texas Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
11
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
12
|
Shen Y, Sen A, Turgeon DK, Ren J, Graifman G, Ruffin MT, Smith WL, Brenner DE, Djuric Z. Changes in Serum, Red Blood Cell, and Colonic Fatty Acids in a Personalized Omega-3 Fatty Acid Supplementation Trial. Nutr Cancer 2021; 74:565-578. [PMID: 33757398 DOI: 10.1080/01635581.2021.1903950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study evaluated changes in fatty acids from sera, red blood cells, and colonic biopsies from a phase Ib clinical trial of personalized ω-3 fatty acid dosing in 47 healthy volunteers. The trial aimed to reduce colonic prostaglandin E2 (PGE2), a pro-inflammatory product of arachidonic acid (AA) oxidation. The personalized doses ranged 2-10 grams/day (54% eicosapentaenoic acid, EPA, 24% other ω-3 fatty acids). In colon, increases in ω-3 highly unsaturated fatty acids (HUFA) and EPA:AA ratios each were correlated with decreases in PGE2. Changes in either colonic EPA:AA ratios or ω-3 HUFA were significantly correlated with changes in the same fatty acid measures in red blood cells or serum. The only blood-based measure significantly correlated with changes in colonic PGE2 was change in red blood cell ω-3 HUFA (ρ = -0.39), and the increase in red blood cell ω-3 HUFA was significantly greater in participants who had at least a median reduction in colonic PGE2 vs. those who did not. In summary, fatty acid changes in blood did reflect fatty acid changes in the colon, but additional factors will be needed for optimizing dosing models that seek to predict the anti-inflammatory effects of ω-3 fatty acids on the colon.
Collapse
Affiliation(s)
- Yifan Shen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Ananda Sen
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - D Kim Turgeon
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianwei Ren
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gillian Graifman
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State, Hershey, Pennsylvania, USA
| | - William L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Dean E Brenner
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Zora Djuric
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA.,Department of Family Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Nutritional Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Gunnoe TB, Schinski WL, Jia X, Zhu W. Transition-Metal-Catalyzed Arene Alkylation and Alkenylation: Catalytic Processes for the Generation of Chemical Intermediates. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - William L. Schinski
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Sen A, Zhao L, Djuric Z, Turgeon DK, Ruffin MT, Smith WL, Brenner DE, Normolle DP. An Adaptive Bayesian Design for Personalized Dosing in a Cancer Prevention Trial. Am J Prev Med 2020; 59:e167-e173. [PMID: 32951684 PMCID: PMC7531353 DOI: 10.1016/j.amepre.2020.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In biomarker-driven clinical trials, translational strategies typically involve moving findings from animal experiments to human trials. Typically, the translation is static, using a fixed model derived from animal experiments for the duration of the trial. Bayesian designs, capable of incorporating information external to the experiment, provide a dynamic translational strategy. This article demonstrates an example of such a dynamic Bayesian strategy in a clinical trial. METHODS This study explored the effect of a personalized dose of fish oil for reducing prostaglandin E2, an inflammatory marker linked to colorectal cancer. A Bayesian design was implemented for the dose-finding algorithm that adaptively updated a dose-response model derived from a previously completed animal study during the clinical trial. In the initial stages of the trial, the dose-response model parameters were estimated from the rodent data. The model was updated following a Bayesian algorithm after data on every 10‒15 subjects were obtained until the model stabilized. Subjects were enrolled in the study between 2013 and 2015, and the data analysis was carried out in 2016. RESULTS The 3 dosing models were used for groups of 16, 15, and 15 subjects. The mean target dose significantly decreased from 6.63 g/day (Model 1) to 4.06 g/day (Model 3) (p=0.001). Compared with the static strategy of dosing with a single model, the dynamic modeling reduced the dose significantly by about 1.38 g/day on average. CONCLUSIONS A Bayesian design was effective in adaptively revising the dosing algorithm, resulting in a lower pill burden. TRIAL REGISTRATION This study is registered at www.clinicaltrials.gov NCT01860352.
Collapse
Affiliation(s)
- Ananda Sen
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Lili Zhao
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - D Kim Turgeon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel P Normolle
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Wang LY, Zhao S, Lv GJ, Ma XJ, Zhang JB. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J Clin Cases 2020; 8:2425-2437. [PMID: 32607320 PMCID: PMC7322414 DOI: 10.12998/wjcc.v8.i12.2425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the leading causes of cancer-related deaths worldwide. According to the Global Cancer Statistics, colorectal cancer is the second leading cause of cancer-related mortality, closely followed by gastric cancer (GC). Environmental, dietary, and lifestyle factors including cigarette smoking, alcohol intake, and genetics are the most important risk factors for GI cancer. Furthermore, infections caused by Helicobacter pylori are a major cause of GC initiation. Despite improvements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the length or quality of life of patients with advanced GI cancer is still poor because of delayed diagnosis, recurrence and side effect. Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural polyphenolic compound, reportedly has various pharmacologic functions including anti-oxidant, anti-inflammatory, anti-cancer, and cardioprotective functions. Many studies have demonstrated that Res also exerts a chemopreventive effect on GI cancer. Research investigating the anti-cancer mechanism of Res for the prevention and treatment of GI cancer has implicated multiple pathways including oxidative stress, cell proliferation, and apoptosis. Therefore, this paper provides a review of the function and molecular mechanisms of Res in the prevention and treatment of GI cancer.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Guo-Jun Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Xiao-Jun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Jian-Bin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
16
|
Jia X, Frye LI, Zhu W, Gu S, Gunnoe TB. Synthesis of Stilbenes by Rhodium-Catalyzed Aerobic Alkenylation of Arenes via C–H Activation. J Am Chem Soc 2020; 142:10534-10543. [DOI: 10.1021/jacs.0c03935] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lucas I. Frye
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
17
|
Jozkowiak M, Skupin-Mrugalska P, Nowicki A, Borys-Wojcik S, Wierzchowski M, Kaczmarek M, Ramlau P, Jodynis-Liebert J, Piotrowska-Kempisty H. The Effect of 4'-hydroxy-3,4,5-trimetoxystilbene, the Metabolite of Resveratrol Analogue DMU-212, on Growth, Cell Cycle and Apoptosis in DLD-1 and LOVO Colon Cancer Cell Lines. Nutrients 2020; 12:nu12051327. [PMID: 32392733 PMCID: PMC7285027 DOI: 10.3390/nu12051327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Resveratrol is a phytoalexin that naturally occurs in grapes, blueberries, cranberries, peanuts and many other plants. Although resveratrol inhibits carcinogenesis in all three stages, its clinical application is restricted due to poor pharmacokinetics. The methylated analogues of resveratrol have been found to have higher bioavailability and cytotoxic activity than that of the prototupe compound. Among the various methoxy derivatives of resveratrol, 3,4,5,4′-tetrametoxystilbene (DMU-212) is suggested to be one of the strongest activators of cytotoxicity and apoptosis. DMU-212 has been shown to exert anti-tumor activity in DLD-1 and LOVO colon cancer cells. Since colorectal cancer is the third most common cause of cancer-related deaths worldwide, the development of new anticancer agents is nowadays of high significance. The aim of the present study was to assess the anticancer activity of 4′-hydroxy-3,4,5-trimetoxystilbene (DMU-281), the metabolite of DMU-212, in DLD-1 and LOVO cell lines. We showed for the first time the cytotoxic activity of DMU-281 triggered via cell cycle arrest at G2/M phase and apoptosis induction accompanied by the activation of caspases-9, -8, -3/7. Furthermore, DMU-281 has been found to change the expression pattern of genes and proteins related to intrinsic as well as extrinsic apoptosis. Since the activation of these pathways of apoptosis is still the most desired strategy in anticancer research, DMU-281 seems to provide a promising approach to the treatment of colon cancer.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Sylwia Borys-Wojcik
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland;
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6 St., PL-60-780 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., PL-61-866 Poznan, Poland;
- Gene Therapy Unit, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland
| | - Piotr Ramlau
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences; Dojazd 30 St., PL-60-631 Poznan, Poland; (M.J.); (A.N.); (P.R.); (J.J.-L.)
- Correspondence: ; Tel.: +48-61847-07-21
| |
Collapse
|
18
|
Yousuf M, Jinka S, Adhikari SS, Banerjee R. Methoxy-enriched cationic stilbenes as anticancer therapeutics. Bioorg Chem 2020; 98:103719. [PMID: 32171988 DOI: 10.1016/j.bioorg.2020.103719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 03/01/2020] [Indexed: 12/26/2022]
Abstract
Stilbene-based compounds are largely described for their antioxidant activity. But their use as anticancer chemotherapeutics is hampered by poor pharmacokinetic properties and non-selectivity towards cancer and non-cancer potency. To overcome these drawbacks, twin chain cationic lipid conjugated, methoxy-enriched stilbene derivatives were designed, synthesized and evaluated for their anticancer potency. Our findings reveal that HMSC16, a molecule with the highest number of methoxy groups and with C16-twin chain lipid, is the most potent as well as the most selective anticancer agent when compared to the other synthesized derivatives and commercially available stilbene-based drug, tamoxifen, and resveratrol. To justify these results, we have conducted a series of mechanistic experiments where we found that HMSC16 induced ROS generation, apoptosis, and autophagy by affecting the mitochondrial, lysosomal and nuclear pathways. Further cell cycle analysis data reveals that HMSC16 not only induces cell death but is also involved in the arrest of the cell cycle at the sub-G1 phase. Moreover, HMSC16 showed self-aggregation property owing to a possibly favorable hydrophilic-lipophilic balance. The self-aggregation property of HMSC16 allowed it to entrap hydrophobic drugs, withaferin. With entrapped withaferin, HMSC16 showed additive if not synergistic cell killing effect in HeLa cells. From the above results, we concluded that HMSC16 can be used not just as a drug but also as a drug delivery agent.
Collapse
Affiliation(s)
- Md Yousuf
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; SERB-National Postdoctoral Fellow, DST New Delhi, India.
| | - Sudhakar Jinka
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | | | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
19
|
The Effect of 3'-Hydroxy-3,4,5,4'-Tetramethoxy -stilbene, the Metabolite of the Resveratrol Analogue DMU-212, on the Motility and Proliferation of Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21031100. [PMID: 32046103 PMCID: PMC7037107 DOI: 10.3390/ijms21031100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Targeting tumor cell motility and proliferation is an extremely important challenge in the prevention of metastasis and improving the effectiveness of cancer treatment. We recently published data revealing that DMU-214, the metabolite of firmly cytotoxic resveratrol analogue DMU-212, exerted significantly higher biological activity than the parent compound in ovarian cancer cells. The aim of the present study was to assess the molecular mechanism of the potential anti-migration and anti-proliferative effect of DMU-214 in ovarian cancer cell line SKOV-3. We showed that DMU-214 reduced the migratory capacity of SKOV-3 cells. The microarray analysis indicated ontology groups of genes involved in processes of negative regulation of cell motility and proliferation. Furthermore, we found DMU-214 triggered changes in expression of several migration- and proliferation-related genes (SMAD7, THBS1, IGFBP3, KLF4, Il6, ILA, SOX4, IL15, SRF, RGCC, GPR56) and proteins (GPR56, RGCC, SRF, SMAD7, THBS1), which have been shown to interact to each other to reduce cell proliferation and motility. Our study showed for the first time that DMU-214 displayed anti-migratory and anti-proliferative activity in SKOV-3 ovarian cancer cells. On the basis of whole transcriptome analysis of these cells, we provide new insight into the role of DMU-214 in inhibition of processes related to metastasis.
Collapse
|
20
|
Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7180284. [PMID: 31885813 PMCID: PMC6914940 DOI: 10.1155/2019/7180284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/14/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022]
Abstract
Resveratrol (RSV) is a naturally occurring polyphenol that exhibits pleiotropic health benefits, including anticolitis and colon cancer-protective activity. Recently, we identified the novel imine RSV analog (IRA), 2-methoxyl-3,6-dihydroxyl-IRA 3,4,5,4-tetramethoxystilbene (C33), as a putative activator of nuclear factor erythroid 2-related factor 2 (Nrf2). The present study was designed to evaluate the ability of C33 to activate the Nrf2 signaling pathway and its anticolitis effect in comparison to RSV. The anticolitis action of C33 was assessed in a mouse model of colitis induced by dextran sulfate sodium (DSS). The effect of C33 on the Nrf2 signaling pathway was examined in vitro and in vivo. Compared to RSV, C33 triggered a more dramatic increase in the expression of genes downstream of Nrf2 in LS174T cells as well as in the small intestine and colon of wild-type (WT) mice. Correlated with its superior ability to activate the cytoprotective Nrf2 pathway, C33 was significantly better in ameliorating DSS-induced colitis by improving the inflammation score, as well as downregulating the markers of inflammation in WT mice. Moreover, induction of the NOD-like receptors family pyrin domain containing 3 (NLRP3) inflammasome by colitis was also significantly inhibited by the IRA. Nrf2 knockout completely abolished the effects of C33, indicating that Nrf2 is the important mechanistic target of C33 in vivo. In conclusion, the novel IRA, C33, has stronger anticolitis effects than RSV. Further studies are warranted to evaluate C33 as a potential therapeutic agent for inflammatory bowel disease and cancer chemoprevention.
Collapse
|
21
|
Zhang H, Xu Q, Yu L, Yu S. Photocatalytic Isomerization of Styrenyl Halides: Stereodivergent Synthesis of Functionalized Alkenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
- State Key Laboratory of Analytical Chemistry for Life Science; Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210023 China
| | - Qing Xu
- School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Lei Yu
- School of Chemistry and Chemical Engineering; Yangzhou University; Yangzhou Jiangsu 225002 China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science; Jiangsu Key Laboratory of Advanced Organic Materials; Nanjing University; Nanjing 210023 China
| |
Collapse
|
22
|
Yang L, Qin X, Liu H, Wei Y, Zhu H, Jiang M. Design, synthesis and biological evaluation of a series of new resveratrol analogues as potential anti-cancer agents. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190125. [PMID: 31598278 PMCID: PMC6774960 DOI: 10.1098/rsos.190125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A series of novel resveratrol derivatives were designed, synthesized and evaluated as anti-cancer agents. Most of the compounds showed significant anti-proliferative activities against three human cancer cell lines (HepG2, A549 and Hela). Among these compounds, compound r displayed the most potent inhibitory activity and showed low cytotoxic activity. Cell apoptosis and cell cycle assays demonstrated that compound r significantly induced apoptosis (p < 0.001) and arrested cell cycle at S phase. Immunofluorescence microscopy analysis showed compound r disrupted the tubulin network. Docking simulations supported the pharmacological results of compound r. It is believed that this work would be very useful for designing a new series of tubulin inhibitors.
Collapse
Affiliation(s)
- Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Xuemei Qin
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hongcun Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Yanye Wei
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, People's Republic of China
| |
Collapse
|
23
|
Saquib M, Ansari MI, Johnson CR, Khatoon S, Kamil Hussain M, Coop A. Recent advances in the targeting of human DNA ligase I as a potential new strategy for cancer treatment. Eur J Med Chem 2019; 182:111657. [PMID: 31499361 DOI: 10.1016/j.ejmech.2019.111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022]
Abstract
The emergence of drug resistance, coupled with the issue of low tumor selectivity and toxicity is a major pitfall in cancer chemotherapy. It has necessitated the urgent need for the discovery of less toxic and more potent new anti-cancer pharmaceuticals, which target the interactive mechanisms involved in division and metastasis of cancer cells. Human DNA ligase I (hligI) plays an important role in DNA replication by linking Okazaki fragments on the lagging strand of DNA, and also participates in DNA damage repair processes. Dysregulation of the functioning of such ligases can severely impact DNA replication and repair pathways events that are generally targeted in cancer treatment. Although, several human DNA ligase inhibitors have been reported in the literature but unfortunately not a single inhibitor is currently being used in cancer chemotherapy. Results of pre-clinical studies also support the fact that human DNA ligases are an attractive target for the development of new anticancer agents which work by the selective inhibition of rapidly proliferating cancer cells. In this manuscript, we discuss, in brief, the structure, synthesis, structure-activity-relationship (SAR) and anticancer activity of recently reported hLigI inhibitors.
Collapse
Affiliation(s)
- Mohammad Saquib
- Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Mohd Imran Ansari
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | - Chad R Johnson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA
| | | | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza Post Graduate College, Rampur, 244901, India.
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD, 21201, USA.
| |
Collapse
|
24
|
Resveratrol induced premature senescence and inhibited epithelial-mesenchymal transition of cancer cells via induction of tumor suppressor Rad9. PLoS One 2019; 14:e0219317. [PMID: 31310624 PMCID: PMC6634400 DOI: 10.1371/journal.pone.0219317] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) has been reported to influence many biological processes, including the stimulation of cellular senescence and inhibition of epithelial-mesenchymal transition (EMT). In this research, we explored the mechanisms of RSV on EMT and cellular senescence through the expression of a DNA damage response (DDR) protein, Rad9, in breast and lung cancer cell lines. Upon treating breast and lung cancer cell lines with RSV at the concentrations of 10–50 μM, Rad9 expression was increased at both transcriptional and translational levels. The results indicated that RSV-induced Rad9 expression, mediated by DNA damage and ROS, can significantly suppress proliferation by activating cellular senescence, and diminishing the expression of EMT markers with concomitant downregulation of Slug in breast and lung cancer cell lines. By using a siRNA approach, RSV was shown to mediate cellular senescence and EMT through a Rad9-dependent mechanism. The treatment with RSV can inhibit the proliferation, EMT, and increase cellular senescence of breast and lung cancer cell lines by activating Rad9. Our results suggest that the breast and lung tumor suppressive activities of RSV are, at least in part, mediated by the upregulation of Rad9.
Collapse
|
25
|
Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int 2019; 19:180. [PMID: 31341423 PMCID: PMC6631492 DOI: 10.1186/s12935-019-0906-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and one of the main causes of cancer death entire the world. Environmental, dietary, and lifestyle factors including red meat consumption, cigarette smoking, alcohol intake and family history are the most important risk factors of CRC. Multiple pathways including inflammation, oxidative stress, and apoptosis are involved in its incidence and progression. Resveratrol, a polyphenolic compound, has different pharmacologic functions including anti-inflammation, cancer prevention, lipid-lowering effect, and hypoglycemic effect. Many studies have proved that resveratrol might also represent a chemo preventive effect on CRC. Thus, the aim of the current review is to depict the role of resveratrol in treatment of CRC in a molecular manner.
Collapse
Affiliation(s)
- Mohadese Honari
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Rana Shafabakhsh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Russel J Reiter
- 2Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX USA
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
26
|
Djuric Z, Bassis CM, Plegue MA, Sen A, Turgeon DK, Herman K, Young VB, Brenner DE, Ruffin MT. Increases in Colonic Bacterial Diversity after ω-3 Fatty Acid Supplementation Predict Decreased Colonic Prostaglandin E2 Concentrations in Healthy Adults. J Nutr 2019; 149:1170-1179. [PMID: 31051496 PMCID: PMC6602899 DOI: 10.1093/jn/nxy255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The intestinal microbiome is an important determinant of inflammatory balance in the colon that may affect response to dietary agents. OBJECTIVE This is a secondary analysis of a clinical trial, the Fish Oil Study, to determine whether interindividual differences in colonic bacteria are associated with variability in the reduction of colonic prostaglandin E2 (PGE2) concentrations after personalized supplementation with ω-3 (n-3) fatty acids. METHODS Forty-seven healthy adults (17 men, 30 women, ages 26-75 y) provided biopsy samples of colonic mucosa and luminal stool brushings before and after personalized ω-3 fatty acid supplementation that was based on blood fatty acid responses. Samples were analyzed using 16S ribosomal RNA sequencing. The data analyses focused on changes in bacterial community diversity. Linear regression was used to evaluate factors that predict a reduction in colonic PGE2. RESULTS At baseline, increased bacterial diversity, as measured by the Shannon and Inverse Simpson indexes in both biopsy and luminal brushing samples, was positively correlated with dietary fiber intakes and negatively correlated with fat intakes. Dietary supplementation with ω-3 fatty acids increased the Yue and Clayton community dis-similarity index between the microbiome in luminal brushings and colon biopsy samples post-supplementation (P = 0.015). In addition, there was a small group of individuals with relatively high Prevotella abundance who were resistant to the anti-inflammatory effects of ω-3 fatty acid supplementation. In linear regression analyses, increases in diversity of the bacteria in the luminal brushing samples, but not in the biopsy samples, were significant predictors of lower colonic PGE2 concentrations post-supplementation in models that included baseline PGE2, baseline body mass index, and changes in colonic eicosapentaenoic acid-to-arachidonic acid ratios. The changes in bacterial diversity contributed to 6-8% of the interindividual variance in change in colonic PGE2 (P = 0.001). CONCLUSIONS Dietary supplementation with ω-3 fatty acids had little effect on intestinal bacteria in healthy humans; however, an increase in diversity in the luminal brushings significantly predicted reductions in colonic PGE2. This trial was registered at www.clinicaltrials.gov as NCT01860352.
Collapse
Affiliation(s)
- Zora Djuric
- Departments of Family Medicine
- Nutritional Sciences
| | | | | | - Ananda Sen
- Departments of Family Medicine
- Biostatistics
| | | | | | | | - Dean E Brenner
- Internal Medicine
- Pharmacology, University of Michigan, Ann Arbor, MI
| | - Mack T Ruffin
- Family and Community Medicine, Penn State Health, Milton S Hershey Medical Center, Hershey, PA
| |
Collapse
|
27
|
Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor Properties of Stilbene-based Resveratrol Analogues: Recent Results. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent literature about stilbene-based analogues of resveratrol (1) has been reviewed, and a total of 94 compounds are reported (see structures 4 – 97), selected either for their promising anti-tumor properties or as comparative terms in SAR studies. As a general outline, these recent literature data confirm the previously reported observation that minimal modification in the nature and position of the substituents on the stilbene nucleus may cause large variations in their biological activity and, more specifically, in their anti-tumor properties. Among the polyhydroxylated stilbenes, it has been established that those with either a catechol or pyrogallol moiety are far better radical scavengers than either 1 or other analogues lacking an ortho-dihydroxy group, and this property was shown to be related to pro-apoptotic activity. In the large majority of cases where couples of E- and Z-isomers were evaluated for either cytotoxic or pro-apoptotic activity, the Z-isomers were significantly more active than their E analogues; nevertheless, a general rule stating that stilbenoids with Z configuration of the double bond display a considerably higher antiproliferative activity than their E-isomers cannot be considered as established. A variety of methoxystilbenes has been reported recently: in many cases these analogues showed either potent antiproliferative and pro-apoptotic activity or strong inhibition of TNFα-induced activation of NF- kB. Globally considered, polymethoxystilbenes are a sub-group of great interest among the resveratrol analogues: these analogues appear worthy of a deeper evaluation also in connection with their potential anti-angiogenic properties. In addition, in vivo studies indicate that methoxystilbenes undergo different metabolic conversion and have a higher bioavailability than resveratrol. The potent activity of some amino- and halogenated stilbenes is undoubtedly worthy of attention, but the toxicity of these compounds to normal cells has rarely been evaluated. In conclusion, the synthesis and evaluation of stilbene-based resveratrol analogues proved to be a highly active field of research and has recently afforded compounds with either cytotoxic or pro-apoptotic activity in the nanomolar range. Nevertheless, the exact structural determinants to optimize the anti-tumor properties of these compounds and details of their mechanism of action remain to be clarified.
Collapse
Affiliation(s)
- Rosa Chillemi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Sebastiano Sciuto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Carmela Spatafora
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy
| |
Collapse
|
28
|
Ruparelia KC, Lodhi S, Ankrett DN, Wilsher NE, Arroo RRJ, Potter GA, Beresford KJM. The synthesis of 4,6-diaryl-2-pyridones and their bioactivation in CYP1 expressing breast cancer cells. Bioorg Med Chem Lett 2019; 29:1403-1406. [PMID: 30935796 DOI: 10.1016/j.bmcl.2019.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023]
Abstract
As part of a programme to develop anticancer prodrugs which are activated by cytochrome P450 (CYP)1B1, a library of 4,6-diaryl-2-pyridones was synthesised in yields of 6-60% from the corresponding chalcones. A number of these derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing little toxicity towards a non-tumour breast cell line with no CYP expression. Metabolism studies provided evidence supporting the involvement of CYP1 enzymes in the bioactivation of these compounds.
Collapse
Affiliation(s)
- Ketan C Ruparelia
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Sabahat Lodhi
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Dyan N Ankrett
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Nicola E Wilsher
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Randolph R J Arroo
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Gerard A Potter
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Kenneth J M Beresford
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| |
Collapse
|
29
|
Liu Z, Peng Q, Li Y, Gao Y. Resveratrol enhances cisplatin-induced apoptosis in human hepatoma cells via glutamine metabolism inhibition. BMB Rep 2018. [PMID: 30103844 PMCID: PMC6177506 DOI: 10.5483/bmbrep.2018.51.9.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cisplatin is one of the most effective chemotherapeutic drugs used in the treatment of HCC, but many patients will ultimately relapse with cisplatin-resistant disease. Used in combination with cisplatin, resveratrol has synergistic effect of increasing chemosensitivity of cisplatin in various cancer cells. However, the mechanisms of resveratrol enhancing cisplatin-induced toxicity have not been well characterized. Our study showed that resveratrol enhances cisplatin toxicity in human hepatoma cells via an apoptosis-dependent mechanism. Further studies reveal that resveratrol decreases the absorption of glutamine and glutathione content by reducing the expression of glutamine transporter ASCT2. Flow cytometric analyses demonstrate that resveratrol and cisplatin combined treatment leads to a significant increase in ROS production compared to resveratrol or cisplatin treated hepatoma cells alone. Phosphorylated H2AX (γH2AX) foci assay demonstrate that both resveratrol and cisplatin treatment result in a significant increase of γH2AX foci in hepatoma cells, and the resveratrol and cisplatin combined treatment results in much more γH2AX foci formation than either resveratrol or cisplatin treatment alone. Furthermore, our studies show that over-expression of ASCT2 can attenuate cisplatin-induced ROS production, γH2AX foci formation and apoptosis in human hepatoma cells. Collectively, our studies suggest resveratrol may sensitize human hepatoma cells to cisplatin chemotherapy via glutamine metabolism inhibition.
Collapse
Affiliation(s)
- Zhaoyuan Liu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province; State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
30
|
Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, Zhang Y, Sun J, Bo Z, DePamphilis ML, Yen Y, Han Z, Zhu W. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 2018; 38:2364-2379. [PMID: 30518875 PMCID: PMC6705423 DOI: 10.1038/s41388-018-0584-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
DNA replication machinery is responsible for accurate and efficient duplication of the chromosome. Since inhibition of DNA replication can lead to replication fork stalling, resulting in DNA damage and apoptotic death, inhibitors of DNA replication are commonly used in cancer chemotherapy. Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the biosynthesis of deoxyribonucleoside triphosphates (dNTPs) that are essential for DNA replication and DNA damage repair. Gemcitabine, a nucleotide analog that inhibits RNR, has been used to treat various cancers. However, patients often develop resistance to this drug during treatment. Thus, new drugs that inhibit RNR are needed to be developed. In this study, we identified a synthetic analog of resveratrol (3,5,4’-trihydroxy-trans-stilbene), termed DHS (trans-4,4’-dihydroxystilbene), that acts as a potent inhibitor of DNA replication. Molecular docking analysis identified the RRM2 (ribonucleotide reductase regulatory subunit M2) of RNR as a direct target of DHS. At the molecular level, DHS induced cyclin F-mediated down-regulation of RRM2 by the proteasome. Thus, treatment of cells with DHS reduced RNR activity and consequently decreased synthesis of dNTPs with concomitant inhibition of DNA replication, arrest of cells at S-phase, DNA damage, and finally apoptosis. In mouse models of tumor xenografts, DHS was efficacious against pancreatic, ovarian, and colorectal cancer cells. Moreover, DHS overcame both gemcitabine resistance in pancreatic cancer and cisplatin resistance in ovarian cancer. Thus, DHS is a novel anti-cancer agent that targets RRM2 with therapeutic potential either alone or in combination with other agents to arrest cancer development.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuya Hu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA.,Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zhou Bo
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | | | - Yun Yen
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zhiyong Han
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, South Orange, NJ, USA.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,GW Cancer Center, The George Washington University, Washington, DC, USA.
| |
Collapse
|
31
|
Wilson MJ, Sen A, Bridges D, Turgeon DK, Brenner DE, Smith WL, Ruffin MT, Djuric Z. Higher baseline expression of the PTGS2 gene and greater decreases in total colonic fatty acid content predict greater decreases in colonic prostaglandin-E 2 concentrations after dietary supplementation with ω-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2018; 139:14-19. [PMID: 30471768 PMCID: PMC6343141 DOI: 10.1016/j.plefa.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated whether mRNA expression of major genes regulating formation of prostaglandin (PG)E2 in the colon and colonic fatty acid concentrations are associated with the reduction in colonic mucosal PGE2 after dietary supplementation with omega-3 (ω-3) fatty acids. Supplementation with ω-3 fatty acids was done for 12 weeks using personalized dosing that was expected to reduce colonic PGE2 by 50%. In stepwise linear regression models, the ω-3 fatty acid dose and baseline BMI explained 16.1% of the inter-individual variability in the fold change of colonic PGE2 post-supplementation. Increases in mRNA gene expression after supplementation were, however, modest and were not associated with changes in PGE2. When baseline expression of PTGS1, PTGS2 and HPGD genes was included in the linear regression model containing dose and BMI, only PTGS2, the gene coding for the inducible form cyclooxygenase, was a significant predictor. Higher relative expression of PTGS2 predicted greater decreases in colonic PGE2, accounting for an additional 13.6% of the inter-individual variance. In the final step of the regression model, greater decreases in total colonic fatty acid concentrations predicted greater decreases in colonic PGE2, contributing to an additional 18.7% of the variance. Overall, baseline BMI, baseline expression of PTGS2 and changes in colonic total fatty acids together accounted for 48% of the inter-individual variability in the change in colonic PGE2. This is consistent with biochemical data showing that fatty acids which are not substrates for cyclooxygenases can activate cyclooxygenase-2 allosterically. Further clinical trials are needed to elucidate the factors that regulate the fatty acid milieu of the human colon and how this interacts with key lipid metabolizing enzymes. Given the central role of PGE2 in colon carcinogenesis, these pathways may also impact on colon cancer prevention by other dietary and pharmacological approaches.
Collapse
Affiliation(s)
- Matthew J Wilson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI
| | - Ananda Sen
- Department of Family Medicine, University of Michigan, Ann Arbor, MI; Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI
| | - D Kim Turgeon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - William L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State University, Hershey, PA
| | - Zora Djuric
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI; Department of Family Medicine, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
32
|
Mikstacka R, Zielińska-Przyjemska M, Dutkiewicz Z, Cichocki M, Stefański T, Kaczmarek M, Baer-Dubowska W. Cytotoxic, tubulin-interfering and proapoptotic activities of 4'-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol. Cytotechnology 2018; 70:1349-1362. [PMID: 29808373 PMCID: PMC6214853 DOI: 10.1007/s10616-018-0227-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxicity of a series of seven 4'-methylthio-trans-stilbene derivatives against cancer cells: MCF7 and A431 in comparison with non-tumorigenic MCF12A and HaCaT cells. The mechanism of anti-proliferative activity of the most cytotoxic trans-resveratrol analogs: 3,4,5-trimethoxy-4'-methylthio-trans-stilbene (3,4,5-MTS) and 2,4,5-trimethoxy-4'-methylthio-trans-stilbene (2,4,5-MTS) was analyzed and compared with the effect of trans-resveratrol. All the compounds that were studied exerted a stronger cytotoxic effect than trans-resveratrol did. MCF7 cells were the most sensitive to the cytotoxic effect of trans-resveratrol analogs with IC50 in the range of 2.1-6.0 µM. Comparing the cytotoxicity of 3,4,5-MTS and 2,4,5-MTS, a significantly higher cytotoxic activity of these compounds against MCF7 versus MCF12A was observed, whereas no significant difference was observed in cytotoxicity against A431 and HaCaT. In the series of 4'-methylthio-trans-stilbenes, 3,4,5-MTS and 2,4,5-MTS were the most promising compounds for further mechanistic studies. The proapoptotic activity of 3,4,5-MTS and 2,4,5-MTS, estimated with the use of annexin-V/propidium iodide assay, was comparable to that of trans-resveratrol. An analysis of cell cycle distribution showed a significant increase in the percentage of apoptotic cells and G2/M phase arrest in MCF7 and A431 as a result of treatment with 3,4,5-MTS, whereas trans-resveratrol tended to increase the percentage of cells in S phase, particularly in epithelial breast cells MCF12A and MCF7. Both trans-stilbene derivatives enhanced potently tubulin polymerization in a dose-dependent manner with sulfur atom participating in the interactions with critical residues of the paclitaxel binding site of β-tubulin.
Collapse
Affiliation(s)
- Renata Mikstacka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Dr A. Jurasza 2, 85-089, Bydgoszcz, Poland.
| | | | - Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs, Poznań University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Michał Cichocki
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Święcickiego 4, 60-781, Poznań, Poland
| | - Tomasz Stefański
- Department of Chemical Technology of Drugs, Poznań University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznań University of Medical Sciences, Rokietnicka 5d, 60-806, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, Święcickiego 4, 60-781, Poznań, Poland
| |
Collapse
|
33
|
Huderson AC, Rekha Devi PV, Niaz MS, Adunyah SE, Ramesh A. Alteration of benzo(a)pyrene biotransformation by resveratrol in Apc Min/+ mouse model of colon carcinogenesis. Invest New Drugs 2018; 37:238-251. [PMID: 29931584 DOI: 10.1007/s10637-018-0622-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022]
Abstract
Epidemiological surveys have revealed that environmental and dietary factors contribute to most of the human cancers. Our earlier studies have shown that resveratrol (RVT), a phytochemical reduced the tumor number, size and incidence of dysplasias induced by benzo(a)pyrene (BaP), an environmental toxicant in the ApcMin/+ mouse model of colon cancer. In this study we investigated to ascertain whether the preventive effects of RVT on BaP-induced colon carcinogenesis is a result of altered BaP biotransformation by RVT. For the first group of mice, 100 μg BaP/kg bw was administered in peanut oil via oral gavage over a 60 day period. For the second group, 45 μg RVT/kg bw was co-administered with BaP. For the third group, RVT was administered for 1 week prior to BaP exposure. Blood, colon and liver were collected from control and BaP/RVT-treated mice at 60 days post-BaP & RVT exposure. We have assayed activities and expression (protein & mRNA) of drug metabolizing enzymes such as cytochrome P4501A1 (CYP1A1), CYP1B1, and glutathione-S-transferase (GST) in colon and liver samples from the treatment groups mentioned above. An increased expression of CYP1A1 in liver and colon and of CYP1B1 in liver of BaP-treated mice was seen, while RVT inhibited the extent of biotransformation mediated by these enzymes in the respective tissue samples. In the case of GST, an increased expression in colon of BaP alone-treated mice was noted when RVT was administered prior to BaP or simultaneously with BaP. However, there is no change in liver GST expression between BaP and RVT treatment groups. The concentrations of BaP aqueous (phase II) metabolites were found to be greater than the organic (phase I) metabolites, suggesting that RVT slows down the phase I metabolism (metabolic activation) of BaP, while enhancing phase II metabolism (detoxification). Additionally, the BaP-DNA adduct concentrations measured in colon and liver of BaP + RVT-treated mice were low relative to their BaP counterparts. Taken together, our findings strongly suggest that RVT alleviates BaP-induced colon carcinogenesis by impairing biotransformation pathways and DNA adduct formation, and therefore holds promise as a chemopreventive agent.
Collapse
Affiliation(s)
- Ashley C Huderson
- The American Society of Mechanical Engineers, 1828 L St. N.W, Washington, DC, 20036, USA
| | - P V Rekha Devi
- Toxicology and Pharmacology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Mohammad S Niaz
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
34
|
Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154185. [PMID: 29568751 PMCID: PMC5820674 DOI: 10.1155/2018/4154185] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.
Collapse
|
35
|
Empl MT, Cai H, Wang S, Junginger J, Kostka T, Hewicker-Trautwein M, Brown K, Gescher AJ, Steinberg P. Effects of a Grapevine Shoot Extract Containing Resveratrol and Resveratrol Oligomers on Intestinal Adenoma Development in Mice: In Vitro and In Vivo Studies. Mol Nutr Food Res 2018; 62. [PMID: 29125219 DOI: 10.1002/mnfr.201700450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022]
Abstract
SCOPE Evidence suggests that the dietary consumption of plant extracts containing polyphenols might help prevent the onset of cancers of the gastrointestinal tract. In the present study, the chemopreventive and antiproliferative efficacy of a grapevine shoot extract (Vineatrol®30) containing resveratrol and resveratrol oligomers is investigated in vivo and in vitro. METHODS AND RESULTS The in vivo study is performed using ApcMin mice on a high-fat diet, which represents a model of human adenomatous polyposis, while the potential of the extract as well as some of its isolated constituents to inhibit intestinal adenoma cell proliferation in vitro is investigated using APC10.1 cells derived from an ApcMin mouse. Vineatrol®30 at a low (2.3 mg kg-1 diet) or high dose (476 mg kg-1 diet) reduces the adenoma number in male and adenoma volume in female animals. Furthermore, Vineatrol®30 as well as resveratrol and two resveratrol tetramers compromise the expansion of APC10.1 cells by reducing cell number, inducing cell cycle arrest, cellular senescence, and apoptosis. However, except for the extract, none of the isolated resveratrol oligomers is more efficacious than resveratrol in these cells. CONCLUSION Vineatrol®30 may merit further investigation as a potential dietary gastrointestinal cancer chemopreventive agent in humans.
Collapse
Affiliation(s)
- Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hong Cai
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Shan Wang
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Karen Brown
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Andreas J Gescher
- Department of Cancer Studies, Leicester Royal Infirmary, University of Leicester, Leicester, United Kingdom
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
36
|
Ko JH, Sethi G, Um JY, Shanmugam MK, Arfuso F, Kumar AP, Bishayee A, Ahn KS. The Role of Resveratrol in Cancer Therapy. Int J Mol Sci 2017; 18:ijms18122589. [PMID: 29194365 PMCID: PMC5751192 DOI: 10.3390/ijms18122589] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.
Collapse
Affiliation(s)
- Jeong-Hyeon Ko
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6009, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
37
|
Djuric Z, Turgeon DK, Sen A, Ren J, Herman K, Ramaswamy D, Zhao L, Ruffin MT, Normolle DP, Smith WL, Brenner DE. The Anti-inflammatory Effect of Personalized Omega-3 Fatty Acid Dosing for Reducing Prostaglandin E 2 in the Colonic Mucosa Is Attenuated in Obesity. Cancer Prev Res (Phila) 2017; 10:729-737. [PMID: 29133307 DOI: 10.1158/1940-6207.capr-17-0091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/12/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
This clinical trial developed a personalized dosing model for reducing prostaglandin E2 (PGE2) in colonic mucosa using ω-3 fatty acid supplementation. The model utilized serum eicosapentaenoic acid (EPA, ω-3):arachidonic acid (AA, ω-6) ratios as biomarkers of colonic mucosal PGE2 concentration. Normal human volunteers were given low and high ω-3 fatty acid test doses for 2 weeks. This established a slope and intercept of the line for dose versus serum EPA:AA ratio in each individual. The slope and intercept was utilized to calculate a personalized target dose that was given for 12 weeks. This target dose was calculated on the basis of a model, initially derived from lean rodents, showing a log-linear relationship between serum EPA:AA ratios and colonic mucosal PGE2 reduction. Bayesian methods allowed addition of human data to the rodent model as the trial progressed. The dosing model aimed to achieve a serum EPA:AA ratio that is associated with a 50% reduction in colonic PGE2 Mean colonic mucosal PGE2 concentrations were 6.55 ng/mg protein (SD, 5.78) before any supplementation and 3.59 ng/mg protein (SD, 3.29) after 12 weeks of target dosing. In secondary analyses, the decreases in PGE2 were significantly attenuated in overweight and obese participants. This occurred despite a higher target dose for the obese versus normal weight participants, as generated by the pharmacodynamic predictive model. Large decreases also were observed in 12-hydroxyicosatetraenoic acids, and PGE3 increased substantially. Future biomarker-driven dosing models for cancer prevention therefore should consider energy balance as well as overall eicosanoid homeostasis in normal tissue. Cancer Prev Res; 10(12); 729-37. ©2017 AACR.
Collapse
Affiliation(s)
- Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan.
| | - D Kim Turgeon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ananda Sen
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Jianwei Ren
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kirk Herman
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Devon Ramaswamy
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania
| | - Daniel P Normolle
- Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
38
|
Kumar S, Stokes J, Singh UP, Scissum-Gunn K, Singh R, Manne U, Mishra MK. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells. Tumour Biol 2017; 39:1010428317715039. [PMID: 29065794 DOI: 10.1177/1010428317715039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- Sanjay Kumar
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - James Stokes
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Udai P Singh
- 2 Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Karyn Scissum-Gunn
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Rajesh Singh
- 3 Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Upender Manne
- 4 Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoj K Mishra
- 1 Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| |
Collapse
|
39
|
Dvorakova M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res 2017; 124:126-145. [DOI: 10.1016/j.phrs.2017.08.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
|
40
|
Berman AY, Motechin RA, Wiesenfeld MY, Holz MK. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 2017; 1. [PMID: 28989978 PMCID: PMC5630227 DOI: 10.1038/s41698-017-0038-6] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a nutraceutical with several therapeutic effects. It has been shown to mimic effects of caloric restriction, exert anti-inflammatory and anti-oxidative effects, and affect the initiation and progression of many diseases through several mechanisms. While there is a wealth of in vitro and in vivo evidence that resveratrol could be a promising therapeutic agent, clinical trials must confirm its potential. In this work, we reviewed the current clinical data available regarding the pharmacological action of resveratrol. Most of the clinical trials of resveratrol have focused on cancer, neurological disorders, cardiovascular diseases, diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity. We found that for neurological disorders, cardiovascular diseases, and diabetes, the current clinical trials show that resveratrol was well tolerated and beneficially influenced disease biomarkers. However resveratrol had ambiguous and sometimes even detrimental effects in certain types of cancers and in NAFLD. In most of the clinical trials, the major obstacle presented was resveratrol’s poor bioavailability. Thus, this work provides useful considerations for the planning and design of future pre-clinical and clinical research on resveratrol.
Collapse
Affiliation(s)
- Adi Y Berman
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | | | - Marina K Holz
- Department of Biology, Yeshiva University, New York, NY, USA.,Department of Molecular Pharmacology and the Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
41
|
Klupczynska A, Sulej-Suchomska AM, Piotrowska-Kempisty H, Wierzchowski M, Jodynis-Liebert J, Kokot ZJ. Development and validation of HPLC-MS/MS procedure for determination of 3,4,4',5-tetra-methoxystilbene (DMU-212) and its metabolites in ovarian cancer cells and culture medium. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:30-35. [PMID: 28582662 DOI: 10.1016/j.jchromb.2017.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
The synthetic resveratrol analogue DMU-212 (3,4,4',5-tetramethoxystilbene) has been shown to possess stronger anticancer activity than resveratrol in a variety of tumour cells. To date, there has been no appropriate procedure that would ensure a reliable data about levels of metabolic products of DMU-212 in cancer cell lines. The purpose of this study was to develop a new procedure for determination of DMU-212 and its three metabolites (DMU-214, DMU-281, DMU-291) in cell lines. Analyses were performed using an HPLC system coupled with a triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Separation was conducted using a C18 column at a flow rate 800μL/min with a mobile phase consisting of 5mM ammonium acetate with 0.1% formic acid (solvent A) and acetonitrile (solvent B). The new methodology is fast, simple and has excellent specificity. Moreover, it showed good linearity in two matrices - cell lysates and culture media. Accuracy values for analytes evaluated at different concentration levels ranged from 0.43 to 18% (%bias). The intra-day and inter-day precision, expressed as CV, was in a range 0.49-5.5% and 0.83-13%, respectively. The validated procedure was successfully applied to quantify the resveratrol analogues in the human ovarian cancer cell line SKOV3.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Anna Maria Sulej-Suchomska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznan, Poland
| | - Marcin Wierzchowski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631 Poznan, Poland
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Str., 60-780 Poznan, Poland.
| |
Collapse
|
42
|
Urbaniak A, Delgado M, Kacprzak K, Chambers TC. Activity of resveratrol triesters against primary acute lymphoblastic leukemia cells. Bioorg Med Chem Lett 2017; 27:2766-2770. [DOI: 10.1016/j.bmcl.2017.04.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
|
43
|
De Filippis B, Ammazzalorso A, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017; 12:558-570. [PMID: 28266812 DOI: 10.1002/cmdc.201700045] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Stilbene is an abundant structural scaffold in nature, and stilbene-based compounds have been widely reported for their biological activity. Notably, (E)-resveratrol and its natural stilbene-containing derivatives have been extensively investigated as cardioprotective, potent antioxidant, anti-inflammatory, and anticancer agents. Starting from its potent chemotherapeutic activity against a wide variety of cancers, the stilbene scaffold has been subject to synthetic manipulations with the aim of obtaining new analogues with improved anticancer activity and better bioavailability. Within the last decade, the majority of new synthetic stilbene derivatives have demonstrated significant anticancer activity against a large number of cancer cell lines, depending on the type and position of substituents on the stilbene skeleton. This review focuses on the structure-activity relationship of the key compounds containing a stilbene scaffold and describes how the structural modifications affect their anticancer activity.
Collapse
Affiliation(s)
- Barbara De Filippis
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Ammazzalorso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Marialuigia Fantacuzzi
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Letizia Giampietro
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Cristina Maccallini
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
44
|
|
45
|
Wang S, Willenberg I, Krohn M, Hecker T, Meckelmann S, Li C, Pan Y, Schebb NH, Steinberg P, Empl MT. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro. PLoS One 2017; 12:e0170502. [PMID: 28114318 PMCID: PMC5256997 DOI: 10.1371/journal.pone.0170502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023] Open
Abstract
Although resveratrol exerts manifold antitumorigenic effects in vitro, its efficacy against malignancies in vivo seems limited. This has been increasingly recognized in recent years and has prompted scientists to search for structurally related compounds with more promising anticarcinogenic and/or pharmacokinetic properties. A class of structurally modified resveratrol derivatives, so-called resveratrol imine analogs (IRA's), might meet these requirements. Therefore, the biological activity of five of these compounds was examined and compared to that of resveratrol. Firstly, the antiproliferative potency of all five IRA's was investigated using the p53 wildtype-carrying colorectal carcinoma cell line HCT-116wt. Then, using the former and a panel of various other tumor cell lines (including the p53 knockout variant HCT-116p53-/-), the growth-inhibiting and cell cycle-disturbing effects of the most potent IRA (IRA 5, 2-[[(2-hydroxyphenyl)methylene]amino]-phenol) were studied as was its influence on cyclooxygenase-2 expression and activity. Finally, rat liver microsomes were used to determine the metabolic stability of that compound. IRA 5 was clearly the most potent compound in HCT-116wt cells, with an unusually high IC50-value of 0.6 μM. However, in the other five cell lines used, the antiproliferative activity was mostly similar to resveratrol and the effects on the cell cycle were heterogeneous. Although all cell lines were affected by treatment with IRA 5, cells expressing functional p53 seemed to react more sensitively, suggesting that this protein plays a modulating role in the induction of IRA 5-mediated biological effects. Lastly, IRA 5 led to contradictory effects on cyclooxygenase-2 expression and activity and was less glucuronidated than resveratrol. As IRA 5 is approximately 50 times more toxic towards HCT-116wt cells, exerts different effects on the cyclooxygenase-2 and is metabolized to a lesser extent, it shows certain advantages over resveratrol and could therefore serve as basis for additional chemical modifications, potentially yielding compounds with more favorable biological and pharmacokinetic features.
Collapse
Affiliation(s)
- Shan Wang
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ina Willenberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Krohn
- Institute of Food Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Tanja Hecker
- Institute of Food Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Sven Meckelmann
- Institute of Food Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Chang Li
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Nils Helge Schebb
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Food Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Telamon Empl
- Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
46
|
Kim DH, Kim MJ, Sung B, Suh H, Jung JH, Chung HY, Kim ND. Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells. Oncol Rep 2016; 37:281-288. [PMID: 27840966 DOI: 10.3892/or.2016.5219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/26/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol, a polyphenolic compound, is a naturally occurring phytochemical and is found in a variety of plants, including grapes, berries and peanuts. It has gained much attention for its potential anticancer activity against various types of human cancer. However, the usefulness of resveratrol as a chemotherapeutic agent is limited by its photosensitivity and metabolic instability. In this study the effects of a synthetic analogue of resveratrol, HS-1793, on the proliferation and apoptotic cell death were investigated using HCT116 human colon cancer cells. Although this compound has been reported to have anticancer activities in several human cancer cell lines, the therapeutic effects of HS-1793 on human colon cancer and its mechanisms of action have not been extensively studied. HS-1793 inhibited cell growth and induced apoptotic cell death in a concentration-dependent fashion. Induction of apoptosis was determined by morphological changes, cleavage of poly(ADP-ribose) polymerase, alteration of Bax/Bcl-2 expression ratio, and caspase activations. Flow cytometric analysis revealed that HS-1793 induced G2/M arrest in the cell cycle progression in HCT116 cells. Furthermore, HS-1793 showed more potent anticancer effects in several aspects than resveratrol in HCT116 cells. In addition, HS-1793 suppressed Akt and the phosphatidylinositol-3 kinase/Akt inhibitor LY294002 was found to enhance its induction of apoptosis. Thus, these findings suggest that HS-1793 have potential as a candidate chemotherapeutic agent against human colon cancer.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Min Jeong Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Bokyung Sung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Hongsuk Suh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jee H Jung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
47
|
3'-hydroxy-3,4,5,4'-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Sci Rep 2016; 6:32627. [PMID: 27585955 PMCID: PMC5009320 DOI: 10.1038/srep32627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment.
Collapse
|
48
|
Chen Z, Zhang L, Yu J, Chen L, Zhou B. Identification of resveratrol derivative 3,3',4,4',5,5'-hexamethoxy- trans-stilbene as a novel pro-angiogenic small-molecule compound. Eur J Pharmacol 2016; 791:185-194. [PMID: 27590357 DOI: 10.1016/j.ejphar.2016.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/21/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
The potential to promote neovascularization in ischemic tissues using exogenous agents is an attractive avenue for therapeutics. To identify novel pro-angiogenic small-molecule compound, we screened a series of resveratrol methylated derivatives and identified 3,3',4,4', 5,5'-hexamethoxy-trans-stilbene (3,3',4,4',5,5'-HMS) potently promotes proliferation, migration, invasion and tube formation of human umbilical vein VECs (HUVECs) in vitro. Furthermore, 3,3',4,4',5,5'-HMS accelerates neo-vessels sprouting of rat aortic rings ex vivo, and neovascularization of chick chorioallantoic membrane (CAM) and mouse matrigel plugs in vivo. Microarray analyses show that the level of early growth response 1 (EGR-1), an inducible pro-angiogenic gene regulatory factor, was upregulated. The upregulation of EGR-1 was confirmed by semiquantitative RT-PCR, quantitative real-time PCR and western blotting analyses. In addition, the levels of several pro-angiogenic factors including transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), nitric oxide (NO), and the activity of endothelial NO synthase (eNOS) were elevated in 3,3',4,4',5,5'-HMS-treated HUVECs. Inhibition of NO synthase by l-NAME blocked the pro-angiogenic effects of 3,3',4,4',5,5'-HMS. Our research shows that 3,3',4,4',5,5'-HMS dramatically promoted angiogenesis in vitro, ex vivo and in vivo, which might represent a novel potential agent for the development of therapeutic drugs to treat ischemic diseases.
Collapse
Affiliation(s)
- ZhiQiang Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - JingTing Yu
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - LiangKe Chen
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Androutsopoulos VP, Fragiadaki I, Spandidos DA, Tosca A. The resveratrol analogue, 3,4,5,4'‑trans-tetramethoxystilbene, inhibits the growth of A375 melanoma cells through multiple anticancer modes of action. Int J Oncol 2016; 49:1305-14. [PMID: 27498704 DOI: 10.3892/ijo.2016.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a natural dietary product that has demonstrated multifaceted anticancer activity. Several analogues of resveratrol have been synthesized in an effort to enhance the pharmacological potency and improve the pharmacokinetic properties of the compound. 3,4,5,4'‑trans‑tetramethoxystilbene (3,4,5,4'‑TMS) is a methoxylated analogue of resveratrol that has demonstrated anti-proliferative activity in vitro (in cancer cell lines) and in vivo (in xenograft models). In the present study, the anticancer effects of 3,4,5,4'‑TMS in A375 human melanoma cells were examined. 3,4,5,4'‑TMS markedly inhibited the proliferation of A375 cells (IC50=0.7 µM), via a mechanism involving mitotic arrest at the prometaphase stage of cell division. This effect was accompanied by the upregulation of the expression of the mitogen activated protein kinases, JNK and p38, and the concomitant activation of p38, that was verified by the nuclear translocation of the phoshorylated form of the protein. The pharmacological inhibition of p38 by SB203580 (4 µM) attenuated the effects of 3,4,5,4'‑TMS, as demonstrated by decreased cell cycle progression at the mitotic phase. Furthermore, 3,4,5,4'‑TMS increased the total levels of Aurora A, while it inhibited the localization of the protein to the spindle poles. Finally, 3,4,5,4'‑TMS exhibited anti-metastatic activity, inhibiting A375 cell migration and the attachment of the cells to a collagen type IV-coated surface. Collectively, the data suggest that 3,4,5,4'‑TMS is an effective chemotherapeutic drug for the treatment of human melanoma and that it exerts its effects through multiple anticancer modes of action.
Collapse
Affiliation(s)
- Vasilis P Androutsopoulos
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Irene Fragiadaki
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, University of Crete, Medical School, Heraklion 71003, Greece
| | - Androniki Tosca
- Laboratory of Experimental Dermatology, University of Crete, Medical School, Heraklion 71003, Greece
| |
Collapse
|
50
|
Piotrowska H, Kujawska M, Nowicki M, Petzke E, Ignatowicz E, Krajka-Kuźniak V, Zawierucha P, Wierzchowski M, Murias M, Jodynis-Liebert J. Effect of resveratrol analogue, DMU-212, on antioxidant status and apoptosis-related genes in rat model of hepatocarcinogenesis. Hum Exp Toxicol 2016; 36:160-175. [PMID: 27048571 DOI: 10.1177/0960327116641734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the study was to examine whether antioxidant properties of 3,4,4',5-tetramethoxystilbene (DMU-212) contribute to its anticarcinogenic activity and whether DMU-212 affects the expression of apoptosis-related genes. Two-stage model of hepatocarcinogenesis was used; male Wistar rats were challenged with N-nitrosodiethylamine (NDEA), 200 mg/kg body weight (b.w.), intraperitoneal, then phenobarbital (PB) in drinking water (0.05%) was administered. Simultaneously, DMU-212 was given per os at a dose 20 or 50 mg/kg b.w. two times a week for 16 weeks. DMU-212 caused a moderate decrease in hepatic thiobarbituric acid reactive substances and protein carbonyls concentration elevated in rats treated with NDEA/PB. The activity of antioxidant enzymes examined reduced by NDEA/PB treatment was not restored in rats coadministered with DMU-212. Effects of DMU-212 on messenger RNA (mRNA) expression of antioxidant enzymes in rats challenged with NDEA/PB were diversified; no changes in their protein expression were noted in any of the groups. The expression of 17,000 genes was analyzed by Affymetrix® Rat Gene 1.1 ST Array; 15 apoptosis-related genes were selected and validated by RT-q PCR. The combined treatment with NDEA/PB and DMU-212 increased the mRNA level of some genes driving mitochondria-mediated apoptosis, whereas the mRNA expression of some anti-apoptotic genes triggering receptor-mediated apoptosis was reduced. The expression of genes encoding caspases-4, -8, -9, and -12 was also increased in rats treated with DMU-212. Although antioxidant effect of DMU-212 in rats challenged with NDEA/PB was moderate, its potential anticarcinogenic properties were demonstrated as evidenced by modulation of apoptosis-related genes.
Collapse
Affiliation(s)
- H Piotrowska
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Kujawska
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Nowicki
- 2 Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - E Petzke
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - E Ignatowicz
- 3 Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - V Krajka-Kuźniak
- 3 Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - P Zawierucha
- 2 Department of Histology and Embryology, Poznan University of Medical Sciences, Poznań, Poland
| | - M Wierzchowski
- 4 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznań, Poland
| | - M Murias
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - J Jodynis-Liebert
- 1 Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|