1
|
Yoysungnoen B, Srisawat U, Piyabhan P, Duansak N, Sookprasert N, Mathuradavong N, Poomipark N, Munkong N, Tingpej P, Changtam C. Short term effect of tetrahydrocurcumin on adipose angiogenesis in very high-fat diet-induced obesity mouse model. Front Nutr 2023; 10:1221935. [PMID: 37876615 PMCID: PMC10591188 DOI: 10.3389/fnut.2023.1221935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Tetrahydrocurcumin (THC) has been shown to possess anti-angiogenic activities. This study aims to investigate the effects of THC on adipose angiogenesis and expression of angiogenic factors that occurs in 60% high-fat diet-induced obese mice. Male ICR mice were randomly divided into 3 groups: mice fed with a low-fat diet (LFD group); mice fed with very high fat diet (VHFD group), and mice fed with VHFD supplemented with THC (300 mg/kg/day orally) (VHFD+THC treated group) for 6 weeks. Body weight (BW), food intake, fasting blood sugar (FBS), lipid profiles and visceral fats weight (VF) were measured. The microvascular density (MVD), TNF-α, VEGF, MMP-2, and MMP-9 expressions were evaluated. The VHFD group had significantly increased total cholesterol, triglyceride, food intake, BW, VF, VF/BW ratio, adipocyte size and the number of crown-liked structures as compared to LFD group. THC supplementation markedly reduced these parameters and adipocyte hypertrophy and inflammation in white adipose tissues. MVD, TNF-α, VEGF, MMP-2, and MMP-9 were over-expressed in the VHFD group. However, THC supplementation decreased MVD and reduced expression of TNF-α, VEGF, MMP-2, and MMP-9. In conclusion, THC suppressed angiogenesis in adipose tissue by the downregulation of TNF-α, VEGF, MMP-2, and MMP-9. With its effects on lipid metabolism as well as on food consumption, THC could contribute to lower visceral fat and body weight. Overall, our study demonstrated the potential benefit of THC in mitigating obesity and associated metabolic disorders along with elucidated the suppression of adipose angiogenesis as one of its underlying mechanisms.
Collapse
Affiliation(s)
- Bhornprom Yoysungnoen
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Umarat Srisawat
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pritsana Piyabhan
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Naphatsanan Duansak
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nattapon Sookprasert
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nakorn Mathuradavong
- Division of Physiology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Natwadee Poomipark
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, Thailand
| | - Pholawat Tingpej
- Division of Microbiology and Immunology, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chatchawan Changtam
- Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand
| |
Collapse
|
2
|
Guo J, Li K, Lin Y, Liu Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Front Nutr 2023; 10:1202378. [PMID: 37448666 PMCID: PMC10336229 DOI: 10.3389/fnut.2023.1202378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is the most important factor contributing to cardiovascular diseases (CVDs), and the incidence and severity of cardiovascular events tend to increase with age. Currently, CVD is the leading cause of death in the global population. In-depth analysis of the mechanisms and interventions of cardiovascular aging and related diseases is an important basis for achieving healthy aging. Tea polyphenols (TPs) are the general term for the polyhydroxy compounds contained in tea leaves, whose main components are catechins, flavonoids, flavonols, anthocyanins, phenolic acids, condensed phenolic acids and polymeric phenols. Among them, catechins are the main components of TPs. In this article, we provide a detailed review of the classification and composition of teas, as well as an overview of the causes of aging-related CVDs. Then, we focus on ten aspects of the effects of TPs, including anti-hypertension, lipid-lowering effects, anti-oxidation, anti-inflammation, anti-proliferation, anti-angiogenesis, anti-atherosclerosis, recovery of endothelial function, anti-thrombosis, myocardial protective effect, to improve CVDs and the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Kai Li
- General Surgery Department, The First People’s Hospital of Tai’an City, Tai’an, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Wang JR, Song XH, Li LY, Gao SJ, Shang FH, Zhang XM, Yang Y. Metabolomic analysis reveals dynamic changes in secondary metabolites of Sophora japonica L. during flower maturation. FRONTIERS IN PLANT SCIENCE 2022; 13:916410. [PMID: 35991425 PMCID: PMC9386383 DOI: 10.3389/fpls.2022.916410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Sophora japonica L. is widely consumed in China because of its medicinal and nutritional value. Its quality is greatly affected by the accumulation of metabolites, which varies with the stage of flower development. However, changes in the characteristics of the secondary metabolites during flower maturity remain unclear. Ultra-high-performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-QTRAP-MS/MS) revealed dynamic changes in the secondary metabolites of S. japonica during the five flower-maturity stages. We monitored 331 metabolites and screened 164. The differential metabolites showed seven trends during flower maturation, with flavonoids and phenolic acids having the most varied expressions. Flower buds (S2-S3) are rich in flavonoids and are thus suitable for use in high-quality medicine or industrial extraction. Our study provides an empirical basis for the informed harvesting of S. japonica based on its mode of utilization.
Collapse
Affiliation(s)
- Ji-Rui Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Xu-Hong Song
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Long-Yun Li
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Si-Jia Gao
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Fang-Hong Shang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiao-Mei Zhang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
4
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
5
|
Romano A, Martel F. The Role of EGCG in Breast Cancer Prevention and Therapy. Mini Rev Med Chem 2021; 21:883-898. [PMID: 33319659 DOI: 10.2174/1389557520999201211194445] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is the most frequent cancer in women. Green tea has been studied for breast cancer chemopreventive and possibly chemotherapeutic effects due to its high content in polyphenolic compounds, including epigallocatechin-3-gallate (EGCG). METHOD This review is based on literature research that included papers registered on the Medline® database. The research was conducted through PubMed, applying the following query: "EGCG"AND "breast cancer". The result was a total of 88 articles in which this review stands on. RESULTS In vitro, EGCG shows antioxidant or pro-oxidant properties, depending on the concentration and exposure time. EGCG blocks cell cycle progression and modulates signaling pathways that affect cell proliferation and differentiation. EGCG also induces apoptosis, negatively modulates different steps involved in metastasis, and targets angiogenesis by inhibiting VEGF transcription. In vivo investigations have shown that oral administration of EGCG results in the reduction of tumor growth and in antimetastatic and antiangiogenic effects in animal xenograft and allograft models. DISCUSSION Much remains unknown about the molecular mechanisms involved in the protective effects of EGCG on mammary carcinogenesis. In addition, more studies in vivo are necessary to determine the potential toxicity of EGCG at higher doses and to elucidate its interactions with other drugs. CONCLUSION A protective effect of EGCG has been shown in different experimental models and under different experimental conditions, suggesting clinical implications of EGCG for breast cancer prevention and therapy. The data presented in this review support the importance of further investigations.
Collapse
Affiliation(s)
- Adriana Romano
- Faculty of Medicine of University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine-Unit of Biochemistry, Faculty of Medicine of University of Porto, Porto, Portugal and Instituto de Investigacao e Inovacao em Saude(i3S), University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Chandra G, Patel S, Panchal M, Singh DV. S-adenosyl-L-homocysteine Hydrolase: Its Inhibitory Activity Against Plasmodium falciparum and Development of Malaria Drugs. Mini Rev Med Chem 2021; 21:833-846. [PMID: 33342411 DOI: 10.2174/1389557521666201218155321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Parasite Plasmodium falciparum is continuously giving a challenge to human beings by changing itself against most of the antimalarial drugs and its consequences can be seen in the form of a huge number of deaths each year especially in the poor and developing country. Due to its drug resistance ability, new drugs are regularly needed to kill the organism. Many new drugs have been developed based on different mechanisms. One of the potential mechanisms is to hamper protein synthesis by blocking the gene expression. S-Adenosyl-L-homocysteine (SAH) hydrolase is a NAD+ dependent tetrameric enzyme, which is responsible for the reversible hydrolysis of AdoHcy to adenosine and L-homocysteine, has been recognized as a new target for antimalarial agents since the parasite has a specific SAH hydrolase. The inhibition of SAH hydrolase causes the intracellular accumulation of S-Adenosyl-L-homocysteine, elevating the ratio of SAH to S-adenosylmethionine (SAM) and inhibiting SAM-dependent methyltransferase that catalyzes methylation of the capped structure at the 5'-terminus of mRNA, and other methylation reaction which is essential for parasite proliferation. In other words, S-Adenosyl-Lhomocysteine hydrolase regulates methyltransferase reactions. In this way, SAH hydrolase inhibitors can be used for the treatment of different diseases like malaria, cancer, viral infection, etc. by ultimately stopping the synthesis of protein. Many antiviral drugs have been synthesized and marketed which are based on the inhibition of SAH hydrolase. This review summarises the development of SAH inhibitors developed over the last 20 years and their potentiality for the treatment of malaria.
Collapse
Affiliation(s)
- Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Manoj Panchal
- Department of Life Science, School of Earth, Biological and Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Durg Vijay Singh
- Department of Bioinformatics, School of Earth, Biological and Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| |
Collapse
|
7
|
Khojaste E, Ahmadizadeh C. Catechin Metabolites along with Curcumin Inhibit Proliferation and Induce Apoptosis in Cervical Cancer Cells by Regulating VEGF Expression In-Vitro. Nutr Cancer 2021; 74:1048-1057. [PMID: 34121550 DOI: 10.1080/01635581.2021.1936082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cervical cancer is the fourth most common cancer and the second cause of cancer-related death among women. Over the past two decades, green tea catechins and curcumin have received much attention for their role in preventing carcinogenesis. In this study, we evaluated the effects of the catechin metabolites and curcumin on cervical cancer cell proliferation and apoptosis. For this aim, the Ca Ski cell line was treated with different doses of catechin metabolites and curcumin. MTT assay and Flow cytometry were employed to investigate the cytotoxic effects of catechin metabolites and curcumin on the Ca Ski cell line. Real-time PCR and western blot were performed to evaluate the VEGF expression. Also, Real-Time PCR was performed to determine the expression level of microRNAs. Results showed that catechin metabolites along with curcumin reduce the VEGF expression. Further, miR-210 and miR-21 as oncogenic microRNAs were down-regulated, while it was reverse for miR-126 as a tumor-suppressor microRNA. Besides, MTT and Flow cytometry results showed that after using catechin metabolites with curcumin, cell survival was reduced by inducing apoptosis. In conclusion, catechin metabolites produced by intestinal microbiota besides the curcumin could serve as a promising therapeutic approach for women with cervical cancer.
Collapse
Affiliation(s)
- Elnaz Khojaste
- Department of molecular genetics, Ahar Branch Islamic Azad University, Ahar, Iran
| | | |
Collapse
|
8
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
9
|
Qiu H, Tu Q, Gao P, Li X, Maitz MF, Xiong K, Huang N, Yang Z. Phenolic-amine chemistry mediated synergistic modification with polyphenols and thrombin inhibitor for combating the thrombosis and inflammation of cardiovascular stents. Biomaterials 2020; 269:120626. [PMID: 33418199 DOI: 10.1016/j.biomaterials.2020.120626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Antithrombogenicity, anti-inflammation, and rapid re-endothelialization are central requirements for the long-term success of cardiovascular stents. In this work, a plant-inspired phenolic-amine chemistry strategy was developed to combine the biological functions of a plant polyphenol, tannic acid (TA), and the thrombin inhibitor bivalirudin (BVLD) for tailoring the desired multiple surface functionalities of cardiovascular stents. To realize the synergistic modification of TA and BVLD on a stent surface, an amine-bearing coating of plasma polymerized allylamine was firstly prepared on the stent surface, followed by the sequential conjugation of TA and BVLD in alkaline solution based on phenolic-amine chemistry (i.e., Michael addition reaction). TA and BVLD were successfully immobilized onto the stent surface with considerable amounts of 330 ± 12 and 930 ± 80 ng/cm2, respectively. The abundant phenolic hydroxyl groups of TA imparted the stent with ability to suppress inflammation. Meanwhile, BVLD provided an antithrombogenic and endothelial-friendly microenvironment. As a result, the combined functions of the TA and BVLD facilitate the rapid stent re-endothelialization for reduced intimal hyperplasia in vivo, and may be a promising strategy to address the clinical complications associated with restenosis and late stent thrombosis.
Collapse
Affiliation(s)
- Hua Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiufen Tu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Peng Gao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiangyang Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden, 01069, Germany
| | - Kaiqin Xiong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
10
|
Ma Y, Feng Y, Song L, Li M, Dai H, Bao H, Zhang G, Zhao L, Zhang C, Yi J, Liang Y. Green tea polyphenols supplementation alters immunometabolism and oxidative stress in dairy cows with hyperketonemia. ACTA ACUST UNITED AC 2020; 7:206-215. [PMID: 33997349 PMCID: PMC8110852 DOI: 10.1016/j.aninu.2020.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 12/04/2022]
Abstract
Peripartal cows often experience negative energy balance, and are therefore prone to suffering from metabolic diseases such as hyperketonemia, which causes financial losses in dairy farms. This study aimed to investigate the effect of green tea polyphenol (GTP) supplementation during the periparturient period on production performance, oxidative stress and immunometabolism in dairy cows with hyperketonemia. One hundred Holstein cows were assigned to GTP (0.2 g/kg DM; n = 50) or control (without GTP; n = 50) group based on body weight, previous milk yield, and parity on d 15 before expected parturition. Subsequently, 10 cows with hyperketonemia were selected from each group, according to blood β-hydroxybutyric acid (BHBA) concentration between 1.2 and 2.9 mmol/L from 2 to 3 d postpartum. All cows were fed a close-up diet and a lactation diet with or without GTP supply from 15 d prepartum until 30 d postpartum. Milk and blood samples were obtained from 20 cows selected with hyperketonemia on 10, 20, and 30 d postpartum. Compared with control cows, greater milk yield and lower somatic cell count were observed in GTP cows. The GTP group had lower concentrations of BHBA, free fatty acids, cholesterol, triglyceride, reactive oxygen species, malondialdehyde, and hydrogen peroxide, greater concentrations of glucose, lower activities of aspartate aminotransferase, alanine aminotransferase, and glutamyl transpeptidase, alongside greater activities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity. Additionally, GTP supplementation up-regulated concentrations of interleukin-6 and interleukin-10, but down-regulated concentrations of tumor necrosis factor-α, interleukin-1β, interleukin-2, interleukin-8, and interferon-γ in plasma. Greater concentrations of plasma immunoglobulin G were also detected in the GTP group. Overall, the data suggested that GTP supplementation from 15 d prepartum to 30 d postpartum improved the milk yield and health status in cows with hyperketonemia during early lactation.
Collapse
Affiliation(s)
- Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Ying Feng
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
- College of Food Engineering & Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liwen Song
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Muyang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Hongyu Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Bao
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Jing Yi
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801, USA
- Corresponding author.
| |
Collapse
|
11
|
Chadha S, Behl T, Kumar A, Khullar G, Arora S. Role of Nrf2 in rheumatoid arthritis. Curr Res Transl Med 2020; 68:171-181. [DOI: 10.1016/j.retram.2020.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022]
|
12
|
Shin SS, Yoon M. Regulation of Obesity by Antiangiogenic Herbal Medicines. Molecules 2020; 25:molecules25194549. [PMID: 33020443 PMCID: PMC7582783 DOI: 10.3390/molecules25194549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.
Collapse
Affiliation(s)
- Soon Shik Shin
- Department of Formula Sciences, College of Oriental Medicine, Dongeui University, Busan 47340, Korea;
| | - Michung Yoon
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
- Correspondence: ; Tel.: +8242-829-7581; Fax: 8242-829-7580
| |
Collapse
|
13
|
Topical Application of Hyaluronic Acid-RGD Peptide-Coated Gelatin/Epigallocatechin-3 Gallate (EGCG) Nanoparticles Inhibits Corneal Neovascularization Via Inhibition of VEGF Production. Pharmaceutics 2020; 12:pharmaceutics12050404. [PMID: 32354067 PMCID: PMC7284559 DOI: 10.3390/pharmaceutics12050404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022] Open
Abstract
Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.
Collapse
|
14
|
Green Synthesis of Mg 0.99 Zn 0.01O Nanoparticles for the Fabrication of κ-Carrageenan/NaCMC Hydrogel in order to Deliver Catechin. Polymers (Basel) 2020; 12:polym12040861. [PMID: 32283630 PMCID: PMC7240640 DOI: 10.3390/polym12040861] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/04/2022] Open
Abstract
Currently, the role of the nanoparticles in the structure of the composites and their benefits for the health of the body is valuable. In this study, the effects of the doping on the structural and morphological properties of the hydrogels using a Mg co-doped ZnO hydrogel, which has been fabricated by the sol–gel process, have been investigated. Then, a hydrogel containing nanoparticle and a hydrogel without any nanoparticles was produced as a control. The hydrogels were loaded with catechin and the related characterization was evolved based on the new structure of the matrices. The Mg0.99Zn0.01O nanoparticles were synthesized using a green synthesis method. To investigate the properties of the nanoparticles, zeta potential and XRD were studied. The field emission scanning electron microscopy (FESEM), FTIR, TGA, swelling Ratio, and compression tests were investigated for the hydrogels. Based on the results, FESEM showed a more compressed structure for hydrogels including nanoparticles rather than the hydrogels without a nanoparticle. The TGA showed a higher decomposition temperature in the hydrogels including nanoparticles. The swelling ratio of hydrogels containing a nanoparticle was higher than the control hydrogel. κ-Carrageenan/ Mg0.99Zn0.01O/NaCMC/Catechin had the highest swelling ratio (44.15%) rather than the κ-Carrageenan/NaCMC (33.22%). Mg0.99Zn0.01O nanoparticles presented a stronger structure of hydrogels in the compression test. It is concluded that the role of the synthesized nanoparticle is critical in the structure of the hydrogel.
Collapse
|
15
|
Karatas A, Dagli AF, Orhan C, Gencoglu H, Ozgen M, Sahin N, Sahin K, Koca SS. Epigallocatechin 3-gallate attenuates arthritis by regulating Nrf2, HO-1, and cytokine levels in an experimental arthritis model. Biotechnol Appl Biochem 2019; 67:317-322. [PMID: 31746064 DOI: 10.1002/bab.1860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) is a polyphenol that has been shown to have antioxidant and anti-inflammatory effects. In this study, collagen-induced arthritis (CIA) model, in Wistar albino rats, was used to elucidate the effect of EGCG on pathogenetic pathways in inflammatory arthritis. The levels of serum TNF-α, IL-17, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx); the expression levels of tissue heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); histopathologically, perisynovial inflammation and cartilage-bone destruction were examined. In the sham group, serum TNF-α, IL-17, and MDA levels increased, while SOD, CAT, GPx levels, and the expressions of Nrf2 and HO-1 decreased. On the other hand, in the EGCG administered groups, serum TNF-α, IL-17, and MDA levels improved, while SOD, CAT, GPx levels and the expressions of Nrf2 and HO-1 increased. Moreover, histopathological analysis has shown that perisynovial inflammation and cartilage-bone destruction decreased in the EGCG administered groups. These results suggest that EGCG has an antiarthritic effect by regulating the oxidative-antioxidant balance and cytokine levels in the CIA model, which is a surrogate experimental model of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ahmet Karatas
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Adile Ferda Dagli
- Department of Pathology, School of Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Metin Ozgen
- Department of Rheumatology, Firat University School of Medicine, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig, Turkey
| | | |
Collapse
|
16
|
Wen S, Sun L, An R, Zhang W, Xiang L, Li Q, Lai X, Huo M, Li D, Sun S. A combination of Citrus reticulata peel and black tea inhibits migration and invasion of liver cancer via PI3K/AKT and MMPs signaling pathway. Mol Biol Rep 2019; 47:507-519. [PMID: 31673889 DOI: 10.1007/s11033-019-05157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Liver cancer, one of the most common malignancies, is the second leading cause of cancer death in the world. The citrus reticulate peel and black tea have been studied for their beneficial health effects. In spite of the many studies have been reported, the underlying molecular mechanisms underlying its health benefits are still not fully understood. In present study, we developed a unique citrus reticulate peel black tea (CRPBT) by combined citrus reticulate peel and black tea and assessed its active ingredients, anti-oxidant and anti-liver cancer effects in vitro. The results suggested that CRPBT exhibited antioxidant capacity and effectively inhibited proliferation and migration of liver cancer cells in a dose- and time- dependent manner. Mechanistically, CRPBT significantly down-regulated phosphorylation of PI3K and AKT, and up-regulated the ratio of Bax/Bcl-2, and suppressed the expression of MMP2/9, N-cadherin and Vimetin proteins in liver cancer cells. Taken together, CRPBT has good effect on inhibiting migration, invasion, proliferation, and inducing apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Shuai Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Ran An
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Wenji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Limin Xiang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China
| | - Mengen Huo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, People's Republic of China.
- International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, People's Republic of China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
17
|
Yongvongsoontorn N, Chung JE, Gao SJ, Bae KH, Yamashita A, Tan MH, Ying JY, Kurisawa M. Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex beyond Tumor-Targeted Delivery. ACS NANO 2019; 13:7591-7602. [PMID: 31262169 DOI: 10.1021/acsnano.9b00467] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although a few nanomedicines have been approved for clinical use in cancer treatment, that recognizes improved patient safety through targeted delivery, their improved efficacy over conventional drugs has remained marginal. One of the typical drawbacks of nanocarriers for cancer therapy is a low drug-loading capacity that leads to insufficient efficacy and requires an increase in dosage and/or frequency of administration, which in turn increases carrier toxicity. In contrast, elevating drug-loading would cause the risk of nanocarrier instability, resulting in low efficacy and off-target toxicity. This intractable drug-to-carrier ratio has imposed constraints on the design and development of nanocarriers. However, if the nanocarrier has intrinsic therapeutic effects, the efficacy would be synergistically augmented with less concern for the drug-to-carrier ratio. Sunitinib-loaded micellar nanocomplex (SU-MNC) was formed using poly(ethylene glycol)-conjugated epigallocatechin-3-O-gallate (PEG-EGCG) as such a carrier. SU-MNC specifically inhibited the vascular endothelial growth factor-induced proliferation of endothelial cells, exhibiting minimal cytotoxicity to normal renal cells. SU-MNC showed enhanced anticancer effects and less toxicity than SU administered orally/intravenously on human renal cell carcinoma-xenografted mice, demonstrating more efficient effects on anti-angiogenesis, apoptosis induction, and proliferation inhibition against tumors. In comparison, a conventional nanocarrier, SU-loaded polymeric micelle (SU-PM) comprised of PEG-b-poly(lactic acid) (PEG-PLA) copolymer, only reduced toxicity with no elevated efficacy, despite comparable drug-loading and tumor-targeting efficiency to SU-MNC. Improved efficacy of SU-MNC was ascribed to the carrier-drug synergies with the high-performance carrier of PEG-EGCG besides tumor-targeted delivery.
Collapse
Affiliation(s)
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Shu Jun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Atsushi Yamashita
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Min-Han Tan
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Jackie Y Ying
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos, #07-01 , Singapore 138669
| |
Collapse
|
18
|
Abstract
Metastasis of cells from primary site to distant organs involves a series of sequential steps, and molecules responsible for all these events are understandably considered as potential targets for metastasis management. Tea polyphenols, the secondary metabolites of the tea leaf Camellia sinensis, are increasingly being studied for their antimetastatic properties. In this article, effects of green tea polyphenols (GTP) and black tea polyphenols (BTP) on the molecules and events involved in metastasis are discussed in detail. As tea is a very popular beverage, tea polyphenols are expected to be potential chemopreventive agents that can be taken with normal diet and can be nontoxic due to their natural origin. However, individual variations in metabolic pathways, bioavailability, dose, and toxicity are some important factors that can modify the effectiveness of tea polyphenols within the human system.
Collapse
Affiliation(s)
- Niladri Bag
- Department of Horticulture, Sikkim University, Gangtok, India
| | - Arundhati Bag
- Department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| |
Collapse
|
19
|
A critical review on anti-angiogenic property of phytochemicals. J Nutr Biochem 2019; 71:1-15. [PMID: 31174052 DOI: 10.1016/j.jnutbio.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Angiogenesis, a process involved in neovascularization, has been found to be associated with several metabolic diseases like cancer, retinopathy etc. Thus, currently, the focus on anti-angiogenic therapy for treatment and prevention of diseases has gained significant attention. Currently available Food and Drug Administration (FDA) approved drugs are targeting either vascular endothelial growth factor or it's receptor, but in the long term, these approaches were shown to cause several side effects and the chances of developing resistance to these drugs is also high. Therefore, identification of safe and cost-effective anti-angiogenic molecules is highly imperative. Over the past decades, dietary based natural compounds have been studied for their anti-angiogenic potential which provided avenues in improving the angiogenesis based therapy. In this review, major emphasis is given to the molecular mechanism behind anti-angiogenic effect of natural compounds from dietary sources.
Collapse
|
20
|
Chu KO, Chan KP, Chan SO, Ng TK, Jhanji V, Wang CC, Pang CP. Metabolomics of Green-Tea Catechins on Vascular-Endothelial-Growth-Factor-Stimulated Human-Endothelial-Cell Survival. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12866-12875. [PMID: 30406651 DOI: 10.1021/acs.jafc.8b05998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neovascularization causes serious oculopathy related to upregulation of vascular-endothelial-growth factor (VEGF) causing new capillary growth via endothelial cells. Green-tea-extract (GTE) constituents possess antiangiogenesis properties. We used VEGF to induce human umbilical-vein endothelial cells (HUVECs) and applied GTE, epigallocatechin gallate (EGCG), and mixtures of different compositions of purified catechins (M1 and M2) to evaluate their efficacies of inhibition and their underlying mechanisms using cell-cycle analysis and untargeted metabolomics techniques. GTE, EGCG, M1, and M2 induced HUVEC apoptosis by 22.1 ± 2, 20.0 ± 0.7, 50.7 ± 8.5, and 69.8 ± 4.1%, respectively. GTE exerted a broad, balanced metabolomics spectrum, involving suppression of the biosynthesis of cellular building blocks and oxidative-phosphorylation metabolites as well as promotion of the biosynthesis of membrane lipids and growth factors. M2 mainly induced mechanisms associated with energy and biosynthesis suppression. Therefore, GTE exerted mechanisms involving both promotion and suppression activities, whereas purified catechins induced extensive apoptosis. GTE could be a more promising antineovascularization remedy for ocular treatment.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Sun On Chan
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| | - Chi Chiu Wang
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Department of Obstetrics and Gynaecology , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
- Li Ka Shing Institute of Health Science , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences , The Chinese University of Hong Kong, Hong Kong Eye Hospital , Kowloon , Hong Kong
| |
Collapse
|
21
|
Dhatwalia SK, Kumar M, Dhawan DK. Role of EGCG in Containing the Progression of Lung Tumorigenesis - A Multistage Targeting Approach. Nutr Cancer 2018; 70:334-349. [PMID: 29570987 DOI: 10.1080/01635581.2018.1445762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is a prominent form among various types of cancers, irrespective of the sex worldwide. Treatment of lung cancer involves the intensive phase of chemotherapy/radiotherapy which is associated with high rate of adverse events. There is a need of safe and reliable treatment/adjunctive therapy to apprehend the cancer by reducing the undesirable outcome of primary therapy. Epigallocatechin-3-gallate (EGCG), which is a potent antioxidant and anticancer compound extracted from the plant camellia sinensis has proved to be a novel agent to control or reduce lung tumorigenesis by affecting the signaling molecules of cell cycle regulation and apoptotic pathways. In vitro studies have revealed that EGCG can contain carcinogenesis by altering the molecules involved in multiple signal transduction pathways like ERK, VEGF, COX2, NEAT, Ras-GTPase, and kinases. The animal studies have also demonstrated effectiveness of EGCG by inhibiting various molecular pathways which include AKT, NFkB, MAPK, Bcl/Bax, DNMT1, and HIF-1α. Various attempts have been made to see the adjunctive role of EGCG in human lung cancer. Phase I/II clinical studies have recommended that EGCG is quite safe and effective in providing protection against cancer. In this review, we will discuss the role of EGCG and its molecular mechanisms in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | - Devinder K Dhawan
- a Department of Biophysics , Panjab University , Chandigarh , India.,c Nuclear Medicine, Panjab University , Chandigarh , India
| |
Collapse
|
22
|
Ribeiro A, Abreu RM, Dias MM, Barreiro MF, Ferreira IC. Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Lett 2018; 415:86-105. [DOI: 10.1016/j.canlet.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
|
23
|
Abstract
Deadly diseases, such as cardiovascular diseases and cancer, remain the major health problems worldwide. Research in cardiovascular diseases and genome-wide association studies were successful in indentifying the gene loci associated with these threatening diseases. Yet, a substantial number of casual factors remain unexplained. Over the last decade, a better understanding of molecular and biochemical mechanisms of cardiac diseases led to developing a rationale for combining various protective agents, such as polyphenols, to target multiple signaling pathways. The present review article summarizes recent advances of the use of polyphenols against diseases, such as cardiac diseases.
Collapse
|
24
|
Chang CY, Wang MC, Miyagawa T, Chen ZY, Lin FH, Chen KH, Liu GS, Tseng CL. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int J Nanomedicine 2016; 12:279-294. [PMID: 28115846 PMCID: PMC5221810 DOI: 10.2147/ijn.s114754] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine–glycine–aspartic acid (RGD) peptide–hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV mice.
Collapse
Affiliation(s)
- Che-Yi Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei; Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan
| | - Ming-Chen Wang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan
| | - Takuya Miyagawa
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
| | - Zhi-Yu Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
| | - Feng-Huei Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan; Institute of Biomedical Engineering, National Taiwan University
| | - Ko-Hua Chen
- Department of Ophthalmology, Taipei Veterans General Hospital; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
| |
Collapse
|
25
|
Taleb H, Maddocks SE, Morris RK, Kanekanian AD. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.). JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:457-468. [PMID: 27729284 DOI: 10.1016/j.jep.2016.10.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Date fruit, Phoenix dactylifera L. has traditionally been used as a medicine in many cultures for the treatment of a range of ailments such as stomach and intestinal disorders, fever, oedema, bronchitis and wound healing. AIM OF THE REVIEW The present review aims to summarise the traditional use and application of P. dactylifera date fruit in different ethnomedical systems, additionally the botany and phytochemistry are identified. Critical evaluation of in vitro and in vitro studies examining date fruit in relation to anti-inflammatory, anti-angiogenic and antimicrobial activities are outlined. KEY FINDINGS The ethnomedical use of P. dactylifera in the treatment of inflammatory disease has been previously identified and reported. Furthermore, date fruit and date fruit co-products such as date syrup are rich sources of polyphenols, anthocyanins, sterols and carotenoids. In vitro studies have demonstrated that date fruit exhibits antibacterial, anti-inflammatory and anti-angiogenic activity. The recent interest in the identification of the numerous health benefits of dates using in vitro and in vivo studies have confirmed that date fruit and date syrup have beneficial health effects that can be attributed to the presence of natural bioactive compounds. CONCLUSIONS Date fruit and date syrup have therapeutic properties, which have the potential to be beneficial to health. However, more investigations are needed to quantify and validate these effects.
Collapse
Affiliation(s)
- Hajer Taleb
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| | - Sarah E Maddocks
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK.
| | - R Keith Morris
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| | - Ara D Kanekanian
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Avenue, CF5 2YB Wales, UK
| |
Collapse
|
26
|
Yang CS, Wang H. Cancer Preventive Activities of Tea Catechins. Molecules 2016; 21:E1679. [PMID: 27941682 PMCID: PMC6273642 DOI: 10.3390/molecules21121679] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 02/06/2023] Open
Abstract
Catechins are widely occurring in our diet and beverages. The cancer-preventive activities of catechins have been extensively studied. Of these, (-)-epigallocatechin-3-gallate (EGCG), the principal catechin in green tea, has received the most attention. The inhibitory activities of tea catechins against carcinogenesis and cancer cell growth have been demonstrated in a large number of laboratory studies. Many mechanisms for modulating cancer signaling and metabolic pathways have been proposed based on numerous studies in cell lines with EGCG, the most active tea catechin. Nevertheless, it is not known whether many of these mechanisms indeed contribute to the anti-cancer activities in animals and in humans. Human studies have provided some results for the cancer preventive activities of tea catechins; however, the activities are not strong. This article reviews the cancer preventive activities and mechanisms of action of tea catechins involving their redox activities, biochemical properties and binding to key enzymes or signal transduction proteins. These mechanisms lead to suppression of cell proliferation, increased apoptosis and inhibition of angiogenesis. The relevance of the proposed mechanisms for cancer prevention are assessed in the light of the situation in vivo. The potential and possible problems in the application of tea and tea-derived products for cancer prevention are discussed.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
27
|
Kumar M, Dhatwalia SK, Dhawan DK. Role of angiogenic factors of herbal origin in regulation of molecular pathways that control tumor angiogenesis. Tumour Biol 2016; 37:14341-14354. [DOI: 10.1007/s13277-016-5330-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
|
28
|
Xiang LP, Wang A, Ye JH, Zheng XQ, Polito CA, Lu JL, Li QS, Liang YR. Suppressive Effects of Tea Catechins on Breast Cancer. Nutrients 2016; 8:nu8080458. [PMID: 27483305 PMCID: PMC4997373 DOI: 10.3390/nu8080458] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/15/2022] Open
Abstract
Tea leaf (Camellia sinensis) is rich in catechins, which endow tea with various health benefits. There are more than ten catechin compounds in tea, among which epigallocatechingallate (EGCG) is the most abundant. Epidemiological studies on the association between tea consumption and the risk of breast cancer were summarized, and the inhibitory effects of tea catechins on breast cancer, with EGCG as a representative compound, were reviewed in the present paper. The controversial results regarding the role of tea in breast cancer and areas for further study were discussed.
Collapse
Affiliation(s)
- Li-Ping Xiang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Ao Wang
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Curt Anthony Polito
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, # 866 Yuhangtang Road, Hangzhou 310058, China.
- National Tea and Tea product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| |
Collapse
|
29
|
Taleb H, Morris RK, Withycombe CE, Maddocks SE, Kanekanian AD. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells. Nutr Res 2016; 36:636-47. [PMID: 27333954 DOI: 10.1016/j.nutres.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/25/2022]
Abstract
Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells.
Collapse
Affiliation(s)
- Hajer Taleb
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Ave, CF5 2YB, Wales, UK
| | - R Keith Morris
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Ave, CF5 2YB, Wales, UK
| | - Cathryn E Withycombe
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Ave, CF5 2YB, Wales, UK
| | - Sarah E Maddocks
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Ave, CF5 2YB, Wales, UK.
| | - Ara D Kanekanian
- Department of Healthcare and Food, Cardiff School of Health Sciences, Cardiff Metropolitan University, Llandaff Campus, Western Ave, CF5 2YB, Wales, UK
| |
Collapse
|
30
|
Chen ZM, Lin Z. Tea and human health: biomedical functions of tea active components and current issues. J Zhejiang Univ Sci B 2015; 16:87-102. [PMID: 25644464 DOI: 10.1631/jzus.b1500001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Originating in China, tea and tea planting have spread throughout the world since the middle of the Tang dynasty. Now people from 160 countries in the world are accustomed to tea drinking. A brief history of tea's medicinal role in China and its spread to the world are introduced. The effectiveness of tea active components and tea drinking on major human diseases, including cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, is discussed. Also presented are some related issues, such as the bioavailability of tea active components, the new formulations of tea polyphenols, and the safety for consumers of dietary supplements containing tea polyphenols.
Collapse
Affiliation(s)
- Zong-mao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | | |
Collapse
|
31
|
Urueña C, Gomez A, Sandoval T, Hernandez J, Li S, Barreto A, Fiorentino S. Multifunctional T Lymphocytes Generated After Therapy With an Antitumor Gallotanin-Rich Normalized Fraction Are Related to Primary Tumor Size Reduction in a Breast Cancer Model. Integr Cancer Ther 2015. [DOI: 10.1177/1534735415596425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural compounds are promising sources for anticancer therapies because of their multifunctional activity and low toxicity. Although the host immune response (IR) is clearly implicated in tumor control, the relationship between natural therapies and IR has not yet been elucidated. The present work evaluates IR induction after treatment with a gallotannin-rich fraction from Caesalpinia spinosa (P2Et). Breast tumor 4T1 cells were used to evaluate antitumor properties and IR activation. Apoptosis and expression of immunogenic cell death (ICD) markers were assessed in vitro, whereas IR and postvaccination tumor evolution were assessed in vivo. P2Et fraction induced apoptotic cell death, displaying phosphatidylserine externalization and DNA fragmentation. ICD markers such as calreticulin, high-mobility group box 1 translocation from nuclei to cytoplasm, and ATP secretion were observed. Primary tumor control was improved by vaccination with P2Et-pretreated 4T1 cells (t-P2Et), yielding long-lasting ex vivo multifunctional CD4+ and CD8+ T lymphocytes (interleukin [IL]-2+, tumor necrosis factor [TNF]-α+, interferon [IFN]-γ+) that secrete IL-2, TNF-α, IL-4, IL-5, and IFN-γ after specific 4T1 cell stimulation. The present study constitutes the first demonstration of a long-lasting antitumor IR induction and primary tumor reduction induced by a complex natural fraction. These data reveal the potential use of this fraction as an adjuvant in breast cancer treatment.
Collapse
|
32
|
Urueña C, Gomez A, Sandoval T, Hernandez J, Li S, Barreto A, Fiorentino S. Multifunctional T Lymphocytes Generated After Therapy With an Antitumor Gallotanin-Rich Normalized Fraction Are Related to Primary Tumor Size Reduction in a Breast Cancer Model. Integr Cancer Ther 2015. [DOI: 10.1177/1534735415596425 pmid: 26220604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural compounds are promising sources for anticancer therapies because of their multifunctional activity and low toxicity. Although the host immune response (IR) is clearly implicated in tumor control, the relationship between natural therapies and IR has not yet been elucidated. The present work evaluates IR induction after treatment with a gallotannin-rich fraction from Caesalpinia spinosa (P2Et). Breast tumor 4T1 cells were used to evaluate antitumor properties and IR activation. Apoptosis and expression of immunogenic cell death (ICD) markers were assessed in vitro, whereas IR and postvaccination tumor evolution were assessed in vivo. P2Et fraction induced apoptotic cell death, displaying phosphatidylserine externalization and DNA fragmentation. ICD markers such as calreticulin, high-mobility group box 1 translocation from nuclei to cytoplasm, and ATP secretion were observed. Primary tumor control was improved by vaccination with P2Et-pretreated 4T1 cells (t-P2Et), yielding long-lasting ex vivo multifunctional CD4+ and CD8+ T lymphocytes (interleukin [IL]-2+, tumor necrosis factor [TNF]-α+, interferon [IFN]-γ+) that secrete IL-2, TNF-α, IL-4, IL-5, and IFN-γ after specific 4T1 cell stimulation. The present study constitutes the first demonstration of a long-lasting antitumor IR induction and primary tumor reduction induced by a complex natural fraction. These data reveal the potential use of this fraction as an adjuvant in breast cancer treatment.
Collapse
|
33
|
Mähler A, Steiniger J, Bock M, Klug L, Parreidt N, Lorenz M, Zimmermann BF, Krannich A, Paul F, Boschmann M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: a randomized clinical trial. Am J Clin Nutr 2015; 101:487-95. [PMID: 25733633 DOI: 10.3945/ajcn.113.075309] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Muscle weakness and fatigue are common symptoms in multiple sclerosis (MS). Green tea catechins such as (-)epigallocatechin-3-gallate (EGCG) are known to improve energy metabolism at rest and during exercise. OBJECTIVE We tested the hypothesis that EGCG improves energy metabolism and substrate utilization in patients with MS. DESIGN Eighteen patients (8 men) with relapsing-remitting MS (expanded disability status scale score <4.5, all receiving glatiramer acetate) participated in this randomized, double-blind, placebo-controlled, crossover trial at a clinical research center. All patients received EGCG (600 mg/d) and placebo over 12 wk (4-wk washout in between). After each intervention, fasting and postprandial energy expenditure (EE), as well as fat oxidation (FAOx) and carbohydrate oxidation (CHOx) rates, were measured either at rest or during 40 min of exercise (0.5 W/kg). At rest, blood samples and microdialysates from adipose tissue and skeletal muscle were also taken. RESULTS At rest, postprandial EE and CHOx, as well as adipose tissue perfusion and glucose supply, were significantly lower in men but higher in women receiving EGCG compared with placebo. During exercise, postprandial EE was lower after EGCG than after placebo, indicating an increased working efficiency (men > women). After placebo, exercise EE was mainly fueled by FAOx in both men and women. After EGCG, there was a shift to a higher and more stable CHOx during exercise in men but not in women. CONCLUSIONS Our data indicate that EGCG given to patients with MS over 12 wk improves muscle metabolism during moderate exercise to a greater extent in men than in women, possibly because of sex-specific effects on autonomic and endocrine control.
Collapse
Affiliation(s)
- Anja Mähler
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Jochen Steiniger
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Markus Bock
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Lars Klug
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Nadine Parreidt
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Mario Lorenz
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Benno F Zimmermann
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Alexander Krannich
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Friedemann Paul
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| | - Michael Boschmann
- From the Experimental & Clinical Research Center-a joint cooperation between Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Berlin, Germany (AM, JS, M Bock, LK, NP, and M Boschmann); NeuroCure Clinical Research Center (AM, M Bock, and FP) and Medical Clinic for Cardiology and Angiology Campus Mitte (ML), Charité-Universitätsmedizin Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany (ML); University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany (BFZ); Institute Prof. Dr. Georg Kurz GmbH, Köln, Germany (BFZ); Department of Biostatistics, Clinical Research Unit of Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany (AK); and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany (FP)
| |
Collapse
|
34
|
Fukuno K, Hara T, Tsurumi H, Shibata Y, Mabuchi R, Nakamura N, Kitagawa J, Shimizu M, Ito H, Saito K, Moriwaki H. Expression of indoleamine 2,3-dioxygenase in leukemic cells indicates an unfavorable prognosis in acute myeloid leukemia patients with intermediate-risk cytogenetics. Leuk Lymphoma 2014; 56:1398-405. [PMID: 25248875 DOI: 10.3109/10428194.2014.953150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The immunomodulatory effects of indoleamine 2,3-dioxygenase (IDO) are ascribed to its ability to catalyze breakdown of the essential amino acid L-tryptophan. We applied reverse transcription-polymerase chain reaction (RT-PCR) to examine IDO mRNA expression in acute myeloid leukemia (AML) blasts, and investigated its clinical significance. We enrolled 62 patients with AML between April 2005 and March 2013. Bone marrow-derived mononuclear fractions were separated and extracted mRNA was amplified by PCR. RT-PCR showed that the bone marrow of 23 patients expressed IDO mRNA but not in 39. IDO mRNA expression did not significantly differ among cytogenetic risk profiles. The 3-year overall survival rates for patients with and without IDO mRNA expression were 39% and 74%, respectively (p < 0.005). The rates for patients with intermediate-risk cytogenetics with and without IDO mRNA expression were 16% and 70%, respectively (p < 0.005). The expression of IDO mRNA was associated with a poor prognosis of AML.
Collapse
|
35
|
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of topical application of epigallocatechin gallate (EGCG) for the treatment of corneal neovascularization in a rabbit model. METHODS Corneal neovascularization was induced in 12 rabbits by placing a black silk suture in the corneal stroma (24 eyes) for a week. After suturing, 1 randomly chosen eye of the 12 rabbits was treated with topical EGCG at 2 different concentrations: 0.01% (group 1) and 0.1% (group 2), whereas the contralateral eyes were treated with sterilized balanced salt solution as the control. All eye drops were applied for 2 weeks after suturing. The suture materials were removed from all eyes on day 7. The surface area of corneal neovascularization was measured and analyzed in all eyes on days 7 and 14. On day 14, all eyes were extracted to measure the concentrations of vascular endothelial growth factor (VEGF) messenger RNA and cyclooxygenase-2 (COX-2) protein. RESULTS The surface area of induced corneal neovascularization was significantly smaller only in group 2 compared with that of the control group on days 7 and 14 (P < 0.001). The change in surface area of corneal neovascularization after removal of the suture material was not significantly different between all 3 groups. VEGF messenger RNA levels were significantly lower in group 2 than in the control group (P < 0.001). The concentration of COX-2 was significantly lower in group 2 than in the control group (P = 0.043), but no significant difference was observed between group 1 and the control group. CONCLUSIONS Topical administration of EGCG effectively inhibits corneal neovascularization in rabbits. This inhibitory effect is probably related to the suppression of VEGF and COX-2 meditated angiogenesis.
Collapse
|
36
|
Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules 2014; 19:12150-72. [PMID: 25123184 PMCID: PMC6270782 DOI: 10.3390/molecules190812150] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 02/06/2023] Open
Abstract
Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key role in the processes of extracellular matrix (ECM) remodeling and microvascular permeability during angiogenesis. We investigated the inhibitory effects of EGCG on ocular neovascularization and vascular permeability using the retina oriented cells and animal models induced by VEGF and alkaline burn. EGCG treatment significantly decreased mRNA and protein expression levels of MMP-9 in the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) and tumor necrosis factor alpha (TNF-α) in human retinal pigment epithelial cells (HRPECs). EGCG also effectively protected ARPE-19 cells from cell death and attenuated mRNA expressions of key angiogenic factors (MMP-9, VEGF, VEGF Receptor-2) by inhibiting generation of reactive oxygen species (ROS). EGCG significantly inhibited proliferation, vascular permeability, and tube formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). Furthermore, EGCG significantly reduced vascular leakage and permeability by blood-retinal barrier breakdown in VEGF-induced animal models. In addition, EGCG effectively limited upregulation of MMP-9 and platelet endothelial cell adhesion molecule (PECAM/CD31) on corneal neovascularization (CNV) induced by alkaline burn. Our data suggest that MMP-9 and VEGF are key therapeutic targets of EGCG for treatment and prevention of ocular angiogenic diseases such as age-related macular degeneration, diabetic retinopathy, and corneal neovascularization.
Collapse
|
37
|
Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4026-4038. [PMID: 24779775 DOI: 10.1021/jf500080z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenolic phytochemicals (PPs) have been extensively studied as potential nutriceuticals for maintenance of health and treatment of cancer, inflammation, and neurodegeneration. However, the reported beneficial outcomes are inconsistent. The biological activities of PPs have been attributed to their pro-oxidative and antioxidative actions and effects on signaling mechanisms and epigenomic modifications. These diversified properties were described or postulated on the basis of a variety of experimental studies using cell culture and animal models, even though most have not been replicated and results are not validated. This review attempts to give an overview of biological properties of PPs, based on the coherent results from relevant studies, and evaluate critically the experimental conditions and possible artifacts. Complicated molecular mechanisms and multitargeting genomic interactions of PPs are discussed, with a view that reasonable mechanistic propositions are usually obtained from well-designed in vivo studies.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong in Hong Kong Eye Hospital , Kowloon, Hong Kong
| | | | | | | |
Collapse
|
38
|
Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Clin Sci (Lond) 2014; 126:633-44. [PMID: 24063570 DOI: 10.1042/cs20130215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abnormal angiogenesis in liver cirrhosis often leads to severe complications such as variceal haemorrhage and encephalopathy. Furthermore, splanchnic angiogenesis elevates portal pressure, in which angiogenic factors play pivotal roles. GTP (green tea polyphenol) extracted from Camellia sinensis has anti-angiogenic properties, but the effects on the parameters described above in cirrhosis have not been investigated. The aim of the present study was to determine the effects of GTP in cirrhosis and to investigate the underlying mechanism. Liver cirrhosis was induced in Spraque-Dawley rats by common BDL (bile duct ligation). They randomly received GTP or DW (distilled water, vehicle) for 28 days, then haemodynamic parameters, portosystemic shunting, mesenteric window vascular density, intrahepatic angiogenesis, liver fibrosis, plasma VEGF (vascular endothelial growth factor) concentration, mesenteric angiogenic factor and receptor protein expression, and serum and mesenteric oxidative stress parameters were assessed. Compared with the DW group, GTP significantly decreased portosystemic shunting, liver fibrosis, intrahepatic angiogenesis, mesenteric window vascular density, VEGF concentration and down-regulated the mesenteric HIF (hypoxia-inducible factor)-1α, VEGF and phospho-Akt expression. In conclusion, GTP ameliorates the severity of portosystemic shunting and mesenteric angiogenesis via the suppression of HIF-1α, Akt activation and VEGF. GTP appears to be an appropriate agent in controlling portal hypertension-related complications via anti-angiogenesis.
Collapse
|
39
|
Crew KD, Ho KA, Brown P, Greenlee H, Bevers TB, Arun B, Sneige N, Hudis C, McArthur HL, Chang J, Rimawi M, Cornelison TL, Cardelli J, Santella RM, Wang A, Lippman SM, Hershman DL. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J Hum Nutr Diet 2014; 28:272-82. [PMID: 24646362 DOI: 10.1111/jhn.12229] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Observational and experimental data support a potential breast cancer chemopreventive effect of green tea. METHODS We conducted an ancillary study using archived blood/urine from a phase IB randomised, placebo-controlled dose escalation trial of an oral green tea extract, Polyphenon E (Poly E), in breast cancer patients. Using an adaptive trial design, women with stage I-III breast cancer who completed adjuvant treatment were randomised to Poly E 400 mg (n = 16), 600 mg (n = 11) and 800 mg (n = 3) twice daily or matching placebo (n = 10) for 6 months. Blood and urine collection occurred at baseline, and at 2, 4 and 6 months. Biological endpoints included growth factor [serum hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF)], lipid (serum cholesterol, triglycerides), oxidative damage and inflammatory biomarkers. RESULTS From July 2007-August 2009, 40 women were enrolled and 34 (26 Poly E, eight placebo) were evaluable for biomarker endpoints. At 2 months, the Poly E group (all dose levels combined) compared to placebo had a significant decrease in mean serum HGF levels (-12.7% versus +6.3%, P = 0.04). This trend persisted at 4 and 6 months but was no longer statistically significant. For the Poly E group, serum VEGF decreased by 11.5% at 2 months (P = 0.02) and 13.9% at 4 months (P = 0.05) but did not differ compared to placebo. At 2 months, there was a trend toward a decrease in serum cholesterol with Poly E (P = 0.08). No significant differences were observed for other biomarkers. CONCLUSIONS Our findings suggest potential mechanistic actions of tea polyphenols in growth factor signalling, angiogenesis and lipid metabolism.
Collapse
Affiliation(s)
- K D Crew
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - K A Ho
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - P Brown
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - H Greenlee
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - T B Bevers
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - B Arun
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - N Sneige
- University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - C Hudis
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H L McArthur
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Chang
- The Methodist Hospital Cancer Center, Houston, TX, USA
| | - M Rimawi
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - T L Cornelison
- Divison of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - J Cardelli
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - R M Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - A Wang
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - S M Lippman
- University of California San Diego Moores Cancer Center, San Diego, CA, USA
| | - D L Hershman
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Yang Z, Xiong K, Qi P, Yang Y, Tu Q, Wang J, Huang N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:2647-2656. [PMID: 24484285 DOI: 10.1021/am405124z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The creation of a platform for enhanced vascular endothelia cell (VEC) growth while suppressing vascular smooth muscle cell (VSMC) proliferation offers possibility for advanced coatings of vascular stents. Gallic acid (GA), a chemically unique phenolic acid with important biological functions, presents benefits to the cardiovascular disease therapy because of its superior antioxidant effect and a selectivity to support the growth of ECs more than SMCs. In this study, GA was explored to tailor such a multifunctional stent surface combined with plasma polymerization technique. On the basis of the chemical coupling reaction, GA was bound to an amine-group-rich plasma-polymerized allylamine (PPAam) coating. The GA-functionalized PPAam (GA-PPAam) surface created a favorable microenvironment to obtain high ECs and SMCs selectivity. The GA-PPAam coating showed remarkable enhancement in the adhesion, viability, proliferation, migration, and release of nitric oxide (NO) of human umbilical vein endothelial cells (HUVECs). The GA-PPAam coating also resulted in remarkable inhibition effect on human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation. These striking findings may provide a guide for designing the new generation of multifunctional vascular devices.
Collapse
Affiliation(s)
- Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, ‡The Institute of Biomaterials and Surface Engineering, School of Materials Science and Engineering, and §Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University , Chengdu 610031, China
| | | | | | | | | | | | | |
Collapse
|
41
|
New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014; 2:187-95. [PMID: 24494192 PMCID: PMC3909779 DOI: 10.1016/j.redox.2013.12.022] [Citation(s) in RCA: 506] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022] Open
Abstract
Green tea is rich in polyphenol flavonoids including catechins. Epigallocatechin 3-gallate (EGCG) is the most abundant and potent green tea catechin. EGCG has been extensively studied for its beneficial health effects as a nutriceutical agent. Based upon its chemical structure, EGCG is often classified as an antioxidant. However, treatment of cells with EGCG results in production of hydrogen peroxide and hydroxyl radicals in the presence of Fe (III). Thus, EGCG functions as a pro-oxidant in some cellular contexts. Recent investigations have revealed many other direct actions of EGCG that are independent from anti-oxidative mechanisms. In this review, we discuss these novel molecular mechanisms of action for EGCG. In particular, EGCG directly interacts with proteins and phospholipids in the plasma membrane and regulates signal transduction pathways, transcription factors, DNA methylation, mitochondrial function, and autophagy to exert many of its beneficial biological actions. Many biological actions of EGCG are mediated by specific mechanisms other than its well-known anti-oxidant properties. EGCG is a pro-oxidant per se in some biological contexts. EGCG directly interacts with cell surface membrane proteins and specific known receptors. Treatment of cells with EGCG regulates specific intracellular signaling pathways and transcription. Specific biological actions of EGCG are regulated in a concentration-dependent manner.
Collapse
|
42
|
Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, Ordovas J. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis 2014; 233:196-205. [PMID: 24529144 DOI: 10.1016/j.atherosclerosis.2013.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/31/2013] [Accepted: 12/09/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Epidemiological and experimental evidence have indicated potential health benefits of vitamin E supplementation on coronary heart disease (CHD), but several clinical trials have reported no benefit from vitamin E supplementation on CHD. We hypothesized that supplemental intake of vitamin E from an early age may prevent or retard the development and progression of atherosclerosis and CHD mortality. METHODS To test this hypothesis, 300 Ldlr(-/-) mice were divided into groups receiving Western style high fat/cholesterol (HFHC), moderate fat/cholesterol (MFMC), or low fat/cholesterol (LFLC) diets all containing 50 IU of vitamin E. These dietary groups were further subdivided into four sub-groups (n = 25) receiving their respective diets with no vitamin E supplementation or additionally supplemented with vitamin E (500 IU/kg diet) starting at the early age of 5 wks, or 6 mo, or 12 mo. All mice remained on their assigned diets until age 18 mo. Body weight, health status and survival rate of mice were monitored and recorded. After 18 mo of dietary treatments, mice were sacrificed. RESULTS Body weight was the highest in HFHC groups and the lowest in LFLC groups. Plasma concentration of cholesterol and triglycerides was high in all dietary groups, and plasma vitamin E was high in vitamin E supplemented groups. Fifty percent of mice fed Western style HFHC diet and 53% of mice fed MFMC diet survived during the 18 mo, whereas 75% of mice fed LFLC diet survived during the 18 mo dietary treatments. At the age of 18 mo, all the Ldlr(-/-) mice, regardless of dietary treatments, had several advanced atherosclerotic lesions in both aortic root and aortic tree. Within the LFLC groups, those that received vitamin E supplements from age 5 wks up to 18 mo had a significantly higher survival rate of 88% (p = 0.04) and lower mortality (12%) compared to mice that did not receive vitamin E supplements (64%). This lower mortality rate and higher survival rate coincided with significantly (p = 0.03) fewer aortic lesions in the vitamin E supplemented LFLC group (50%) compared to LFLC mice that did not receive vitamin E supplements in their diets (65%). Subjective immunohistochemical evaluation of aortic valves showed that LFLC mice that received vitamin E supplements for 18 mo had less intima media thickness compared to LFLC mice that did not receive vitamin E supplements in their diet. The LFLC mice that were supplemented with vitamin E for 18 mo had the lowest mRNA expression of inflammatory markers such as VCAM-1, MCP-1 and CD36 in samples obtained from lesion and non-lesionareas. CONCLUSION In conclusion, 500 mg vitamin E/kg diet in Ldlr(-/-) mice is not effective at reducing mortality and atherosclerosis when the diet contained high or medium levels of fat and cholesterol. However, a relatively low dose and long-term vitamin E supplementation started from an early age is effective in reducing mortality and atherosclerotic lesions in genetically prone Ldlr(-/-) mice fed LFLC diet.
Collapse
Affiliation(s)
- Mohsen Meydani
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA.
| | - Paul Kwan
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| | - Michael Band
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| | - Ashley Knight
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| | - Weimin Guo
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| | - Jason Goutis
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| | - Jose Ordovas
- JM USDA HNRCA at Tufts University, 711 Washington St., MA 02111, USA
| |
Collapse
|
43
|
Abstract
The inhibitory activities of tea catechins against carcinogenesis and cancer cell growth have been demonstrated in a large number of laboratory studies. Many mechanisms for modulating cancer signaling and metabolic pathways have been proposed based on numerous studies in cell lines with (-)-epigallocatechin-3-gallate, the most abundant and active tea catechin. Nevertheless, the molecular basis for the proposed mechanisms and whether these mechanisms indeed contribute to the anticancer activities in vivo are not clearly known. This chapter reviews the basic redox properties of tea catechins, their binding to key enzymes and signal transduction proteins, and other mechanisms that lead to suppression of cell proliferation, increased apoptosis, and inhibition of angiogenesis. More weight is put on studies in vivo over experiments in vitro. It also discusses key issues involved in extrapolating results from cell line studies to mechanistic insights in vivo.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, PR China.
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jayson X Chen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jinsong Zhang
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
44
|
Treatment with EGCG in NSCLC leads to decreasing interstitial fluid pressure and hypoxia to improve chemotherapy efficacy through rebalance of Ang-1 and Ang-2. Chin J Nat Med 2013; 11:245-53. [PMID: 23725836 DOI: 10.1016/s1875-5364(13)60023-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Indexed: 12/12/2022]
Abstract
AIM Microvasculature and microenvironment play important roles in proliferation, invasion, metastasis and prognosis in non-small cell lung cancer (NSCLC), which might be altered by many anti-angiogenic drugs. Epigallocatechin-3-gallate (EGCG), a natural anti-angiogenesis agent refined from green tea, was defined to have multiple effects on angiogenesis factors, such as endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and angiopoietins (ANGs). Hypothesizing that EGCG might regulate microvasculature and microenvironment in NSCLC, the effects of EGCG on microvessel density (MVD), expression of Ang-1 and Ang-2, interstitial fluid pressure (IFP), tumor hypoxia, and chemotherapy sensitivity were examined. METHODS AND RESULTS EGCG treatment of A549 cells in mice bearing xenografts in vivo led to a significant decrease of MVD detected by CD31, and of Ang-2 expression detected by quantum dots double-label immunofluorescence assessment, while Ang-1 decreased with no significance. Decreased IFP was measured by the Wink-in-needle method, while hypoxia was assessed by polarographic electrode and pimonidazole (PIMO) immunohistochemistry. Assuming that these changes would increase response to chemotherapy, tumor growth studies were p[erformed in nude mice with xenografts, which were then treated with EGCG and the chemotherapeutic agent cisplatin. EGCG therapy combined with cisplatin led to synergistic inhibition of tumor growth, compared with administration of each treatment separately (P < 0.001). According to linear regression analysis, IFP was positively correlated with PIMO staining (R(2) = 0.618, P = 0.002), Ang-2 was correlated with MVD (R(2) = 0.423, P = 0.022), IFP (R(2) = 0.663, P = 0.01) and PIMO staining (R(2) = 0.694, P = 0.01). CONCLUSION IFP and delivery of oxygen might be improved by rebalance of Ang-1/Ang-2 under the treatment of EGCG in NSCLC, which also acts as a sensitizer of chemotherapy. These studies established a new mechanism for using EGCG as an adjuvant chemotherapy agent through modifying microvasculature and microenvironment.
Collapse
|
45
|
Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:827905. [PMID: 24307927 PMCID: PMC3836374 DOI: 10.1155/2013/827905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/19/2013] [Accepted: 09/09/2013] [Indexed: 01/04/2023]
Abstract
Epigallocatechin gallate (EGCG) is known to exhibit antioxidant, antiproliferative, and antithrombogenic effects and reduce the risk of cardiovascular diseases. Key events in the development of cardiovascular disease are hypertrophy and hyperplasia according to vascular smooth muscle cell proliferation. In this study, we investigated whether EGCG can interfere with PDGF-bb stimulated proliferation, cell cycle distribution, and the gelatinolytic activity of MMP and signal transduction pathways on RAOSMC when it was treated in two different ways-cotreatment with PDGF-bb and pretreatment of EGCG before addition of PDGF-bb. Both cotreated and pretreated EGCG significantly inhibited PDGF-bb induced proliferation, cell cycle progression of the G0/G1 phase, and the gelatinolytic activity of MMP-2/9 on RAOSMC. Also, EGCG blocked PDGF receptor-β (PDGFR-β) phosphorylation on PDGF-bb stimulated RAOSMC under pretreatment with cells as well as cotreatment with PDGF-bb. The downstream signal transduction pathways of PDGFR-β, including p42/44 MAPK, p38 MAPK, and Akt phosphorylation, were also inhibited by EGCG in a pattern similar to PDGFR-β phosphorylation. These findings suggest that EGCG can inhibit PDGF-bb stimulated mitogenesis by indirectly and directly interrupting PDGF-bb signals and blocking the signaling pathway via PDGFR-β phosphorylation. Furthermore, EGCG may be used for treatment and prevention of cardiovascular disease through blocking of PDGF-bb signaling.
Collapse
|
46
|
Hashimoto O, Nakamura A, Nakamura T, Iwamoto H, Hiroshi M, Inoue K, Torimura T, Ueno T, Sata M. Methylated-(3'')-epigallocatechin gallate analog suppresses tumor growth in Huh7 hepatoma cells via inhibition of angiogenesis. Nutr Cancer 2013; 66:728-35. [PMID: 24033329 DOI: 10.1080/01635581.2013.783601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
It is agreed that many of the antitumor effects of (-)-epigallocatechin gallate (EGCG) are mediated by various other effects. We report a new finding, namely, the antiproliferation potential and mechanism of methylated-(3'')-epigallocatechin gallate analog (MethylEGCG) having a stronger anti-oxidation effect than EGCG. MethylEGCG inhibited activity of vascular endothelial growth factor (VEGF)-depended VEGF receptor 2 and p42/44 MAPK, cell proliferation, and tube formation in human umbilical vascular endothelial cells (HUVECs) at 1 μ M. Even low- dose (1.1 mg/kg i.p. 8.3 mg/kg p.o.) administration suppressed tumor growth in xenografted Huh7 hepatoma mice by 50%. CD31 positive cells, visualized in blood vessels, were reduced in tumors by 18%, suggesting high antitumor activity via inhibition of angiogenesis. This study indicated that the modification of the 3'' position methylation of EGCG (MethylEGCG) could reduce cell growth effects at a low concentration in vivo.
Collapse
Affiliation(s)
- Osamu Hashimoto
- a Liver Cancer Division, Research Center for Innovative Cancer Therapy , Kurume University , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oat Attenuation of Hyperglycemia-Induced Retinal Oxidative Stress and NF-κB Activation in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:983923. [PMID: 23365614 PMCID: PMC3556423 DOI: 10.1155/2013/983923] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The overproduction of reactive oxygen species (ROS) plays a central role in the pathogenesis of endothelial damage in diabetes. To assess the effect of oat on experimental diabetic retinopathy, five groups of Albino rats were studied: nondiabetic control, untreated diabetic, and diabetic rats treated with 5%, 10%, and 20% (W/W) oat of the diet for 12 weeks. Novel data were obtained in this study indicating a protective role of oat against oxidative stress and diabetic retinopathy. The effects of oat on parameters of oxidative stress, AGE, and nuclear factor kappa B (NF-κB) were assessed by ELISA and NF-κB activation by electrophoretic mobility shift assay. Tumor necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) were also determined. After 12 weeks of diabetes, oat treatment reduced blood glucose levels, HbA1c, all oxidative stress markers, CML, normalized NF-κB activation and TNFα expression. Furthermore it reduced VEGF in the diabetic retina by 43% (P < 0.001). In conclusion, oat modulates microvascular damage through normalized pathways downstream of ROS overproduction and reduction of NF-κB and its controlled genes activation, which may provide additional endothelial protection.
Collapse
|
48
|
Ferrario A, Luna M, Rucker N, Wong S, Gomer CJ. Pro-apoptotic and anti-inflammatory properties of the green tea constituent epigallocatechin gallate increase photodynamic therapy responsiveness. Lasers Surg Med 2012; 43:644-50. [PMID: 22057492 DOI: 10.1002/lsm.21081] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND A polyphenol constituent of green tea, epigallocatechin gallate (EGCG), has anti-carcinogenic properties. A growing number of studies document EGCG-mediated induction of apoptotic pathways and inhibition of pro-survival factors when combined with chemotherapy or radiation. We evaluated the efficacy of EGCG in modulating photofrin (PH)-mediated photodynamic therapy (PDT) responses. METHODS Mouse mammary carcinoma (BA) cells and transplanted BA tumors growing in C3H mice were treated with PH-mediated PDT. Select groups of treated cells and mice also received EGCG and then cytotoxicity, tumor response, and expression of survival molecules were evaluated in all experimental groups. RESULTS EGCG increased apoptosis and cytotoxicity in BA cells exposed to PH-mediated PDT. The initial pro-survival phase of the unfolded protein response (UPR), characterized by increased expression of the 78 kDa glucose-regulated protein (GRP-78), was induced by PDT. The second pro-apoptotic phase of the UPR, characterized by phospho-c-Jun N-terminal kinase (p-JNK) expression, activation of caspases-3 and 7, poly ADP ribose polymerase (PARP) cleavage, and expression of C/EBP homologous protein was observed when PDT was combined with EGCG. EGCG also decreased the expression of the pro-survival proteins GRP-78 and survivin, and attenuated PDT-induced prostaglandin E2 (PGE2 ) expression in PDT-treated cells. Comparable responses also were observed when BA tumors were treated with PDT and EGCG. In addition, PDT-induced expression of metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) was down-regulated in treated tumor tissue by EGCG. CONCLUSIONS The polyphenol EGCG improves PDT efficacy by increasing tumor apoptosis and decreasing expression of pro-survival and angiogenic molecules within the tumor microenvironment.
Collapse
Affiliation(s)
- Angela Ferrario
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | |
Collapse
|
49
|
Tudoran O, Soritau O, Balacescu O, Balacescu L, Braicu C, Rus M, Gherman C, Virag P, Irimie F, Berindan-Neagoe I. Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J Cell Mol Med 2012; 16:520-30. [PMID: 21609393 PMCID: PMC3822928 DOI: 10.1111/j.1582-4934.2011.01346.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The major green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been shown to exhibit antitumour activities in several tumour models. One of the possible mechanisms by which EGCG can inhibit cancer progression is through the modulation of angiogenesis signalling cascade. The tumour cells’ ability to tightly adhere to endothelium is a very important process in the metastatic process, because once disseminated into the bloodstream the tumour cells must re-establish adhesive connections to endothelium in order to extravasate into the target tissues. In this study, we investigated the anti-angiogenic effects of EGCG treatment (10 μM) on human cervical tumour cells (HeLa) by evaluating the changes in the expression pattern of 84 genes known to be involved in the angiogenesis process. Transcriptional analysis revealed 11 genes to be differentially expressed and was further validated by measuring the induced biological effects. Our results show that EGCG treatment not only leads to the down-regulation of genes involved in the stimulation of proliferation, adhesion and motility as well as invasion processes, but also to the up-regulation of several genes known to have antagonist effects. We observed reduced proliferation rates, adhesion and spreading ability as well as invasiveness of HeLa tumour cells upon treatment, which suggest that EGCG might be an important anti-angiogenic therapeutic approach in cervical cancers.
Collapse
Affiliation(s)
- Oana Tudoran
- 'I. Chiricuta Cancer Institute, Department of Functional Genomics and Experimental Pathology, Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang G, Wang Y, Zhang Y, Wan X, Li J, Liu K, Wang F, Liu K, Liu Q, Yang C, Yu P, Huang Y, Wang S, Jiang P, Qu Z, Luan J, Duan H, Zhang L, Hou A, Jin S, Hsieh TC, Wu E. Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr Mol Med 2012; 12:163-76. [PMID: 22280355 DOI: 10.2174/156652412798889063] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to test the hypothesis that administration of epigallocatechin-3-gallate (EGCG), a polyphenol present in abundance in widely consumed tea, inhibits cell proliferation, invasion, and angiogenesis in breast cancer patients. EGCG in 400 mg capsules was orally administered three times daily to breast cancer patients undergoing treatment with radiotherapy. Parameters related to cell proliferation, invasion, and angiogenesis were analyzed while blood samples were collected at different time points to determine efficacy of the EGCG treatment. Compared to patients who received radiotherapy alone, those given radiotherapy plus EGCG for an extended time period (two to eight weeks) showed significantly lower serum levels of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and reduced activation of metalloproteinase-9 and metalloproteinase-2 (MMP9/MMP2). Addition of sera obtained from patients treated with combination of radiotherapy and EGCG feeding for 2-8 weeks to in vitro cultures of highly-metastatic human MDA-MB-231 breast cancer cells resulted in the following significant changes: (1) suppression of cell proliferation and invasion; (2) arrest of cell cycles at the G0/G1 phase; (3) reduction of activation of MMP9/MMP2, expressions of Bcl-2/Bax, c-Met receptor, NF-κB, and the phosphorylation of Akt. MDA-MB-231 cells exposed to 5-10 µM EGCG also showed significant augmentation of the apoptosis inducing effects of γ-radiation, concomitant with reduced NF-κB protein level and AKT phosphorylation. These results provide hitherto unreported evidence that EGCG potentiated efficacy of radiotherapy in breast cancer patients, and raise the possibility that this tea polyphenol has potential to be a therapeutic adjuvant against human metastatic breast cancer.
Collapse
Affiliation(s)
- G Zhang
- Laboratory of Molecular Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong Province 264005, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|