1
|
Hippert J, Talibov M, Morlais F, Brugioni M, Perrier S, Baldi I, Crépet A, Lebailly P. Identification of pesticide mixtures to which French agricultural workers and farm-owners are exposed: Results from the Agriculture and Cancer (AGRICAN) cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176607. [PMID: 39349204 DOI: 10.1016/j.scitotenv.2024.176607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Farmers, particularly in Europe, are exposed to multiple pesticides during their working life. Such exposures can cause adverse health outcomes. We aimed to identify the main pesticide mixtures to which French agricultural workers are exposed and to classify farmers into clusters based on their mixture exposure profile. The AGRICAN cohort includes farm-owners and farm workers enrolled from 2005 to 2007, with information on exact years of beginning and end of pesticide use on 11 crops and five livestock. We estimated duration of exposure to 390 pesticides identified with the PESTIMAT crop-exposure matrix for 16,905 male pesticide users from 1950 to 2009. We used a Sparse Non-negative Matrix Under-approximation to identify the main pesticide mixtures based on exposure duration, and then applied hierarchical agglomerative clustering to classify farmers sharing similar profiles of co-exposure to the mixtures. SNMU suggested 6 optimal numbers of mixtures (4, 7, 11, 15, 27, 38) explaining from 29 to 91 % of total variance. We selected 27 mixtures. Mixtures contained between four to 22 pesticides and mostly concerned the use of pesticides on wheat/barley, vineyards, corn, fruit and vegetables or on multiple crops together. We selected 11 clusters composed of 395 to 4521 farmers. Some had a higher proportion of individuals working on specific crops (as vineyard or corn), while others were characterized by the diversity of crops (cluster 8:"Permanent crops, potatoes and tobacco"). This is the first study to identify pesticide mixtures in farmers and to classify them into clusters based on their mixture exposure profiles. The next step will be to study the associations between pesticide mixtures and health outcomes such as prostate cancer in AGRICAN.
Collapse
Affiliation(s)
- Juliette Hippert
- INSERM, UMR 1086 ANTICIPE, Caen, France; Université de Caen Normandie, Caen, France.
| | - Madar Talibov
- INSERM, UMR 1086 ANTICIPE, Caen, France; Université de Caen Normandie, Caen, France; Centre de Lutte Contre le Cancer François Baclesse, avenue du Général Harris, 14076 Caen Cedex 05, France
| | | | - Maïté Brugioni
- Risk Assessment Department, Phytopharmacovigilance Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Stéphanie Perrier
- INSERM, UMR 1086 ANTICIPE, Caen, France; Université de Caen Normandie, Caen, France; Centre de Lutte Contre le Cancer François Baclesse, avenue du Général Harris, 14076 Caen Cedex 05, France
| | - Isabelle Baldi
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, team EPICENE, UMR 1219, F-33000 Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service Santé Travail Environnement, F-33000 Bordeaux, France
| | - Amélie Crépet
- Risk Assessment Department, Method and surveys Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France
| | - Pierre Lebailly
- INSERM, UMR 1086 ANTICIPE, Caen, France; Université de Caen Normandie, Caen, France; Centre de Lutte Contre le Cancer François Baclesse, avenue du Général Harris, 14076 Caen Cedex 05, France
| |
Collapse
|
2
|
Flach H, Pfeffer S, Dietmann P, Kühl M, Kühl SJ. Glyphosate formulations cause mortality and diverse sublethal defects during embryonic development of the amphibian Xenopuslaevis. CHEMOSPHERE 2024; 367:143624. [PMID: 39461437 DOI: 10.1016/j.chemosphere.2024.143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The human impact on environmental landscapes, such as land use, climate change or pollution, is threatening global biodiversity and ecosystems maintenance. Pesticides like the herbicide glyphosate have garnered considerable attention due to their well-documented harmful effects on non-target species. During application, the active ingredient glyphosate is utilized in various formulations, each containing different additive adjuvants. However, the possible effects of these formulations on amphibians - the group with the highest decline rates among vertebrates - remain largely unknown. Therefore, the present study investigated the effects of four glyphosate formulations (Glyphosat TF, Durano TF, Helosate 450 TF, Kyleo) on the embryonic development of the model organism Xenopus laevis (South African clawed frog). Embryos at the 2-cell stage were exposed to various concentrations of glyphosate formulations (glyphosate: 0.01-100 mg/L), and mortality as well as sublethal effects on different organs and tissues were analyzed. The results indicated that the formulations had different effects, particularly on the mortality of Xenopus laevis embryos. At sublethal concentrations, the formulations altered the embryos' external appearance, leading to malformations such as reduced eye and head size. In addition, exposure to formulations impaired heart morphology and function, and the expression of heart-specific genes was altered at a molecular level. Our results confirmed that glyphosate formulations had a stronger effect on Xenopus laevis embryogenesis than pure glyphosate. Therefore, it is crucial to evaluate the active ingredient and the co-formulations independently, as well as the combined, commercially available products, during pesticide risk assessments and renewal procedures of agrochemicals. The severe global decline of amphibians, partly due to herbicide use, highlights the need for strict and efficient monitoring of environmental pesticide loads and application areas.
Collapse
Affiliation(s)
- Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Dinep-Schneider O, Appiah E, Dapper A, Patterson S, Vermulst M, Gout JF. Effects of the glyphosate-based herbicide roundup on C. elegans and S. cerevisiae mortality, reproduction, and transcription fidelity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124203. [PMID: 38830529 PMCID: PMC11321929 DOI: 10.1016/j.envpol.2024.124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity. Population growth assays and motility assays were performed in order to determine the phenotypic effects of Roundup exposure. We also used Rolling-Circle Amplification RNA sequencing to quantify the impact of exposure to Roundup on transcription fidelity in these two model organisms. Our results show that exposure to the glyphosate-based herbicide Roundup increases mortality, reduces reproduction, and increases transcription error rates in C. elegans and S. cerevisiae. We suggest that these effects may be due in part to the involvement of inflammation and oxidative stress, conditions which may also contribute to increases in transcription error rates.
Collapse
Affiliation(s)
| | - Eastilan Appiah
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Amy Dapper
- Department of Biology, Mississippi State University, Starkville, MS, USA
| | - Sarah Patterson
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, 90089, USA
| | - Jean-Francois Gout
- Department of Biology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
4
|
Schluter HM, Bariami H, Park HL. Potential Role of Glyphosate, Glyphosate-Based Herbicides, and AMPA in Breast Cancer Development: A Review of Human and Human Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1087. [PMID: 39200696 PMCID: PMC11354939 DOI: 10.3390/ijerph21081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024]
Abstract
The potential connection between exposure to glyphosate and glyphosate-based herbicides (GBHs) and breast cancer risk is a topic of research that is rapidly gaining the public's attention due to the conflicting reports surrounding glyphosate's potential carcinogenicity. In this review, we synthesize the current published biomedical literature works that have explored associations of glyphosate, its metabolite, aminomethylphosphonic acid (AMPA), and GBHs with breast cancer risk in humans and human cell-based models. Using PubMed as our search engine, we identified a total of 14 articles that were included in this review. In the four human studies, urinary glyphosate and/or AMPA were associated with breast cancer risk, endocrine disruption, oxidative stress biomarkers, and changes in DNA methylation patterns. Among most of the 10 human cell-based studies, glyphosate exhibited endocrine disruption, induced altered gene expression, increased DNA damage, and altered cell viability, while GBHs were more cytotoxic than glyphosate alone. In summary, numerous studies have shown glyphosate, AMPA, and GBHs to have potential carcinogenic, cytotoxic, or endocrine-disruptive properties. However, more human studies need to be conducted in order for more definitive and supported conclusions to be made on their potential effects on breast cancer risk.
Collapse
Affiliation(s)
| | | | - Hannah Lui Park
- Department of Pathology and Laboratory Medicine, University of California, 839 Health Sciences Road, 218 Sprague Hall, Irvine, CA 92697, USA; (H.M.S.); (H.B.)
| |
Collapse
|
5
|
Oddi S, Altamirano GA, Zenclussen ML, Abud JE, Vaira S, Gomez AL, Schierano-Marotti G, Muñoz-de-Toro M, Kass L. Glyphosate modifies the gene expression and migration of trophoblastic cells without altering the process of angiogenesis or the implantation of blastocysts in vitro. Food Chem Toxicol 2024; 189:114748. [PMID: 38763501 DOI: 10.1016/j.fct.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adverse pregnancy outcomes have been associated with the presence of glyphosate (G) in umbilical cord, serum, and urine samples from pregnant women. Our aim was to study the effect of G on blastocyst implantation using an in vitro mouse model, and the migration and acquisition of endothelial phenotype of the human trophoblastic HTR8/SVneo (H8) cells. In mouse blastocysts, no differences in attachment time and implantation outgrowth area were observed after G exposure. H8 cell migration was stimulated by 0.625 μM G without cytotoxicity. After 6 h, the mRNA expression of vascular endothelial growth factor (VEGF) and C-C motif chemokine ligand 2 (CCL2) was upregulated in H8 cells exposed to 1.25 μM G when compared vehicle-treated cells (p ≤ 0.05). No differences were observed in interleukin 11, VEGF receptor 1, and coagulation factor II thrombin receptor in H8 cells exposed to different concentrations of G for 6 h compared to the vehicle. Interestingly, exposure to G did not alter angiogenesis as measured by a tube formation assay. Taken all together, these results suggest that G exposure may contribute as a risk factor during pregnancy, due to its ability to alter trophoblast migration and gene expression.
Collapse
Affiliation(s)
- Sofía Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Julián E Abud
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Stella Vaira
- Departamento de Matemática, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL. UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
6
|
Haydar H, Sleiay M, Alabdullah H, Al‐alloush R, Al_alloush N, Lutfi MY, Youssef S, Hamsho S. A 64-year-old male with primary diffuse renal large B-cell non-Hodgkin lymphoma: A rare case report. Clin Case Rep 2024; 12:e9194. [PMID: 39035122 PMCID: PMC11259510 DOI: 10.1002/ccr3.9194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Key Clinical Message In the context of lymphoma, it is of paramount importance to perform subsequent Positron Emission Tomography-Computed Tomography (PET-CT) scans to ensure the comprehensive eradication of neoplasms. Abstract Primary renal diffuse tumors constitute less than 1% of all renal neoplasms. Among these, diffuse renal large B-cell lymphoma is an exceedingly rare extranodal lymphoma. A 64-year-old male presented to the Department of Urology with complaints of persistent left flank discomfort for a duration of 2 weeks. Additionally, he reported generalized weakness, fatigue, and symptoms indicative of lower urinary tract obstruction, such as discomfort in the left testicle and dysuria. Ultrasound imaging revealed an echogenic structure with thickened, reactive walls and a turbid fluid core, located in the left flank, proximal to the lower pole of the kidney. This structure was subsequently identified as diffuse renal large B-cell lymphoma. For the diagnosis of large B-cell lymphomas, it is imperative that a proficient hematopathologist performs a comprehensive examination of the tumor tissue, preferably utilizing an excisional biopsy. The categorization of lymphoma requires specialized tests such as immunohistochemistry, flow cytometry, fluorescence in situ hybridization (FISH), and molecular testing. In instances where a renal mass is detected, healthcare professionals should consider performing a biopsy. In lymphoma cases, follow-up Positron Emission Tomography-Computed Tomography (PET-CT) scans are crucial to confirm the complete eradication of the tumor.
Collapse
Affiliation(s)
- Hasan Haydar
- Faculty of MedicineHama UniversityHamaSyrian Arab Republic
| | | | | | | | | | | | - Simon Youssef
- Pathology DepartmentHama National HospitalHamaSyrian Arab Republic
| | - Suaad Hamsho
- Rheumatology Department, Faculty of MedicineDamascus UniversityDamascusSyrian Arab Republic
| |
Collapse
|
7
|
Mohite SV, Sharma KK. Gut microbial metalloproteins and its role in xenobiotics degradation and ROS scavenging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:495-538. [PMID: 38960484 DOI: 10.1016/bs.apcsb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-β-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.
Collapse
Affiliation(s)
- Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
8
|
Patra A, Das S, Das S, Mandal A, Sekhar Mondal N, Ratan Ghosh A. Assessing haematological parameters and probable toxicity analysis in two coastal fish species at harbouring areas of Digha coastal belt, West Bengal, India. ENVIRONMENTAL RESEARCH 2024; 249:118318. [PMID: 38307179 DOI: 10.1016/j.envres.2024.118318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Coastal ecosystems are vital for maintaining the biodiversity and human livelihoods, but they are increasingly subjected to anthropogenic pressures, including pollution from various sources. Present work intends to assess the possible threats in coastal ecosystem as well as coastal fish species, in particular, through haematological parameters caused due to exposure of environmental contaminants like polycyclic aromatic hydrocarbons (PAHs), potentially toxic metals (PTMs), etc. This study analysed the haematological parameters and probable toxicity levels in two important coastal fish species, viz., Mystus sp. and Mugil sp. widely available in Digha coastal belt. Different haematological parameters, such as WBCs (White Blood Cells), Lym (Lymphocytes), Gran (Granulocytes), Mid (Monocytes), RBCs (Red Blood Cells), HCT (Haematocrit) value, MCV (Mean Corpuscular Volume), MCH (Mean Corpuscular Haemoglobin), MCHC (Mean Corpuscular Haemoglobin Concentration), RDW- CV (Red Cells Distribution Width-Co-efficient of Variation), RDW- SD (Red Cells Distribution Width-Standard Deviation), PLT (Total Platelet Count), MPV (Mean Platelet Volume), PDW- SD (Platelet Distribution Width-Standard Deviation), PDW- CV (Platelet Distribution Width-Co-efficient of Variation), PCT (Plateletcrit), PLCR (Platelet Large Cell Ratio), PLCC (Platelet Large Cell Count) and many others were measured directly through Erba H360 Haematology Analyser, simultaneously air dried blood smear was stained by Haematoxylin-Eosin(H-E) and Giemsa stain for assessing morphometric alterations of RBCs, WBCs, platelets as well as to determine the differential counts of WBCs by observing through Leica DM2000 microscope. Evidence of several abnormalities in the erythrocyte's nucleus (ENAs) and the abundance of abnormal celled erythrocytes (ECAs), carcinoma (lymphoproliferative disorder, polycythaemia vera, Hodgkin lymphoma and non-Hodgkin lymphoma), elevation of WBCs content, Lym %(Lymphocyte percentage), Eo(Eosinophils), monocytes, HCT and gross depletion of Ne(Neutrophils), basophils, and PLCR levels indicated a sign of major impact of contamination to two intoxicated fishes which may also affect the human being through food chain and may result into leukaemia in mammalian species, finally. However, comprehensive evaluation of the long-term impacts of the contaminants like PAHs and/or PTMs, etc., on fish populations, human health risk and coastal ecosystem is required to be addressed.
Collapse
Affiliation(s)
- Atanu Patra
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Mankar College, Mankar, West Bengal, 713144, India
| | - Subhas Das
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India
| | - Sugata Das
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India
| | - Arghya Mandal
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Mankar College, Mankar, West Bengal, 713144, India
| | - Niladri Sekhar Mondal
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India; Netaji Subhas Open University, DD-26, Sector-I, Salt Lake City, Kolkata - 700 064, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, Purba Bardhaman, West Bengal, PIN: 713104, India.
| |
Collapse
|
9
|
de Graaf L, Bresson M, Boulanger M, Bureau M, Lecluse Y, Lebailly P, Baldi I. Pesticide exposure in greenspaces: Comparing field measurement of dermal contamination with values predicted by registration models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170816. [PMID: 38346656 DOI: 10.1016/j.scitotenv.2024.170816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Since 2014, the Agricultural Operator Exposure Model (AOEM) has been the harmonised European model used for estimating non-dietary operator exposure to pesticide. It is based on studies conducted by the pesticide companies and it features 13 different crops including non-agricultural areas such as amenity grasslands. The objective of this study was to compare the dermal exposure measured during a field study conducted in a non-agricultural area with the corresponding values estimated by the model AOEM. The non-controlled field study was conducted in France in 2011 and included 24 private and public gardeners who apply glyphosate with knapsack sprayers. Dermal exposure was measured using the whole-body method and cotton gloves. Each measured value had an estimated value given by AOEM and we tested their correlation using linear regression. The model overestimated body exposure for all observations and there was no correlation between values. However, it underestimated hand exposure by 42 times and it systematically underestimated the exposure when the operators were wearing gloves, especially during the application. The model failed at being conservative regarding hand exposure and highly overestimated the protection afforded by the gloves. At a time of glyphosate renewed approval in Europe, non-controlled field studies conducted by academics are needed to improve AOEM model, especially in the non-agricultural sector. Indeed, among the 34 studies included in the model, none were conducted on a non-agricultural area and only four assessed the exposure when using a knapsack sprayer. Moreover, knapsack sprayers being the main equipment used worldwide in both agricultural and non-agricultural settings, it is also crucial to integrate new data specific to this equipment in the model. Operator exposure should be estimated with accuracy in the registration process of pesticides to ensure proper safety as well as in epidemiological studies to improve exposure assessment.
Collapse
Affiliation(s)
- L de Graaf
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France.
| | - M Bresson
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - M Boulanger
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - M Bureau
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France
| | - Y Lecluse
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France
| | - P Lebailly
- INSERM, UMR1086-Cancers et Préventions, Centre François Baclesse, Caen, France; University Caen Normandie, Caen, France
| | - I Baldi
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000 Bordeaux, France; Service Santé Travail Environnement, CHU de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
10
|
Sarpa M, da Costa VÍDB, Ferreira SN, de Almeida CÁ, de Oliveira PGS, de Mesquita LV, Schilithz AOC, Stefanoff CG, Hassan R, Otero UB. Investigation of occupational risk factors for the development of non-Hodgkin's lymphoma in adults: A hospital-based case-control study. PLoS One 2024; 19:e0297140. [PMID: 38408076 PMCID: PMC10896545 DOI: 10.1371/journal.pone.0297140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2023] [Indexed: 02/28/2024] Open
Abstract
Non-Hodgkin's Lymphoma (NHL) is a malignancy of the lymphoid lineage of the hematopoietic system has worldwide, especially in developed countries. Better diagnostic and recording techniques, longer life expectancy, and greater exposure to risk factors are hypotheses for this growing incidence curve. Occupational exposures to chemical, biological, and physical agents have also been associated with NHL development, but the results are still controversial. We have investigated the occupational and lifestyle case-control study design with 214 adult patients and 452 population controls. Socio-demographic, clinical, and occupational exposure data were obtained through individual interviews with a standardized questionnaire. Clinical, laboratory, and histopathological data were obtained through medical records. Risk of NHL (any subtype), B-cell lymphoma, DLBCL, Follicular lymphoma and T-cell lymphoma was elevated among the those who had ever been exposed to any solvents, hydrocarbon solvents, pesticides, meat and meat products, and sunlight and tended to increase by years of exposure. A significant upward trend with years of exposure was detected for any solvents and hydrocarbon solvents (NHL (any subtype) p-value for trend<0.001), B-cell lymphoma (p-value for trend<0.001), and T-cell lymphoma (p-value for trend<0.023), pesticides (NHL (any subtype), p for trend<0.001) and T-cell lymphoma (p for trend<0.002), meat and meat products (NHL (any subtype) (p for trend<0.001) and DLBCL (p for trend<0.001), and sunlight (B-cell lymphoma (p for trend<0.001). The results of this study agree line with other international studies, can be extrapolated to other countries that have the same socio-demographic and occupational characteristics as Brazil and support strategies for surveillance and control of work-related cancer.
Collapse
Affiliation(s)
- Marcia Sarpa
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | | | - Sâmila Natiane Ferreira
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Carolina Ávila de Almeida
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Paula Gabriela Sousa de Oliveira
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Letícia Vargas de Mesquita
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
- Environmental Mutagenesis Laboratory, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Arthur O C Schilithz
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Claudio Gustavo Stefanoff
- Coordination of Clinical Research and Technological Incorporation, Brazilian National Cancer Institute, Rio de Janeiro, RJ, Brazil
| | - Rocio Hassan
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Ubirani Barros Otero
- Coordination of Prevention and Surveillance, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Villeneuve PJ, Harris SA. Re: exposure to phenoxyacetic acids and glyphosate as risk factors for non-Hodgkin lymphoma. Leuk Lymphoma 2024; 65:138-140. [PMID: 37904527 DOI: 10.1080/10428194.2023.2275529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023]
Affiliation(s)
- Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shelley A Harris
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Walsh L, Hill C, Ross RP. Impact of glyphosate (Roundup TM) on the composition and functionality of the gut microbiome. Gut Microbes 2023; 15:2263935. [PMID: 38099711 PMCID: PMC10561581 DOI: 10.1080/19490976.2023.2263935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Glyphosate, the active ingredient in the broad-spectrum herbicide RoundupTM, has been a topic of discussion for decades due to contradictory reports of the effect of glyphosate on human health. Glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic pathway producing aromatic amino acids in plants, a mechanism that suggests that the herbicide would not affect humans as this pathway is not found in mammals. However, numerous studies have implicated glyphosate exposure in the manifestation of a variety of disorders in the human body. This review specifically outlines the potential effect of glyphosate exposure on the composition and functionality of the gut microbiome. Evidence has been building behind the hypothesis that the composition of each individual gut microbiota significantly impacts health. For this reason, the potential of glyphosate to inhibit the growth of beneficial microbes in the gut or alter their functionality is an important topic that warrants further consideration.
Collapse
Affiliation(s)
- Lauren Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Chang VC, Zhou W, Berndt SI, Andreotti G, Yeager M, Parks CG, Sandler DP, Rothman N, Beane Freeman LE, Machiela MJ, Hofmann JN. Glyphosate Use and Mosaic Loss of Chromosome Y among Male Farmers in the Agricultural Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127006. [PMID: 38055050 PMCID: PMC10699410 DOI: 10.1289/ehp12834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide worldwide and has been implicated in the development of certain hematologic cancers. Although mechanistic studies in human cells and animals support the genotoxic effects of glyphosate, evidence in human populations is scarce. OBJECTIVES We evaluated the association between lifetime occupational glyphosate use and mosaic loss of chromosome Y (mLOY) as a marker of genotoxicity among male farmers. METHODS We analyzed blood-derived DNA from 1,606 farmers ≥ 50 years of age in the Biomarkers of Exposure and Effect in Agriculture study, a subcohort of the Agricultural Health Study. mLOY was detected using genotyping array intensity data in the pseudoautosomal region of the sex chromosomes. Cumulative lifetime glyphosate use was assessed using self-reported pesticide exposure histories. Using multivariable logistic regression, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between glyphosate use and any detectable mLOY (overall mLOY) or mLOY affecting ≥ 10 % of cells (expanded mLOY). RESULTS Overall, mLOY was detected in 21.4% of farmers, and 9.8% of all farmers had expanded mLOY. Increasing total lifetime days of glyphosate use was associated with expanded mLOY [highest vs. lowest quartile; OR = 1.75 (95% CI: 1.00, 3.07), p trend = 0.03 ] but not with overall mLOY; the associations with expanded mLOY were most apparent among older (≥ 70 years of age) men [OR = 2.30 (95% CI: 1.13, 4.67), p trend = 0.01 ], never smokers [OR = 2.32 (95% CI: 1.04, 5.21), p trend = 0.04 ], and nonobese men [OR = 2.04 (95% CI: 0.99, 4.19), p trend = 0.03 ]. Similar patterns of associations were observed for intensity-weighted lifetime days of glyphosate use. DISCUSSION High lifetime glyphosate use could be associated with mLOY affecting a larger fraction of cells, suggesting glyphosate could confer genotoxic or selective effects relevant for clonal expansion. As the first study to investigate this association, our findings contribute novel evidence regarding the carcinogenic potential of glyphosate and require replication in future studies. https://doi.org/10.1289/EHP12834.
Collapse
Affiliation(s)
- Vicky C. Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Sonja I. Berndt
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Christine G. Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Durham, North Carolina, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Laura E. Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Mitchell J. Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Jonathan N. Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| |
Collapse
|
15
|
Li W, Lei D, Huang G, Tang N, Lu P, Jiang L, Lv J, Lin Y, Xu F, Qin YJ. Association of glyphosate exposure with multiple adverse outcomes and potential mediators. CHEMOSPHERE 2023; 345:140477. [PMID: 37858770 DOI: 10.1016/j.chemosphere.2023.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Glyphosate (GLY) is a widely used herbicide with potential adverse effects on public health. However, the current epidemiological evidence is limited. This study aimed to investigate the potential associations between exposure to GLY and multiple health outcomes. The data on urine GLY concentration and nine health outcomes, including type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), obesity, chronic kidney disease (CKD), hepatic steatosis, cancers, chronic obstructive pulmonary disease (COPD), and neurodegenerative diseases (NGDs), were extracted from NHANES (2013-2016). The associations between GLY exposure and each health outcome were estimated using reverse-scale Cox regression and logistic regression. Furthermore, mediation analysis was conducted to identify potential mediators in the significant associations. The dose-response relationships between GLY exposure with health outcomes and potential mediators were analyzed using restricted cubic spline (RCS) regression. The findings of the study revealed that individuals with higher urinary concentrations of GLY had a higher likelihood of having T2DM, hypertension, CVD and obesity (p < 0.001, p = 0.005, p < 0.001 and p = 0.005, respectively). In the reverse-scale Cox regression, a notable association was solely discerned between exposure to GLY and the risk of T2DM (adjusted HR = 1.22, 95% CI: 1.10, 1.36). Consistent outcomes were also obtained via logistic regression analysis, wherein the adjusted OR and 95% CI for T2DM were determined to be 1.30 (1.12, 1.52). Moreover, the present investigation identified serum high-density lipoprotein cholesterol (HDL) as a mediator in this association, with a mediating effect of 7.14% (p = 0.040). This mediating effect was further substantiated by RCS regression, wherein significant dose-response associations were observed between GLY exposure and an increased risk of T2DM (p = 0.002) and reduced levels of HDL (p = 0.001). Collectively, these findings imply an association between GLY exposure and an increased risk of T2DM in the general adult population.
Collapse
Affiliation(s)
| | - Daizai Lei
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Guangyi Huang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Ningning Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Peng Lu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Li Jiang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Jian Lv
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yunru Lin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Yuan-Jun Qin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China; Department of Ophthalmology, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
16
|
Acquavella J. Epidemiologic studies of glyphosate and non-Hodgkin's lymphoma: A review with consideration of exposure frequency, systemic dose, and study quality. GLOBAL EPIDEMIOLOGY 2023; 5:100101. [PMID: 37638378 PMCID: PMC10445963 DOI: 10.1016/j.gloepi.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
I reviewed the epidemiologic literature for glyphosate and non-Hodgkin's lymphoma (NHL) in the context of the frequency of exposure in each epidemiologic study, systemic dose from biomonitoring studies of applicators, and aspects of study quality. Nine studies were identified, 7 case control and 2 cohort, by a literature search and a review of reference lists from published studies and recent regulatory evaluations. All but one study involved exposure scenarios that were so infrequent that they are not credible for cancer causation. Most studies failed to address potential confounding from other pesticides. Only one study - the US Agricultural Health Study (AHS) - included individuals with relatively frequent exposure to glyphosate and involved comprehensive statistical analyses to address potential confounding by personal factors and other pesticide exposures. The AHS did not find an association between glyphosate and NHL, even among the most frequently exposed participants (≥ 109 days of use) (RR = 0.80, 95% CI 0.60, 1.06). These findings are consistent with observations that glyphosate systemic doses from agricultural applications are many orders of magnitude less than daily lifetime doses considered by regulatory agencies to impart no excess risk of deleterious health effects, even for sensitive subpopulations.
Collapse
|
17
|
Gárgano C. Agroextractivism in Argentina environmental health, scientific agendas, and socioecological crisis. Front Public Health 2023; 11:1304514. [PMID: 38106903 PMCID: PMC10722400 DOI: 10.3389/fpubh.2023.1304514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Cecilia Gárgano
- Laboratorio de Investigación en Ciencias Humanas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
18
|
Lahimer M, Abou Diwan M, Montjean D, Cabry R, Bach V, Ajina M, Ben Ali H, Benkhalifa M, Khorsi-Cauet H. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front Public Health 2023; 11:1232646. [PMID: 37886048 PMCID: PMC10598475 DOI: 10.3389/fpubh.2023.1232646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The deleterious effects of chemical or non-chemical endocrine disruptors (EDs) on male fertility potential is well documented but still not fully elucidated. For example, the detection of industrial chemicals' metabolites in seminal plasma and follicular fluid can affect efficiency of the gametogenesis, the maturation and competency of gametes and has guided scientists to hypothesize that endocrine disrupting chemicals (EDCs) may disrupt hormonal homoeostasis by leading to a wide range of hormonal control impairments. The effects of EDCs exposure on reproductive health are highly dependent on factors including the type of EDCs, the duration of exposure, individual susceptibility, and the presence of other co-factors. Research and scientists continue to study these complex interactions. The aim of this review is to summarize the literature to better understand the potential reproductive health risks of EDCs in France.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
- Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse, Tunisia
| | - Maria Abou Diwan
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Debbie Montjean
- Fertilys, Centres de Fertilité, Laval and Brossard, QC, Canada
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Mounir Ajina
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Moncef Benkhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Hafida Khorsi-Cauet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| |
Collapse
|
19
|
Msibi SS, Su LJ, Chen CY, Chang CP, Chen CJ, Wu KY, Chiang SY. Impacts of Agricultural Pesticide Contamination: An Integrated Risk Assessment of Rural Communities of Eswatini. TOXICS 2023; 11:770. [PMID: 37755780 PMCID: PMC10534646 DOI: 10.3390/toxics11090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Marked reductions in mean annual rainfall associated with climate change in Eswatini in Southern Africa have encouraged the recycling of irrigation water and the increased use of pesticides in agricultural production, raising concerns about potential ecological and health risks due to long-term exposure to pesticide residues in soil and irrigation water. This probabilistic integrated risk assessment used liquid chromatography with tandem mass spectrometry to analyze the concentrations of four commonly used agricultural pesticides (ametryn, atrazine, pendimethalin, and 2,4-dichlorophenoxyacetic acid (2,4-D)) in irrigation water and topsoil samples from farmlands in Eswatini to assess potential ecological and health risks due to exposure. The concentrations of these pesticides ranged from undetectable to 0.104 µg/L in irrigation water and from undetectable to 2.70 µg/g in soil. The probabilistic multi-pathway and multi-route risk assessments conducted revealed hazard indices exceeding 1.0 for all age groups for ametryn and atrazine, suggesting that the daily consumption of recycled irrigation water and produce from the fields in this area may pose considerable health risks. The indices pertaining to ecological risks had values less than 0.1. Adaptation measures are recommended to efficiently manage pesticide use in agriculture, and further research will ensure that agriculture can adapt to climate change and that the general public and ecosystem are protected.
Collapse
Affiliation(s)
- Sithembiso Sifiso Msibi
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (S.S.M.); (L.J.S.)
| | - Lihchyun Joseph Su
- O’Donnell School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (S.S.M.); (L.J.S.)
| | - Chung-Yu Chen
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Cheng-Ping Chang
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Chiou-Jong Chen
- Department of Occupational Safety and Health, College of Health Sciences, Chang Jung Christian University, No. 1, Changda Rd., Guiren District, Tainan 71101, Taiwan; (C.-Y.C.); (C.-P.C.); (C.-J.C.)
| | - Kuen-Yuh Wu
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 10055, Taiwan
| | - Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
| |
Collapse
|
20
|
Britto TI, Fattah SA, Rahman MAU, Chowdhury MAU. A Systematic Review on Childhood Non-Hodgkin Lymphoma: An Overlooked Phenomenon in the Health and Research Sector of Bangladesh. Cureus 2023; 15:e45937. [PMID: 37900448 PMCID: PMC10601349 DOI: 10.7759/cureus.45937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Globally, childhood cancer, particularly non-Hodgkin lymphomas (NHLs), is a prevalent concern. However, the difficulty becomes even more distressing in lower-middle-income nations such as Bangladesh. The insufficiency of research, resources, inadequate guidelines, expensive treatment costs, and specialized knowledge exacerbate the challenges associated with the treatment of certain types of cancers. Our investigation looked extensively into the circumstances prevailing in Bangladesh, with the objective of providing a comprehensive overview of the current status and approaches to managing NHL in the country. Through this work, our intention was to illuminate the domains that require immediate focus and assistance. To get insight into the present state of NHL in Bangladesh, our analysis focused on a selection of seven research articles and two case reports published between 2018 and 2023. In order to ensure the integrity and consistency of our review, we conducted a detailed selection procedure, employing the systematic PRISMA review methodology. From a pool of 294 papers, we selected the ones that met our predetermined criteria. These papers were sourced from reputable academic databases, such as Google Scholar and PubMed. The findings of our study indicate a higher prevalence of NHL among children in Bangladesh compared to Hodgkin lymphoma (HL). Additionally, this phenomenon exhibits a higher prevalence among male individuals. Our study revealed that in Bangladesh, there is a lack of a dedicated guideline or research center specifically focused on NHL. Additionally, the number of research centers and research dedicated to cancer treatment as a whole is limited. Our research aims to offer a complete analysis of NHL in the context of Bangladesh, with the intention of offering valuable guidance to healthcare professionals and policymakers. The utilization of our research outcomes has the potential to enhance patient care, facilitate the development of more effective clinical protocols, and promote greater accessibility and affordability of therapies. This has the potential to provide improved cancer care not only in Bangladesh but also in other comparable contexts worldwide.
Collapse
Affiliation(s)
- Tanzir Islam Britto
- Nephrology, Chittagong Medical College Hospital, Chittagong, BGD
- Nephrology, National Institute of Kidney Diseases and Urology, Dhaka, BGD
| | | | | | | |
Collapse
|
21
|
Zhang W, Chen WJ, Chen SF, Lei Q, Li J, Bhatt P, Mishra S, Chen S. Cellular Response and Molecular Mechanism of Glyphosate Degradation by Chryseobacterium sp. Y16C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6650-6661. [PMID: 37084257 DOI: 10.1021/acs.jafc.2c07301] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glyphosate is one of the most widely used herbicides worldwide. Unfortunately, the continuous use of glyphosate has resulted in serious environmental contamination and raised public concern about its impact on human health. In our previous study, Chryseobacterium sp. Y16C was isolated and characterized as an efficient degrader that can completely degrade glyphosate. However, the biochemical and molecular mechanisms underlying its glyphosate biodegradation ability remain unclear. In this study, the physiological response of Y16C to glyphosate stimulation was characterized at the cellular level. The results indicated that, in the process of glyphosate degradation, Y16C induced a series of physiological responses in the membrane potential, reactive oxygen species levels, and apoptosis. The antioxidant system of Y16C was activated to alleviate the oxidative damage caused by glyphosate. Furthermore, a novel gene, goW, was expressed in response to glyphosate. The gene product, GOW, is an enzyme that catalyzes glyphosate degradation, with putative structural similarities to glycine oxidase. GOW encodes 508 amino acids, with an isoelectric point of 5.33 and a molecular weight of 57.2 kDa, which indicates that it is a glycine oxidase. GOW displays maximum enzyme activity at 30 °C and pH 7.0. Additionally, most of the metal ions exhibited little influence on the enzyme activity except for Cu2+. Finally, with glyphosate as the substrate, the catalytic efficiency of GOW was higher than that of glycine, although opposite results were observed for the affinity. Taken together, the current study provides new insights to deeply understand and reveal the mechanisms of glyphosate degradation in bacteria.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette 47906, United States
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
23
|
Hardell L, Carlberg M, Nordström M, Eriksson M. Exposure to phenoxyacetic acids and glyphosate as risk factors for non-Hodgkin lymphoma- pooled analysis of three Swedish case-control studies including the sub-type hairy cell leukemia. Leuk Lymphoma 2023:1-8. [PMID: 36938909 DOI: 10.1080/10428194.2023.2190434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The association between pesticide exposure and non-Hodgkin lymphoma (NHL) including hairy cell leukemia (HCL) was analyzed in a pooled study of three case-control studies. Results on exposure to pesticides were based on 1,425 cases and 2,157 controls participating in the studies. Exposures were assessed by self-administered questionnaires completed as needed by phone. In the pooled univariate analyses adjusted by age, gender and year of diagnosis, exposure to herbicides of the phenoxyacetic acid type yielded statistically significant increased risk with odds ratio (OR) = 1.9, 95% confidence interval CI) = 1.4-2.5. The herbicide glyphosate gave OR = 2.2, 95% CI = 1.3-3.8. Impregnating agents increased the risk. No clear dose-response effect was seen. OR was highest in the >10-20 years latency group for herbicides and impregnating agents. In the multivariate analysis including main pesticide groups, statistically significant increased risk was found for herbicides, OR = 1.6, 95% CI = 1.2-2.1 and impregnating agents with OR = 1.4, 95% CI = 1.1-1.8. This analysis confirmed an association between NHL including HCL and exposure to certain herbicides.
Collapse
Affiliation(s)
- Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden.,Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden (retired)
| | | | | | | |
Collapse
|
24
|
Liu M, Lu S, Yang C, Zhang D, Zhu J, Yin J, Zhao H, Yang B, Kuang H. Maternal exposure to a glyphosate-based herbicide impairs placental development through endoplasmic reticulum stress in mice. Food Chem Toxicol 2023; 173:113640. [PMID: 36724846 DOI: 10.1016/j.fct.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used agrochemicals worldwide, increasing the risk of their occurrence in the environment. This study aimed to explore effects and mechanisms of GBH exposure on placental development in vivo during pregnancy in mice. Pregnant mice received GBH by gavage at 0, 5, and 50 mg⋅kg-1⋅day-1 doses from gestational day (GD) 1 to GD 13 and were sacrificed on GD 13 or GD19. Our data indicated that GBH administration significantly increased the number of resorbed fetuses, reduced the weight of fetuses and placentas, and inhibited placental growth, as evident from decreased placental total area and spongiotrophoblast area on GD 19. GBH treatment also inhibited proliferation and induced apoptosis of placenta via upregulation of Bax, cleaved caspase-3 and -12 expression, and downregulation of B cell lymphoma (Bcl)-2 expression. Further study showed that GBH exposure significantly increased expression levels of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and C/EBP homologous protein (CHOP) mRNAs and proteins and triggered oxidative stress in placenta on GD 13 and GD 19. In conclusion, our findings suggest that maternal exposure to GBH can impair placental development through the endoplasmic reticulum stress-mediated activation of GRP78/PERK/CHOP signaling pathway in mice.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Nursing School of Jiujiang University, Jiujiang, Jiangxi, 332000, PR China.
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Jiting Yin
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hongru Zhao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
25
|
Odutola MK, van Leeuwen MT, Bassett JK, Bruinsma F, Turner J, Seymour JF, Prince HM, Milliken ST, Hertzberg M, Roncolato F, Opat SS, Lindeman R, Tiley C, Trotman J, Verner E, Harvey M, Underhill CR, Benke G, Giles GG, Vajdic CM. Dietary intake of animal-based products and likelihood of follicular lymphoma and survival: A population-based family case-control study. Front Nutr 2023; 9:1048301. [PMID: 36687712 PMCID: PMC9846614 DOI: 10.3389/fnut.2022.1048301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background The association between dietary intake of foods of animal origin and follicular lymphoma (FL) risk and survival is uncertain. In this study, we examined the relationship between dietary intake of dairy foods and fats, meat, fish and seafoods, and the likelihood of FL and survival. Methods We conducted a population-based family case-control study in Australia between 2011 and 2016 and included 710 cases, 303 siblings and 186 spouse/partner controls. We assessed dietary intake of animal products prior to diagnosis (the year before last) using a structured food frequency questionnaire and followed-up cases over a median of 6.9 years using record linkage to national death data. We examined associations with the likelihood of FL using logistic regression and used Cox regression to assess association with all-cause and FL-specific mortality among cases. Results We observed an increased likelihood of FL with increasing daily quantity of oily fish consumption in the year before last (highest category OR = 1.96, CI = 1.02-3.77; p-trend 0.06) among cases and sibling controls, but no associations with spouse/partner controls. We found no association between the likelihood of FL and the consumption of other types of fish or seafood, meats or dairy foods and fats. In FL cases, we found no association between meat or oily fish intake and all-cause or FL-specific mortality. Conclusion Our study showed suggestive evidence of a positive association between oily fish intake and the likelihood of FL, but findings varied by control type. Further investigation of the potential role of environmental contaminants in oily fish on FL etiology is warranted.
Collapse
Affiliation(s)
- Michael K. Odutola
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Marina T. van Leeuwen
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia
| | - Julie K. Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Fiona Bruinsma
- Cancer Epidemiology Division, Cancer Council Victoria, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Jennifer Turner
- Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia,Department of Clinical Medicine, Faculty of Medicine, Health and Human Science, Macquarie University, Sydney, NSW, Australia
| | - John F. Seymour
- Royal Melbourne Hospital, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Henry Miles Prince
- Epworth Healthcare and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel T. Milliken
- St. Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Mark Hertzberg
- Department of Haematology, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Fernando Roncolato
- St. George Hospital, Kogarah, NSW, Australia,St. George Clinical School, University of New South Wales, Kogarah, NSW, Australia
| | - Stephen S. Opat
- Clinical Haematology, Monash Health and Monash University, Clayton, VIC, Australia
| | - Robert Lindeman
- New South Wales Health Pathology, University of New South Wales, Sydney, NSW, Australia
| | - Campbell Tiley
- Gosford Hospital, The University of Newcastle, Callaghan, NSW, Australia
| | - Judith Trotman
- Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Emma Verner
- Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Michael Harvey
- Liverpool Hospital, Western Sydney University, Liverpool, NSW, Australia
| | - Craig R. Underhill
- Border Medical Oncology Research Unit, Rural Medical School, Albury, NSW, Australia
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, NSW, Australia,The Kirby Institute, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Claire M. Vajdic ✉
| |
Collapse
|
26
|
Vráblová M, Smutná K, Koutník I, Prostějovský T, Žebrák R. Surface Plasmon Resonance Imaging Sensor for Detection of Photolytically and Photocatalytically Degraded Glyphosate. SENSORS (BASEL, SWITZERLAND) 2022; 22:9217. [PMID: 36501920 PMCID: PMC9738441 DOI: 10.3390/s22239217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.
Collapse
Affiliation(s)
- Martina Vráblová
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Smutná
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Ivan Koutník
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
- Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Tomáš Prostějovský
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Radim Žebrák
- Dekonta Inc., Dřetovice 109, 273 42 Stehelčeves, Czech Republic
| |
Collapse
|
27
|
Zhang W, Li J, Zhang Y, Wu X, Zhou Z, Huang Y, Zhao Y, Mishra S, Bhatt P, Chen S. Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128689. [PMID: 35325860 DOI: 10.1016/j.jhazmat.2022.128689] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Widespread use of the herbicide glyphosate in agriculture has resulted in serious environmental problems. Thus, environment-friendly technological solutions are urgently needed for the removal of residual glyphosate from soil. Here, we successfully isolated a novel bacterial strain, Chryseobacterium sp. Y16C, which efficiently degrades glyphosate and its main metabolite aminomethylphosphonic acid (AMPA). Strain Y16C was found to completely degrade glyphosate at 400 mg·L-1 concentration within four days. Kinetics analysis indicated that glyphosate biodegradation was concentration-dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.91459 d-1, 15.79796 mg·L-1, and 290.28133 mg·L-1, respectively. AMPA was identified as the major degradation product of glyphosate degradation, suggesting that glyphosate was first degraded via cleavage of its C-N bond prior to subsequent metabolic degradation. Strain Y16C was also found to tolerate and degrade AMPA at concentrations up to 800 mg·L-1. Moreover, strain Y16C accelerated glyphosate degradation in soil indirectly by inducing a slight alteration in the diversity and composition of soil microbial community. Taken together, our results suggest that strain Y16C may be a potential microbial agent for bioremediation of glyphosate-contaminated soil.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yingjie Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
28
|
He J, Mu Y, Che BW, Liu M, Zhang WJ, Xu SH, Tang KF. Comprehensive treatment for primary right renal diffuse large B-cell lymphoma with a renal vein tumor thrombus: A case report. World J Clin Cases 2022; 10:5352-5358. [PMID: 35812668 PMCID: PMC9210905 DOI: 10.12998/wjcc.v10.i16.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/21/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Renal involvement in lymphoma is commonly associated with widespread nodal or extranodal lymphoma. Primary renal diffuse large B-cell lymphoma is an extremely rare extranodal lymphoma, accounting for fewer than 1% of all renal masses. Interestingly, the patient in this study had a renal vein tumor thrombus that was observed after laparoscopic radical nephrectomy.
CASE SUMMARY We report the case of a 56-year-old female patient with primary renal lymphoma and a renal vein tumor thrombus whose first symptom was right pain in the back and gross hematuria. Histopathology revealed primary renal diffuse large B-cell lymphoma. The patient received 8 standard cycles of rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy after surgery, and no obvious signs of recurrence were observed during the one-year follow-up.
CONCLUSION We evaluated comprehensive treatment of primary renal diffuse large B-cell lymphoma and multidisciplinary management of this malignancy.
Collapse
Affiliation(s)
- Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Yi Mu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Bang-Wei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Miao Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Wen-Jun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Sheng-Han Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Kai-Fa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
- Institute of Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
29
|
Poh C, McPherson JD, Tuscano J, Li Q, Parikh-Patel A, Vogel CFA, Cockburn M, Keegan T. Environmental pesticide exposure and non-Hodgkin lymphoma survival: a population-based study. BMC Med 2022; 20:165. [PMID: 35468782 PMCID: PMC9040269 DOI: 10.1186/s12916-022-02348-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/21/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND There is evidence indicating that pesticide exposure is a risk factor for non-Hodgkin lymphoma (NHL) development. However, the association between pesticide exposure and NHL survival is not well-established. METHODS Using the California Cancer Registry, we identified patients with a first primary diagnosis of NHL from 2010 to 2016 and linked these patients with CalEnviroScreen 3.0 to obtain production agriculture pesticide exposure to 70 chemicals from the state-mandated Pesticide Use Reporting (PUR) by census tract from 2012 to 2014. In addition, data from PUR was integrated into a geographic information system that employs land-use data to estimate cumulative exposure to specific pesticides previously associated with NHL (glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4-dimethylamine salt) between 10 years prior up to 1 year after NHL diagnosis. Multivariable Cox proportional hazards regression models were used to evaluate the association between total pesticide exposure from CalEnviroScreen 3.0 and individual pesticide exposure from geographic land use data and lymphoma-specific and overall survival. RESULTS Among 35,808 NHL patients identified, 44.2% were exposed to pesticide in their census tract of residence. Glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4-dimethylamine salt exposure was observed in 34.1%, 26.0%, 10.6%, 14.0%, and 12.8% of NHL patients, respectively. Total pesticide exposure at the time of diagnosis was not associated with lymphoma-specific or overall survival. In addition, no association was consistently found between glyphosate, organophosphorus, carbamate, phenoxyherbicide, and 2,4 dimethylamine salt exposure and lymphoma-specific or overall survival. CONCLUSIONS Although we found no consistent associations between agricultural pesticide exposure at the neighborhood level and worse survival, these results provide a platform for designing future studies to determine the association between pesticide and NHL.
Collapse
Affiliation(s)
- Christina Poh
- Division of Medical Oncology, University of Washington, Seattle, WA, USA. .,Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - John D McPherson
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, UC Davis, Sacramento, CA, USA
| | - Joseph Tuscano
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA.,Veterans Administration, Northern California Healthcare System, Sacramento, CA, USA
| | - Qian Li
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Arti Parikh-Patel
- California Cancer Reporting and Epidemiologic Surveillance Program, UC Davis, Sacramento, CA, USA
| | - Christoph F A Vogel
- Department of Environmental Toxicology and the Center for Health and the Environment, UC Davis, Davis, CA, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Keegan
- Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
30
|
Maddalon A, Iulini M, Galbiati V, Colosio C, Mandić-Rajčević S, Corsini E. Direct Effects of Glyphosate on In Vitro T Helper Cell Differentiation and Cytokine Production. Front Immunol 2022; 13:854837. [PMID: 35359959 PMCID: PMC8960435 DOI: 10.3389/fimmu.2022.854837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
Glyphosate (G) is the active ingredient of the most used herbicides worldwide. Its use is currently very debated, as several studies indicating its hazard and toxicity are emerging. Among them, there is evidence of adverse effects on the immune system. The aim of this work was to investigate if G could directly affect immune cells. Peripheral blood mononuclear cells (PBMC) obtained from healthy donors were used as experimental model. PBMC were expose to G and stimulated with PMA/ionomycin, T helper (Th) cell differentiation and cytokine production were assessed by flow cytometry and enzyme-linked immunosorbent assay, respectively. A reduction of Th1/Th2 ratio, mainly due to a decrease in Th1 cells, was observed following G exposure. Results show an enhancement of IL-4 and IL-17A production, and a reduction of IFN-γ. Based on literature evidence that suggest G being an endocrine disruptor, we investigated the role of nuclear estrogen receptors (ER). ERα/ERβ inhibition by ICI 182,780 abolished the effects of G on IFN-γ and IL-4 release, suggesting a role of ER in the observed effects. To further characterize the mechanism of action of G, miRNAs, both in exosome and intracellular, were investigated. A statistically significant increase in miR-500a-5p was observed following G treatment. The blockage of miR-500a-5p, using a specific antagomir, prevented G-induced reduction of IFN-γ production. Finally a relationship between miR-500a-5p up-regulation and ER was observed. Overall, these results suggest that G can directly act on T cells, altering T cell differentiation and cytokines production.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Claudio Colosio
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefan Mandić-Rajčević
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
31
|
Cosemans C, Van Larebeke N, Janssen BG, Martens DS, Baeyens W, Bruckers L, Den Hond E, Coertjens D, Nelen V, Schoeters G, Hoppe HW, Wolfs E, Smeets K, Nawrot TS, Plusquin M. Glyphosate and AMPA exposure in relation to markers of biological aging in an adult population-based study. Int J Hyg Environ Health 2022; 240:113895. [PMID: 34883335 DOI: 10.1016/j.ijheh.2021.113895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIM Glyphosate, a broad-spectrum herbicide, and its main metabolite aminomethylphosphonic acid (AMPA) are persistent in the environment. Studies showed associations between glyphosate or AMPA exposure and several adverse cellular processes, including metabolic alterations and oxidative stress. OBJECTIVE To determine the association between glyphosate and AMPA exposure and biomarkers of biological aging. METHODS We examined glyphosate and AMPA exposure, mtDNA content and leukocyte telomere length in 181 adults, included in the third cycle of the Flemish Environment and Health Study (FLEHSIII). DNA was isolated from leukocytes and the relative mtDNA content and telomere length were determined using qPCR. Urinary glyphosate and AMPA concentrations were measured by Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS). We used multiple linear regression models to associate mtDNA content and leukocyte telomere length with glyphosate or AMPA exposure while adjusting for confounding variables. RESULTS A doubling in urinary AMPA concentration was associated with 5.19% (95% CI: 0.49 to 10.11; p = 0.03) longer leukocyte telomere length, while no association was observed with urinary glyphosate concentration. No association between mtDNA content and urinary glyphosate nor AMPA levels was observed. CONCLUSIONS This study showed that AMPA exposure may be associated with telomere biology in adults.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium; Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Dries Coertjens
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Esther Wolfs
- Biomedical Research Institute, Faculty of Medicine, Hasselt University, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
32
|
Wang X, Lu Q, Guo J, Ares I, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology. Annu Rev Pharmacol Toxicol 2022; 62:617-639. [PMID: 34990202 DOI: 10.1146/annurev-pharmtox-020821-111552] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.
Collapse
Affiliation(s)
- Xiaojing Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430023, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, and Research Institute Hospital 12 de Octubre, 28040 Madrid, Spain;
| |
Collapse
|
33
|
Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicol Rep 2022; 9:298-310. [PMID: 35284244 PMCID: PMC8908043 DOI: 10.1016/j.toxrep.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. Glyphosate has long been suspected of leading to the development of cancer and of compromising fertility. Herbicides have been increasingly recognized as epigenetic modifiers, and the impact of glyphosate on human and animal health might be mediated by epigenetic modifications. This article presents the results from an animal study where pigs were exposed to glyphosate while feeding. The experimental setup included a control group with no glyphosate added to the feed and two groups of pigs with 20 ppm and 200 ppm of glyphosate added to the feed, respectively. After exposure, the pigs were dissected, and tissues of the small intestine, liver, and kidney were used for DNA methylation and gene expression analyses. No significant change in global DNA methylation was found in the small intestine, kidney, or liver. Methylation status was determined for selected genes involved in various functions such as DNA repair and immune defense. In a CpG island of the promoter for IL18, we observed significantly reduced DNA methylation for certain individual CpG positions. However, this change in DNA methylation had no influence on IL18 mRNA expression. The expression of the DNA methylation enzymes DNMT1, DNMT3A, and DNMT3B was measured in the small intestine, kidney, and liver of pigs exposed to glyphosate. No significant changes in relative gene expression were found for these enzymes following dietary exposure to 20 and 200 ppm glyphosate. In contrast, a significant increase in expression of the enzyme TET3, responsible for demethylation, was observed in kidneys exposed to 200 ppm glyphosate. A large animal study with exposure of pigs to glyphosate is presented here. Pigs were exposed to 20 ppm and 200 ppm in the diet. No significant changes in global DNA methylation was observed. A significantly reduced DNA methylation was found in the porcine IL18 promoter. A significant increase in TET3 expression was seen in porcine kidneys exposed to 200 ppm glyphosate.
Collapse
|
34
|
Hardell L, Carlberg M. Lost opportunities for cancer prevention: historical evidence on early warnings with emphasis on radiofrequency radiation. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:585-597. [PMID: 33594846 DOI: 10.1515/reveh-2020-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Some historical aspects on late lessons from early warnings on cancer risks with lost time for prevention are discussed. One current example is the cancer-causing effect from radiofrequency (RF) radiation. Studies since decades have shown increased human cancer risk. The fifth generation, 5G, for wireless communication is about to be implemented world-wide despite no comprehensive investigations of potential risks to human health and the environment. This has created debate on this technology among concerned people in many countries. In an appeal to EU in September 2017, currently endorsed by more than 400 scientists and medical doctors, a moratorium on the 5G deployment was required until proper scientific evaluation of negative consequences has been made (www.5Gappeal.eu). That request has not been taken seriously by EU. Lack of proper unbiased risk evaluation of the 5G technology makes adverse effects impossible to be foreseen. This disregard is exemplified by the recent report from the International Commission on non-ionizing radiation protection (ICNIRP) whereby only thermal (heating) effects from RF radiation are acknowledged despite a large number of reported non-thermal effects. Thus, no health effects are acknowledged by ICNIRP for non-thermal RF electromagnetic fields in the range of 100 kHz-300 GHz. Based on results in three case-control studies on use of wireless phones we present preventable fraction for brain tumors. Numbers of brain tumors of not defined type were found to increase in Sweden, especially in the age group 20-39 years in both genders, based on the Swedish Inpatient Register. This may be caused by the high prevalence of wireless phone use among children and in adolescence taking a reasonable latency period and the higher vulnerability to RF radiation among young persons.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
35
|
Weisenburger DD. A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:621-630. [PMID: 34052177 DOI: 10.1016/j.clml.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/26/2023]
Abstract
Glyphosate-based formulations (GBFs), such as Roundup, are the most heavily used herbicides in the world. In 2015, the International Agency for Research on Cancer (IARC) concluded that glyphosate and GBFs are probably carcinogenic to humans (group 2A), mainly for non-Hodgkin lymphoma (NHL). However, this finding has been controversial, and most pesticide regulatory agencies have not followed their lead. The purpose of this review was to examine the scientific literature linking exposure to glyphosate and GBFs to the development of NHL, with emphasis on new findings since publication of the IARC report. The epidemiologic studies provide ample evidence for an association between exposure to GBFs and an increased risk of NHL. Animal studies have shown that glyphosate is carcinogenic in rodents and causes NHL in mice. Mechanistic studies have demonstrated that glyphosate and GBFs are genotoxic to human lymphocytes, the normal cell of origin of NHL, both in vitro and in vivo. Genotoxic and other biological effects have also been shown in various animal and cell models with these agents even at low doses. A novel mechanism underlying the specificity of glyphosate for NHL, that is upregulation of the B-cell genome mutator enzyme activation-induced cytidine deaminase, has recently been demonstrated. These findings were evaluated holistically using the guidelines for evaluation of general causation set forth by Bradford Hill. This evaluation provides coherent and compelling evidence that glyphosate and GBFs are a cause of NHL in humans exposed to these agents. These findings should prompt new reviews by pesticide regulatory agencies around the world.
Collapse
|
36
|
Cattani D, Struyf N, Steffensen V, Bergquist J, Zamoner A, Brittebo E, Andersson M. Perinatal exposure to a glyphosate-based herbicide causes dysregulation of dynorphins and an increase of neural precursor cells in the brain of adult male rats. Toxicology 2021; 461:152922. [PMID: 34474092 DOI: 10.1016/j.tox.2021.152922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023]
Abstract
Glyphosate, the most used herbicide worldwide, has been suggested to induce neurotoxicity and behavioral changes in rats after developmental exposure. Studies of human glyphosate intoxication have reported adverse effects on the nervous system, particularly in substantia nigra (SN). Here we used matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to study persistent changes in peptide expression in the SN of 90-day-old adult male Wistar rats. The animals were perinatally exposed to 3 % GBH (glyphosate-based herbicide) in drinking water (corresponding to 0.36 % of glyphosate) starting at gestational day 5 and continued up to postnatal day 15 (PND15). Peptides are present in the central nervous system before birth and play a critical role in the development and survival of neurons, therefore, observed neuropeptide changes could provide better understanding of the GBH-induced long term effects on SN. The results revealed 188 significantly altered mass peaks in SN of animals perinatally exposed to GBH. A significant reduction of the peak intensity (P < 0.05) of several peptides from the opioid-related dynorphin family such as dynorphin B (57 %), alpha-neoendorphin (50 %), and its endogenous metabolite des-tyrosine alpha-neoendorphin (39 %) was detected in the GBH group. Immunohistochemical analysis confirmed a decreased dynorphin expression and showed a reduction of the total area of dynorphin immunoreactive fibers in the SN of the GBH group. In addition, a small reduction of dynorphin immunoreactivity associated with non-neuronal cells was seen in the hilus of the hippocampal dentate gyrus. Perinatal exposure to GBH also induced an increase in the number of nestin-positive cells in the subgranular zone of the dentate gyrus. In conclusion, the results demonstrate long-term changes in the adult male rat SN and hippocampus following a perinatal GBH exposure suggesting that this glyphosate-based formulation may perturb critical neurodevelopmental processes.
Collapse
Affiliation(s)
- Daiane Cattani
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden; Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil.
| | - Nona Struyf
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Vivien Steffensen
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Box 559, 75124, Uppsala, Sweden
| | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| |
Collapse
|
37
|
Hernandez-Toledano D, Vega L. The cytoskeleton as a non-cholinergic target of organophosphate compounds. Chem Biol Interact 2021; 346:109578. [PMID: 34265256 DOI: 10.1016/j.cbi.2021.109578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022]
Abstract
Current organophosphate (OP) toxicity research now considers potential non-cholinergic mechanisms for these compounds, since the inhibition of acetylcholinesterase (AChE) cannot completely explain all the adverse biological effects of OP. Thanks to the development of new strategies for OP detection, some potential molecular targets have been identified. Among these molecules are several cytoskeletal proteins, including actin, tubulin, intermediate filament proteins, and associated proteins, such as motor proteins, microtubule-associated proteins (MAPs), and cofilin. in vitro, ex vivo, and some in vivo reports have identified alterations in the cytoskeleton following OP exposure, including cell morphology defects, cells detachments, intracellular transport disruption, aberrant mitotic spindle formation, modification of cell motility, and reduced phagocytic capability, which implicate the cytoskeleton in OP toxicity. Here, we reviewed the evidence indicating the cytoskeletal targets of OP compounds, including their strategies, the potential effects of their alterations, and their possible participation in neurotoxicity, embryonic development, cell division, and immunotoxicity related to OP compounds exposure.
Collapse
Affiliation(s)
- David Hernandez-Toledano
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico
| | - Libia Vega
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute. Av. IPN 2508, San Pedro Zacatenco, C.P. 07360, Mexico City, Mexico.
| |
Collapse
|
38
|
Boffetta P, Ciocan C, Zunarelli C, Pira E. Exposure to glyphosate and risk of non-Hodgkin lymphoma: an updated meta-analysis. LA MEDICINA DEL LAVORO 2021; 112:194-199. [PMID: 34142676 PMCID: PMC8223940 DOI: 10.23749/mdl.v112i3.11123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We updated a recent systematic review and meta-analysis of epidemiologic studies to help clarifying the association between exposure to glyphosate and risk of non-Hodgkin lymphoma (NHL). METHODS We conducted an updated search of the literature, and identified a total of 15 relevant publications, from which we extracted results from six non-overlapping studies. We performed random-effects meta-analyses for ever-exposure to glyphosate, dose-response, and risk of specific NHL subtypes Results: The meta-RR for ever-exposure to glyphosate was 1.05 (95% confidence interval [CI] 0.90-1.24; I2 = 0%). The meta-RR for the highest category of exposure was 1.15 (95% CI 0.72-1.83; 3 studies). The meta-RR for diffuse large B-cell lymphoma (DLBCL) was 1.29 (95% CI 1.02-1.63; 4 studies), that for follicular lymphoma was 0.84 (95% CI 0.61-1.17), and that for chronic lymphocytic leukemia/small lymphocytic lymphoma was 1.33 (95% CI 0.65-2.70). There was indication of publication bias. CONCLUSIONS This updated meta-analysis reinforces our previous conclusion of a lack of an association between exposure to glyphosate and risk of NHL overall, although an association with DLBCL cannot be ruled out.
Collapse
Affiliation(s)
- Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Medical and Surgical Sciences, University of Bologna, Italy.
| | - Catalina Ciocan
- Department of Pediatrics and Public Health, University of Turin, Italy.
| | | | - Enrico Pira
- Department of Pediatrics and Public Health, University of Turin, Italy.
| |
Collapse
|
39
|
Odutola MK, Benke G, Fritschi L, Giles GG, van Leeuwen MT, Vajdic CM. A systematic review and meta-analysis of occupational exposures and risk of follicular lymphoma. ENVIRONMENTAL RESEARCH 2021; 197:110887. [PMID: 33607095 DOI: 10.1016/j.envres.2021.110887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The etiology of follicular lymphoma (FL), a common non-Hodgkin lymphoma subtype, is largely unknown. OBJECTIVE We performed a systematic review and meta-analysis of observational studies examining the relationship between occupational exposures and FL risk. METHODS We searched Ovid MEDLINE, Ovid EMBASE, and Web of Science for eligible observational studies examining job titles or occupational exposures prior to January 1, 2020. We performed a narrative synthesis and used random-effects models to generate meta-estimates of relative risk (RR) with 95% confidence intervals (95%CI) for exposures reported by three or more studies. RESULTS Fifty-eight studies were eligible. Ten cohort and 37 case-control studies quantified FL risk in relation to any exposure to one or more occupational groups or agents. Eight cohort and 19 case-control studies examined dose-response relationships. We found evidence of a positive association with increasing plasma concentration of dichlorodiphenyldichloroethylene (DDE; meta-RR = 1.51, 95%CI = 0.99, 2.31; I2 = 0.0%) and polychlorinated biphenyls (PCBs; meta-RR = 1.47, 95%CI = 0.97, 2.24; I2 = 8.6%). We observed a positive association with exposure to any solvent (meta-RR = 1.16, 95%CI = 1.00, 1.34; I2 = 0.0%) and chlorinated solvents (meta-RR = 1.35, 95%CI = 1.09, 1.68; I2 = 0.0%). Single studies reported a significant positive dose-response association for exposure to any pesticide, hexachlorobenzene, any organophosphate, diazinon, metolachlor, carbaryl, lindane, trichloroethylene, oils/greases, and extremely low-frequency magnetic fields. Job title-only analyses suggested increased risk for medical doctors and spray painters, and decreased risk for bakers and teachers. Overall, studies demonstrated low risk of bias, but most studies examined small numbers of exposed cases. CONCLUSIONS Current evidence indicates a positive association between FL and occupational exposure to DDE, PCBs, any solvent and chlorinated solvents. Our findings may help guide policies and practices on the safe use of solvents and inform models of lymphomagenesis. Future studies with larger sample sizes and comprehensive quantitative exposure measures may elucidate other avoidable carcinogenic exposures.
Collapse
Affiliation(s)
- Michael K Odutola
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Geza Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lin Fritschi
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia; Precision Medicine, School of Clinical Sciences at Monash Health Monash University, Melbourne, Australia
| | - Marina T van Leeuwen
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Claire M Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
40
|
Lemaitre M, Frenoy P, Fiolet T, Besson C, Mancini FR. Dietary exposure to polychlorinated biphenyls (PCB) and risk of Non-Hodgkin's lymphoma: Evidence from the French E3N prospective cohort. ENVIRONMENTAL RESEARCH 2021; 197:111005. [PMID: 33722527 DOI: 10.1016/j.envres.2021.111005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Polychlorinated biphenyls (PCB) are persistent and bioaccumulative lipophilic substances, mostly used in the past by industry. Known to be cancerogenic, PCB are suspected to increase Non-Hodgkin's Lymphoma (NHL) risk in the general population mainly due to evidence from cases-controls studies. Since their interdiction in 1987, diet represents the main route of exposure for the general population, nevertheless no study has assessed the relationship between PCB dietary exposure and NHL risk. The aim of this study was to analyze the association between dietary exposures to dioxin like PCB (DL PCB) and non-dioxin like PCB (NDL PCB) and NHL risk in the E3N prospective cohort of French women. MATERIALS AND METHODS Among 67,879 women included in this study, 457 cases of NHL were confirmed during 21 years of follow-up. Dietary exposure to PCB was estimated combining food consumption data collected in E3N and food contamination data provided by French Agency for Food, Environmental and Occupational Health & Safety (ANSES) in the second French total diet study. Cox regression models, adjusted for potential confounders, were used to estimate hazard ratio (HR) and 95% confidence intervals (CI). RESULTS Average age at diagnosis was 67 years. The median dietary exposure to DL PCB and NDL PCB was, 18.5 pg TEQ/d and 138,843.2 pg/d, respectively. While no association was found between dietary exposure to DL PCB or NDL PCB and overall NHL risk, analyses by NHL histological subgroups showed a positive association between dietary exposures to DL PCB and Diffuse Large B Cell Lymphoma (OR3vs1 1.90, 95%CI [1.03-3.51], ptrend 0.02). Nevertheless these findings were no longer statistically significant when the models were adjusted for fish and dairy products consumption. In addition, an inverse association was found between dietary exposure to NDL PCB and the risk of follicular lymphoma (OR3vs1 0.46, 95%CI [0.24-0.87], ptrend 0.01). CONCLUSION This is the first study to evaluate the association between dietary exposure to DL and NDL PCB and the risk of NHL in a prospective cohort study. Overall, the findings suggest a lack of association between dietary exposure to DL or NDL PCB and NHL risk. Additional studies are needed to reproduce these findings.
Collapse
Affiliation(s)
- Marine Lemaitre
- CESP, Faculté de Médecine - Université. Paris-Sud - UVSQ, INSERM, Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Pauline Frenoy
- CESP, Faculté de Médecine - Université. Paris-Sud - UVSQ, INSERM, Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Thibault Fiolet
- CESP, Faculté de Médecine - Université. Paris-Sud - UVSQ, INSERM, Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Caroline Besson
- CESP, Faculté de Médecine - Université. Paris-Sud - UVSQ, INSERM, Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France; Hematology-Oncology Unit, Centre Hospitalier de Versailles, 78150, Le Chesnay, France; Université de Versailles Saint Quentin en Yvelines, Université de Paris Saclay, France
| | - Francesca Romana Mancini
- CESP, Faculté de Médecine - Université. Paris-Sud - UVSQ, INSERM, Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
41
|
Meloni F, Satta G, Padoan M, Montagna A, Pilia I, Argiolas A, Piro S, Magnani C, Gambelunghe A, Muzi G, Ferri GM, Vimercati L, Zanotti R, Scarpa A, Zucca M, De Matteis S, Campagna M, Miligi L, Cocco P. Occupational exposure to glyphosate and risk of lymphoma:results of an Italian multicenter case-control study. Environ Health 2021; 20:49. [PMID: 33910586 PMCID: PMC8082925 DOI: 10.1186/s12940-021-00729-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/14/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) recently classified glyphosate, the most used herbicide worldwide, as a probable human carcinogen. We inquired into the association between occupational exposure to glyphosate and risk of lymphoma subtypes in a multicenter case-control study conducted in Italy. METHODS The Italian Gene-Environment Interactions in Lymphoma Etiology (ItGxE) study took place in 2011-17 in six Italian centres. Overall, 867 incident lymphoma cases and 774 controls participated in the study. Based on detailed questionnaire information, occupational experts classified duration, confidence, frequency, and intensity of exposure to glyphosate for each study subject. Using unconditional regression analysis, we modelled risk of major lymphoma subtypes associated with exposure to glyphosate adjusted by age, gender, education, and study centre. RESULTS Very few study subjects (2.2%) were classified as ever exposed to glyphosate. Risk of follicular lymphoma (FL) was elevated 7-fold in subjects classified as ever exposed to glyphosate with medium-high confidence, 4.5-fold in association with medium-high cumulative exposure level, 12-fold with medium-high exposure intensity, and 6-fold with exposure for 10 days or more per year. Significant upward trends were detected with all the exposure metrics, but duration. The overall p-value for an upward trend with four independent metrics was 1.88 × 10- 4. There was no association with risk of lymphoma (any subtype), Non Hodgkin Lymphoma, B-cell lymphoma, or the major lymphoma subtypes other than FL. CONCLUSIONS Our findings provide limited support to the IARC decision to classify glyphosate as Group 2A human carcinogen.
Collapse
Affiliation(s)
- Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giannina Satta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marina Padoan
- Department of Translational Medicine, Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont, Novara, Italy
| | - Andrea Montagna
- Department of Medicine and Surgery, Occupational Medicine, Respiratory Diseases and Toxicology Section, University of Perugia, Perugia, Italy
| | - Ilaria Pilia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Argiolas
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sara Piro
- Environmental and Occupational Epidemiology Branch - Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Corrado Magnani
- Department of Translational Medicine, Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont, Novara, Italy
| | - Angela Gambelunghe
- Department of Medicine and Surgery, Occupational Medicine, Respiratory Diseases and Toxicology Section, University of Perugia, Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine and Surgery, Occupational Medicine, Respiratory Diseases and Toxicology Section, University of Perugia, Perugia, Italy
| | - Giovanni Maria Ferri
- Interdisciplinary Department of Medicine (DIM), Unit of Occupational Medicine, University of Bari, Bari, Italy
| | - Luigi Vimercati
- Interdisciplinary Department of Medicine (DIM), Unit of Occupational Medicine, University of Bari, Bari, Italy
| | - Roberta Zanotti
- Department of Medicine, Haematology Unit, and Department of Diagnostics and Public Health-Section of Pathology, Verona University Hospital, Verona, Italy
| | - Aldo Scarpa
- Department of Medicine, Haematology Unit, and Department of Diagnostics and Public Health-Section of Pathology, Verona University Hospital, Verona, Italy
| | - Mariagrazia Zucca
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Branch - Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Pierluigi Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
42
|
Klingelhöfer D, Braun M, Brüggmann D, Groneberg DA. Glyphosate: How do ongoing controversies, market characteristics, and funding influence the global research landscape? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144271. [PMID: 33387924 DOI: 10.1016/j.scitotenv.2020.144271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is a systemic broad-spectrum herbicide that is by now the most extensively used herbicide in the world and has been the source for a still heated controversy about its harmful effects on human health and the environment. The different weighting of scientific studies has led to different attitudes in most countries towards appropriate handling and their regulatory authorities. Therefore, an in-depth analysis of the global research landscape on glyphosate is needed to provide the background for further decisions regarding appropriate and careful use, taking into account the different regional conditions. The present study is based on established bibliometric methodological tools and is extended by glyphosate-specific parameters. Chronological and geographical patterns are revealed to determine the incentives and intentions of international scientific efforts. Research output grew in line with the exponential growth in consumption, with the field of research becoming increasingly multidisciplinary and shifting towards environmental and medical disciplines. The countries with the highest herbicide use are also the leading countries in glyphosate research: USA, Brazil, Canada, China and Argentina. The link between publication output and market parameters is as evident as the association with national grants. The research interest of the manufacturing company Monsanto could be shown as the second largest publishing institution behind the US Department of Agriculture, which interest is underscored by its position among the otherwise government-funded organizations. Developing countries are generally underrepresented in glyphosate research, although the use of glyphosate is increasing dramatically. In conclusion, the incentives are strongly linked to market and agricultural interests, with the scientific infrastructure of the countries forming the basis for financing and conducting research. The existing international network is important and needs to be expanded and strengthened by including the lower economies in order to take into account all regional and social needs and aspects of glyphosate use.
Collapse
Affiliation(s)
- Doris Klingelhöfer
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - Markus Braun
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - Dörthe Brüggmann
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| | - David A Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany.
| |
Collapse
|
43
|
Kabat GC, Price WJ, Tarone RE. On recent meta-analyses of exposure to glyphosate and risk of non-Hodgkin's lymphoma in humans. Cancer Causes Control 2021; 32:409-414. [PMID: 33447891 DOI: 10.1007/s10552-020-01387-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE A recent meta-analysis of five case-control studies and one cohort study reported that exposure to glyphosate was associated with increased risk of non-Hodgkin's lymphoma (NHL). The meta-analysis was based on estimates of risk from the included studies at the highest reported exposure level obtained from analyses with the longest lag period. The extent to which the summary estimate depends upon the exposure definitions and assumed latency period is uncertain. METHODS We carried out sensitivity analyses to determine how the definition of exposure and the choice of latency period affect the summary estimate from meta-analyses of the 6 studies included in the recent meta-analysis. We also conducted a meta-analysis of ever-exposure to glyphosate incorporating the most updated results from the case-control studies. RESULTS The summary estimates of risk varied considerably depending on both the assumptions about exposure level and latency. Using the highest reported exposure levels, evidence of an association between glyphosate and NHL was strongest when estimates from analyses in the cohort study with a 20-year lag [RR = 1.41 (95% CI 1.13-1.76)] and a 15-year lag [RR = 1.25 (95% CI 1.01-1.25)] were included. In our meta-analysis of ever-exposure with no lag period, the summary relative risk with updated estimates was 1.05 (95% CI 0.87-1.28). CONCLUSION The results of meta-analyses of glyphosate exposure and NHL risk depend on assumptions made about both exposure level and latency period. Our results for ever-exposure are consistent with those of two recent meta-analyses conducted using somewhat different study inclusion criteria.
Collapse
Affiliation(s)
| | - William J Price
- College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, 83844, USA
| | | |
Collapse
|
44
|
Curl CL, Spivak M, Phinney R, Montrose L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr Environ Health Rep 2020; 7:13-29. [PMID: 31960353 DOI: 10.1007/s40572-020-00266-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize epidemiological literature published between May 15, 2018, and May 14, 2019, that examines the relationship between exposure to synthetic pesticides and health of agricultural workers. RECENT FINDINGS Current research suggests that exposure to synthetic pesticides may be associated with adverse health outcomes. Agricultural workers represent a potentially vulnerable population, due to a combination of unique social and cultural risk factors as well as exposure to hazards inherent in agricultural work. Pesticide exposure among agricultural workers has been linked to certain cancers, DNA damage, oxidative stress, neurological disorders, and respiratory, metabolic, and thyroid effects. This review describes literature suggesting that agricultural workers exposed to synthetic pesticides are at an increased risk of certain cancers and neurological disorders. Recent research on respiratory effects is sparse, and more research is warranted regarding DNA damage, oxidative stress, metabolic outcomes, and thyroid effects.
Collapse
Affiliation(s)
- Cynthia L Curl
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA.
| | - Meredith Spivak
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Rachel Phinney
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| | - Luke Montrose
- Center for Excellence in Environmental Health and Safety, Boise State University, 1910 University Dr., Boise, ID, 83725, USA
| |
Collapse
|
45
|
Rana I, Taioli E, Zhang L. Weeding out inaccurate information on glyphosate-based herbicides and risk of non-Hodgkin lymphoma. ENVIRONMENTAL RESEARCH 2020; 191:110140. [PMID: 32871148 PMCID: PMC7889289 DOI: 10.1016/j.envres.2020.110140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, USA.
| |
Collapse
|
46
|
Kachuri L, Beane Freeman LE, Spinelli JJ, Blair A, Pahwa M, Koutros S, Hoar Zahm S, Cantor KP, Weisenburger DD, Pahwa P, Dosman JA, McLaughlin JR, Demers PA, Harris SA. Insecticide use and risk of non-Hodgkin lymphoma subtypes: A subset meta-analysis of the North American Pooled Project. Int J Cancer 2020; 147:3370-3383. [PMID: 32574374 PMCID: PMC7689728 DOI: 10.1002/ijc.33164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Insecticide use has been linked to increased risk of non-Hodgkin lymphoma (NHL), however, findings of epidemiologic studies have been inconsistent, particularly for NHL subtypes. We analyzed 1690 NHL cases and 5131 controls in the North American Pooled Project (NAPP) to investigate self-reported insecticide use and risk of NHL overall and by subtypes: follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and small lymphocytic lymphoma (SLL). Odds ratios (OR) and 95% confidence intervals for each insecticide were estimated using logistic regression. Subtype-specific associations were evaluated using ASSET (Association analysis for SubSETs). Increased risks of multiple NHL subtypes were observed for lindane (OR = 1.60, 1.20-2.10: FL, DLCBL, SLL), chlordane (OR = 1.59, 1.17-2.16: FL, SLL) and DDT (OR = 1.36, 1.06-1.73: DLBCL, SLL). Positive trends were observed, within the subsets with identified associations, for increasing categories of exposure duration for lindane (Ptrend = 1.7 × 10-4 ), chlordane (Ptrend = 1.0 × 10-3 ) and DDT (Ptrend = 4.2 × 10-3 ), however, the exposure-response relationship was nonlinear. Ever use of pyrethrum was associated with an increased risk of FL (OR = 3.65, 1.45-9.15), and the relationship with duration of use appeared monotonic (OR for >10 years: OR = 5.38, 1.75-16.53; Ptrend = 3.6 × 10-3 ). Our analysis identified several novel associations between insecticide use and specific NHL subtypes, suggesting possible etiologic heterogeneity in the context of pesticide exposure.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - John J Spinelli
- Population Oncology, BC Cancer, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Manisha Pahwa
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Shelia Hoar Zahm
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth P Cantor
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | | | - Punam Pahwa
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James A Dosman
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John R McLaughlin
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada.,Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Population Health and Prevention, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Shelley A Harris
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Population Health and Prevention, Cancer Care Ontario, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Bootsikeaw S, Kongtip P, Nankongnab N, Chantanakul S, Sujirarat D, Mahaboonpeeti R, Khangkhun P, Woskie S. Urinary glyphosate biomonitoring of sprayers in vegetable farm in Thailand. HUMAN AND ECOLOGICAL RISK ASSESSMENT : HERA 2020; 27:1019-1036. [PMID: 34539173 PMCID: PMC8448205 DOI: 10.1080/10807039.2020.1797471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 05/26/2023]
Abstract
In Thailand, glyphosate is popular herbicide to control pests in the agricultural sector. This study aimed to measure glyphosate exposure concentrations through inhalation, dermal contact, and urinary glyphosate concentrations among 43 vegetable farmers spraying glyphosate in Bungphra Subdistrict, Phitsanulok Province. Four types of spraying equipment were used, manual pump backpack (n = 3), motorized spray backpack (n = 22), battery pump backpack (n = 16), and high pressure pump (n = 2). Breathing zone air samples were collected using glass fiber filters; dermal contact samples were collected using 100 cm2 cotton patches attached on 10 body locations and urine samples were collected at 3 time points: morning void urine the day before spraying, the end of spraying event, and the morning void urine the next day of spraying. The results showed that the geometric mean (GM; geometric standard deviation [GSD]) of breathing zone concentrations of glyphosate exposure were 9.37 (10.17) μg/m3. The GM (GSD) of total dermal patches exposure concentrations were 7.57 (0.01) mg/h. The legs, back, and arms were the most exposed body areas. The GM (GSD) of urinary glyphosate was found highest among vegetable farmers using manual backpack 46.90 (1.35) μg/g creatinine. Farmers should wear masks and boots to reduce glyphosate exposure by inhalation and dermal contact.
Collapse
Affiliation(s)
- Sasivimol Bootsikeaw
- Department of Occupational Health and Safety, Mahidol University Faculty of Public Health, Bangkok, Thailand
| | - Pornpimol Kongtip
- Department of Occupational Health and Safety, Mahidol University Faculty of Public Health, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand
| | - Noppanun Nankongnab
- Department of Occupational Health and Safety, Mahidol University Faculty of Public Health, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology, Bangkok, Thailand
| | - Suttinun Chantanakul
- Department of Occupational Health and Safety, Mahidol University Faculty of Public Health, Bangkok, Thailand
| | - Dusit Sujirarat
- Department of Biostatistics, Mahidol University Faculty of Public Health, Bangkok, Thailand
| | - Redeerat Mahaboonpeeti
- Department of Occupational Health and Safety, Faculty of Public Health, Naresuan University, Phitsanulok, Thailand
| | - Phanthawee Khangkhun
- Department of Health, Ministry of Public Health, Bureau of Elderly Health, Nonthaburi, Thailand
| | - Susan Woskie
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, USA
| |
Collapse
|
48
|
Moubadder L, McCullough LE, Flowers CR, Koff JL. Linking Environmental Exposures to Molecular Pathogenesis in Non-Hodgkin Lymphoma Subtypes. Cancer Epidemiol Biomarkers Prev 2020; 29:1844-1855. [PMID: 32727723 DOI: 10.1158/1055-9965.epi-20-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgkin lymphoma comprises a heterogeneous group of hematologic malignancies, with about 60 subtypes that arise via various pathogenetic mechanisms. Although establishing etiology for specific NHL subtypes has been historically difficult given their relative rarity, environmental exposures have been repeatedly implicated as risk factors across many subtypes. Large-scale epidemiologic investigations have pinpointed chemical exposures in particular, but causality has not been established, and the exact biologic mechanisms underpinning these associations are unclear. Here we review chemical exposures that have been associated with development of NHL subtypes and discuss their biologic plausibility based on current research.
Collapse
Affiliation(s)
- Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
49
|
Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26036-26057. [PMID: 32399888 DOI: 10.1007/s11356-020-08937-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus insecticides toxicity is still considered a major global health problem. Malathion is one of the most commonly used organophosphates nowadays, as being considered to possess relatively low toxicity compared with other organophosphates. However, widespread use may lead to excessive exposure from multiple sources. Mechanisms of MAL toxicity include inhibition of acetylcholinesterase enzyme, change of oxidants/antioxidants balance, DNA damage, and facilitation of apoptotic cell damage. Exposure to malathion has been associated with different toxicities that nearly affect every single organ in our bodies, with CNS toxicity being the most well documented. Malathion toxic effects on liver, kidney, testis, ovaries, lung, pancreas, and blood were also reported. Moreover, malathion was considered as a genotoxic and carcinogenic chemical compound. Evidence exists for adverse effects associated with prenatal and postnatal exposure in both animals and humans. This review summarizes the toxic data available about malathion in mammals and discusses new potential therapeutic modalities, with the aim to highlight the importance of increasing awareness about its potential risk and reevaluation of the allowed daily exposure level.
Collapse
Affiliation(s)
- Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, 11459, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt.
| |
Collapse
|
50
|
Tang Q, Tang J, Ren X, Li C. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114129. [PMID: 32045792 DOI: 10.1016/j.envpol.2020.114129] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate is the most popular herbicide used worldwide. This study aimed to investigate the adverse effects of glyphosate on the small intestine and gut microbiota in rats. The rats were gavaged with 0, 5, 50, and 500 mg/kg of body weight glyphosate for 35 continuous days. The different segments of the small intestine were sampled to measure indicators of oxidative stress, ion concentrations and inflammatory responses, and fresh feces were collected for microbiota analysis. The results showed that glyphosate exposure decreased the ratio of villus height to crypt depth in the duodenum and jejunum. Decreased activity of antioxidant enzymes (T-SOD, GSH, GSH-Px) and elevated MDA content were observed in different segments of the small intestine. Furthermore, the concentrations of Fe, Cu, Zn and Mg were significantly decreased or increased. In addition, the mRNA expression levels of IL-1β, IL-6, TNF-α, MAPK3, NF-κB, and Caspase-3 were increased after glyphosate exposure. The 16 S rRNA gene sequencing results indicated that glyphosate exposure significantly increased α-diversity and altered bacterial composition. Glyphosate exposure significantly decreased the relative abundance of the phylum Firmicutes and the genus Lactobacillus, but several potentially pathogenic bacteria were enriched. In conclusion, this study provides important insight to reveal the negative influence of glyphosate exposure on the small intestine, and the altered microbial composition may play a vital role in the process.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|