1
|
Jia J, Sun Z, Tao X, Tong Y, Feng H, Yang J, Lu X, Qu C, Liu Z, Wu J. Association between oxidative balance score and heart failure in the older adults: Results from the NHANES 2005-2018. Heart Lung 2024; 68:107-115. [PMID: 38943717 DOI: 10.1016/j.hrtlng.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Heart failure (HF) imposes a substantial burden on older adults, and healthy diets and lifestyles may bring with benefits. However, quantifiable studies on the dietary and lifestyle risk factors for HF are scant. The Oxidative Balance Score (OBS) reflects the oxidative stress status of dietary components and lifestyle factors, but its relationship with HF risk is unclear. OBJECTIVE We aims to explore the association between OBS and the prevalence of HF. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2018, the association between OBS and the HF prevalence was analyzed by weighted logistic regression and restricted cubic splines (RCS). Subgroup and sensitivity analyses assessed the stability of the results. RESULTS The prevalence of HF in the cohort of 6238 older adults was 5.55 %. Compared to the lowest quintile, the adjusted ORs for HF in the highest quintile of OBS and lifestyle OBS were 0.57 (95 % CI: 0.33,0.97) and 0.21 (95 %CI: 0.09,0.50), respectively. The association between OBS and HF prevalence remained stable across different models and subgroups. RCS revealed a potential inflection point. Sensitivity analysis validated the negative association between OBS and HF prevalence, and the correlation analysis between OBS and serum γ-glutamyltransferase (γ-GGT) confirmed the reliability of the study design. CONCLUSION The OBS is negatively associated with HF prevalence in older adults, and may help prevent HF in this population.
Collapse
Affiliation(s)
- Jian Jia
- Department of General Practice, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zhonghua Sun
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Xinyu Tao
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Yanli Tong
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Han Feng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Jiahui Yang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Hospital of Nanjing Medical University, Nanjing 211166, PR China
| | - Chen Qu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China.
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, PR China.
| | - Jun Wu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
2
|
Heller CD, Zahedifard F, Doskocil I, Pamfil D, Zoltner M, Kokoska L, Rondevaldova J. Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential. Int J Mol Sci 2024; 25:10987. [PMID: 39456769 PMCID: PMC11507926 DOI: 10.3390/ijms252010987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Collapse
Affiliation(s)
- Cristina D. Heller
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic;
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Doru Pamfil
- Department of Horticulture and Landscape Architecture, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| |
Collapse
|
3
|
Nayak J, P SV, Sahoo SK, Kumar M, Vashistha VK, Kumar R. Computational insight of antioxidant and doxorubicin combination for effective cancer therapy. J Biomol Struct Dyn 2024; 42:7874-7882. [PMID: 37545163 DOI: 10.1080/07391102.2023.2242507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Doxorubicin (DOX) is the most effective antineoplastic agent, destroys cancer cells by interrupting cellular function. However, the serious side effects on the heart limits its utility. To curb these unwanted side effects, nutritionist recommend antioxidants use along with DOX while chemotherapy. But it was not supported by various oncologists as it can alter the toxicity of DOX towards cancer cells. Therefore, here we explored the in silico pharmacokinetics and combination effect of DOX and antioxidants on topoisomerases-II (Top-II) and cyclophilin D (Cyp-D) therapeutic targets involved in cancer proliferation and post-myocardial infarction, respectively. The molecular docking study was conducted on target proteins and DOX including most prescribed antioxidants (melatonin, N-acetylcysteine (NAC), glutathione (GSH), β-carotene and vitamin C). GSH showed effective binding potential for Top-II and Cyp-D active sites, but other considered antioxidants possess low binding affinity. The highest docked conformations were subjected to molecular dynamics (MD) simulations to understand conformer stability of DOX and GSH with Cyp-D and Top-II for 100 ns. The results revealed that ligands pose at Top-II active sites where DOX showed strong binding affinity to DNA binding pocket and GSH to a buried site. The computational data summarised and proposed the GSH and DOX combination as antagonist effects on Top-II. Conversely, the binding compactness of GSH improved due to surface fit at the active pocket of Cyp-D and completely blocking DOX binding affinity, suppress adverse reactions of post-myocardial infarction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyotsnamayee Nayak
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Seshu Vardhan P
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, S.V. National Institute of Technology, Gujarat, India
| | - Manish Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | | | - Rajender Kumar
- Department of Chemistry and Chemical Science, School of Physical and Material Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| |
Collapse
|
4
|
Alherz FA, El-Masry TA, Oriquat GA, Elekhnawy E, Al-Shaalan NH, Gaballa MMS, El Zahaby EI, El-Nagar MMF. Hesperidin Nanoformulation: A Potential Strategy for Reducing Doxorubicin-Induced Renal Damage via the Sirt-1/HIF1-α/VEGF/NF-κB Signaling Cascade. Pharmaceuticals (Basel) 2024; 17:1144. [PMID: 39338308 PMCID: PMC11435365 DOI: 10.3390/ph17091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hesperidin (Hes) functions as a strong antioxidant and anti-inflammatory to guard against damage to the heart, liver, and kidneys. Nevertheless, due to its restricted solubility and bioavailability, a delivery method is required for it to reach a specific organ. In this study, ion gelation was used to synthesize a chitosan/hesperidin nanoformulation. Numerous characterization techniques, such as zeta potential, particle size, XRD, TEM, SEM, and FTIR analyses, were used to corroborate the synthesis of hesperidin nanoparticles (Hes-NPs). Male albino mice were given a pretreatment dose of 100 mg/kg, PO, of Hes or Hes-NPs, which was administered daily for 14 days before the induction of doxorubicin nephrotoxicity on the 12th day. Kidney function (urea and creatinine levels) was measured. Lipid peroxidation (MDA) and antioxidant enzyme (CAT and SOD) activities were estimated. TNF-α, IL-1β, and VEGF content; histopathological examination of kidney tissue; and immunohistochemical staining of NF-κB, Caspase-3, BAX, Bcl-2, and TGF-β1 were evaluated. The gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were also considered. The results showed that pretreatment with Hes or Hes-NPs reduced doxorubicin's nephrotoxic effects, with Hes-NPs showing the greatest reduction. Kidney enzyme and MDA content were lowered in response to the Hes or Hes-NP pretreatment, whereas antioxidant enzyme activities were increased. Hes or Hes-NP pretreatment suppressed the levels of TNF-α, IL-1β, VEGF, NF-κB, Caspase-3, BAX, and TGF-β1; however, pretreatment increased Bcl-2 protein levels. Furthermore, the gene expressions of Sirt-1, Bcl-2, VEGF, HIF1-α, and Kim-1 were considerably higher with Hes-NP than with Hes treatment. These results suggest that Hes-NP treatment might reduce DOX-induced nephrotoxicity in mice via modulating Sirt-1/HIF1-α/VEGF/NF-κB signaling to provide antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Ghaleb A. Oriquat
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
5
|
Wieland LS, Shade S, Moffet I, Ansari A, Emadi A, Knott CL, Gorman EF, D’Adamo CR. Effects of Antioxidant Dietary Supplement Use upon Response to Cancer Treatment: A Scoping Review of Available Evidence. Nutr Cancer 2024; 76:902-913. [PMID: 39078314 PMCID: PMC11419937 DOI: 10.1080/01635581.2024.2385167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION The effects of antioxidant dietary supplements on response to biological therapies for cancer is unknown. We conducted a scoping review of the available systematic review evidence on this question. METHODS AND ANALYSIS We searched six databases from inception to August 19, 2022 for systematic reviews of randomized controlled trials of antioxidant dietary supplements used by patients receiving curative chemotherapy, radiotherapy, or other biological therapy for cancer and assessing the impact of supplements on survival, treatment response, or disease progression. We focused on results from reviews at high or moderate AMSTAR-2 quality. Records were selected, data extracted, and AMSTAR-2 ratings assessed independently by two authors. RESULTS We found 24 systematic reviews with relevant evidence. Reviews were heterogenous in cancers, treatments, and antioxidant dietary supplements assessed. Conclusions across reviews were mixed, ranging from negative to no apparent difference to positive, but always with caveats about the limited size and quality of the evidence. One review was rated 'moderate' on AMSTAR-2; it included one small trial of vitamin C and formed no firm conclusions. CONCLUSIONS We did not find reliable systematic review evidence on the effects of antioxidant dietary supplements upon therapies for cancer. More research is necessary to inform clinical recommendations.
Collapse
Affiliation(s)
- L. Susan Wieland
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore MD
- Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sydney Shade
- Geisinger Commonwealth School of Medicine, Scranton PA
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD
| | - Ilana Moffet
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor MI
| | - Amir Ansari
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD
| | - Ashkan Emadi
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD
- Department of Medical Oncology, West Virginia University School of Medicine, Morgantown, WV
- West Virginia University Cancer Institute, Morgantown, WV
| | - Cheryl L. Knott
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore MD
- Department of Behavioral and Community Health, University of Maryland, College Park MD
| | - Emily F. Gorman
- Health Sciences and Human Services Library, University of Maryland, Baltimore MD
| | - Christopher R. D’Adamo
- Department of Family and Community Medicine, Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore MD
| |
Collapse
|
6
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Okamoto T, Wada H. Exploring the Potential Use of Natural Products Together with Alkalization in Cancer Therapy. Pharmaceutics 2024; 16:787. [PMID: 38931908 PMCID: PMC11207558 DOI: 10.3390/pharmaceutics16060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer treatment is a significant focus in medicine, owing to the increasing global incidence of cancers. Patients with advanced cancers that do not respond to conventional therapies have limited options and an unfavorable prognosis. Consequently, researchers are investigating complementary approaches to conventional treatments. One such approach is alkalization therapy, which aims to neutralize the acidic tumor microenvironment (TME) by increasing its pH level. The acidic TME promotes inflammation, tumor progression, and drug resistance. Alkalization therapy has been demonstrated to be effective for various cancers. In addition, natural products, such as triterpenoids, parthenolides, fulvic acid, Taxus yunnanensis, and apple pectin have the potential to alleviate symptoms, maintain physical fitness, and improve treatment outcomes of cancer patients through their anti-inflammatory, antioxidant, and anticancer properties. In this review, we focus on the effects of alkalization therapy and natural products on cancer. Furthermore, we present a case series of advanced cancer patients who received alkalization therapy and natural products alongside standard treatments, resulting in long-term survival. We posit that alkalization therapy together with supplementation with natural products may confer benefits to cancer patients, by mitigating the side effects of chemotherapy and complementing standard treatments. However, further research is warranted to validate these clinical findings.
Collapse
Affiliation(s)
- Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| |
Collapse
|
7
|
Kim JA, Lee JK, Lee SY. Serum trace elements during treatment in pancreatic cancer patients and their associations with cancer prognosis. Clin Nutr 2024; 43:1459-1472. [PMID: 38714150 DOI: 10.1016/j.clnu.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND & AIMS In this study, we assessed serum trace element concentrations in patients with pancreatic cancer and compared the results to those of healthy controls and patients with chronic pancreatitis. We evaluated the association between trace element concentrations during cancer treatment and the risk of cancer progression and mortality in pancreatic cancer patients. METHODS A retrospective cohort study was conducted at a tertiary center in Korea. Serum trace element concentrations of cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) were measured at diagnosis using an inductively coupled plasma-mass spectrometry in 124 patients with pancreatic cancer, 50 patients with chronic pancreatitis, and 120 healthy controls. Trace elements were measured after a median of 282.5 (95% confidence interval [CI], 224.0-326.5) days from treatment initiation to assess changes in trace element concentrations during treatment. RESULTS Serum Co concentrations were significantly higher in patients with chronic pancreatitis and pancreatic cancer compared to healthy controls, while serum Se concentrations were significantly lower. During treatment, serum concentrations of Cu, Se, and Zn significantly decreased in patients with pancreatic cancer. During the follow-up (median 152.5; 95% CI, 142.8-160.0 months), 85.5% of patients experienced progression or relapse, and 84.7% of patients died. Patients with decreased Se and Zn concentrations during treatment had a higher mortality (hazard ratio [HR], 2.10; 95% CI, 1.31-3.38; P = 0.0020 for Se; HR, 1.72; 95% CI, 1.06-2.79; P = 0.0269 for Zn) compared to those with unchanged or increased trace element concentrations during treatment. Patients with a greater reduction in Zn concentrations during treatment had a higher mortality than those with a smaller reduction (HR, 1.59; 95% CI, 1.01-2.52; P = 0.0483). Patients whose Zn status changed from normal to deficient during treatment had an increased mortality (HR, 1.76; 95% CI, 1.16-2.67, P = 0.0084). Patients with multiple (≥2) trace element deficiencies after treatment had poorer outcomes than those with no or single trace element deficiency. CONCLUSIONS This study revealed that decreases in Se and Zn concentrations during cancer treatment were associated with adverse outcomes in terms of cancer progression and mortality in patients with pancreatic cancer. Further prospective investigations are recommended.
Collapse
Affiliation(s)
- Jee Ah Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea; Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.
| |
Collapse
|
8
|
Balakina AA, Amozova VI, Prikhodchenko TR, Stupina TS, Mishchenko DV. Effect of Pyridoxine Derivative B6NO on Transcription Factor Nrf2 Activity and Cytotoxic Properties of Doxorubicin In Vitro. Bull Exp Biol Med 2024; 176:687-696. [PMID: 38733479 DOI: 10.1007/s10517-024-06091-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 05/13/2024]
Abstract
The effect of a new pyridoxine derivative B6NO on doxorubicin cytotoxicity and Nrf2-dependent cellular processes in vitro was studied. Antioxidant B6NO enhances the cytotoxic effect of doxorubicin on tumor cells, which is associated with G2/M cell division arrest and an increase in activity of proapoptotic enzyme caspase-3. The antioxidant promotes intracellular accumulation and nuclear translocation of Nrf2 transcription factor in non-tumor and tumor cells. In non-tumor cells, B6NO increases the expression of antioxidant system proteins and reduces ROS generation in the presence of doxorubicin. In tumor cells, no activation of Nrf2-dependent processes occurs under the action of the antioxidant. Our findings demonstrate the prospect of further studies of pyridoxine derivatives as antioxidants to reduce adverse reactions during chemotherapy.
Collapse
Affiliation(s)
- A A Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
| | - V I Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - T R Prikhodchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - T S Stupina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| | - D V Mishchenko
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia
| |
Collapse
|
9
|
Ying Y, Hao W. Corrigendum: Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review. Front Immunol 2024; 14:1361355. [PMID: 38264646 PMCID: PMC10804138 DOI: 10.3389/fimmu.2023.1361355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2023.1147641.].
Collapse
Affiliation(s)
- Yang Ying
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wu Hao
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Yamanobe H, Yamamoto K, Kishimoto S, Nakai K, Oseko F, Yamamoto T, Mazda O, Kanamura N. Anti-Inflammatory Effects of β-Cryptoxanthin on 5-Fluorouracil-Induced Cytokine Expression in Human Oral Mucosal Keratinocytes. Molecules 2023; 28:molecules28072935. [PMID: 37049698 PMCID: PMC10095812 DOI: 10.3390/molecules28072935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Oral mucositis is a typical adverse effect of chemotherapy, causing oral pain that significantly reduces the patient’s quality of life. β-cryptoxanthin (β-cry) is a carotenoid abundant in citrus fruits with antioxidant and anti-inflammatory effects. However, the β-cry effect on oral mucositis remains unclear. We investigated the effects of 5-fluorouracil (5-FU) and β-cry on human normal oral mucosal keratinocytes (hOMK). hOMK was seeded on a culture plate and cultured with 5-FU and β-cry. The cell number, mRNA expression of inflammatory cytokines and matrix metalloproteinases (MMPs), and production of inflammatory cytokines in hOMK were evaluated. Additionally, the cell count and inflammatory cytokine production were analyzed when hOMK was co-stimulated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in addition to 5-FU. The numbers of hOMK significantly reduced with 5-FU stimulation, whereas it increased with β-cry treatment. mRNA expression of interleukin (IL)-6, IL-8, metalloproteinase (MMP)-2, and MMP-9 and protein production of IL-6 and IL-8 in hOMK were augmented on 5-FU stimulation. Simultaneously, β-cry treatment significantly suppressed IL-8 and MMP-9 mRNA expression, and IL-8 production was induced on 5-FU stimulation. Co-stimulation with P. gingivalis LPS and 5-FU enhanced IL-6 and IL-8 production in hOMK. β-cry could enhance cell proliferation and suppress 5-FU-induced expression of inflammatory cytokines and MMP in hOMK. Thus, β-cry can alleviate the symptoms of chemotherapy-induced oral mucositis, and its combination with oral care is effective in managing oral mucositis.
Collapse
|
11
|
Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: A review. Front Immunol 2023; 14:1147641. [PMID: 36969152 PMCID: PMC10035574 DOI: 10.3389/fimmu.2023.1147641] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Polysaccharides extracted from natural resources have attracted extensive attention in biomedical research and pharmaceutical fields, due to their medical values in anti-tumor, immunomodulation, drug delivery, and many other aspects. At present, a variety of natural polysaccharides have been developed as adjuvant drugs in clinical application. Benefit from their structural variability, polysaccharides have great potential in regulating cellular signals. Some polysaccharides exert direct anti-tumor effects by inducing cell cycle arrest and apoptosis, while the majority of polysaccharides can regulate the host immune system and indirectly inhibit tumors by activating either non-specific or specific immune responses. As the essential of microenvironment in the process of tumor development has been gradually revealed, some polysaccharides were found to inhibit the proliferation and metastasis of tumor cells via tumoral niche modulation. Here, we focused on natural polysaccharides with biomedical application potential, reviewed the recent advancement in their immunomodulation function and highlighted the importance of their signaling transduction feature for the antitumor drug development.
Collapse
Affiliation(s)
- Yang Ying
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wu Hao
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Nazam N, Jabir NR, Ahmad I, Alharthy SA, Khan MS, Ayub R, Tabrez S. Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:274. [PMID: 37259418 PMCID: PMC9962268 DOI: 10.3390/ph16020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a global health concern with a dynamic rise in occurrence and one of the leading causes of mortality worldwide. Among different types of cancer, ovarian cancer (OC) is the seventh most diagnosed malignant tumor, while among the gynecological malignancies, it ranks third after cervical and uterine cancer and sadly bears the highest mortality and worst prognosis. First-line treatments have included a variety of cytotoxic and synthetic chemotherapeutic medicines, but they have not been particularly effective in extending OC patients' lives and are associated with side effects, recurrence risk, and drug resistance. Hence, a shift from synthetic to phytochemical-based agents is gaining popularity, and researchers are looking into alternative, cost-effective, and safer chemotherapeutic strategies. Lately, studies on the effectiveness of phenolic acids in ovarian cancer have sparked the scientific community's interest because of their high bioavailability, safety profile, lesser side effects, and cost-effectiveness. Yet this is a road less explored and critically analyzed and lacks the credibility of the novel findings. Phenolic acids are a significant class of phytochemicals usually considered in the nonflavonoid category. The current review focused on the anticancer potential of phenolic acids with a special emphasis on chemoprevention and treatment of OC. We tried to summarize results from experimental, epidemiological, and clinical studies unraveling the benefits of various phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid) in chemoprevention and as anticancer agents of clinical significance.
Collapse
Affiliation(s)
- Nazia Nazam
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur 613403, Tamil Nadu, India
| | - Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saif A. Alharthy
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Technology and Innovation Unit, Department of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Wang X, Chan YS, Wong K, Yoshitake R, Sadava D, Synold TW, Frankel P, Twardowski PW, Lau C, Chen S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers (Basel) 2023; 15:701. [PMID: 36765659 PMCID: PMC9913787 DOI: 10.3390/cancers15030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer progression and mortality remain challenging because of current obstacles and limitations in cancer treatment. Continuous efforts are being made to explore complementary and alternative approaches to alleviate the suffering of cancer patients. Epidemiological and nutritional studies have indicated that consuming botanical foods is linked to a lower risk of cancer incidence and/or improved cancer prognosis after diagnosis. From these observations, a variety of preclinical and clinical studies have been carried out to evaluate the potential of botanical food products as anticancer medicines. Unfortunately, many investigations have been poorly designed, and encouraging preclinical results have not been translated into clinical success. Botanical products contain a wide variety of chemicals, making them more difficult to study than traditional drugs. In this review, with the consideration of the regulatory framework of the USFDA, we share our collective experiences and lessons learned from 20 years of defining anticancer foods, focusing on the critical aspects of preclinical studies that are required for an IND application, as well as the checkpoints needed for early-phase clinical trials. We recommend a developmental pipeline that is based on mechanisms and clinical considerations.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yin S. Chan
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Kelly Wong
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Ryohei Yoshitake
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - David Sadava
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Timothy W. Synold
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Paul Frankel
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Przemyslaw W. Twardowski
- Department of Urologic Oncology, Saint John’s Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Clayton Lau
- Department of Surgery, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shiuan Chen
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
14
|
Das S, Rahaman A, Nath R, Das Talukdar A, Nath D, Bhattacharjee S, Mandal DP, Choudhury MD, Das D, Das G, Patra JK. Effect of acetone fraction of Ottelia alismoides on the G2/M cell cycle arrest and apoptosis in the human carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115729. [PMID: 36162544 DOI: 10.1016/j.jep.2022.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The North-eastern parts of India have immense therapeutic floras, Ottelia alismoides is an aquatic plant that has been in use for a long time in traditional medicine for treating diseases like cancer, tuberculosis, diabetes, febrifuge, hemorrhoids, and rubefacient. In lung and skin carcinoma cells with a high rate of proliferation and metastasis including drug resistance and non-specific target activity, generates important challenges towards their treatment strategy. Thus, finding novel therapeutic targets to treat lung and skin cancer progression is essential to enhance the patients' survival with treatment. AIM OF THE STUDY The purpose of this study was to evaluate the apoptotic potential of acetone extract of O. alismoides (L.) Pers. (OA-AC) and to identify the compounds responsible for this effect, HRLC-MS-QTOF analysis of the extract has been undertaken along with in-silico molecular docking analysis of the identified compounds. MATERIALS AND METHODS A549 and A431 cells were treated with acetone extract of O. alismoides (OA-AC) at 24 h and 48 h exposure and cell cycle phase distribution was evaluated and also apoptosis induction activity was evaluated by OA-EtBr staining and Mitochondrial outer membrane potential assay. Western blotting was performed for the evaluation of apoptotic protein expression. At last, the HR-LCMS of OA-AC was analyzed to identify the compounds responsible for the apoptotic activity of the extract. RESULTS The cell cycle phase distribution analysis in A549 and A431 cells at 24hrs exposure with 10 μg/mL and 25 μg/mL of OA-AC showed a potent arrest or blockage at the G2/M phase of the cell cycle with reduced expression of cyclin B and p-Cdc2. At 48 h exposure, apoptosis was observed in these cancer cells with elevated expression of Bax, p21 and cleaved caspase 3 and reduced expression of the Bcl2. CONCLUSION AO-EtBr staining of these cancer cells reveals that the death induced by OA-AC was apoptotic in nature with depolarization of mitochondrial membrane due to loss or damage of the mitochondrial membrane. The HRLC-MS-QTOF analysis of OA-AC depicted 14 major isolable compounds and molecular docking analysis displayed 4 compounds that might act as an inhibitor of cyclin B for G2/M phase arrest that leads to apoptotic induction in the cells.
Collapse
Affiliation(s)
- Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Kolkata, 700126, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India.
| | - Deepa Nath
- Department of Botany, Gurucharan College, Silchar, 788007, India
| | | | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Kolkata, 700126, India
| | | | - Dipika Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
15
|
Apoptotic Cell Death via Activation of DNA Degradation, Caspase-3 Activity, and Suppression of Bcl-2 Activity: An Evidence-Based Citrullus colocynthis Cytotoxicity Mechanism toward MCF-7 and A549 Cancer Cell Lines. SEPARATIONS 2022. [DOI: 10.3390/separations9120411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The objectives of this study are to investigate the cytotoxic effect of different Citrullus colocynthis extracts on breast and lung cancer cell lines using flow cytometry to gain mechanistic insights. C. colocynthis was extracted sequentially using the Soxhlet method. We first tested the plant extracts’ cytotoxicity on non-malignant L929 cells and cancerous breast (MCF-7) and lung (A549) cell lines. We observed that the IC50 of the methanol extract on the viability of MCF-7 and A549 cell lines was 81.08 µg/mL and 17.84 µg/mL, respectively, using the MTT assay. The aqueous and methanol extracts were less toxic when tested against the non-cancerous L929 cell line, with IC50 values of 235.48 µg/mL and 222.29 µg/mL, respectively. Then, using flow cytometry, we investigated the underlying molecular pathways with Annexin-V, Anti-Bcl-2, Caspase-3, and DNA fragmentation (TUNEL) assays. Flow cytometric and molecular marker analyses revealed that the methanol extract activated caspase-3 and inhibited Bcl-2 protein, causing early and late apoptosis, as well as cell death via DNA damage in breast and lung cancer cells. These findings indicate that the methanol extract of C. colocynthis is cytotoxic to breast and lung cancer cell lines. The total phenolic and flavonoid content analysis results showed the methanolic extract of C. colocynthis has a concentration of 326.25 μg GAE/g dwt and 274.61 μg QE/g dwt, respectively. GC-MS analysis of the methanol extract revealed phytochemicals relevant to its cytotoxicity.
Collapse
|
16
|
O’Brien K, Ried K, Binjemain T, Sali A. Integrative Approaches to the Treatment of Cancer. Cancers (Basel) 2022; 14:5933. [PMID: 36497414 PMCID: PMC9740147 DOI: 10.3390/cancers14235933] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
A significant proportion of cancer patients use forms of complementary medicine or therapies. An integrative approach to cancer management combines conventional medicine with evidence-based complementary medicines/therapies and lifestyle interventions, for the treatment and prevention of disease and the optimisation of health. Its basis is a holistic one; to treat the whole person, not just the disease. It makes use of adjunct technologies which may assist the clinician in diagnosis of early carcinogenesis and monitoring of treatment effectiveness. Many factors contribute to the development of cancer including some which are largely modifiable by the patient and which oncologists may be in a position to advise on, such as stress, poor nutrition, lack of physical activity, poor sleep, and Vitamin D deficiency. An integrative approach to addressing these factors may contribute to better overall health of the patient and better outcomes. Evidence-based complementary medicine approaches include the use of supplements, herbal medicine, various practices that reduce stress, and physical therapies. Individualised to the patient, these can also help address the symptoms and signs associated with cancer and its orthodox treatment.
Collapse
Affiliation(s)
- Kylie O’Brien
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Karin Ried
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| | - Taufiq Binjemain
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Hawthorn, VIC 3122, Australia
| |
Collapse
|
17
|
Mihai RA, Acurio Criollo OS, Quishpe Nasimba JP, Melo Heras EJ, Galván Acaro DK, Landazuri Abarca PA, Florescu LI, Catana RD. Influence of Soil Nutrient Toxicity and Deficiency from Three Ecuadorian Climatic Regions on the Variation of Biological, Metabolic, and Nutritional Properties of Moringa oleifera Lam. TOXICS 2022; 10:661. [PMID: 36355952 PMCID: PMC9696296 DOI: 10.3390/toxics10110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Moringa oleifera Lam. contains numerous essential constituents found in all plant parts (leaves, pods, and seeds). From all its edible parts, the leaf represents an effective remedy with high potential for medicinal applications. Ecuador is part of the new promising cultivation areas for Moringa, and therefore our study is emphasized to determine the influence of soil nutrition, toxicity (excess), and deficiency, from three main areas of this country, correlated with its climatic characteristics, on the mineral components, bioactive compounds' synthesis, and antioxidant capacity of Moringa. Different analyses were performed in soil and especially leaf samples for phytochemical content, antioxidant activity, calcium, protein, and vitamin C determination to identify the relationship between soil nutrients, abiotic conditions, and the therapeutic potential of this species cultivated in Ecuador. The obtained values using methods such as DPPH, FRAP, and ABTS showed a high antioxidant capacity of the leaves from the Coastal Ecuadorian region, related with total phenolic compounds' content (through the Folin-Ciocalteu method) and flavonoids in samples, with results obtained under the positive influence of high soil nutrients such as Ca, Mg, Mn, and Fe. We can conclude that M. oleifera from the coastal area of Ecuador presents the right environmental and soil conditions to positively influence its mineral and phytochemical content, making it suitable for incorporation into foods and medicines to solve the nutritional and medical problems in Ecuador and worldwide.
Collapse
Affiliation(s)
- Raluca A. Mihai
- CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Osmar S. Acurio Criollo
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Jean P. Quishpe Nasimba
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Erly J. Melo Heras
- Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y, Sangolqui 171103, Ecuador
| | - Dayana K. Galván Acaro
- IASA 1, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí 171103, Ecuador
| | - Pablo A. Landazuri Abarca
- IASA 1, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas—ESPE, Av. General Rumiñahui s/n y Ambato, Sangolquí 171103, Ecuador
| | - Larisa I. Florescu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Rodica D. Catana
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
18
|
Impact of Co-Administration of N-Acetylcysteine and Vitamin E on Cyclophosphamide-Induced Ovarian Toxicity in Female Rats. J Toxicol 2022; 2022:9073405. [PMID: 36051383 PMCID: PMC9427260 DOI: 10.1155/2022/9073405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclophosphamide is used to treat various types of cancer. However, it can reduce ovarian function and fertility rate. The current study was done to compare the effects of N-acetylcysteine and vitamin E on cyclophosphamide-induced ovarian damage. Thirty-five rats were randomly divided into 5 groups: control (C), cyclophosphamide (CP, 200 mg/kg single dose intraperitoneally), T1 (cyclophosphamide + vitamin E at 200 mg/kg), T2 (cyclophosphamide + 200 mg/kg N-acetylcysteine), and T3 (cyclophosphamide + N-acetylcysteine and vitamin E at 200 mg/kg). The main measurements included total antioxidant capacity (TAC), glutathione peroxidase (GPx), malondialdehyde (MDA), interleukin 8 (IL-8), tumor necrosis factor-α (TNFα), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estrogen (ES). Except for the C and T3 groups, the other groups lost weight. A significantly lower concentration of MDA was observed in the T3 group. However, TAC was substantially increased compared to the other groups. The level of GPx in the S group was significantly reduced compared to all groups. Proinflammatory markers (IL-8 and TNFα) reached their lowest serum level in the T3 group, with a statistically significant difference compared to that of the S group. In addition, there were no significant differences in the means of primary, secondary, and graph and atretic follicles between the T3 and C group. On the other hand, a decrease in FSH and LH was observed while an increase in ES was seen in the T3 group compared to the S group. This study revealed that N-acetylcysteine and vitamin E coadministration could significantly decrease the side effects of cyclophosphamide, especially in ovarian tissue.
Collapse
|
19
|
Li Q, Tan Q, Ma Y, Gu Z, Chen S. Myricetin Suppresses Ovarian Cancer In Vitro by Activating the p38/Sapla Signaling Pathway and Suppressing Intracellular Oxidative Stress. Front Oncol 2022; 12:903394. [PMID: 35646711 PMCID: PMC9130763 DOI: 10.3389/fonc.2022.903394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is a common malignancy with a mortality and effective, efficient treatments are urgently needed. Myricetin (Myr) is a flavonoid with antioxidant and anticancer properties. Here, we assessed Myr's toxicity on the non-tumor cell line, IOSE-80 and the mechanism by which it suppresses proliferation, migration, and invasion of ovarian cancer SKOV3 cells. The effects of Myr on SKOV3 cells were assessed using CCK-8, oxidative stress, wound healing, Transwell, Hoechst 33258 staining, and western blot assays. Our data show that although Myr was not toxic against IOSE-80 cells for a range of concentrations 0-40μM, it suppressed SKOV3 cell proliferation, migration, and invasion and enhanced apoptosis. Mechanistically, it activated the p38/Sapla signaling pathway, thereby inhibiting oxidative stress and reducing the level of ROS in tumor cells. Our data show that Myr suppresses ovarian cancer cells in vitro and suggests Myr as a candidate agent against ovarian cancer.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Qi Tan
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yangfei Ma
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zehui Gu
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Suxian Chen
- Department of Pathology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
20
|
Qi Q, Wang Q, Wang Z, Gao W, Gong X, Wang L. Visnagin inhibits cervical cancer cells proliferation through the induction of apoptosis and modulation of PI3K/AKT/mTOR and MAPK signaling pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
21
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
22
|
Zhang T, Abdelaziz MM, Cai S, Yang X, Aires DJ, Forrest ML. Hyaluronic acid carrier-based photodynamic therapy for head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther 2022; 37:102706. [PMID: 34954388 PMCID: PMC8898305 DOI: 10.1016/j.pdpdt.2021.102706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional photosensitizers for photodynamic therapy (PDT) typically have wide tissue distribution and poor water solubility. A hyaluronic acid (HA) polymeric nanoparticle with specific lymphatic uptake and highly water solubility was developed to deliver pyropheophorbide-a (PPa) for locally advanced head and neck squamous cell carcinoma (HNSCC) treatment. METHODS AND RESULTS PPa was chemically conjugated to the HA polymeric nanoparticle via an adipic acid dihydrazide (ADH) linker. The conjugates were injected subcutaneously in a region near the tumor. Near-infrared (NIR) imaging was used to monitor distribution, and diode laser was used to activate PPa. The singlet oxygen generation efficiency of PPa was not affected by conjugation to HA nanoparticles at a PPa loading degree of 1.89 w.t.%. HA-ADH-PPa inhibited human HNSCC MDA-1986 cell growth only when photo-irradiation was applied. After HA-ADH-PPa treatment and radiation, NU/NU mice bearing human HNSCC MDA-1986 tumors showed reduced tumor growth and significantly enhanced survival time compared with an untreated group (p < 0.05). CONCLUSIONS These results demonstrate that HA-ADH-PPa could be useful for in vivo locoregional photodynamic therapy of HNSCC.
Collapse
Affiliation(s)
- Ti Zhang
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | - Shuang Cai
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - Xinmai Yang
- Department of Bioengineering, The University of Kansas, Lawrence, KS 66045, USA
| | - Daniel J. Aires
- Division of Dermatology, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA,HylaPharm LLC, Lawrence, KS 66047, USA
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA,Author for correspondence Phone: 1-785-864-4388,
| |
Collapse
|
23
|
Moustafa I, Saka S, Viljoen M, Oosthuizen F. Vitamin E and levocarnitine as prophylaxis against doxorubicin-induced cardio toxicity in the adult cancer patient: A review. J Oncol Pharm Pract 2022; 28:1388-1399. [PMID: 35139690 DOI: 10.1177/10781552221078284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Doxorubicin, a component of the anthracycline group, is a highly effective in the treatment of hematologic and solid malignancies. Because of the cardiotoxic adverse effects, use is limited. Antioxidants may negate this anthracycline-induced cardiotoxicity, although the literature is not conclusive with regards to the cardioprotective benefits of antioxidants. This review assessed and mapped evidence of the efficacy of vitamin E and levocarnitine against doxorubicin-induced cardiotoxicity in adult cancer patients. DATA SOURCES This review was based on the Arksey and O'Malley methodology. Potentially relevant literature in English published between January 1960 and April 2021 was identified through a database search. Oxford Quality Scoring System and AMSTR2 were used to assess the quality of trials and systematic reviews respectively, as well as the risks of potential bias. DATA SUMMARY Nineteen of the 10 268 (0.2%) articles from the initial search were included in the final analysis (12 clinical trials and 7 systematic reviews). Vitamin E was included in seven prospective clinical trials. Levocarnitine was included in five clinical trials as an individual agent and a single trial as a combination treatment. No trials could be found investigating the combination of vitamin E and levocarnitine in humans. CONCLUSIONS This review found that levocarnitine trials showed some cardioprotective effects but the results from vitamin E trials were controversial and inconclusive. Most of the trials reviewed had some shortcomings. Further investigations are therefore needed to determine the efficacy of vitamin E and levocarnitine in preventing doxorubicin-induced cardiotoxicity in adult cancer patients.
Collapse
Affiliation(s)
- Iman Moustafa
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa.,48180King Abdulaziz Hospital, Ministry of the National Guard - Health Affairs, AlHasa, Saudi Arabia
| | - Sule Saka
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa.,Faculty of Pharmacy, 292081Olabisi Onabanjo University, Sagamu Campus, Nigeria
| | - Michelle Viljoen
- School of Pharmacy, 71859University of the Western Cape, Bellville, South Africa
| | - Frasia Oosthuizen
- School of Health Sciences, 72753University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Nan B, Zhao Z, Jiang K, Gu X, Li H, Huang X. Astaxanthine attenuates cisplatin ototoxicity in vitro and protects against cisplatin-induced hearing loss in vivo. Acta Pharm Sin B 2022; 12:167-181. [PMID: 35127378 PMCID: PMC8800030 DOI: 10.1016/j.apsb.2021.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023] Open
Abstract
Astaxanthine (AST) has important biological activities including antioxidant and anti-inflammatory effects that could alleviate neurological and heart diseases, but its role in the prevention of cisplatin-induced hearing loss (CIHL) is not yet well understood. In our study, a steady interaction between AST and the E3 ligase adapter Kelch-like ECH-associated protein 1, a predominant repressor of nuclear factor erythroid 2-related factor 2 (NRF2), was performed and tested via computer molecular docking and dynamics. AST protected against cisplatin-induced ototoxicity via NRF2 mediated pathway using quantitative PCR and Western blotting. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential revealed that AST reduced ROS overexpression and mitochondrial dysfunction. Moreover, AST exerted anti-apoptosis effects in mouse cochlear explants using immunofluorescence staining and HEI-OC1 cell lines using quantitative PCR and Western blotting. Finally, AST combined with poloxamer was injected into the middle ear through the tympanum, and the protection against CIHL was evaluated using the acoustic brain stem test and immunofluorescent staining in adult mice. Our results suggest that AST reduced ROS overexpression, mitochondrial dysfunction, and apoptosis via NRF2-mediated pathway in cisplatin-exposed HEI-OC1 cell lines and mouse cochlear explants, finally promoting cell survival. Our study demonstrates that AST is a candidate therapeutic agent for CIHL.
Collapse
|
25
|
Validation of a Short Food Frequency Questionnaire to Measure Dietary Intake of a Selection of Micronutrients in Oncology Patients Undergoing Systemic Therapy. Nutrients 2021; 13:nu13124557. [PMID: 34960111 PMCID: PMC8703338 DOI: 10.3390/nu13124557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary intake, specifically consumption of anti-inflammatory micronutrients, can play a role in both cancer initiation as well as the treatment-related outcomes experienced by patients receiving systemic cancer therapy. Increasing research is being conducted to determine whether micronutrient supplementation can aid in altering the tumor microenvironment (TME), reducing inflammatory side effects and immune-related adverse events (irAEs). However, further research pertaining to the adequacy of dietary micronutrient intake is indicated in the oncology cohort. Currently, no tool measuring dietary intakes of various micronutrients exists in the oncology population. In this study, a 21-item food frequency questionnaire (FFQ) measuring intakes of 14 different micronutrients was validated using diet history as the reference method in 112 oncology patients. Bland Altman plot and Passing Bablok regression analysis were conducted to determine agreement between the two methods. The results showed adequate agreement between FFQ and diet history for 12 nutrients including copper, iron, vitamins A, E, and D, alpha linolenic acid (ALA), long-chain omega 3 fatty acids (LC n3-FA), arginine, glutamic acid, isoleucine, leucine, and valine. This 21-item FFQ, which takes an average of 10 min to complete, can be utilized as a quick screening tool to determine adequacy for 12 different micronutrients in place of a diet history.
Collapse
|
26
|
Balakina A, Prikhodchenko T, Amozova V, Stupina T, Mumyatova V, Neganova M, Yakushev I, Kornev A, Gadomsky S, Fedorov B, Mishchenko D. Preparation, Antioxidant Properties and Ability to Increase Intracellular NO of a New Pyridoxine Derivative B6NO. Antioxidants (Basel) 2021; 10:1451. [PMID: 34573083 PMCID: PMC8465670 DOI: 10.3390/antiox10091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
In the case of various pathologies, an imbalance between ROS generation and the endogenous AOS can be observed, which leads to excessive ROS accumulation, intensification of LPO processes, and oxidative stress. For the prevention of diseases associated with oxidative stress, drugs with antioxidant activity can be used. The cytotoxic, antioxidant, and NO-donor properties of the new hybrid compound B6NO (di(3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridinium) salt of 2-(nitrooxy)butanedioic acid) were studied. It was determined that B6NO chelates iron ions by 94%, which indicates B6NO's ability to block the Fenton reaction. The hybrid compound B6NO inhibits the process of initiated lipid peroxidation more effectively than pyridoxine. It was shown that B6NO exhibits antioxidant properties by decreasing ROS concentration in normal cells during the oxidative stress induction by tert-Butyl peroxide. At the same time, the B6NO antioxidant activity on tumor cells was significantly lower. B6NO significantly increases the intracellular nitrogen monoxide accumulation and showed low cytotoxicity for normal cells (IC50 > 4 mM). Thus, the results indicate a high potential of the B6NO as an antioxidant compound.
Collapse
Affiliation(s)
- Anastasia Balakina
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Tatyana Prikhodchenko
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Vera Amozova
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Tatyana Stupina
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Victoria Mumyatova
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Margarita Neganova
- Institute of Physiologically Active Compounds, RAS, 142432 Chernogolovka, Russia;
| | - Ilya Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, RAS, 119991 Moscow, Russia;
| | - Alexey Kornev
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Svyatoslav Gadomsky
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Boris Fedorov
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
| | - Denis Mishchenko
- Institute of Problems of Chemical Physics, RAS, 142432 Chernogolovka, Russia; (T.P.); (V.A.); (T.S.); (V.M.); (A.K.); (S.G.); (B.F.); (D.M.)
- Scientific and Educational Center in Chernogolovka of Moscow Region State University, 141014 Mytishi, Russia
| |
Collapse
|
27
|
Sur D, Gorzo A, Sabarimurugan S, Krishnan SM, Lungulescu CV, Volovat SR, Burz C. A Comprehensive Review of the Use of Antioxidants and Natural Products in Cancer Patients Receiving Anticancer Therapy. Anticancer Agents Med Chem 2021; 22:1511-1522. [PMID: 34488590 DOI: 10.2174/1871520621666210901100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Cancer is the leading cause of mortality and morbidity worldwide. The side effects of cancer treatment affect the quality of life. Cancer patients search for antioxidant dietary supplements and natural products during or after conventional cancer treatment for the alleviation of side effects, improvement of the benefits of treatment, and promotion of well-being. However, the efficacy and safety of these products remain controversial; moreover, previous data do not support the standardized use of those alternative treatments in clinics. The current study reviewed the manuscripts reporting the administration of antioxidants and natural products during cancer treatment and revised preclinical and clinical studies on various types of cancer. Most of the positive results were obtained from experimental animal models; however, human clinical studies are discouraging in this regard. Therefore, further precise and distinguishable studies are required regarding antioxidant dietary supplementation. Future studies are also needed to clarify dietary supplements' mechanism of action and pharmacokinetics in a suitable cancer patient population that will benefit the therapeutic regimens. Despite the popularity of dietary supplements, clinicians and patients should always consider their potential benefits and risks. Patients should discuss with their physician before taking any dietary antioxidant supplements or natural products.
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| | - Shanthi Sabarimurugan
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009. Australia
| | - Saravana Murali Krishnan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046. India
| | | | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași. Romania
| | - Claudia Burz
- Department of Medical Oncology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca. Romania
| |
Collapse
|
28
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
29
|
Agnes JP, Santos VWD, das Neves RN, Gonçalves RM, Delgobo M, Girardi CS, Lückemeyer DD, Ferreira MDA, Macedo-Júnior SJ, Lopes SC, Spiller F, Gelain DP, Moreira JCF, Prediger RD, Ferreira J, Zanotto-Filho A. Antioxidants Improve Oxaliplatin-Induced Peripheral Neuropathy in Tumor-Bearing Mice Model: Role of Spinal Cord Oxidative Stress and Inflammation. THE JOURNAL OF PAIN 2021; 22:996-1013. [PMID: 33774154 DOI: 10.1016/j.jpain.2021.03.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1β and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.
Collapse
Affiliation(s)
- Jonathan Paulo Agnes
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Vitória Wibbelt Dos Santos
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Rosângela Mayer Gonçalves
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marina Delgobo
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carolina Saibro Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Débora Denardin Lückemeyer
- Laboratório de Farmacologia Experimental, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Marcella de Amorim Ferreira
- Laboratório de Farmacologia Experimental, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Sérgio José Macedo-Júnior
- Laboratório de Farmacologia Experimental, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Samantha Cristiane Lopes
- Laboratório Experimental de Doenças Neurodegenerativas, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fernando Spiller
- Laboratório de Imunobiologia (Lidi), Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquimica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rui Daniel Prediger
- Laboratório Experimental de Doenças Neurodegenerativas, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Juliano Ferreira
- Laboratório de Farmacologia Experimental, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
30
|
Understanding the Therapeutic Potential of Ascorbic Acid in the Battle to Overcome Cancer. Biomolecules 2021; 11:biom11081130. [PMID: 34439796 PMCID: PMC8392841 DOI: 10.3390/biom11081130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, a fatal disease, is also one of the main causes of death worldwide. Despite various developments to prevent and treat cancer, the side effects of anticancer drugs remain a major concern. Ascorbic acid is an essential vitamin required by our bodies for normal physiological function and also has antioxidant and anticancer activity. Although the body cannot synthesize ascorbic acid, it is abundant in nature through foods and other natural sources and also exists as a nutritional food supplement. In anticancer drug development, ascorbic acid has played an important role by inhibiting the development of cancer through various mechanisms, including scavenging reactive oxygen species (ROS), selectively producing ROS and encouraging their cytotoxicity against tumour cells, preventing glucose metabolism, serving as an epigenetic regulator, and regulating the expression of HIF in tumour cells. Several ascorbic acid analogues have been produced to date for their anticancer and antioxidant activity. The current review summarizes the mechanisms behind ascorbic acid's antitumor activity, presents a compilation of its derivatives and their biological activity as anticancer agents, and discusses delivery systems such as liposomes, nanoparticles against cancer, and patents on ascorbic acid as anticancer agents.
Collapse
|
31
|
Adefisan AO, Owumi SE, Soetan KO, Adaramoye OA. Chloroform extract of Calliandra portoricensis inhibits tumourigenic effect of N-methyl- N-nitrosourea and benzo(a)pyrene in breast experimental cancer. Drug Chem Toxicol 2021; 45:2424-2438. [PMID: 34325589 DOI: 10.1080/01480545.2021.1957556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Calliandra portoricensis (C. portoricensis) is used in herbal homes in Nigeria to manage breast diseases. We investigated the anti-tumourigenic effects of chloroform extract of C. portoricensis (CP) in breast experimental cancer induced by N-methyl-N-nitrosourea (NMU) and benzo-(a)-pyrene (BaP). Fifty-six female rats were assigned into seven equal groups: Group 1 served as control, group 2 received NMU and BaP (50 mg/kg, each), groups 3 and 4 received [NMU + BaP] and treated with CP at 50 and 100 mg/kg, respectively. Group 5 received CP (100 mg/kg), group 6 received [NMU + BaP] and vincristine (0.5 mg/kg), while group 7 received vincristine (0.5 mg/kg). The NMU and BaP (i.p) were dissolved in normal saline and corn oil, respectively. The CP (oral) and vincristine (i.p) were given thrice and twice per week, respectively for 10 weeks. The [NMU + BaP] intoxication significantly decreased body weight gain by 32% while organo-somatic weight of mammary gland increased by 37%. Also, [NMU + BaP] decreased the activities of mammary catalase, glutathione-s-transferase, glutathione peroxidase, superoxide dismutase and total sulphurhydryl by 34%, 31%, 35%, 35% and 33%, respectively. The [NMU + BaP] increased inflammatory and oxidative stress markers; nitrite, lipid peroxidation and myeloperoxidase by 62%, 57% and 361%, respectively. Strong expression of BCL-2, IL-6, COX 2, β-catenin and iNOS in [NMU + BaP]-administered rats were observed. Histology revealed glands with malignant epithelial cells and high nucleocytoplasm in [NMU + BaP] rats. Treatment with CP attenuated inflammation, apoptosis and restored cyto-architecture of mammary gland. Overall, CP abates mammary tumourigenesis by targeting cellular pathways of inflammation and apoptosis.
Collapse
Affiliation(s)
- Adedoyin O Adefisan
- Molecular Drug Metabolism and Toxicology Laboratories, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Kehinde O Soetan
- Department of Veterinary Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin A Adaramoye
- Molecular Drug Metabolism and Toxicology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
32
|
Alam W, Ullah H, Santarcangelo C, Di Minno A, Khan H, Daglia M, Arciola CR. Micronutrient Food Supplements in Patients with Gastro-Intestinal and Hepatic Cancers. Int J Mol Sci 2021; 22:8014. [PMID: 34360782 PMCID: PMC8347237 DOI: 10.3390/ijms22158014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
Colorectal carcinogenesis is the second most common cause of mortality across all types of malignancies, followed by hepatic and stomach cancers. Chemotherapy and radiotherapy are key approaches to treating cancer patients, but these carry major concerns, such as a high risk of side effects, poor accessibility, and the non-selective nature of chemotherapeutics. A number of natural products have been identified as countering various forms of cancer with fewer side effects. The potential impact of vitamins and minerals on long-term health, cognition, healthy development, bone formation, and aging has been supported by experimental and epidemiological studies. Successful treatment may thus be highly influenced by the nutritional status of patients. An insufficient diet could lead to detrimental effects on immune status and tolerance to treatment, affecting the ability of chemotherapy to destroy cancerous cells. In recent decades, most cancer patients have been taking vitamins and minerals to improve standard therapy and/or to decrease the undesirable side effects of the treatment together with the underlying disease. On the other hand, taking dietary supplements during cancer therapy may affect the effectiveness of chemotherapy. Thus, micronutrients in complementary oncology must be selected appropriately and should be taken at the right time. Here, the potential impact of micronutrients on gastro-intestinal and hepatic cancers is explored and their molecular targets are laid down.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (W.A.); (H.K.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (C.S.); (A.D.M.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
33
|
Kartini D, Taher A, Panigoro SS, Setiabudy R, Jusman SW, Haryana SM, Murdani A, Rustamadji P, Karisyah A, Rasyid SH. Melatonin effect on hypoxia inducible factor-1α and clinical response in patients with oral squamous cell carcinoma receiving neoadjuvant chemotherapy: A randomized controlled trial. J Carcinog 2021; 20:5. [PMID: 34429714 PMCID: PMC8335757 DOI: 10.4103/jcar.jcar_19_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Chemoresistance is a major issue in patients with locally advanced oral squamous cell carcinoma (OSCC). In this study, we evaluated the effectiveness of melatonin in conjunction with neoadjuvant chemotherapy (NC) on hypoxia-inducible factor-1α (HIF-1α) expression and clinical response in locally advanced OSCC patients. AIMS To study the effects of melatonin on HIF-1α expression and its effect on the clinical response of patients with locally advanced OSCC. SETTINGS AND DESIGN A randomized controlled trial was conducted, wherein patients were recruited from several hospitals in Jakarta, Indonesia. Patients were randomized into two groups using computerized block randomization. SUBJECTS AND METHODS Both groups were given NC, with treatment group receiving melatonin. Outcomes measured in this study were HIF-1α expression from tissue samples and clinical response based on the RECIST 1.1 criteria. Twenty-five patients completed the study protocol and were included in the data analysis. STATISTICAL ANALYSIS USED Shapiro-Wilk test was used to test the data normality. For data with normal distribution, we conducted an independent t-test to compare between the two groups. Data with abnormal distribution were analyzed using Mann-Whitney U-test. The mean difference between the two groups was analyzed using Shapiro-Wilk normality test. RESULTS Our study showed a significant decrease in HIF-1α expression in the melatonin group compared to the placebo group (P < 0.05, relative risk 3.08). However, the degree of reduction of HIF-1α expression in the melatonin group did not differ significantly (P = 0.301). CONCLUSIONS Our study showed that melatonin administered at 20 mg/day could reduce the expression of HIF-1α and residual tumor percentage, but did not affect the clinical response in OSCC patients.
Collapse
Affiliation(s)
- Diani Kartini
- Oncology Division, Department of Surgery, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Akmal Taher
- Department of Urology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sonar Soni Panigoro
- Oncology Division, Department of Surgery, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Widia Jusman
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abdullah Murdani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Primariadewi Rustamadji
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Adlina Karisyah
- Oncology Division, Department of Surgery, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sani Hadiyan Rasyid
- Oncology Division, Department of Surgery, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
34
|
Mohd Yusof FF, Yaacob JS, Osman N, Ibrahim MH, Wan-Mohtar WAAQI, Berahim Z, Mohd Zain NA. Shading Effects on Leaf Gas Exchange, Leaf Pigments and Secondary Metabolites of Polygonum minus Huds., an Aromatic Medicinal Herb. PLANTS 2021; 10:plants10030608. [PMID: 33806923 PMCID: PMC8004659 DOI: 10.3390/plants10030608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
The growing demand for high value aromatic herb Polygonum minus-based products have increased in recent years, for its antioxidant, anticancer, antimicrobial, and anti-inflammatory potentials. Although few reports have indicated the chemical profiles and antioxidative effects of Polygonum minus, no study has been conducted to assess the benefits of micro-environmental manipulation (different shading levels) on the growth, leaf gas exchange and secondary metabolites in Polygonum minus. Therefore, two shading levels (50%:T2 and 70%:T3) and one absolute control (0%:T1) were studied under eight weeks and 16 weeks of exposures on Polygonum minus after two weeks. It was found that P. minus under T2 obtained the highest photosynthesis rate (14.892 µmol CO2 m−2 s−1), followed by T3 = T1. The increase in photosynthesis rate was contributed by the enhancement of the leaf pigments content (chlorophyll a and chlorophyll b). This was shown by the positive significant correlations observed between photosynthesis rate with chlorophyll a (r2 = 0.536; p ≤ 0.05) and chlorophyll b (r2 = 0.540; p ≤ 0.05). As the shading levels and time interval increased, the production of total anthocyanin content (TAC) and antioxidant properties of Ferric Reducing Antioxidant Power (FRAP) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) also increased. The total phenolic content (TPC) and total flavonoid content (TFC) were also significantly enhanced under T2 and T3. The current study suggested that P.minus induce the production of more leaf pigments and secondary metabolites as their special adaptation mechanism under low light condition. Although the biomass was affected under low light, the purpose of conducting the study to boost the bioactive properties in Polygonum minus has been fulfilled by 50% shading under 16 weeks’ exposure.
Collapse
Affiliation(s)
- Fairuz Fatini Mohd Yusof
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (F.F.M.Y.); (J.S.Y.); (N.O.)
| | - Jamilah Syafawati Yaacob
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (F.F.M.Y.); (J.S.Y.); (N.O.)
| | - Normaniza Osman
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (F.F.M.Y.); (J.S.Y.); (N.O.)
| | - Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Zulkarami Berahim
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Nurul Amalina Mohd Zain
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (F.F.M.Y.); (J.S.Y.); (N.O.)
- Correspondence: ; Tel.: +60-379-674-355
| |
Collapse
|
35
|
Micheli L, Collodel G, Moretti E, Noto D, Menchiari A, Cerretani D, Crispino S, Signorini C. Redox imbalance induced by docetaxel in the neuroblastoma SH-SY5Y cells: a study of docetaxel-induced neuronal damage. Redox Rep 2021; 26:18-28. [PMID: 33563132 PMCID: PMC7889094 DOI: 10.1080/13510002.2021.1884802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives In cancer survivors, chemotherapy-associated adverse neurological effects are described as side effects in non-targeted tissue. We investigated the role of redox-imbalance in neuronal damage by a relative low dose of Docetaxel (DTX). Methods The neuroblastoma cells (SH-SY5Y cells) were exposed to DTX at a dose of 1.25 nM for 6 h. Antioxidant defenses (i.e. ascorbic acid, glutathione, and catalase) and lipid oxidation products (i.e. F2-isoprostanes) were evaluated. To investigate cell ultrastructure and tubulin localisation, transmission electron microscopy (TEM) and immunofluorescence techniques were applied. Results In the SH-SY5Y cells, DTX induced a significant reduction of total glutathione (P < 0.001) and ascorbic acid (P < 0.05), and an increase in both total F2-Isoprostanes (P < 0.05) and catalase activity (P < 0.05), as compared to untreated cells. Additionally, TEM showed a significant increase in cells with apoptotic characteristics. Immunolocalisation of tubulin showed a compromised cytoskeletal organisation. Discussion The investigated sublethal dose of DTX, to which non-targeted cells may be exposed throughout the duration of chemotherapy treatment, induces a redox imbalance resulting in a specific modulation of the antioxidant response. This study provides new insights into DTX-induced cellular mechanisms useful for evaluating whether the concomitant use of antioxidants associated with chemotherapy mitigates chemotherapy side effects in cancer survivors.
Collapse
Affiliation(s)
- Lucia Micheli
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Daria Noto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Andrea Menchiari
- Department of Business and Law, University of Siena, Siena, Italy
| | - Daniela Cerretani
- Department of Medical and Surgical Sciences and Neurosciences, University of Siena, Siena, Italy
| | | | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
36
|
Antioxidant vitamins in acute lymphoblastic leukemia. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Aishwarya V, Solaipriya S, Sivaramakrishnan V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother Res 2020; 35:2925-2944. [PMID: 33368795 DOI: 10.1002/ptr.7001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
Globally, one of the alarming problems is the prevalence and burden of liver diseases, which accounts for 2 million cases per year. Chronic liver aetiologies such as hepatitis infections, alcoholic or non-alcoholic liver disease, environmental agents, and drug-induced toxicity are invariably responsible for liver fibrosis progression to finally hepatocellular carcinoma. Current treatment options are unable to overwhelm and cure liver diseases. Emerging findings suggest researchers' interest in using evidence-based complementary medicine such as ellagic acid with extensive pharmacological properties. They include antioxidant, anti-inflammatory, anti-hyperlipidaemic, anti-viral, anti-angiogenic, and anticancer activity. The molecular functions elicited by ellagic acid include scavenging of free radicals, regulation of lipid metabolism, the prohibition of fibrogenesis response-mediating proteins, inhibits hepatic stellate cells and myofibroblasts, restrains hepatic viral replication, facilitates suppression of growth factors, regulates transcription factors, proinflammatory cytokines, augments the liver immune response, fosters apoptosis and inhibits cell proliferation in tumorigenic cells. This review will most notably focus on preclinical and clinical information based on currently available evidence to warrant ellagic acid's prospective role in preventing liver diseases.
Collapse
Affiliation(s)
- Venkatasubramanian Aishwarya
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Solairaja Solaipriya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
38
|
Kaweme NM, Zhou S, Changwe GJ, Zhou F. The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications. Biomark Res 2020; 8:63. [PMID: 33292641 PMCID: PMC7661181 DOI: 10.1186/s40364-020-00242-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Excessive generation of reactive oxygen species (ROS) in the presence of a defective antioxidant system can induce cellular damage and disrupt normal physiological functions. Several studies have revealed the unfavorable role of ROS in promoting the growth, proliferation, migration, and survival of leukemia cells. In this review study, we summarize the mechanisms of ROS production and its role in leukemogenesis, counteractive effects of antioxidants, and implicate the current ROS-dependent anticancer therapies in acute myeloid leukemia. BODY: The dysregulation of the redox system is known to play a significant role in the pathogenesis of leukemia. Leukemia cells generate high levels of ROS, which further increases the levels through extra pathways, including mitochondrial deoxyribonucleic mutation, leukemic oncogene activation, increased nicotinamide adenine phosphate hydrogen (NADPH), and cytochrome P450 activities. Aforementioned pathways once activated have shown to promote genomic instability, induce drug resistance to leukemia medical therapy, disease relapse and reduce survival period. The current standard of treatment with chemotherapy employs the pro-oxidant approach to induce apoptosis and promote tumor regression. However, this approach retains several deleterious effects on the subject resulting in degradation of the quality of life. Nevertheless, the addition of an antioxidant as an adjuvant drug to chemotherapy alleviates treatment-related toxicity, increases chemotherapeutic efficacy, and improves survival rates of a patient. CONCLUSION Acute myeloid leukemia remains a daunting challenge to clinicians. The desire to achieve the maximum benefit of chemotherapy but also improve patient outcomes is investigated. ROS generated through several pathways promotes leukemogenesis, drug resistance, and disease relapse. Chemotherapy, the mainstay of treatment, further upregulates ROS levels. Therefore, the addition of an antioxidant to leukemia medical therapy alleviates toxicity and improves patient outcomes.
Collapse
Affiliation(s)
- Natasha Mupeta Kaweme
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Shu Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China
| | - Geoffrey Joseph Changwe
- School of Medicine, Shandong University, No. 44, Wenhua West Road, Jinan, 250012, P.R. China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital affiliated to Wuhan University, No. 169 Donghu road, 430071, Wuhan, P.R. China.
| |
Collapse
|
39
|
Codini M. Why Vitamin C Could Be an Excellent Complementary Remedy to Conventional Therapies for Breast Cancer. Int J Mol Sci 2020; 21:ijms21218397. [PMID: 33182353 PMCID: PMC7664876 DOI: 10.3390/ijms21218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The most frequent cancer in women is breast cancer, which is a major cause of death. Currently, there are many pharmacological therapies that have made possible the cure and resolution of this tumor. However, these therapies are accompanied by numerous collateral effects that influence the quality of life (QoL) of the patients to varying degrees. For this reason, attention is turning to the use of complementary medicine to improve QoL. In particular, there are increased trials of intravenous injection of vitamin C at high doses to enhance the antitumor activity of drugs and/or decrease their side effects. This review intends to underline the anticancer mechanisms of vitamin C that could explain its efficacy for treating breast cancer, and why the use of vitamin C at high doses could help patients with breast cancer to enhance the efficacy of pharmacological therapies and/or decrease their side effects.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy
| |
Collapse
|
40
|
Wang L, Kuang Z, Zhang D, Gao Y, Ying M, Wang T. Reactive oxygen species in immune cells: A new antitumor target. Biomed Pharmacother 2020; 133:110978. [PMID: 33176269 DOI: 10.1016/j.biopha.2020.110978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Immune cells have the potential to control the growth of tumor. However, this effect could be offset by immunosuppression associated with an increased production of reactive oxygen species. Multiple studies indicate that the antitumor effect of immune cells is correlated with their antioxidant capacity. This review discusses the role of reactive oxygen species in the tumor microenvironment by describing their distinct effects on different immune cells, including myeloid-derived suppressor cells, regulatory T cells, tumor-associated macrophages, cytotoxic T lymphocytes, natural killer cells, and dendritic cells. In the end, we conclude with the prospect of treatment for cancer by targeting antioxidant defense in immune cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Stem Cells and Regenerative Medicine, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Zheng Kuang
- School of Basic Medical Sciences, Naval Medical University, Shanghai 200433, PR China
| | - Duo Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yifan Gao
- Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingzhen Ying
- Department of Oncology, Changhai Hospital, Naval Medical University, Shanghai 200433, PR China.
| | - Tengjiao Wang
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
41
|
Baljit Singh, Kumar S, Rajneesh, Mohan M, Divya. Synthesis and Characterization of Psyllium Polysaccharide–Poly(2-hydroxypropyl methacrylate)−Poly(acrylamide) Hydrogels for Use in Sustained Drug Delivery Applications. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420330064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Singh A, Neupane YR, Mangla B, Shafi S, Kohli K. PEGylated Nanoliposomes Potentiated Oral Combination Therapy for Effective Cancer Treatment. Curr Drug Deliv 2020; 17:728-735. [DOI: 10.2174/1567201817666200724170708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
The conventional treatment regimen for cancer with a single chemotherapeutic agent is far
behind the clinical expectations due to the complexity of cancer biology and is also associated with
poor Quality of Life (QOL) due to off-site toxicity and multidrug resistance. In recent years, nanopotentiated
combination therapy has shown significant improvement in cancer treatment <i>via</i> a synergistic
approach. However, being synthetic in nature, nanocarriers have been associated with the activation of
the Complement (C) activation system resulting in serious hypersensitivity reactions known as CActivation
Related Pseudoallergy (CARPA) effect once given <i>via</i> intravenous injection. On the other
hand, nanopotentiated oral drug delivery offers several advantages for the effective and safe delivery of
the drug to the target site. This hypothesis aims to put forward wherein Exemestane (chemotherapeutic
agent) and lycopene (herbal bioactive) co-laden into PEGylated liposomes and delivered to the breast
cancer <i>via</i> the oral route. PEGylation of the liposomes would prevent both molecules from the harsh
microenvironment of the Gastrointestinal Tract (GIT) and would eventually promote their intestinal
absorption <i>via</i> the lymphatic pathway to the systemic circulation. Lycopene being a potent antioxidant
and anti-cancer herbal bioactive would promote the therapeutic efficacy of the Exemestane <i>via</i> a synergistic
approach. This nanopotentiated oral combination therapy would pave the path for the safe and
effective treatment of cancer.
Collapse
Affiliation(s)
- Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Sadat Shafi
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
43
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
44
|
Akbaribazm M, Khazaei MR, Khazaei M. Trifolium pratense L. (red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor-bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti-inflammatory related pathways. Food Sci Nutr 2020; 8:4276-4290. [PMID: 32884708 PMCID: PMC7455927 DOI: 10.1002/fsn3.1724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Therapeutic strategies against triple-negative breast cancer (TNBC) are associated with drug-induced toxicities. The tropical edible red clover (Trifolium pratense L.) is rich in polyphenolic compounds which confer the plant potential anticancer properties. The aim of this study was to investigate the effects of T. pratense and doxorubicin (DOX) on the apoptosis and proliferation of 4T1 tumor cells in an allograft model of tumor-bearing BALB/c mice. Fifty-six female 4T1-tumor bearing- BALB/c mice were randomly divided into 7 groups (n = 8/group) to receive different doses and combinations of DOX and T. pratense extract for 35 days. On the 36th day, serum estradiol (E2), IL-12 and IFN-γ cytokines, and glutathione peroxidase (GPx) activity were measured. Tumor's ferric reducing antioxidant power (FRAP) and the expressions of apoptosis-related genes (p53, Bax, Bcl-2, and caspase-3) were also evaluated. Immunohistochemical staining for Ki-67 and p53 were performed. Our results showed that the co-treatment of DOX and T. pratense (100-400 mg/kg) inhibited the proliferation of 4T1 tumor cells in dose- and time-dependent manners. The co-treatment of DOX and T. pratense (especially at the dose of 400 mg/kg) decreased the serum level of E2 (as a stimulant for breast tumor growth) and increased the serum levels of IL-12 and IFN-γ along with significant increments in serum GPx and tumor FRAP activities. The co-administration of DOX and T. pratense also decreased the expression of Ki-67 proliferation marker and increased the number p53 positive (i.e., apoptotic) cells within tumors. This was accompanied with the upregulation of pro-apoptotic and down-regulation of antiapoptotic genes. The key findings indicated the synergistic effects of DOX and T. pratense against TNBC xenografts.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Students Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
45
|
Poljsak B, Milisav I. The Role of Antioxidants in Cancer, Friends or Foes? Curr Pharm Des 2019; 24:5234-5244. [PMID: 30674247 DOI: 10.2174/1381612825666190123112647] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Consumption of dietary supplements by millions of people is increasing [1]. Between 64 to 81% of cancer patients and survivors use multivitamin supplements after the cancer diagnosis [2]. The use of antioxidants during cancer therapy has been a hot topic in medical science for the last 20 years without clear answers and recommendations. It seems that antioxidants are able to I) decrease the cancer formation risk by quenching ROS that are involved in cancer initiation and progression and II) assist in survival of cancer/precancer cells once the malignant transformation already occurred. Antioxidants were shown to assist cancer initiation, interfere with cancer treatment by reducing its efficacy and patient survival, and vice versa, there are reports of beneficial antioxidant effect during the cancer treatment.
Collapse
Affiliation(s)
- B Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - I Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| |
Collapse
|
46
|
Jones E, Nissen L, McCarthy A, Steadman K, Windsor C. Exploring the Use of Complementary and Alternative Medicine in Cancer Patients. Integr Cancer Ther 2019; 18:1534735419846986. [PMID: 31072149 PMCID: PMC7242794 DOI: 10.1177/1534735419846986] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Australia, it is estimated that around 17% to 87% of cancer patients have used
one form of complementary therapy during their cancer treatment. There are
numerous reasons and contributing factors for cancer patients to consider using
complementary and alternative medicine (CAM). CAM information and products are
readily available. However, the level of evidence to support the benefits of use
in the cancer setting is limited, and the associated adverse effects and
interactions with conventional medicine may not be fully studied. Besides, not
all health professionals favor the concept of integrative health approaches, or
have the confidence in dealing with CAM due to a lack of knowledge and
standardization of practices. A thematic review of the literature was performed
on the main contributing factors to cancer patients’ use of CAM, as well as the
current issues that may be encountered by the patients and health
professionals.
Collapse
Affiliation(s)
- Ellen Jones
- 1 Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Lisa Nissen
- 2 Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | - Carol Windsor
- 2 Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
47
|
Jones E, Nissen L, McCarthy A, Steadman K, Windsor C. Exploring the Use of Complementary and Alternative Medicine in Cancer Patients. Integr Cancer Ther 2019; 18:1534735419854134. [PMID: 31170844 PMCID: PMC6557018 DOI: 10.1177/1534735419854134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Australia, it is estimated that around 17% to 87% of cancer patients have used one form of complementary therapy during their cancer treatment. There are numerous reasons and contributing factors for cancer patients to consider using complementary and alternative medicine (CAM). CAM information and products are readily available. However, the level of evidence to support the benefits of use in the cancer setting is limited, and the associated adverse effects and interactions with conventional medicine may not be fully studied. Besides, not all health professionals favor the concept of integrative health approaches, or have the confidence in dealing with CAM due to a lack of knowledge and standardization of practices. A thematic review of the literature was performed on the main contributing factors to cancer patients’ use of CAM, as well as the current issues that may be encountered by the patients and health professionals.
Collapse
Affiliation(s)
- Ellen Jones
- 1 Redcliffe Hospital, Redcliffe, Queensland, Australia
| | - Lisa Nissen
- 2 Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | - Carol Windsor
- 2 Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Ybarra N, Seuntjens J. Radio-selective effects of a natural occurring muscle-derived dipeptide in A549 and normal cell lines. Sci Rep 2019; 9:11513. [PMID: 31395939 PMCID: PMC6687720 DOI: 10.1038/s41598-019-47944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) causes morbidity and long-term side effects. A challenge in RT is to maximize cancer cells killing while minimizing damage to normal tissue. The ideal radio-protector selectively improves survival and limits damage to normal tissues while reducing survival of cancer cells. Muscle-derived dipeptide, L-carnosine (CAR) is a potent antioxidant, with radio-protective, but also anticancer properties, affecting the cell cycle of cancer cells. We tested CAR effects in lung cancer cells, differentiated and undifferentiated normal cells. We hypothesized that CAR antioxidant properties will confer protection to the two normal cell lines against RT, while preventing lung cancer cell proliferation, and that CAR may act as a radiosensitizer of lung cancer cells due to its effects on cell-cycle progression of cancer cells. Under the experimental conditions reported here, we found that CAR increased radio-sensitivity of lung (A549) cancer cells by increasing the percentage of cells in G2/M (radiosensitive) phase of cell cycle, it negatively affected their bioenergetics, therefore reduced their viability, and DNA-double strand break repair capacity. CAR had either no effect or reduced RT-induced damage in normal cells, depending on the cell type. CAR is a versatile natural occurring compound, that could improve RT-induced lung cancer cells killing, while reducing the damage to normal differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Norma Ybarra
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada.
| | - Jan Seuntjens
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada
| |
Collapse
|
49
|
Mukerjee A, Pandey H, Tripathi AK, Singh SK. Development, characterization and evaluation of cinnamon oil and usnic acid blended nanoemulsion to attenuate skin carcinogenicity in swiss albino mice. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Kontoghiorghes GJ, Kontoghiorghe CN. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opin Investig Drugs 2019; 28:593-603. [DOI: 10.1080/13543784.2019.1631284] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science Technology, Environment and Medicine, Limassol, Cyprus
| | | |
Collapse
|