1
|
Brem S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav Immun Health 2024; 42:100859. [PMID: 39512605 PMCID: PMC11541944 DOI: 10.1016/j.bbih.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 11/15/2024] Open
Abstract
Immuno-oncology, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer care with dramatic, long-term responses and increased survival, including patients with metastatic cancer to the brain. Glioblastomas, and other primary brain tumors, are refractory to ICIs as monotherapy or in combination with standard therapy. The tumor microenvironment (TME) poses multiple biological hurdles: blood-brain barrier, immune suppression, heterogeneity, and tumor infiltration. Genomic analysis of the senescence-associated secretory phenotype (SASP) and preclinical models of glioma suggest that an exciting approach would entail reprogramming of the glioma microenvironment, attenuating the pro-inflammatory, pro-tumorigenic cytokines of the SASP, especially interleukin-6 (IL-6). A testable hypothesis now proposed is to modulate the immune system by harnessing the body's 'inflammatory reflex' to reduce cytokines. Vagus nerve stimulation can activate T cell immunity by the cholinergic, α7nicotinic acetylcholine receptor agonist (α7nAchR), and suppress IL-6 systemically, as well as other pro-inflammatory cytokines of the SASP, interleukin -1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). The hypothesis predicts that electrical activation of the vagus nerve, with cytokine reduction, in combination with ICIs, would convert an immune resistant ("cold") tumor to an immune responsive ("hot") tumor, and halt glioma progression. The hypothesis also envisions cancer as an immune "dysautonomia" whereby a therapeutic intervention, vagus nerve stimulation (VNS), resets the systemic and local cytokine levels. A prospective, randomized, phase II clinical trial, to confirm the hypothesis, is a logical, exigent, next step. Cytokine reduction by VNS could also be useful for other forms of human cancer, e.g., breast, colorectal, head and neck, lung, melanoma, ovarian, pancreatic, and prostate cancer, as the emerging field of "cancer neuroscience" shows a role for neural regulation of multiple tumor types. Because IL-6, and companion pro-inflammatory cytokines, participate in the initiation, progression, spread and recurrence of cancer, minimally invasive VNS could be employed to suppress glioma or cancer progression, while also mitigating depression and/or seizures, thereby enhancing quality of life. The current hypothesis reimagines glioma pathophysiology as a dysautonomia with the therapeutic objective to reset the autonomic nervous system and form an immune responsive state to halt tumor progression and prevent recurrence. VNS, as a novel method to control cancer, can be administered with ICIs, standard therapy, or in clinical trials, combined with emerging immunotherapy: dendritic cell, mRNA, or chimeric antigen receptor (CAR) T cell vaccines.
Collapse
Affiliation(s)
- Steven Brem
- University of Pennsylvania, Department of Neurosurgery, Perelman Center for Advanced Medicine, 15-141, 3400 Civic Center Blvd., Philadelphia, PA, 19104, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
2
|
Khot S, Krishnaveni A, Gharat S, Momin M, Bhavsar C, Omri A. Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment. Expert Opin Drug Deliv 2024; 21:1837-1857. [PMID: 39545622 DOI: 10.1080/17425247.2024.2429702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM. AREAS COVERED This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles. EXPERT OPINION The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.
Collapse
Affiliation(s)
- Sidra Khot
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Anandha Krishnaveni
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director, SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Science, Mumbai, India
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery System Facility, Department of Chemistry and Biochemistry, Laurentian University, Sandbury, Ontario, Canada
| |
Collapse
|
3
|
James R, Subramanyam KN, Payva F, E AP, Tv VK, Sivaramakrishnan V, Ks S. In-silico analysis predicts disruption of normal angiogenesis as a causative factor in osteoporosis pathogenesis. BMC Genom Data 2024; 25:85. [PMID: 39379846 PMCID: PMC11460074 DOI: 10.1186/s12863-024-01269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Angiogenesis-osteogenesis coupling is critical for proper functioning and maintaining the health of bones. Any disruption in this coupling, associated with aging and disease, might lead to loss of bone mass. Osteoporosis (OP) is a debilitating bone metabolic disorder that affects the microarchitecture of bones, gradually leading to fracture. Computational analysis revealed that normal angiogenesis is disrupted during the progression of OP, especially postmenopausal osteoporosis (PMOP). The genes associated with OP and PMOP were retrieved from the DisGeNET database. Hub gene analysis and molecular pathway enrichment were performed via the Cytoscape plugins STRING, MCODE, CytoHubba, ClueGO and the web-based tool Enrichr. Twenty-eight (28) hub genes were identified, eight of which were transcription factors (HIF1A, JUN, TP53, ESR1, MYC, PPARG, RUNX2 and SOX9). Analysis of SNPs associated with hub genes via the gnomAD, I-Mutant2.0, MUpro, ConSurf and COACH servers revealed the substitution F201L in IL6 as the most deleterious. The IL6 protein was modeled in the SWISS-MODEL server and the substitution was analyzed via the YASARA FoldX plugin. A positive ΔΔG (1.936) of the F201L mutant indicates that the mutated structure is less stable than the wild-type structure is. Thirteen hub genes, including IL6 and the enriched molecular pathways were found to be profoundly involved in angiogenesis/endothelial function and immune signaling. Mechanical loading of bones through weight-bearing exercises can activate osteoblasts via mechanotransduction leading to increased bone formation. The present study suggests proper mechanical loading of bone as a preventive strategy for PMOP, by which angiogenesis and the immune status of the bone can be maintained. This in silico analysis could be used to understand the molecular etiology of OP and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Remya James
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India.
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| | - Koushik Narayan Subramanyam
- Department of Orthopaedics, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, Puttaparthi, Andhra Pradesh, 515134, India
| | - Febby Payva
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India
| | - Amrisa Pavithra E
- Department of Zoology, St. Joseph's College for Women, Alappuzha, Kerala, 688001, India
| | - Vineeth Kumar Tv
- Department of Zoology, The Cochin College, Kochi, Kerala, 682002, India.
| | - Venketesh Sivaramakrishnan
- School of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, Puttaparthi, Andhra Pradesh, 515134, India
| | - Santhy Ks
- School of Biosciences, Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 614043, India.
| |
Collapse
|
4
|
Kitzberger C, Shehzad K, Morath V, Spellerberg R, Ranke J, Steiger K, Kälin RE, Multhoff G, Eiber M, Schilling F, Glass R, Weber WA, Wagner E, Nelson PJ, Spitzweg C. Interleukin-6-controlled, mesenchymal stem cell-based sodium/iodide symporter gene therapy improves survival of glioblastoma-bearing mice. Mol Ther Oncolytics 2023; 30:238-253. [PMID: 37701849 PMCID: PMC10493263 DOI: 10.1016/j.omto.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
New treatment strategies are urgently needed for glioblastoma (GBM)-a tumor resistant to standard-of-care treatment with a high risk of recurrence and extremely poor prognosis. Based on their intrinsic tumor tropism, adoptively applied mesenchymal stem cells (MSCs) can be harnessed to deliver the theranostic sodium/iodide symporter (NIS) deep into the tumor microenvironment. Interleukin-6 (IL-6) is a multifunctional, highly expressed cytokine in the GBM microenvironment including recruited MSCs. MSCs engineered to drive NIS expression in response to IL-6 promoter activation offer the possibility of a new tumor-targeted gene therapy approach of GBM. Therefore, MSCs were stably transfected with an NIS-expressing plasmid controlled by the human IL-6 promoter (IL-6-NIS-MSCs) and systemically applied in mice carrying orthotopic GBM. Enhanced radiotracer uptake by 18F-Tetrafluoroborate-PET/magnetic resonance imaging (MRI) was detected in tumors after IL-6-NIS-MSC application as compared with mice that received wild-type MSCs. Ex vivo analysis of tumors and non-target organs showed tumor-specific NIS protein expression. Subsequent 131I therapy after IL-6-NIS-MSC application resulted in significantly delayed tumor growth assessed by MRI and improved median survival up to 60% of GBM-bearing mice as compared with controls. In conclusion, the application of MSC-mediated NIS gene therapy focusing on IL-6 biology-induced NIS transgene expression represents a promising approach for GBM treatment.
Collapse
Affiliation(s)
- Carolin Kitzberger
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Khuram Shehzad
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julius Ranke
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Radiation Immuno-Oncology Group, Munich, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for Nanoscience, LMU Munich, Munich, Germany
| | - Peter J. Nelson
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Mendez Valdez MJ, Kim E, Bhatia S, Saad AG, Sidani C, Daggubati L, Chandar J, Seetharam D, Desgraves J, Ingle S, Luther E, Ivan M, Komotar R, Shah AH. Outcomes of HSV-1 encephalitis infection in glioblastoma: An integrated systematic analysis. Microb Pathog 2023:106211. [PMID: 37343897 DOI: 10.1016/j.micpath.2023.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Herpes Simplex Virus-1 (HSV-1) is a neurotropic DNA virus with neural latency and stereotypic viral encephalitis. It has been reported to conceal underlying glioblastoma (GBM) due to similar radiographic imaging and clinical presentation. Limited data exist on the co-occurrence of GBM and HSV-1. To better describe the pathophysiology of HSV-1 superinfections in GBM, we performed a comprehensive review of GBM cases with superimposed HSV-1. METHODS A comprehensive literature search of six electronic databases with apriori search criteria was performed to identify eligible cases of GBM with HSV-1. Relevant clinic-radiographic data were collected, Kaplan-Meier estimates, Fisher's exact test, and logistic regression analyses were used. RESULTS We identified 20 cases of HSE in GBM with an overall survival (OS) of 8.0 months. The median age of presentation was 63 years (range: 24-78 years) and the median interval between GBM or HSE diagnosis was 2 months (range: 0.05-25 months). HSE diagnosis before GBM diagnosis was a predictor for improved survival (HR: 0.06; 95% CI: [0.01-0.54]; p < 0.01). There is a significant reduction in OS in patients with concomitant HSE and GBM compared to the cancer genome atlas (TCGA) cohort (median OS: 8 months vs. 14.2 months; p < 0.05). Finally, HSV does not directly infect GBM cells but indirectly activates a local immune response in the tumor microenvironment. CONCLUSIONS Superimposed HSE in GBM may contribute to a significant reduction in OS compared to uninfected controls, potentially activating proto-oncogenes during active infection and latency. Preoperative HSE may induce an antiviral immune response, which may serve as a positive prognostic factor. Prompt antiviral treatment upon co-occurrence is necessary.
Collapse
Affiliation(s)
- Mynor J Mendez Valdez
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Enoch Kim
- Nova Southeastern University College of Osteopathic Medicine, 3200 S University Dr, Davie, FL, 33328, USA.
| | - Shovan Bhatia
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Ali G Saad
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Charif Sidani
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Lekhaj Daggubati
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Jay Chandar
- Florida International University Herbert Wertheim College of Medicine, 11200 SW 8th Street AHC2, Miami, FL, 33199, USA.
| | - Deepa Seetharam
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Jelisah Desgraves
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Shreya Ingle
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Evan Luther
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Michael Ivan
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Ricardo Komotar
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Ashish H Shah
- University of Miami Leonard M. Miller School of Medicine, Department of Neurological Surgery, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Vaidya M, Sreerama S, Gonzalez-Vega M, Smith J, Field M, Sugaya K. Coculture with Neural Stem Cells May Shift the Transcription Profile of Glioblastoma Multiforme towards Cancer-Specific Stemness. Int J Mol Sci 2023; 24:ijms24043242. [PMID: 36834653 PMCID: PMC9962301 DOI: 10.3390/ijms24043242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) possesses a small but significant population of cancer stem cells (CSCs) thought to play a role in its invasiveness, recurrence, and metastasis. The CSCs display transcriptional profiles for multipotency, self-renewal, tumorigenesis, and therapy resistance. There are two possible theories regarding the origin of CSCs in the context of neural stem cells (NSCs); i.e., NSCs modify cancer cells by conferring them with cancer-specific stemness, or NSCs themselves are transformed into CSCs due to the tumor environment created by cancer cells. To test the theories and to investigate the transcriptional regulation of the genes involved in CSC formation, we cocultured NSC and GBM cell lines together. Where genes related to cancer stemness, drug efflux, and DNA modification were upregulated in GBM, they were downregulated in NSCs upon coculture. These results indicate that cancer cells shift the transcriptional profile towards stemness and drug resistance in the presence of NSCs. Concurrently, GBM triggers NSCs differentiation. Because the cell lines were separated by a membrane (0.4 µm pore size) to prevent direct contact between GBM and NSCs, cell-secreted signaling molecules and extracellular vesicles (EVs) are likely involved in reciprocal communication between NSCs and GBM, causing transcription modification. Understanding the mechanism of CSC creation will aid in the identification of precise molecular targets within the CSCs to exterminate them, which, in turn, will increase the efficacy of chemo-radiation treatment.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sandeep Sreerama
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Maxine Gonzalez-Vega
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Orlando Neurosurgery, AdventHealth Neuroscience Institute, Orlando, FL 32803, USA
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
7
|
Sørensen MD, Kristensen BW. TUMOUR-ASSOCIATED CD204+ MICROGLIA/MACROPHAGES ACCUMULATE IN PERIVASCULAR AND PERINECROTIC NICHES AND CORRELATE WITH AN INTERLEUKIN-6 ENRICHED INFLAMMATORY PROFILE IN GLIOBLASTOMA. Neuropathol Appl Neurobiol 2021; 48:e12772. [PMID: 34713474 PMCID: PMC9306597 DOI: 10.1111/nan.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Mia Dahl Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ademi H, Shinde DA, Gassmann M, Gerst D, Chaachouay H, Vogel J, Gorr TA. Targeting neovascularization and respiration of tumor grafts grown on chick embryo chorioallantoic membranes. PLoS One 2021; 16:e0251765. [PMID: 33999935 PMCID: PMC8128225 DOI: 10.1371/journal.pone.0251765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022] Open
Abstract
Since growing tumors stimulate angiogenesis, via vascular endothelial growth factor (VEGF), angiogenesis inhibitors (AIs, blockers of the VEGF signaling pathway) have been introduced to cancer therapy. However, AIs often yielded only modest and short-lived gains in cancer patients and more invasive tumor phenotypes in animal models. Combining anti-VEGF strategies with lactate uptake blockers may boost both efficacy and safety of AIs. We assessed this hypothesis by using the ex ovo chorioallantoic membrane (CAM) assay. We show that AI-based monotherapy (Avastin®, AVA) increases tumor hypoxia in human CAM cancer cell xenografts and cell spread in human as well as canine CAM cancer cell xenografts. In contrast, combining AVA treatment with lactate importer MCT1 inhibitors (α-cyano-4-hydroxycinnamic acid (CHC) or AZD3965 (AZD)) reduced both tumor growth and cell dissemination of human and canine explants. Moreover, combining AVA+AZD diminished blood perfusion and tumor hypoxia in human explants. Thus, the ex ovo CAM assay as an easy, fast and cheap experimental setup is useful for pre-clinical cancer research. Moreover, as an animal-free experimental setup the CAM assay can reduce the high number of laboratory animals used in pre-clinical cancer research.
Collapse
Affiliation(s)
- Hyrije Ademi
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies at the Vetsuisse Faculty of the University of Zurich, Zurich, Switzerland
| | - Dheeraj A. Shinde
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Daniela Gerst
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hassan Chaachouay
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Bioactives, Health & Environment Laboratory, Epigenetics, Health & Environment Unit, Faculty of Science and Techniques, Moulay Ismail University, Errachidia, Morocco
| | - Johannes Vogel
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Thomas A. Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Holst CB, Christensen IJ, Skjøth-Rasmussen J, Hamerlik P, Poulsen HS, Johansen JS. Systemic Immune Modulation in Gliomas: Prognostic Value of Plasma IL-6, YKL-40, and Genetic Variation in YKL-40. Front Oncol 2020; 10:478. [PMID: 32363159 PMCID: PMC7180208 DOI: 10.3389/fonc.2020.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Complex local and systemic immune dysfunction in glioblastoma (GBM) may affect survival. Interleukin (IL)-6 and YKL-40 are pleiotropic biomarkers present in the tumor microenvironment and involved in immune regulation. We therefore analyzed plasma IL-6, YKL-40, and genetic variation in YKL-40 and explored their ability to distinguish between glioma subtypes and predict survival in GBM. Methods: One hundred fifty-eight patients with glioma WHO grade II-IV were included in the study. Plasma collected at surgery was analyzed for IL-6 and YKL-40 (CHI3L1) by ELISA. CHI3L1 rs4950928 genotyping was analyzed on whole-blood DNA. Results: Neither plasma IL-6 nor YKL-40 corrected for age or rs4950928 genotype could differentiate GBM from lower grade gliomas. GC and GG rs4950928 genotype were associated with lower plasma YKL-40 levels (CC vs. GC, p = 0.0019; CC vs. GG, p = 0.01). Only 10 and 14 out of 94 patients with newly diagnosed GBM had elevated IL-6 or YKL-40, respectively. Most patients received corticosteroid treatment at time of blood-sampling. Higher pretreatment plasma IL-6 was associated with short overall survival (OS) [HR = 1.19 (per 2-fold change), p = 0.042] in univariate analysis. The effect disappeared in multivariate analysis. rs4950928 genotype did not associate with OS [HR = 1.30, p = 0.30]. In recurrent GBM, higher YKL-40 [HR = 2.12 (per 2-fold change), p = 0.0005] but not IL-6 [HR = 0.99 (per 2-fold change), p = 0.92] were associated with short OS in univariate analysis. Conclusion: In recurrent GBM high plasma YKL-40 may hold promise as a prognostic marker. In newly diagnosed GBM perioperative plasma IL-6, YKL-40, and genetic variation in YKL-40 did not associate with survival. Corticosteroid use may complicate interpretation of results.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Ib Jarle Christensen
- Department of Gastroenterology, Hvidovre Hospital, Copenhagen University Hospital, Hvidovre, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Yang J, Sun G, Hu Y, Yang J, Shi Y, Liu H, Li C, Wang Y, Lv Z, Niu J, Liu H, Shi X, Wang H, Li P, Jiao B. Extracellular Vesicle lncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Released From Glioma Stem Cells Modulates the Inflammatory Response of Microglia After Lipopolysaccharide Stimulation Through Regulating miR-129-5p/High Mobility Group Box-1 Protein Axis. Front Immunol 2020; 10:3161. [PMID: 32117213 PMCID: PMC7020807 DOI: 10.3389/fimmu.2019.03161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Glioma stem cell (GSC)–derived extracellular vesicles (EVs) can mediate the communication between GSCs and microglia. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in GSCs, EVs, and supernatant was detected by real-time PCR. The direct targeting between MALAT1 and miR-129-5p, miR-129-5p, and HMGB1 were tested with luciferase reporter analysis. The expression and secretion of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were determined in lipopolysaccharide-stimulated microglia or miR-129-5p inhibitor transferred to microglia exposed to GSC EVs or EVs derived from siMALAT1 pre-transferred GSCs. MALAT1 was enriched in GSC EVs compared with GSCs, and up-regulated MALAT1 was also observed in microglia upon GSC EVs incubation. The relative expression and secretion of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia were up-regulated in the GSC supernatant group, which could be reversed by dimethyl amiloride (DMA) (EV secretion inhibitor) co-administration or si-MALAT1 pre-transfection of GSCs. Luciferase reporter assay testified the direct binding of MALAT1 and miR-129-5p, miR-129-5p, and HMGB1, and si-MALAT1 could up-regulate miR-129-5p expression and down-regulate HMGB1 expression in microglia cells. The concentration of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia exposed to EVs from siMALAT1 transfected GSCs could be up-regulated by miR-129-5p inhibition. EVs lncRNA MALAT1 released from GSCs could modulate the inflammatory response of microglia after lipopolysaccharide stimulation through regulating the miR-129-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Shi
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyu Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianxing Niu
- Department of Neurosurgery, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honglei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, Hebei, China
| | - Xuefang Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiping Wang
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Pan Li
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Feng Y, Wang J, Tan D, Cheng P, Wu A. Relationship between circulating inflammatory factors and glioma risk and prognosis: A meta-analysis. Cancer Med 2019; 8:7454-7468. [PMID: 31599129 PMCID: PMC6885890 DOI: 10.1002/cam4.2585] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory factors have been considered a significant factor contributing to the development and progression of glioma. However, the relationship between circulating inflammatory factors and glioma risk as well as their prognostic values in glioma patients is still inconclusive. Here, we performed a meta-analysis to address this issue. METHODS Relevant articles were identified through PubMed, EMBASE, the Cochrane Library, Web of Science, Wanfang database, and China National Knowledge Infrastructure (CNKI) from inception to February 2019. The weighted mean differences (WMDs) or standard mean differences (SMDs) with 95% confidence intervals (CIs) were used to describe the predictive ability of the levels of circulating inflammatory factors on glioma risk. To evaluate the prognostic values of the circulating inflammatory factors in glioma, hazard ratios (HRs) with 95% CIs were used. RESULTS Thirty-one studies comprising 2587 patients were included. The overall analysis showed that increased circulating interleukin-6 (IL-6) [SMD 0.81 (95% CI: 0.21-1.40; P = .008)], interleukin-8 (IL-8) [SMD 1.01 (95% CI: 0.17-1.84; P = .018)], interleukin-17 (IL-17) [SMD 1.12 (95% CI: 0.26-1.98; P = .011)], tumor necrosis factor-α (TNF-α) [SMD 1.80 (95% CI: 1.03-2.56; P = .000)], transforming growth factor-β (TGF-β) [SMD 10.55 (95% CI: 5.59-15.51; P = .000)], and C-reactive protein (CRP) [SMD 0.95 (95% CI: 0.75-1.15; P = .000)] levels were significantly associated with glioma risk. On the other hand, our results showed that circulating IL-6 [HR 1.10 (95% CI: 1.05-1.16; P = .000)] and CRP [HR 2.02 (95% CI: 1.52-2.68; P = .000)] levels were highly correlated with a poor overall survival (OS) rate in glioma patients. CONCLUSION Our results indicate that increased circulating IL-6, IL-8, IL-17, TNF-α, TGF-β, and CRP levels are significantly associated with increased glioma risk. Moreover, our meta-analysis suggests that circulating IL-6 and CRP may serve as powerful biomarkers for a poor prognosis in glioma patients.
Collapse
Affiliation(s)
- Yuan Feng
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Jia Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiPeople's Republic of China
- Center of Brain ScienceThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShanxiPeople's Republic of China
| | - Dezhong Tan
- Department of Otorhinolaryngology Head and Neck SurgeryThe First Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Peng Cheng
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| | - Anhua Wu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangLiaoningPeople's Republic of China
| |
Collapse
|
12
|
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Tolaney SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 2019. [PMID: 29540614 DOI: 10.1126/scitranslmed.aag0945] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,I3S, Institute for Innovation and Research in Health, Metabolism, Nutrition, and Endocrinology Group, Biochemistry Department, Faculty of Medicine, Porto University, Porto 4200-135, Portugal.,Department of Internal Medicine, Hospital S. João, Porto 4200-319, Portugal
| | - Jennifer A Ligibel
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T McManus
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Priya Suboj
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Botany and Biotechnology, St. Xavier's College, Thumba, Trivandrum, Kerala 695586, India
| | - Keehoon Jung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kosuke Kawaguchi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Pinter
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1090, Austria
| | - Suboj Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Zoology, Mar Ivanios College, Nalanchira, Trivandrum, Kerala 695015, India
| | - Shan M Chin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Trupti D Vardam
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yuhui Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nuh N Rahbari
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dannie Wang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Igor L Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Heart Institute (Instituto do Coração-Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo), University of Sao Paulo Medical School, Sao Paulo 05403-900, Brazil
| | - Stefan B Puchner
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher L Schlett
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Udo Hoffmman
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Marek Ancukiewicz
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sara M Tolaney
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yves Boucher
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Zhang L, Peterson TE, Lu VM, Parney IF, Daniels DJ. Antitumor activity of novel pyrazole-based small molecular inhibitors of the STAT3 pathway in patient derived high grade glioma cells. PLoS One 2019; 14:e0220569. [PMID: 31361777 PMCID: PMC6667205 DOI: 10.1371/journal.pone.0220569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) transcription factor has been observed in many human cancers with roles in tumor initiation, progression, drug resistance, angiogenesis and immunosuppression. STAT3 is constitutively activated in a variety of cancers including adult high grade gliomas (aHGGs) such as glioblastoma (GBM), and pediatric high grade gliomas (pHGG). Inhibiting STAT3 is a promising target-specific chemotherapeutic strategy for tumors with aberrant STAT3 signaling. Here we investigated the antitumor effects of novel pyrazole-based STAT3 pathway inhibitors named MNS1 (Mayo Neurosurgery 1) in both pediatric and adult HGG tumor cells. MNS1 compounds selectively decreased cell viability and proliferation in patient-derived HGG cells with minimal toxicity on normal human astrocytes. These inhibitors selectively blocked IL-6-induced STAT3 phosphorylation and nuclear localization of pSTAT3 without affecting other signaling molecules including Akt, STAT1, JAK2 or ERK1/2 phosphorylation. Functional analysis showed that MNS1 compounds induced apoptosis and decrease tumor migration. The anti-tumor effects extended into a murine pHGG (diffuse intrinsic pontine glioma) patient derived xenograft, and systemic toxicity was not evident during dose escalation in mice. These results support further development of STAT3 inhibitors for both pediatric and adult HGG.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Timothy E. Peterson
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Victor M. Lu
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Ian F. Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - David J. Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
14
|
Couto M, Coelho-Santos V, Santos L, Fontes-Ribeiro C, Silva AP, Gomes CMF. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol 2019; 234:19750-19760. [PMID: 30937892 DOI: 10.1002/jcp.28575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, with an average life expectancy of 12-15 months. GBM is highly infiltrated by microglial cells (MG) promoting tumor growth and invasiveness. Moreover, microglia activation and subsequent neuroinflammation seem to be involved in blood-brain barrier (BBB) dysfunction commonly observed in several central nervous system diseases, including brain tumors. Nevertheless, how the crosstalk between microglia and tumor cells interferes with BBB function is far from being clarified. Herein, we evaluated the effects of reciprocal interactions between MG and GBM cells in the barrier properties of brain endothelial cells (ECs), using an in vitro approach. The exposure of ECs to the inflammatory microenvironment mediated by MG-GBM crosstalk induced a decrease in the transendothelial electric resistance and an increase in permeability across the ECs (macromolecular flux of 4 kDa-fluorescein isothiocyanate and 70 kDa-Rhodamine B isothiocyanate-Dextran). These effects were accompanied by a downregulation of the intercellular junction proteins, β-catenin and zonula occludens. Moreover, the dynamic interaction between microglia and tumor cells triggered the release of interleukin-6 (IL-6) by microglia and subsequent activation of the downstream Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway. Interestingly, the depletion of IL-6 or the blockade of the JAK/STAT3 signaling with AG490 were able to prevent the EC hyperpermeability. Overall, we demonstrated that IL-6 released during MG-GBM crosstalk leads to barrier dysfunction through the activation of the JAK/STAT3 pathway in ECs and downregulation of intercellular junction proteins. These results provide new insights into the mechanisms underlying the disruption of BBB permeability in GBM.
Collapse
Affiliation(s)
- Marina Couto
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal.,CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal
| | - Liliana Santos
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal
| | - Carlos Fontes-Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal
| | - Célia M F Gomes
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC. IBILI Consortium, University of Coimbra, Portugal.,CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Fouladseresht H, Ziaee SM, Erfani N, Doroudchi M. Serum Levels of APRIL Increase in Patients with Glioma, Meningioma and Schwannoma. Asian Pac J Cancer Prev 2019; 20:751-756. [PMID: 30909681 PMCID: PMC6825795 DOI: 10.31557/apjcp.2019.20.3.751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Brain tumors are of high mortality and morbidity for which there is still no cure. The TNF family cytokine, A Proliferation Inducing Ligand (APRIL), is shown to help proliferation and development of tumor cells. We assessed serum levels of APRIL in patients with glioma, meningioma and schwannoma in comparison to healthy individuals. Methods: Peripheral blood samples of 68 patients with brain tumors, divided into three groups of gliomas (n=25), meningiomas (n=30) and schwannomas (n=13), as well as 45 healthy individuals were obtained. Serum samples were prepared and stored in -40°C until usage. Using a commercial ELISA method, APRIL concentration was measured in each serum sample. The obtained data were then analyzed using SPSS software. Results: APRIL serum levels were higher in all patients compared to the controls (P<0.001). Moreover, APRIL serum levels were higher in each of the tumor bearing groups (gliomas, meningiomas and schwannomas) in comparison to the controls (P<0.001, <0.001 and =0.001, respectively). Comparing APRIL between the patients groups showed no significant difference. Age and gender showed no significant correlation with serum APRIL levels, although the age of patients in glioma group was significantly lower than controls (P=0.017). The serum APRIL levels in gliomas with histological grade showed no difference, but in meningiomas, it was lower in tumors with higher grades (P= 0.011). Conclusion: Increased serum levels of APRIL in patients with meningioma and schwannoma as well as glioma may indicate a common role of this cytokine in brain tumors.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Mohyeddin Ziaee
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. ,Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 2019; 163:458-471. [PMID: 30885763 DOI: 10.1016/j.bcp.2019.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
Glioblastoma is the most fatal type of primary brain cancer, and current treatments for glioblastoma are insufficient. HDAC6 is overexpressed in glioblastoma, and siRNA-mediated knockdown of HDAC6 inhibits glioma cell proliferation. Herein, we report a high-selective HDAC6 inhibitor, J22352, which has PROTAC (proteolysis-targeting chimeras)-like property resulted in both p62 accumulation and proteasomal degradation, leading to proteolysis of aberrantly overexpressed HDAC6 in glioblastoma. The consequences of decreased HDAC6 expression in response to J22352 decreased cell migration, increased autophagic cancer cell death and significant tumor growth inhibition. Notably, J22352 reduced the immunosuppressive activity of PD-L1, leading to the restoration of host anti-tumor activity. These results demonstrate that J22352 promotes HDAC6 degradation and induces anticancer effects by inhibiting autophagy and eliciting the antitumor immune response in glioblastoma. Therefore, this highly selective HDAC6 inhibitor can be considered a potential therapeutic for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Jia-Rong Liu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Chao-Wu Yu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Pei-Yun Hung
- AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Ji-Wang Chern
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC.
| |
Collapse
|
17
|
Falchetti ML, D'Alessandris QG, Pacioni S, Buccarelli M, Morgante L, Giannetti S, Lulli V, Martini M, Larocca LM, Vakana E, Stancato L, Ricci-Vitiani L, Pallini R. Glioblastoma endothelium drives bevacizumab-induced infiltrative growth via modulation of PLXDC1. Int J Cancer 2018; 144:1331-1344. [PMID: 30414187 PMCID: PMC6590500 DOI: 10.1002/ijc.31983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/10/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
Bevacizumab, a VEGF‐targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t‐test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t‐test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over‐expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient‐derived glioma stem‐like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab‐treated rats. Our study indicates that bevacizumab‐induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells. What's new? Bevacizumab, a VEGF‐targeting monoclonal antibody, has been observed to trigger an infiltrative growth pattern in glioblastoma as an escape mechanism. The mechanisms underlying this gliomatosis‐like growth pattern, however, remain unclear. Here, the authors found that the infiltrative growth pattern occurs mostly along perivascular spaces and relies on the over‐expression of PLXDC1 by tumor cells and on the restoration of the endothelial component of blood brain barrier. Altogether, the data show that the brain infiltration induced by bevacizumab is mainly driven by the vascular endothelium. Importantly, inhibition of PLXDC1 prevents bevacizumab‐induced infiltrative growth, resulting in significant increase of survival.
Collapse
Affiliation(s)
| | - Quintino Giorgio D'Alessandris
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Pacioni
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Liliana Morgante
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Martini
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Maria Larocca
- Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliza Vakana
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Louis Stancato
- Discovery Research, Eli Lilly and Company, Indianapolis, IN
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
18
|
Wierzbicki M, Sawosz E, Strojny B, Jaworski S, Grodzik M, Chwalibog A. NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Sci Rep 2018; 8:14733. [PMID: 30283098 PMCID: PMC6170400 DOI: 10.1038/s41598-018-33179-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas develop an expanded vessel network and a microenvironment characterized by an altered redox environment, which produces high levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that fuel its growth and malignancy. ROS and RNS can influence tumor cell malignancy via the redox-regulated transcription factor NF-κB, whose activation is further regulated by the mutation status of p53. The objective of this study was to assess the influence of graphite nanoparticles (NG) and graphene oxide nanoplatelets (nGO) on the angiogenic potential of glioma cell lines with different p53 statuses. Nanoparticle treatment of glioma cells decreased the angiogenesis of human umbilical vein endothelial cells (HUVEC) cocultured with U87 (p53 wild type) and was not effective for U118 (p53 mutant) cells. Nanoparticle activity was related to the decreased level of intracellular ROS and RNS, which downregulated NF-κB signaling depending on the p53 status of the cell line. Activation of NF-κB signaling affected downstream protein levels of interleukin 6, interleukin 8, growth-regulated oncogene α, and monocyte chemotactic protein 1. These results indicate that the activity of NG and nGO can be regulated by the mutation status of glioma cells and therefore give new insights into the use of nanoparticles in personalized biomedical applications regarding glioma angiogenesis and its microenvironment.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Science, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
| |
Collapse
|
19
|
Barbarisi M, Iaffaioli RV, Armenia E, Schiavo L, De Sena G, Tafuto S, Barbarisi A, Quagliariello V. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme. J Cell Physiol 2018; 233:6550-6564. [PMID: 29030990 DOI: 10.1002/jcp.26238] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme is the most common and aggressive primary brain cancer with only ∼3% of patients surviving more than 3 years from diagnosis. Several mechanisms are involved in drug and radiation resistance to anticancer treatments and among them one of the most important factors is the tumor microenvironment status, characterized by cancer cell hypersecretion of interleukins and cytokines. The aim of our research was the synthesis of a nanocarrier of quercetin combined with temozolomide, to enhance the specificity and efficacy of this anticancer drug commonly used in glioblastoma treatment. The nanohydrogel increased the internalization and cytotoxicity of quercetin in human glioblastoma cells and, when co-delivered with temozolomide, contribute to an improved anticancer effect. The nanohydrogel loaded with quercetin had the ability to recognize CD44 receptor, a brain cancer cell marker, through an energy and caveolae dependent mechanism of internalization. Moreover, nanohydrogel of quercetin was able to reduce significantly IL-8, IL-6, and VEGF production in pro-inflammatory conditions with interesting implications on the mechanism of glioblastoma cells drug resistance. In summary, novel CD44 targeted polymeric based nanocarriers appear to be proficient in mediating site-specific delivery of quercetin via CD44 receptor in glioblastoma cells. This targeted therapy lead to an improved therapeutic efficacy of temozolomide by modulating the brain tumor microenvironment.
Collapse
Affiliation(s)
- Manlio Barbarisi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Rosario V Iaffaioli
- Department of Abdominal Oncology, National Cancer Institute, IRCCS - Foundation G. Pascale, Naples, Italy
| | - Emilia Armenia
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Schiavo
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gabriele De Sena
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Salvatore Tafuto
- Department of Abdominal Oncology, National Cancer Institute, IRCCS - Foundation G. Pascale, Naples, Italy
| | - Alfonso Barbarisi
- Department of Thoracic and Cardio-Respiratory Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vincenzo Quagliariello
- Department of Abdominal Oncology, National Cancer Institute, IRCCS - Foundation G. Pascale, Naples, Italy.,Department of Thoracic and Cardio-Respiratory Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
20
|
M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells. Oncotarget 2018; 8:819-832. [PMID: 27903982 PMCID: PMC5352199 DOI: 10.18632/oncotarget.13661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Vasculogenic mimicry (VM) has offered a new horizon for understanding tumor angiogenesis, but the mechanisms of VM in glioma progression have not been studied explicitly until now. As a significant component of immune infiltration in tumor microenvironment, macrophages have been demonstrated to play an important role in tumor growth and angiogenesis. However, whether macrophages could play a potential key role in glioma VM is still poorly understood. Herein we reported that both VM and CD163+ cells were associated with WHO grade and reduced patient survival, and VM channel counting was correlated to the number of infiltrated CD163+ cells in glioma specimens. In vitro studies of glioma cell lines implicated that M2-like macrophages (M2) promoted glioma VM. We found that conditional medium derived from M2 amplified IL-6 expression in glioma cells. Furthermore, our data indicated that IL-6 could promote glioma VM, as blocking IL-6 with neutralizing antibodies abrogated M2-mediated VM enhancement. In addition, the potent PKC inhibitor bisindolylmaleimide I could prevent M2-induced IL-6 upregulation and further inhibited glioma VM facilitation. Taken together, our results suggested that M2-like macrophages drove glioma VM through amplifying IL-6 secretion in glioma cells via PKC pathway.
Collapse
|
21
|
Amelot A, Terrier LM, Mathon B, Cook AR, Mazeron JJ, Valery CA, Cornu P, Leveque M, Carpentier A. Can anticancer chemotherapy promote the progression of brain metastases? Med Oncol 2018; 35:35. [PMID: 29427159 DOI: 10.1007/s12032-018-1097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Brain metastases natural history from one primary tumor type might be accelerated or favored by using certain systemic chemotherapy. A great deal was described in mice and suggested in human with antiangiogenic drugs, but little is known about the metastatic progression generated by the perverse effect of anticancer drugs. A total of 413 patients who underwent treatment for brain metastasis (2013-2016) were included. The identification of all previous anticancer drugs received by patients from primary tumor diagnosis to brain metastases diagnosis was collated. The median value for the time of first appearance of brain metastasis in all patients was 13.1 months (SD 1.77). The values of brain metastasis-free survival (bMFS) for each primary cancer were: 50.9 months (SD 8.8) for breast, 28.5 months (SD 11.4) for digestive, 27.7 months (SD 18.3) for melanoma, 12.3 months (SD 8.3) for kidney, 1.5 months (SD 0.1) for lung and 26.9 months (SD 18.3) for others (p < 0.009). Through Cox multivariate proportional hazard model, we identified that the only independent factors associated with short bMFS were: lung primary tumor [odd ratio (OR) 0.234, CI 95% 0.16-0.42; p < 0.0001] and mitotic spindle inhibitor (taxanes) chemotherapy [OR 0.609, CI 95% 0.50-0.93; p < 0.001]. Contrariwise, breast primary tumor [odd ratio (OR) 2.372, CI 95% 1.29-4.3; p < 0.005] was an independent factor that proved a significantly longer bMFS. We suggest that anticancer drugs, especially taxane and its derivatives, could promote brain metastases, decreasing free survival. Mechanisms are discussed but still need to be determined.
Collapse
Affiliation(s)
- Aymeric Amelot
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France. .,Université Paris VI - Pierre et Marie Curie, Paris, France.
| | | | - Bertrand Mathon
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Ann-Rose Cook
- Department of Neurosurgery, Hopital Bretonneau, Tours, France
| | - Jean-Jacques Mazeron
- Université Paris VI - Pierre et Marie Curie, Paris, France.,Department of Radiotherapy, Groupe Hospitalier Pitié-Salpétrière, APHP, Paris, France
| | - Charles-Ambroise Valery
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Philippe Cornu
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Marc Leveque
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Groupe Hospitalier Pitié-Salpétrière, APHP, 47-83 Boulevard de l'Hôpital, Batiment Babinski, 75013, Paris, France.,Université Paris VI - Pierre et Marie Curie, Paris, France
| |
Collapse
|
22
|
Taghipour M, Omidvar A, Razmkhah M, Ghaderi A, Mojtahedi Z. Comparative Proteomic Analysis of Tumor Mesenchymal-Like Stem Cells Derived from High Grade versus Low Grade Gliomas. CELL JOURNAL 2017; 19:250-258. [PMID: 28670517 PMCID: PMC5412783 DOI: 10.22074/cellj.2016.4179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022]
Abstract
Objective Gliomas are the most common primary brain tumors, and have been ranked as
the fourth leading cause of cancer death. Tumor mesenchymal-like stem cells (tMSCs) contribute to the aggressive behavior of glial tumors by providing a favorable microenvironment
for the malignant cells. The aim of our study was to identify differential proteome of tMSCs
derived from low vs. high grade glioma tumors.
Materials and Methods Patients with newly diagnosed low and high grade gliomas were
included in this case control study. tMSCs were isolated from tumors using enzymatic digestion validated by flow cytometer analysis after sub-culturing. Differential proteomic analysis
of tMSCs derived from low and high grade tumors was performed by two-dimensional gel
electrophoresis and mass spectrometry. Protein spots with more than two fold differences and
P values below 0.05 were considered as differentially expressed ones.
Results In tMSCs isolated from low and high grade gliomas, different isoforms of mesenchymal-related proteins vimentin and transgelin were differentially expressed. Overexpressed
proteins in tMSCs isolated from low grade gliomas were mitochondrial manganese-containing
superoxide dismutase (Mn-SOD), 40S ribosomal protein SA, and GTP-binding nuclear protein,
while in tMSCs isolated from high grade gliomas, cathepsin B, endoplasmin, ezrin, peroxiredoxin1, and pyruvate kinase (PK) were found to be significantly overexpressed.
Conclusion For the first time, we analyzed the differential proteomic profiles of tMSCs
isolated from glioma tumors with different grades. It was found that molecules related to
mesenchymal cells (vimentin and transglin), in addition to those related to tumor aggressiveness with potential secretory behavior (e.g. cathepsin B) were among differentially
expressed proteins.
Collapse
Affiliation(s)
- Mousa Taghipour
- Department of Neurosurgery, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydine Omidvar
- Department of Neurosurgery, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Mojtahedi
- Shiraz Institute for Cancer Research, School of Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells. PLoS One 2017; 12:e0169932. [PMID: 28107450 PMCID: PMC5249124 DOI: 10.1371/journal.pone.0169932] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.
Collapse
|
24
|
Fukumura D, Incio J, Shankaraiah RC, Jain RK. Obesity and Cancer: An Angiogenic and Inflammatory Link. Microcirculation 2016; 23:191-206. [PMID: 26808917 DOI: 10.1111/micc.12270] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Abstract
With the current epidemic of obesity, a large number of patients diagnosed with cancer are overweight or obese. Importantly, this excess body weight is associated with tumor progression and poor prognosis. The mechanisms for this worse outcome, however, remain poorly understood. We review here the epidemiological evidence for the association between obesity and cancer, and discuss potential mechanisms focusing on angiogenesis and inflammation. In particular, we will discuss how the dysfunctional angiogenesis and inflammation occurring in adipose tissue in obesity may promote tumor progression, resistance to chemotherapy, and targeted therapies such as anti-angiogenic and immune therapies. Better understanding of how obesity fuels tumor progression and therapy resistance is essential to improve the current standard of care and the clinical outcome of cancer patients. To this end, we will discuss how an anti-diabetic drug such as metformin can overcome these adverse effects of obesity on the progression and treatment resistance of tumors.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,I3S, Institute for Innovation and Research in Heath, Metabolism, Nutrition and Endocrinology Group, Biochemistry Department, Faculty of Medicine, Porto University, Porto, Portugal.,Department of Internal Medicine, Hospital S. João, Porto, Portugal
| | - Ram C Shankaraiah
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Liang S, Chen Z, Jiang G, Zhou Y, Liu Q, Su Q, Wei W, Du J, Wang H. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett 2016; 386:12-23. [PMID: 27836733 DOI: 10.1016/j.canlet.2016.11.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by high vascularity and frequent metastasis. Here, we found that activation of G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 can significantly inhibit interleukin 6 (IL-6) and vascular endothelial growth factor A (VEGF-A). TNBC tissue microarrays from 100 TNBC patients revealed GPER is negatively associated with IL-6 levels and higher grade and stage. Activation of GPER or anti-IL-6 antibody can inhibit both in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and migration of TNBC cells. While recombinant IL-6 supplementary can significantly reverse the inhibitory effects of G-1, suggesting the essential role of IL-6 in G-1 induced suppression of angiogenesis and invasiveness of TNBC cells. G-1 treatment decreased the phosphorylation, nuclear localization, transcriptional activities of NF-κB and suppressed its binding with IL-6 promoter. BAY11-7028, the inhibitor of NF-κB, can mimic the effect of G-1 to suppression of IL-6 and VEGF-A. While over expression of p65 can attenuate the inhibitory effects of G-1 on IL-6 and VEGF expression. The suppression of IL-6 by G-1 can further inhibit HIF-1α and STAT3 signals in TNBC cells by inhibition their expression, phosphorylation and/or nuclear localization. Moreover, G-1 also inhibited the in vivo NF-κB/IL-6 signals and angiogenesis and metastasis of MDA-MB-231 xenograft tumors. In conclusion, our study demonstrated that activation of GPER can suppress migration and angiogenesis of TNBC via inhibition of NF-κB/IL-6 signals, therefore it maybe act as an important target for TNBC treatment.
Collapse
Affiliation(s)
- Shuwei Liang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guanmin Jiang
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yan Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiao Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Weidong Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Hsiao YC, Yeh MH, Chen YJ, Liu JF, Tang CH, Huang WC. Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget 2016; 6:37965-78. [PMID: 26513016 PMCID: PMC4741977 DOI: 10.18632/oncotarget.5700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
Lapatinib, a dual epidermal growth factor receptor (EGFR) and HER2 tyrosine kinase inhibitor (TKI), has been approved for HER2-positive breast cancer patients. Nevertheless, its inhibitory effect on EGFR did not deliver clinical benefits for triple-negative breast cancer (TNBC) patients even EGFR overexpression was frequently found in this disease. Moreover, lapatinib was unexpectedly found to enhance metastasis of TNBC cells, but the underlying mechanisms are not fully understood. In this study, we explored that the level of interleukin-6 (IL-6) was elevated in lapatinib-treated TNBC cells. Treatment with IL-6 antibody abolished the lapatinib-induced migration. Mechanistically, the signaling axis of Raf-1/mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinases (JNKs), p38 MAPK, and activator protein 1 (AP-1) was activated in response to lapatinib treatment to induce IL-6 expression. Furthermore, our data showed that microRNA-7 directly binds and inhibits Raf-1 3'UTR activity, and that down-regulation of miR-7 by lapatinib contributes to the activation of Raf-1 signaling pathway and the induction of IL-6 expression. Our results not only revealed IL-6 as a key regulator of lapatinib-induced metastasis, but also explored the requirement of miR7/Raf-1/MAPK/AP-1 axis in lapatinib-induced IL-6 expression.
Collapse
Affiliation(s)
- Yu-Chun Hsiao
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Ming-Hsin Yeh
- Department of Surgery, Chung-Shan Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.,Department of Biological Science & Technology, I-Shou University, Kaohsiung, Taiwan
| | - Ju-Fang Liu
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Wei-Chien Huang
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University and Hospital, Taichung, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Pinto MP, Sotomayor P, Carrasco-Avino G, Corvalan AH, Owen GI. Escaping Antiangiogenic Therapy: Strategies Employed by Cancer Cells. Int J Mol Sci 2016; 17:ijms17091489. [PMID: 27608016 PMCID: PMC5037767 DOI: 10.3390/ijms17091489] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Tumor angiogenesis is widely recognized as one of the "hallmarks of cancer". Consequently, during the last decades the development and testing of commercial angiogenic inhibitors has been a central focus for both basic and clinical cancer research. While antiangiogenic drugs are now incorporated into standard clinical practice, as with all cancer therapies, tumors can eventually become resistant by employing a variety of strategies to receive nutrients and oxygen in the event of therapeutic assault. Herein, we concentrate and review in detail three of the principal mechanisms of antiangiogenic therapy escape: (1) upregulation of compensatory/alternative pathways for angiogenesis; (2) vasculogenic mimicry; and (3) vessel co-option. We suggest that an understanding of how a cancer cell adapts to antiangiogenic therapy may also parallel the mechanisms employed in the bourgeoning tumor and isolated metastatic cells delivering responsible for residual disease. Finally, we speculate on strategies to adapt antiangiogenic therapy for future clinical uses.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| | - Paula Sotomayor
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370071, Chile.
| | - Gonzalo Carrasco-Avino
- Department of Pathology, Faculty of Medicine, Universidad de Chile, Santiago 8380456, Chile.
| | - Alejandro H Corvalan
- Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330032, Chile.
- Center UC Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8330023, Chile.
| | - Gareth I Owen
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
- Center UC Investigation in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago 8330023, Chile.
- Biomedical Research Consortium of Chile, Santiago 8331150, Chile.
- Millennium Institute on Immunology & Immunotherapy, Santiago 8331150, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
28
|
High serum levels of interleukin-6 in patients with advanced or metastatic colorectal cancer: the effect on the outcome and the response to chemotherapy plus bevacizumab. Surg Today 2016; 47:483-489. [PMID: 27549777 DOI: 10.1007/s00595-016-1404-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE We evaluated the relationship of the pretreatment serum IL-6 levels with the outcome and treatment response in patients with advanced or metastatic colorectal cancer (CRC) who underwent bevacizumab-containing chemotherapy. METHODS In this retrospective study, the pretreatment serum IL-6 and plasma vascular endothelial growth factor (VEGF) levels were measured in 113 patients with metastatic CRC. The cut-off values for these measurements, as determined by a receiver operating characteristic curve analysis, were 4.3 and 66 pg/mL, respectively. The median follow-up period was 19 months (range 1-40 months). Sixty-three patients had primary cancer, and 38 had a metachronous recurrence. Thirty patients underwent curative resection, and 71 underwent chemotherapy, 53 of whom received bevacizumab-containing chemotherapy. Overall survival (OS) and progression-free survival (PFS) were estimated using Kaplan-Meier and multivariate Cox proportional hazards regression analyses. RESULTS The plasma VEGF levels and positive KRAS mutation status were not associated with the outcomes. However, high serum IL-6 levels were significantly associated with poorer OS and PFS in comparison to low serum IL-6 levels. A Cox proportional hazards regression analysis showed that high serum IL-6 levels were an independent risk factor for a poor outcome. CONCLUSION In patients with metastatic CRC, high pretreatment serum IL-6 levels were associated with a poor outcome and bevacizumab resistance.
Collapse
|
29
|
Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. J Transl Med 2016; 14:241. [PMID: 27538520 PMCID: PMC4989492 DOI: 10.1186/s12967-016-1002-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background Tumour resistance to a wide range of drugs (multiple drug resistant, MDR) acquired after intensive chemotherapy is considered to be the main obstacle of the curative treatment of cancer patients. Recent work has shown that oncolytic viruses demonstrated prominent potential for effective treatment of diverse cancers. Here, we evaluated whether genetically modified vaccinia virus (LIVP-GFP) may be effective in treatment of cancers displaying MDR phenotype. Methods LIVP-GFP replication, transgene expression and cytopathic effects were analysed in human cervical carcinomas KB-3-1 (MDR−), KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), murine lymphosarcomas RLS and RLS-40 (MDR+). To investigate the efficacy of this therapy in vivo, we treated immunocompetent mice bearing murine lymphosarcoma RLS-40 (MDR+) (6- to 8-week-old female CBA mice; n = 10/group) or melanoma B-16 (MDR−) (6- to 8-week-old female C57Bl mice; n = 6/group) with LIVP-GFP (5 × 107 PFU of virus in 0.1 mL of IMDM immediately and 4 days after tumour implantation). Results We demonstrated that LIVP-GFP replication was effective in human cervical carcinomas KB-3-1 (MDR−) and KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), whereas active viral production was not detected in murine lymphosarcomas RLS and RLS-40 (MDR+). Additionally, it was found that in tumour models in immunocompetent mice under the optimized regimen intratumoural injections of LIVP-GFP significantly inhibited melanoma B16 (33 % of mice were with complete response after 90 days) and RLS-40 tumour growth (fourfold increase in tumour doubling time) as well as metastasis. Conclusion The anti-tumour activity of LIVP-GFP is a result of direct oncolysis of tumour cells in case of melanoma B-16 because the virus effectively replicates and destroys these cells, and virus-mediated activation of the host immune system followed by immunologically mediated destruction of of tumour cells in case of lymphosarcoma RLS-40. Thus, the recombinant vaccinia virus LIVP-GFP is able to inhibit the growth of malignant cells with the MDR phenotype and tumour metastasis when administered in the early stages of tumour development. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1002-x) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Jabouille A, Delugin M, Pineau R, Dubrac A, Soulet F, Lhomond S, Pallares-Lupon N, Prats H, Bikfalvi A, Chevet E, Touriol C, Moenner M. Glioblastoma invasion and cooption depend on IRE1α endoribonuclease activity. Oncotarget 2016; 6:24922-34. [PMID: 26325176 PMCID: PMC4694804 DOI: 10.18632/oncotarget.4679] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
IRE1α is an endoplasmic reticulum (ER)-resident transmembrane signaling protein and a cellular stress sensor. The protein harbors a cytosolic dual kinase/endoribonuclease activity required for adaptive responses to micro-environmental changes. In an orthotopic xenograft model of human glioma, invalidation of IRE1α RNase or/and kinase activities generated tumors with remarkably distinct phenotypes. Contrasting with the extensive angiogenesis observed in tumors derived from control cells, the double kinase/RNase invalidation reprogrammed mesenchymal differentiation of cancer cells and produced avascular and infiltrative glioblastomas with blood vessel co-option. In comparison, selective invalidation of IRE1α RNase did not compromise tumor angiogenesis but still elicited invasive features and vessel co-option. In vitro, IRE1α RNase deficient cells were also endowed with a higher ability to migrate. Constitutive activation of both enzymes led to wild-type-like lesions. The presence of IRE1α, but not its RNase activity, is therefore required for glioblastoma neovascularization, whereas invasion results only from RNase inhibition. In this model, two key mechanisms of tumor progression and cancer cell survival are functionally linked to IRE1α.
Collapse
Affiliation(s)
- Arnaud Jabouille
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Maylis Delugin
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | | | | | - Fabienne Soulet
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Stéphanie Lhomond
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France
| | - Nestor Pallares-Lupon
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France
| | - Hervé Prats
- Inserm, U1037, CHU de Rangueil, 31432 Toulouse, France
| | - Andreas Bikfalvi
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France
| | - Eric Chevet
- Université de Bordeaux, 33000 Bordeaux, France.,Inserm, U1053, 33000 Bordeaux, France.,Centre Régional de Lutte Contre le Cancer Eugène Marquis, 35000 Rennes, France.,ER440, Oncogenesis, Stress, Signaling, Université Rennes 1, Rennes, France
| | | | - Michel Moenner
- Inserm, U1029, 33400 Talence, France.,Université de Bordeaux, 33000 Bordeaux, France.,CNRS UMR5095, IBGC, 33700 Bordeaux, France
| |
Collapse
|
31
|
Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, Bilsland AE, Boosani CS, Chen S, Ciriolo MR, Crawford S, Fujii H, Georgakilas AG, Guha G, Halicka D, Helferich WG, Heneberg P, Honoki K, Keith WN, Kerkar SP, Mohammed SI, Niccolai E, Nowsheen S, Vasantha Rupasinghe HP, Samadi A, Singh N, Talib WH, Venkateswaran V, Whelan RL, Yang X, Felsher DW. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol 2015; 35 Suppl:S199-S223. [PMID: 25865775 PMCID: PMC4930000 DOI: 10.1016/j.semcancer.2015.02.007] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Fabian Benencia
- Department of Biomedical Sciences, Ohio University, Athens, OH, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Alan E Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Laboratory, Guildford, Surrey, United Kingdom
| | | | - Sarah Crawford
- Department of Biology, Southern Connecticut State University, New Haven, CT, United States
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | | | - William G Helferich
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Petr Heneberg
- Charles University in Prague, Third Faculty of Medicine, Prague, Czech Republic
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sid P Kerkar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | | | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science University, Amman, Jordan
| | | | - Richard L Whelan
- Mount Sinai Roosevelt Hospital, Icahn Mount Sinai School of Medicine, New York City, NY, United States
| | - Xujuan Yang
- University of Illinois at Urbana-Champaign, Champaign-Urbana, IL, United States
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
32
|
Lissat A, Joerschke M, Shinde DA, Braunschweig T, Meier A, Makowska A, Bortnick R, Henneke P, Herget G, Gorr TA, Kontny U. IL6 secreted by Ewing sarcoma tumor microenvironment confers anti-apoptotic and cell-disseminating paracrine responses in Ewing sarcoma cells. BMC Cancer 2015. [PMID: 26215971 PMCID: PMC4517368 DOI: 10.1186/s12885-015-1564-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The prognosis of patients with Ewing sarcoma (ES) has improved over the course of the last decades. However, those patients suffering from metastatic and recurrent ES still have only poor chances of survival and require new therapeutic approaches. Interleukin-6 (IL6) is a pleiotropic cytokine expressed by immune cells and a great variety of cancer cells. It induces inflammatory responses, enhances proliferation and inhibits apoptosis in cancer cells, thereby promoting chemoresistance. Methods We investigated expression of IL6, its receptors and the IL6 signal transduction pathway in ES tumor samples and cell lines applying reverse transcriptase PCR, immunoblot and immunohistochemistry. The impact of IL6 on cell viability and apoptosis in ES cell lines was analyzed by MTT and propidium iodide staining, migration assessed by chorioallantoic membrane (CAM) assay. Results Immunohistochemistry proved IL6 expression in the stroma of ES tumor samples. IL6 receptor subunits IL6R and IL6ST were expressed on the surface of ES cells. Treatment of ES cells with rhIL6 resulted in phosphorylation of STAT3. rhIL6 protected ES cells from serum starvation-induced apoptosis and promoted migration. IL6 blood serum levels were elevated in a subgroup of ES patients with poor prognosis. Conclusions These data suggest that IL6 contributes to ES tumor progression by increasing resistance to apoptosis in conditions of cellular stress, such as serum starvation, and by promotion of metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1564-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrej Lissat
- Division of Pediatric Hematology and Oncology, Charité - University Medical Center, Berlin, Germany.
| | - Mandy Joerschke
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Dheeraj A Shinde
- Dheeraj Shinde, Institute of Oncology Research, Via Vincenzo Vela, Bellinzona, 66500, Switzerland.
| | | | - Angelina Meier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Anna Makowska
- Division of Pediatric Hematology and Oncology, University Medical Center Aachen, Pauwelsstraße 30, Aachen, 52074, Germany.
| | - Rachel Bortnick
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany.
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.
| | - Georg Herget
- Department of Traumatology and Orthopaedics, University Medical Center Freiburg, Freiburg, Germany.
| | - Thomas A Gorr
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany. .,Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Udo Kontny
- Division of Pediatric Hematology and Oncology, University Medical Center Aachen, Pauwelsstraße 30, Aachen, 52074, Germany.
| |
Collapse
|
33
|
Al-Nadaf S, Platt SR, Kent M, Northrup N, Howerth EW. Minimal interleukin expression in canine intracranial meningiomas. Vet Rec 2015; 177:75. [PMID: 26109283 DOI: 10.1136/vr.103135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/31/2022]
Affiliation(s)
- S Al-Nadaf
- The Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - S R Platt
- The Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - M Kent
- The Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - N Northrup
- The Department of Small Animal Medicine and Surgery, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - E W Howerth
- The Department of Pathology, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| |
Collapse
|
34
|
Christofides A, Kosmopoulos M, Piperi C. Pathophysiological mechanisms regulated by cytokines in gliomas. Cytokine 2014; 71:377-84. [PMID: 25458967 DOI: 10.1016/j.cyto.2014.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Glioma, a neuroglia originated malignancy, consists of one of the most aggressive primary tumors of the central nervous system with poor prognosis and lack of efficient treatment strategy. Cytokines have been implicated in several stages of glioma progression, participating in tumor onset, growth enhancement, angiogenesis and aggressiveness. Interestingly, cytokines have also the ability to inhibit glioma growth upon specific regulation or interplay with other molecules. This review addresses the dual role of major cytokines implicated in glioma pathology, pointing toward promising therapeutic approaches.
Collapse
Affiliation(s)
- Anthos Christofides
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Marinos Kosmopoulos
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens, Medical School, 11527 Athens, Greece.
| |
Collapse
|
35
|
Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, Fulp WJ, Dalton W, Yeatman T, Brem S. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol 2014; 5:389-99. [PMID: 25220188 DOI: 10.1016/j.jgo.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Senescence-associated genes (SAGs) are responsible for the senescence-associated secretory phenotype, linked in turn to cellular aging, the aging brain, and the pathogenesis of cancer. OBJECTIVE We hypothesized that senescence-associated genes are overexpressed in older patients, in higher grades of glioma, and portend a poor prognosis. METHODS Forty-seven gliomas were arrayed on a custom version of the Affymetrix HG-U133+2.0 GeneChip, for expression of fourteen senescence-associated genes: CCL2, CCL7, CDKN1A, COPG, CSF2RB, CXCL1, ICAM-1, IGFBP-3, IL-6, IL-8, SAA4, TNFRSF-11B, TNFSF-11 and TP53. A combined "senescence score" was generated using principal component analysis to measure the combined effect of the senescence-associated gene signature. RESULTS An elevated senescence score correlated with older age (r=0.37; P=.01) as well as a higher degree of malignancy, as determined by WHO, histological grade (r=0.49; P<.001). There was a mild association with poor prognosis (P=.06). Gliosarcomas showed the highest scores. Six genes independently correlated with either age (IL-6, TNFRSF-11B, IGFBP-3, SAA4, and COPG), prognosis (IL-6, SAA4), or the grade of the glioma (IL-6, IL-8, ICAM-1, IGFBP-3, and COPG). CONCLUSION We report: 1) a novel molecular signature in human gliomas, based on cellular senescence, translating the concept of SAG to human cancer; 2) the senescence signature is composed of genes central to the pathogenesis of gliomas, defining a novel, aggressive subtype of glioma; and 3) these genes provide prognostic biomarkers, as well as targets, for drug discovery and immunotherapy.
Collapse
Affiliation(s)
- Domenico Coppola
- Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Lodovico Balducci
- Senior Oncology Programs, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Dung-Tsa Chen
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | | | - Michael Nebozhyn
- Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Merck Laboratory
| | - Aileen Staller
- Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William J Fulp
- Biostatistics and Bioinformatics Department, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - William Dalton
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; M2Gen, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA
| | - Timothy Yeatman
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gastrointestinal, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Gibbs Cancer Center & Research Institute, Spartanburg, SC 29303 USA
| | - Steven Brem
- Experimental Therapeutics, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Population Sciences Division, Department of Oncological Sciences, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Neuro-Oncology/Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, FL 33612-9497, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J Ophthalmol 2014; 2014:502174. [PMID: 25110587 PMCID: PMC4121253 DOI: 10.1155/2014/502174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/09/2014] [Indexed: 12/28/2022] Open
Abstract
Objective. To prospectively evaluate the effect of intravitreal bevacizumab on aqueous levels of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) in patients with exudative age-related macular degeneration (AMD) and correlate clinical outcomes with cytokine levels. Methods. 30 eyes of 30 patients with exudative AMD underwent intravitreal injection of bevacizumab three times at monthly intervals. The aqueous samples prior to the 1st injection (baseline) and 3rd injection were analyzed for VEGF and IL-6 levels. Subjects were subgrouped based upon change in the central subfield (CSF) macular thickness on SD-OCT at 8 weeks. Group 1 included patients (n = 14) with a decrease in CSF thickness greater than 10% from the baseline (improved group). Group 2 included patients (n = 16) who had a decrease in CSF thickness 10% or less (treatment-resistant). Results. In subgroup analysis, in both groups 1 and 2 patients, compared to aqueous VEGF, aqueous IL-6 levels showed a better correlation with CSF thickness on SD-OCT (r = 0.72 and 0.71, resp.). Conclusions. Aqueous IL-6 may be an important marker of treatment response or resistance in wet macular degeneration. Future therapeutic strategies may include targeted treatment against both VEGF and IL-6, in patients who do not respond to anti-VEGF treatment alone.
Collapse
|
37
|
Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol 2014; 35:8425-38. [DOI: 10.1007/s13277-014-2262-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 02/03/2023] Open
|
38
|
The chick embryo chorioallantoic membrane as a model for tumor biology. Exp Cell Res 2014; 328:314-24. [PMID: 24972385 DOI: 10.1016/j.yexcr.2014.06.010] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023]
Abstract
Among the in vivo models, the chick embryo chorioallantoic membrane (CAM) has been used to implant several tumor types as well as malignant cell lines to study their growth rate, angiogenic potential and metastatic capability. This review article is focused on the major compelling literature data on the use of the CAM to investigate tumor growth and the metastatic process.
Collapse
|
39
|
A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res 2014; 768:16-21. [PMID: 25847384 DOI: 10.1016/j.mrfmmm.2014.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming "regression" of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish "neo-endo-parasites" that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of cancer cells and propose that this compound might be a potent addition to the current chemotherapeutic strategy against cancer.
Collapse
|
40
|
Singh R, Sharma MC, Sarkar C, Singh M, Chauhan SS. Transcription factor C/EBP-β mediates downregulation of dipeptidyl-peptidase III expression by interleukin-6 in human glioblastoma cells. FEBS J 2014; 281:1629-41. [PMID: 24472318 DOI: 10.1111/febs.12728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/28/2013] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Dipeptidyl-peptidase III (DPP III) is a cytosolic metallo-aminopeptidase implicated in various physiological and pathological processes. A previous study from our laboratory indicated an elevated expression of DPP III in glioblastoma (U87MG) cells. In the present study we investigated the role of interleukin-6 (IL-6), a pleiotropic cytokine produced by glial tumors, in the regulation of DPP III expression. Immunohistochemistry, western blotting and quantitative RT-PCR were used for quantitation of DPP III and IL-6 in human glioblastoma cells and tumors. Cell transfections and DPP III promoter reporter assays were performed to study the transcriptional regulation of DPP III by IL-6. Promoter deletion analysis, site directed mutagenesis, chromatin immunoprecipitation assays and small interfering RNA (siRNA) technology was employed to elucidate the molecular mechanism of IL-6 mediated regulation of DPP III expression in glioblastoma cells. Our results for the first time demonstrate a negative correlation (r = 0.632, P = 0.01) between DPP III and IL-6 in both human tumors and cultured glioblastoma cells. Treatment of U87MG cells with IL-6 significantly decreased DPP III expression with a concomitant increase in the levels of transcription factor CCAAT/enhancer binding protein beta (C/EBP-β). Deletion/mutagenesis of C/EBP-β binding motif of DPP III promoter significantly increased its activity and abolished its responsiveness to IL-6. This effect could also be mimicked by C/EBP-β siRNA. In conclusion our study for the first time demonstrates C/EBP-β mediated transcriptional downregulation of DPP III by IL-6. Our results demonstrating a negative correlation between IL-6 and DPP III taken together with the previously reported prognostic significance of this cytokine in glioblastoma suggests that DPP III may prove useful as a prognostic marker.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
41
|
Song JJ, Kwon JY, Park MK, Seo YR. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle. Int J Pediatr Otorhinolaryngol 2013; 77:1760-4. [PMID: 24012219 DOI: 10.1016/j.ijporl.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). METHODS The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. RESULTS A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. CONCLUSIONS We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media.
Collapse
Affiliation(s)
- Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, Yip A, Martinka M, Dong Z, Zhou J, Xu J, Li G. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis 2013; 34:2778-88. [PMID: 24064223 DOI: 10.1093/carcin/bgt318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma is the deadliest cutaneous malignancy because of its high incidence of metastasis. Melanoma growth and metastasis relies on sustained angiogenesis; therefore, inhibiting angiogenesis is a promising approach to treat metastatic melanoma. JWA is a novel microtubule-associated protein and our previous work revealed that JWA inhibited melanoma cell invasion and metastasis. However, the role of JWA in melanoma angiogenesis and the prognostic value are still unknown. Here, we report that JWA in melanoma cells significantly inhibited the tube formation of endothelial cells. In addition, JWA regulated integrin-linked kinase (ILK) through integrin αVβ3 and such regulation was achieved through the transcription factor Sp1. Notably, both in vitro and in vivo angiogenesis assays revealed that JWA dramatically suppressed melanoma angiogenesis by inhibiting ILK signaling. Furthermore, we examined the expression of JWA protein in a large set of melanocytic lesions (n = 505) at different stages by tissue microarray and found an inverse correlation between JWA expression and melanoma progression (P = 5 × 10(-6)). Importantly, reduced JWA expression was correlated with a poorer overall, and disease-specific 5 year survival of patients (P = 0.001 and 0.007, respectively). Multivariate Cox regression analyses indicated that JWA was an independent prognostic marker for melanoma patients. Moreover, we found a significant negative correlation between JWA and ILK in melanoma biopsies, and their concomitant expression was closely correlated with melanoma patient survival (P = 0.004), further indicating the regulation of ILK expression by JWA is critical in melanoma. Taken together, our data highlight the function of JWA in melanoma angiogenesis and reveal the clinical prognostic value of JWA.
Collapse
Affiliation(s)
- Jing Lu
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, 828 West 10th Avenue, Vancouver, British Columbia, V5Z 1L8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Middleton K, Jones J, Lwin Z, Coward JIG. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol 2013; 89:129-39. [PMID: 24029605 DOI: 10.1016/j.critrevonc.2013.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
During the past decade, incorporating anti-angiogenic agents into the therapeutic management of a myriad of malignancies has in certain cases made a significant impact on survival. However, the development of resistance to these drugs is inevitable and swift disease progression on their cessation often ensues. Hence, there is a drive to devise strategies that aim to enhance response to anti-angiogenic therapies by combining them with other targeted agents that facilitate evasion from resistance. The pleiotropic cytokine, interleukin-6 (IL-6), exerts pro-angiogenic effects in the tumour microenvironment of several solid malignancies and there is emerging evidence that reveals significant relationships between IL-6 signalling and treatment failure with antibodies directed against vascular endothelial growth factor (VEGF). This review summarises the role of IL-6 in pivotal angiogenic processes and preclinical/clinical research to support the future introduction of anti-IL-6 therapies to be utilised either in combination with other anti-angiogenic drugs or as a salvage therapy for patients with diseases that become refractory to these approaches.
Collapse
Affiliation(s)
- Kathryn Middleton
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Joanna Jones
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Zarnie Lwin
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia; Inflammation & Cancer Therapeutics Group, Mater Research, Level 4, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
44
|
Warnock G, Turtoi A, Blomme A, Bretin F, Bahri MA, Lemaire C, Libert LC, Seret AE, Luxen A, Castronovo V, Plenevaux AR. In Vivo PET/CT in a Human Glioblastoma Chicken Chorioallantoic Membrane Model: A New Tool for Oncology and Radiotracer Development. J Nucl Med 2013; 54:1782-8. [DOI: 10.2967/jnumed.112.117150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Interleukin-6 is overexpressed and augments invasiveness of human glioma stem cells in vitro. Clin Exp Metastasis 2013; 30:1009-18. [DOI: 10.1007/s10585-013-9599-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
46
|
Xu HW, Huang YJ, Xie ZY, Lin L, Guo YC, Zhuang ZR, Lin XP, Zhou W, Li M, Huang HH, Wei XL, Man K, Zhang GJ. The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients. BMC Cancer 2013; 13:247. [PMID: 23688241 PMCID: PMC3663650 DOI: 10.1186/1471-2407-13-247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 05/16/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence suggests that cytoglobin (Cygb) may function as a tumor suppressor gene. METHODS We immunohistochemically evaluated the expression of Cygb, phosphatidylinositol-3 kinase (PI-3K), phosphorylated (p)-Akt, Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα) and vascular endothelial growth factor (VEGF) in 88 patients with 41 high-grade gliomas and 47 low-grade gliomas. Intratumoral microvessel density (IMD) was also determined and associated with clinicopathological factors. RESULTS Low expression of Cygb was significantly associated with the higher histological grading and tumor recurrence. A significant negative correlation emerged between Cygb expression and PI3K, p-Akt, IL-6, TNFα or VEGF expression. Cygb expression was negatively correlated with IMD. There was a positive correlation between PI3K, p-Akt, IL-6, TNFα and VEGF expression with IMD.High histologic grade, tumor recurrence, decreased Cygb expression, increased PI3K expression, increased p-Akt expression and increased VEGF expression correlated with patients' overall survival in univariate analysis. However, only histological grading and Cygb expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis. CONCLUSIONS Cygb loss may contribute to tumor recurrence and a worse prognosis in gliomas. Cygb may serve as an independent predictive factor for prognosis of glioma patients.
Collapse
Affiliation(s)
- Hong-Wu Xu
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Yue-Jun Huang
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
- Department of pediatrics, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Ze-Yu Xie
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Lan Lin
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Yan-Chun Guo
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Ze-Rui Zhuang
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Xin-Peng Lin
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Wen Zhou
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Mu Li
- Department of Neurosurgery, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Hai-Hua Huang
- Department of pathology, Second Affiliated Hospital of Shantou University Medical College, North Dongxia Rd, Shantou, Guangdong, 515041, China
| | - Xiao-Long Wei
- Department of pathology, Cancer Hospital of Shantou University Medical College, Raoping Rd, Shantou, Guangdong, 515031, China
| | - Kwan Man
- Department of Surgery and Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guo-Jun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Raoping Rd, Shantou, Guangdong, 515031, China
| |
Collapse
|
47
|
Williams M, Tietzel I, Quick QA. 1'-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression. Oncol Lett 2013; 5:1968-1972. [PMID: 23833677 PMCID: PMC3700938 DOI: 10.3892/ol.2013.1292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022] Open
Abstract
The brain consumes ∼20% of the oxygen utilized in the human body, meaning that brain tumors are vulnerable to paradoxical physiological effects from free radical generation. In the present study, 1'-acetoxychavicol acetate (ACA), a naturally derived antioxidant that inhibits xanthine oxidase, was evaluated for its role as an anti-tumorigenic agent in glioblastomas. The study revealed that ACA inhibited glioblastoma cell proliferation as a consequence of promoting apoptotic cell death by enhancing caspase 3 activity. It was also shown that ACA impaired the migratory ability of glioblastoma cells by decreasing their adhesive properties. Additionally, ACA increased the protein expression levels of the pro-survival signaling cytokines, IL-6 and IL-1α, established cell protectors and survival molecules in brain tumors. Together, these results demonstrate that, despite enhanced expression of compensatory signaling molecules that contribute to tumor cell survival, ACA is an effective pro-apoptotic inducing agent in glioblastomas.
Collapse
Affiliation(s)
- Musa Williams
- Department of Biology, Southern University at New Orleans, New Orleans, LA 70126, USA
| | | | | |
Collapse
|
48
|
Javerzat S, Godard V, Bikfalvi A. Balancing risks and benefits of anti-angiogenic drugs for malignant glioma. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis is a delicate process that has been programmed over the time of evolution of vertebrates to provide optimized quantities of oxygen and nutrients to the developing embryo and the growing newborn. Similarly, angiogenesis induction pathways are used during tumor development. Angiogenesis and tumor cell invasion are closely linked. Anti-angiogenesis treatment strategies have entered the clinic and show some promising results. However, recent research using preclinical models have pointed to possible harmful effects, including evasive resistance and increase in tumor cell invasion when VEGF activity is inhibited. This has been corroborated by observations in treated glioblastoma patients. However, the meaning of these observations is still in question. The results of Phase III clinical trials that are ongoing will certainly provide more definitive answers with regard to evasive resistance in glioblastoma treated with anti-angiogenic drugs.
Collapse
Affiliation(s)
- Sophie Javerzat
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
| | - Virginie Godard
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
| | - Andreas Bikfalvi
- Institut National de la Santé et de la Recherche Médicale, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France
- University of Bordeaux, Laboratoire de l’Angiogenèse et du Microenvironnement des Cancers, Unités Mixte de Recherche 1029, F-33400 Talence, France.
| |
Collapse
|
49
|
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 2013; 168:591-606. [PMID: 23062197 PMCID: PMC3579281 DOI: 10.1111/bph.12008] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti-inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL-1β, IL-6 and IL-8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.
Collapse
Affiliation(s)
- Y T Yeung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
50
|
Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Palmeirim I, Reis RM, Baltazar F. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol 2012; 15:172-88. [PMID: 23258846 DOI: 10.1093/neuonc/nos298] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas. METHODS MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. RESULTS MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. CONCLUSIONS This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|