1
|
Pao YS, Liao KJ, Shiau YC, Chao MH, Li MC, Lin LM, Chang HH, Yeh HW, Chen YJ, Chiu YT, Pan MYC, Chang YH, Shen SY, Lin SY, Cheng HC, Lin YC, Sun YJ, Kuo CC, Hsieh HP, Wang LHC. KIF2C promotes paclitaxel resistance by depolymerizing polyglutamylated microtubules. Dev Cell 2025:S1534-5807(25)00151-0. [PMID: 40157365 DOI: 10.1016/j.devcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 11/27/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
The long-term effectiveness of paclitaxel is limited by chemoresistance. In this study, we elucidate the molecular mechanism by which kinesin family member 2C (KIF2C), a well-known microtubule depolymerase, contributes to the development of chemoresistance in triple-negative breast cancer (TNBC). We observed elevated levels of KIF2C, tubulin tyrosination, and polyglutamylation in human and mouse breast cancer cells resistant to paclitaxel. Additionally, these chemoresistant cells possessed cross-resistance to diverse microtubule-targeting agents (MTAs). We demonstrated that KIF2C preferentially depolymerizes polyglutamylated tubulin, even in the presence of paclitaxel. To counter this, we developed 7S9, a chemical inhibitor of KIF2C, that prohibits the dissociation of KIF2C from microtubules. The combination of 7S9 and paclitaxel significantly reduced tumorigenesis in chemoresistant TNBC model in mice. Moreover, 7S9 diminished cancer cell chemoresistance to several clinically available MTAs. Our findings elucidate the molecular mechanism of KIF2C-mediated chemoresistance and highlight KIF2C as a promising target for combating cross-resistance in TNBC.
Collapse
Affiliation(s)
- Yuan-Shao Pao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Kuan-Ju Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Ya-Chia Shiau
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Ming-Hong Chao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Mu-Chun Li
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hung-Wei Yeh
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei City 115202, Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Max Yu-Chen Pan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Hsuan Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Shih-Yu Shen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan
| | - Hui-Chun Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan.
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan.
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan.
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu City 300044, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan.
| |
Collapse
|
2
|
Kreis NN, Moon HH, Wordeman L, Louwen F, Solbach C, Yuan J, Ritter A. KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker. Crit Rev Clin Lab Sci 2024; 61:404-434. [PMID: 38344808 PMCID: PMC11815995 DOI: 10.1080/10408363.2024.2309933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/24/2024]
Abstract
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
3
|
Abou Kors T, Meier M, Mühlenbruch L, Betzler AC, Oliveri F, Bens M, Thomas J, Kraus JM, Doescher J, von Witzleben A, Hofmann L, Ezic J, Huber D, Benckendorff J, Barth TFE, Greve J, Schuler PJ, Brunner C, Blackburn JM, Hoffmann TK, Ottensmeier C, Kestler HA, Rammensee HG, Walz JS, Laban S. Multi-omics analysis of overexpressed tumor-associated proteins: gene expression, immunopeptide presentation, and antibody response in oropharyngeal squamous cell carcinoma, with a focus on cancer-testis antigens. Front Immunol 2024; 15:1408173. [PMID: 39136024 PMCID: PMC11317303 DOI: 10.3389/fimmu.2024.1408173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The human leukocyte antigen complex (HLA) is essential for inducing specific immune responses to cancer by presenting tumor-associated peptides (TAP) to T cells. Overexpressed tumor associated antigens, mainly cancer-testis antigens (CTA), are outlined as essential targets for immunotherapy in oropharyngeal squamous cell carcinoma (OPSCC). This study assessed the degree to which presentation, gene expression, and antibody response (AR) of TAP, mainly CTA, are correlated in OPSCC patients to evaluate their potential as immunotherapy targets. Materials and methods Snap-frozen tumor (NLigand/RNA=40), healthy mucosa (NRNA=6), and healthy tonsils (NLigand=5) samples were obtained. RNA-Seq was performed using Illumina HiSeq 2500/NovaSeq 6000 and whole exome sequencing (WES) utilizing NextSeq500. HLA ligands were isolated from tumor tissue using immunoaffinity purification, UHPLC, and analyzed by tandem MS. Antibodies were measured in serum (NAb=27) utilizing the KREX™ CT262 protein array. Data analysis focused on 312 proteins (KREX™ CT262 panel + overexpressed self-proteins). Results 183 and 94 of HLA class I and II TAP were identified by comparative profiling with healthy tonsils. Genes from 26 TAP were overexpressed in tumors compared to healthy mucosa (LFC>1; FDR<0.05). Low concordance (r=0.25; p<0.0001) was found between upregulated mRNA and class I TAP. The specific mode of correlation of TAP was found to be dependent on clinical parameters. A lack of correlation was observed both between mRNA and class II TAP, as well as between class II tumor-unique TAP (TAP-U) presentation and antibody response (AR) levels. Discussion This study demonstrates that focusing exclusively on gene transcript levels fails to capture the full extent of TAP presentation in OPSCC. Furthermore, our findings reveal that although CTA are presented at relatively low levels, a few CTA TAP-U show potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Tsima Abou Kors
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Matthias Meier
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Franziska Oliveri
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Department of Otolaryngology, Augsburg University Hospital, Augsburg, Germany
| | - Adrian von Witzleben
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezic
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Diana Huber
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | | | | | - Jens Greve
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University Medical Center, Ulm, Germany
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Christian Ottensmeier
- Institute of Systems, Molecular and Integrative Biology, Liverpool Head and Neck Center, University of Liverpool, Faculty of Medicine, Liverpool, United Kingdom
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Faculty of Medicine, Ulm University, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Surgical Oncology Ulm, i2SOUL Consortium, Ulm, Germany
| |
Collapse
|
4
|
Xu Z, Miao R, Han T, Liu Y, Zhou J, Guo J, Xing Y, Bai Y, Wu J, Hu D. KIF2C as a potential therapeutic target: insights from lung adenocarcinoma subtype classification and functional experiments. Mol Omics 2024; 20:417-429. [PMID: 38940931 DOI: 10.1039/d4mo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Objective: this study evaluates the prognostic relevance of gene subtypes and the role of kinesin family member 2C (KIF2C) in lung cancer progression. Methods: high-expression genes linked to overall survival (OS) and progression-free interval (PFI) were selected from the TCGA-LUAD dataset. Consensus clustering analysis categorized lung adenocarcinoma (LUAD) patients into two subtypes, C1 and C2, which were compared using clinical, drug sensitivity, and immunotherapy analyses. A random forest algorithm pinpointed KIF2C as a prognostic hub gene, and its functional impact was assessed through various assays and in vivo experiments. Results: The study identified 163 key genes and distinguished two LUAD subtypes with differing OS, PFI, pathological stages, drug sensitivity, and immunotherapy response. KIF2C, highly expressed in the C2 subtype, was associated with poor prognosis, promoting cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), with knockdown reducing tumor growth in mice. Conclusion: The research delineates distinct LUAD subtypes with significant clinical implications and highlights KIF2C as a potential therapeutic target for personalized treatment in LUAD.
Collapse
Affiliation(s)
- Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230041, P. R. China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, P. R. China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, P. R. China
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, P. R. China
| |
Collapse
|
5
|
Li RQ, Yang Y, Qiao L, Yang L, Shen DD, Zhao XJ. KIF2C: An important factor involved in signaling pathways, immune infiltration, and DNA damage repair in tumorigenesis. Biomed Pharmacother 2024; 171:116173. [PMID: 38237349 DOI: 10.1016/j.biopha.2024.116173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUNDS Poorly regulated mitosis and chromosomal instability are common characteristics in malignant tumor cells. Kinesin family member 2 C (KIF2C), also known as mitotic centromere-associated kinesin (MCAK) is an essential component during mitotic regulation. In recent years, KIF2C was shown to be dysregulated in several tumors and was involved in many aspects of tumor self-regulation. Research on KIF2C may be a new direction and target for anti-tumor therapy. OBJECT The article aims at reviewing current literatures and summarizing the research status of KIF2C in malignant tumors as well as the oncogenic signaling pathways associated with KIF2C and its role in immune infiltration. RESULT In this review, we summarize the KIF2C mechanisms and signaling pathways in different malignant tumors, and briefly describe its involvement in pathways related to classical chemotherapeutic drug resistance, such as MEK/ERK, mTOR, Wnt/β-catenin, P53 and TGF-β1/Smad pathways. KIF2C upregulation was shown to promote tumor cell migration, invasion, chemotherapy resistance and inhibit DNA damage repair. It was also highly correlated with microRNAs, and CD4 +T cell and CD8 +T cell tumor immune infiltration. CONCLUSION This review shows that KIF2C may function as a new anticancer drug target with great potential for malignant tumor treatment and the mitigation of chemotherapy resistance.
Collapse
Affiliation(s)
- Rui-Qing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lin Qiao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Jing Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Hussein D, Saka M, Baeesa S, Bangash M, Alghamdi F, Al Zughaibi T, AlAjmi MF, Haque S, Rehman MT. Structure-based virtual screening and molecular docking approaches to identify potential inhibitors against KIF2C to combat glioma. J Biomol Struct Dyn 2023; 42:13816-13829. [PMID: 37942622 DOI: 10.1080/07391102.2023.2278750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023]
Abstract
Glioma, a kind of malignant brain tumor, is extremely lethal. Kinesin family member 2C (KIF2C) was found to have an aberrant expression in several cancer types, including lung cancer and glioma. KIF2C may therefore be a useful therapeutic target for the treatment of glioma. In the current study, new drug candidates that may function as KIF2C enzyme inhibitors were discovered. MTi OpenScreen was used to carry out the structure-based virtual screening of an inbuilt drug library containing 150,000 compounds. These compounds belong to different classes, such as natural product-based compounds (NP-lib), purchasable approved drugs (Drugs-lib), and food constituents compound collection (FOOD-lib). Based on their binding affinities, a total of 84 compounds were further pushed to calculate ADMET properties. The compounds (16) meeting the ADMET cutoff ranges were then further docked to the receptor to find their plausible binding modes using the Glide tool's standard precision (SP) technique. The docking results were examined using the Glide gscore, and the best binding compounds (Rimacalib and Sarizotan) were chosen to test their stability with KIF2C protein through molecular dynamics (MD) simulation. Similarly, Principal Component Analysis and cross-correlation matrix were also examined. The MM/GBSA binding free energies showed a considerable energy contribution in the binding of hits with the KIF2C. Collectively, these findings strongly suggest the potential of the lead compounds to inhibit the biological function of KIF2C, emphasizing the need for further investigation in this area.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deema Hussein
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamad Saka
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki Al Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Zhang P, Gao H, Ye C, Yan R, Yu L, Xia C, Yang D. Large-Scale Transcriptome Data Analysis Identifies KIF2C as a Potential Therapeutic Target Associated With Immune Infiltration in Prostate Cancer. Front Immunol 2022; 13:905259. [PMID: 35720323 PMCID: PMC9203693 DOI: 10.3389/fimmu.2022.905259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers of the urinary system. In previous research, Kinesin family member 2C (KIF2C), as an oncogene, has been demonstrated to have a key role in the incidence and progression of different cancers. However, KIF2C has not been reported in PCa. We combined data from different databases, including The Cancer Genome Atlas, the Cancer Cell Line Encyclopedia, Genotype Tissue-Expression, cBioPortal, and the Genomics of Drug Sensitivity in Cancer database, to explore the potential oncogenic role of KIF2C in PCa through a series of bioinformatics approaches, including analysis of the association between KIF2C and prognosis, clinicopathological features, gene mutations, DNA methylation, immune cell infiltration, and drug resistance. The results showed that KIF2C was significantly up-regulated in PCa. High KIF2C expression was associated with age, pathological stage, lymph node metastases, prostate-specific antigen (PSA), and Gleason score and significantly predicted an unfavorable prognosis in PCa patients. Results from Gene Set Enrichment Analysis (GSEA) suggested that KIF2C was involved in the cell cycle and immune response. KIF2C DNA methylation was reduced in PCa and was inversely linked with KIF2C expression. KIF2C was shown to have a strong relationship with the tumor microenvironment (TME), infiltrating cells, and immune checkpoint genes. Furthermore, high KIF2C expression was significantly resistant to a variety of MAPK signaling pathway-related inhibitors. Our study reveals that KIF2C may be a possible predictive biomarker for assessing prognosis in PCa patients with immune infiltration.
Collapse
Affiliation(s)
- Pingxin Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hang Gao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunwei Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lu Yu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Therapeutic Vaccines Targeting Neoantigens to Induce T-Cell Immunity against Cancers. Pharmaceutics 2022; 14:pharmaceutics14040867. [PMID: 35456701 PMCID: PMC9029780 DOI: 10.3390/pharmaceutics14040867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has achieved multiple clinical benefits and has become an indispensable component of cancer treatment. Targeting tumor-specific antigens, also known as neoantigens, plays a crucial role in cancer immunotherapy. T cells of adaptive immunity that recognize neoantigens, but do not induce unwanted off-target effects, have demonstrated high efficacy and low side effects in cancer immunotherapy. Tumor neoantigens derived from accumulated genetic instability can be characterized using emerging technologies, such as high-throughput sequencing, bioinformatics, predictive algorithms, mass-spectrometry analyses, and immunogenicity validation. Neoepitopes with a higher affinity for major histocompatibility complexes can be identified and further applied to the field of cancer vaccines. Therapeutic vaccines composed of tumor lysates or cells and DNA, mRNA, or peptides of neoantigens have revoked adaptive immunity to kill cancer cells in clinical trials. Broad clinical applicability of these therapeutic cancer vaccines has emerged. In this review, we discuss recent progress in neoantigen identification and applications for cancer vaccines and the results of ongoing trials.
Collapse
|
9
|
KIF2C Is a Novel Prognostic Biomarker and Correlated with Immune Infiltration in Endometrial Cancer. Stem Cells Int 2021; 2021:1434856. [PMID: 34650608 PMCID: PMC8510809 DOI: 10.1155/2021/1434856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
Endometrial cancer (EC) is commonly diagnosed cancer in women, and the prognosis of advanced types of EC is extremely poor. Kinesin family member 2C (KIF2C) has been reported as an oncogene in cancers. However, its pathophysiological roles and the correlation with tumor-infiltrating lymphocytes in EC remain unclear. The mRNA and protein levels of KIF2C in EC tissues were detected by qRT-PCR, Western blot (WB), and IHC. CCK8, Transwell, and colony formation assay were applied to assess the effects of KIF2C on cell proliferation, migration, and invasion. Cell apoptosis and cell cycle were analyzed by flow cytometry. The antitumor effect was further validated in the nude mouse xenograft cancer model and humanized mouse model. KIF2C expression was higher in EC. Knockdown of KIF2C prolonged the G1 phases and inhibited EC cell proliferation, migration, and invasion in vitro. Bioinformatics analysis indicated that KIF2C is negatively correlated with the infiltration level of CD8+ T cells but positively with the poor prognosis of EC patients. The apoptosis of CD8+ T cell was inhibited after the knockdown of KIF2C and was further inhibited when it is combined with anti-PD1. Conversely, compared to the knockdown of KIF2C expression alone, the combination of anti-PD1 further promoted the apoptosis of Ishikawa and RL95-2 cells. Moreover, the knockdown of KIF2C inhibited the expression of Ki-67 and the growth of tumors in the nude mouse xenograft cancer model. Our study found that the antitumor efficacy was further evaluated by the combination of anti-PD1 and KIF2C knockdown in a humanized mouse model. This study indicated that KIF2C is a novel prognostic biomarker that determines cancer progression and also a target for the therapy of EC and correlated with tumor immune cells infiltration in EC.
Collapse
|
10
|
Gao Z, Jia H, Yu F, Guo H, Li B. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med 2021; 22:1094. [PMID: 34504548 PMCID: PMC8383772 DOI: 10.3892/etm.2021.10528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality and morbidity rates. In recent years, HCC targeted therapy has gained increasing attention. Due to the heterogeneity and high metastasis of HCC, more effective therapeutic targets are needed. Kinesin family member 2C (KIF2C), also known as mitotic centromere-associated kinesin, is a microtubule-based motor protein which is involved in a variety of important cellular processes, such as mitosis. The effects of KIF2C on cancer progression and development have been widely studied; however, its potential effects on HCC remains unclear. In the present study, high expression of KIF2C in human HCC tissues was demonstrated using The Cancer Genome Atlas database and immunohistochemistry assays. KIF2C expression was associated with HCC prognosis, including overall survival and disease-free survival. KIF2C expression was also associated with clinical pathological characteristics including the number of tumor nodes (P=0.015) and tumor size (P=0.009). KIF2C knockdown inhibited the proliferation of HCC cells in vitro, confirmed by MTT and colony formation assays, and suppressed tumor growth in mice which was confirmed by a xenograft mouse model. Together, the results suggested that KIF2C may serve as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhenya Gao
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Huanxia Jia
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Fang Yu
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Hongfang Guo
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Baoyu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
11
|
Ragone C, Manolio C, Cavalluzzo B, Mauriello A, Tornesello ML, Buonaguro FM, Castiglione F, Vitagliano L, Iaccarino E, Ruvo M, Tagliamonte M, Buonaguro L. Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). J Immunother Cancer 2021; 9:jitc-2021-002694. [PMID: 34049932 PMCID: PMC8166618 DOI: 10.1136/jitc-2021-002694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/11/2022] Open
Abstract
Background The host’s immune system develops in equilibrium with both cellular self-antigens and non-self-antigens derived from microorganisms which enter the body during lifetime. In addition, during the years, a tumor may arise presenting to the immune system an additional pool of non-self-antigens, namely tumor antigens (tumor-associated antigens, TAAs; tumor-specific antigens, TSAs). Methods In the present study, we looked for homology between published TAAs and non-self-viral-derived epitopes. Bioinformatics analyses and ex vivo immunological validations have been performed. Results Surprisingly, several of such homologies have been found. Moreover, structural similarities between paired TAAs and viral peptides as well as comparable patterns of contact with HLA and T cell receptor (TCR) α and β chains have been observed. Therefore, the two classes of non-self-antigens (viral antigens and tumor antigens) may converge, eliciting cross-reacting CD8+ T cell responses which possibly drive the fate of cancer development and progression. Conclusions An established antiviral T cell memory may turn out to be an anticancer T cell memory, able to control the growth of a cancer developed during the lifetime if the expressed TAA is similar to the viral epitope. This may ultimately represent a relevant selective advantage for patients with cancer and may lead to a novel preventive anticancer vaccine strategy.
Collapse
Affiliation(s)
- Concetta Ragone
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Carmen Manolio
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Beatrice Cavalluzzo
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Angela Mauriello
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Franco M Buonaguro
- Esperimental Oncology - Molecular Biology and Viral Oncogenesis, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | | | | | | | - Menotti Ruvo
- Institute for Biostructures and Bioimages, CNR, Roma, Italy
| | - Maria Tagliamonte
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Experimental Oncology - Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"- IRCCS, Naples, Italy
| |
Collapse
|
12
|
Zhou Y, Yang L, Xiong L, Wang K, Hou X, Li Q, Kong F, Liu X, He J. KIF11 is upregulated in colorectal cancer and silencing of it impairs tumor growth and sensitizes colorectal cancer cells to oxaliplatin via p53/GSK3β signaling. J Cancer 2021; 12:3741-3753. [PMID: 33995648 PMCID: PMC8120193 DOI: 10.7150/jca.52103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the most frequently diagnosed cancer of the digestive tract. Chemotherapy drugs such as oxaliplatin are frequently administered to CRC patients diagnosed with advanced or metastatic disease. A deep understanding of the molecular mechanism underlying CRC tumorigenesis and identification of optimal biomarkers for estimating chemotherapy sensitivity are essential for the treatment of CRC. Numerous members of the kinesin family are dysregulated in cancers, contributing to tumorigenesis, metastasis and drug resistance. KIF11 is a key component of the bipolar spindle and is highly expressed in several cancer types. We analyzed KIF11 expression in clinical samples by Western blotting and qRT-PCR and explored its role and mechanism in CRC growth and sensitivity to oxaliplatin via detection of the phosphorylation profile of kinases and gain-and-loss-of-function assays. We found that KIF11 was upregulated in CRC tissues and was associated with advanced clinical stage and vessel invasion and that knockdown of KIF11 led to tumor growth arrest and increased sensitivity to oxaliplatin via enhanced DNA damage and apoptosis. Mechanistically, aberrantly activated p53 signaling or possibly deactivated GSK3β signaling was responsible for KIF11 knockdown-mediated effects in CRC cells. Thus, our data firmly demonstrated that KIF11 could serve as a potential oncogene and proper biomarker for assessing oxaliplatin sensitivity in CRC.
Collapse
Affiliation(s)
- Yan Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, China
| | - Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qinglong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fanhua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xi Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jun He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Tsuji T, Gnjatic S. Split T-cell tolerance as a guide for the development of tumor antigen-specific immunotherapy. Oncoimmunology 2021; 1:405-407. [PMID: 22737632 PMCID: PMC3382850 DOI: 10.4161/onci.19310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor antigens NY-ESO-1 and p53 both frequently induce spontaneous serum antibody in cancer patients. While NY-ESO-1-specific CD8+ and CD4+ circulating T-cells occur mainly in NY-ESO-1-seropositive patients, p53-specific circulating CD8+ and CD4+ T-cells are respectively undetectable and common in most individuals. Understanding T-cell split tolerance can help define suitable targets for immunotherapy.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research Ltd.; New York Branch at Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | | |
Collapse
|
14
|
Establishment of a Gene Signature to Predict Prognosis for Patients with Lung Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21228479. [PMID: 33187219 PMCID: PMC7697394 DOI: 10.3390/ijms21228479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that the reliable gene signature may serve as an independent prognosis factor for lung adenocarcinoma (LUAD) diagnosis. Here, we sought to identify a risk score signature for survival prediction of LUAD patients. In the Gene Expression Omnibus (GEO) database, GSE18842, GSE75037, GSE101929, and GSE19188 mRNA expression profiles were downloaded to screen differentially expressed genes (DEGs), which were used to establish a protein-protein interaction network and perform clustering module analysis. Univariate and multivariate proportional hazards regression analyses were applied to develop and validate the gene signature based on the TCGA dataset. The signature genes were then verified on GEPIA, Oncomine, and HPA platforms. Expression levels of corresponding genes were also measured by qRT-PCR and Western blotting in HBE, A549, and PC-9 cell lines. The prognostic signature based on eight genes (TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67) was established, which was independent of other clinical factors. The risk model offered better discrimination between risk groups, and patients with high-risk scores tended to have poor survival rate at 1-, 3- and 5-year follow-up. The model also presented better survival prediction in cancer-specific cohorts of age, gender, clinical stage III/IV, primary tumor 1/2, and lymph node metastasis 1/2. The signature genes, moreover, were highly expressed in A549 and PC-9 cells. In conclusion, the risk score signature could be used for prognostic estimation and as an independent risk factor for survival prediction in patients with LUAD.
Collapse
|
15
|
Wang S, Wu J, Guo C, Shang H, Yao J, Liao L, Dong J. Identification and Validation of Novel Genes in Anaplastic Thyroid Carcinoma via Bioinformatics Analysis. Cancer Manag Res 2020; 12:9787-9799. [PMID: 33116838 PMCID: PMC7550107 DOI: 10.2147/cmar.s250792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The conventional interventions of anaplastic thyroid carcinoma (ATC) patients are mainly through surgery, chemotherapy, and radiotherapy; however, it is hardly to improve survival rate. We aimed to investigate the differential expressed genes (DEGs) between ATC and normal thyroid gland through bioinformatics analysis of the microarray datasets and find new potential therapeutic targets for ATC. Methods Microarray datasets GSE9115, GSE29265, GSE33630, GSE53072, and GSE65144 were downloaded from Gene Expression Omnibus (GEO) database. Compared with the normal tissue, GEO2R was conducted to screen the DEGs in each chip under the condition of |log FC| > l, adjusted P‐values (adj. P) < 0.05. The Retrieval of Interacting Genes (STRING) database was used to calculate PPI networks of DEGs with a combined score >0.4 as the cut-off criteria. The hub genes in the PPI network were visualized and selected according to screening conditions in Cytoscape software. In addition, the novel genes in ATC were screened for survival analysis using Kaplan–Meier plotter from those hub genes and validated by RT-qPCR. Results A total of 284 overlapping DEGs were obtained, including 121 upregulated and 161 downregulated DEGs. A total of 232 DEGs were selected by STRING database. The 50 hub genes in the PPI network were chosen according to three screening conditions. In addition, the Kaplan–Meier plotter database confirmed that high expressions of ANLN, CENPF, KIF2C, TPX2, and NDC80 were negatively correlated with poor overall survival of ATC patients. Finally, RT-qPCR experiments showed that KIF2C and CENPF were significantly upregulated in ARO cells and CAL-62 cells when compared to Nthy-ori 3–1 cells, TPX2 was upregulated only in CAL-62 cells, while ANLN and NDC80 were obviously decreased in ARO cells and CAL-62 cells. Conclusion Our study suggested that CENPF, KIF2C, and TPX2 might play a significant role in the development of ATC, which could be further explored as potential biomarkers for the treatment of ATC.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China.,Department of Occupational Disease, Yantai Shan Hospital, Yantai, People's Republic of China
| | - Jing Wu
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Congcong Guo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongxia Shang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Jinming Yao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Lin Liao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
16
|
Buonaguro L, Tagliamonte M. Selecting Target Antigens for Cancer Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8040615. [PMID: 33080888 PMCID: PMC7711972 DOI: 10.3390/vaccines8040615] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
One of the principal goals of cancer immunotherapy is the development of efficient therapeutic cancer vaccines that are able to elicit an effector as well as memory T cell response specific to tumor antigens. In recent years, the attention has been focused on the personalization of cancer vaccines. However, the efficacy of therapeutic cancer vaccines is still disappointing despite the large number of vaccine strategies targeting different tumors that have been evaluated in recent years. While the preclinical data have frequently shown encouraging results, clinical trials have not provided satisfactory data to date. The main reason for such failures is the complexity of identifying specific target tumor antigens that should be unique or overexpressed only by the tumor cells compared to normal cells. Most of the tumor antigens included in cancer vaccines are non-mutated overexpressed self-antigens, eliciting mainly T cells with low-affinity T cell receptors (TCR) unable to mediate an effective anti-tumor response. In this review, the target tumor antigens employed in recent years in the development of therapeutic cancer vaccine strategies are described, along with potential new classes of tumor antigens such as the human endogenous retroviral elements (HERVs), unconventional antigens, and/or heteroclitic peptides.
Collapse
|
17
|
Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol 2020; 17:595-610. [PMID: 32572208 PMCID: PMC7306938 DOI: 10.1038/s41571-020-0387-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Immune-checkpoint inhibition provides an unmatched level of durable clinical efficacy in various malignancies. Such therapies promote the activation of antigen-specific T cells, although the precise targets of these T cells remain unknown. Exploiting these targets holds great potential to amplify responses to treatment, such as by combining immune-checkpoint inhibition with therapeutic vaccination or other antigen-directed treatments. In this scenario, the pivotal hurdle remains the definition of valid HLA-restricted tumour antigens, which requires several levels of evidence before targets can be established with sufficient confidence. Suitable antigens might include tumour-specific antigens with alternative or wild-type sequences, tumour-associated antigens and cryptic antigens that exceed exome boundaries. Comprehensive antigen classification is required to enable future clinical development and the definition of innovative treatment strategies. Furthermore, clinical development remains challenging with regard to drug manufacturing and regulation, as well as treatment feasibility. Despite these challenges, treatments based on diligently curated antigens combined with a suitable therapeutic platform have the potential to enable optimal antitumour efficacy in patients, either as monotherapies or in combination with other established immunotherapies. In this Review, we summarize the current state-of-the-art approaches for the identification of candidate tumour antigens and provide a structured terminology based on their underlying characteristics. Immune-checkpoint inhibition has transformed the treatment of patients with advanced-stage cancers. Nonetheless, the specific antigens targeted by T cells that are activated or reactivated by these agents remain largely unknown. In this Review, the authors describe the characterization and classification of tumour antigens including descriptions of the most appropriate detection methods, and discuss potential regulatory issues regarding the use of tumour antigen-based therapeutics. Immune-checkpoint inhibition has profoundly changed the paradigm for the care of several malignancies. Although these therapies activate antigen-specific T cells, the precise mechanisms of action and their specific targets remain largely unknown. Anticancer immunotherapies encompass two fundamentally different therapeutic principles based on knowledge of their therapeutic targets, that either have been characterized (antigen-aware) or have remained elusive (antigen-unaware). HLA-presented tumour antigens of potential therapeutic relevance can comprise alternative or wild-type amino acid sequences and can be subdivided into different categories based on their mechanisms of formation. The available methods for the detection of HLA-presented antigens come with intrinsic challenges and limitations and, therefore, warrant multiple lines of evidence of robust tumour specificity before being considered for clinical use. Knowledge obtained using various antigen-detection strategies can be combined with different therapeutic platforms to create individualized therapies that hold great promise, including when combined with already established immunotherapies. Tailoring immunotherapies while taking into account the substantial heterogeneity of malignancies as well as that of HLA loci not only requires innovative science, but also demands innovative approaches to trial design and drug regulation.
Collapse
|
18
|
Oh CK, Kang JW, Lee Y, Myung K, Ha M, Kang J, Kwon EJ, Kim Y, Oh SO, Heo HJ, Kim S, Kim YH. Role of kif2c, A Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish. Int J Mol Sci 2020; 21:ijms21093127. [PMID: 32354205 PMCID: PMC7246619 DOI: 10.3390/ijms21093127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Relapse of acute lymphoblastic leukemia (ALL) is dangerous and it worsens the prognosis of patients; however, prognostic markers or therapeutic targets for ALL remain unknown. In the present study, using databases such as TARGET, GSE60926 and GSE28460, we determined that KIF2C and its binding partner, KIF18B are overexpressed in patients with relapsed ALL compared to that in patients diagnosed with ALL for the first time. As 50% of the residues are exactly the same and the signature domain of KIF2C is highly conserved between human and zebrafish, we used zebrafish embryos as a model to investigate the function of kif2c in vivo. We determined that kif2c is necessary for lymphopoiesis in zebrafish embryos. Additionally, we observed that kif2c is not related to differentiation of HSCs; however, it is important for the maintenance of HSCs as it provides survival signals to HSCs. These results imply that the ALL relapse-related gene KIF2C is linked to the survival of HSCs. In conclusion, we suggest that KIF2C can serve as a novel therapeutic target for relapsed ALL.
Collapse
Affiliation(s)
- Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea; (C.-K.O.); (Y.L.); (K.M.)
| | - Ji Wan Kang
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea; (J.W.K.); (M.H.); (J.K.); (E.J.K.); (Y.K.)
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea; (C.-K.O.); (Y.L.); (K.M.)
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Korea; (C.-K.O.); (Y.L.); (K.M.)
| | - Mihyang Ha
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea; (J.W.K.); (M.H.); (J.K.); (E.J.K.); (Y.K.)
| | - Junho Kang
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea; (J.W.K.); (M.H.); (J.K.); (E.J.K.); (Y.K.)
| | - Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea; (J.W.K.); (M.H.); (J.K.); (E.J.K.); (Y.K.)
| | - Youngjoo Kim
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan 50612, Korea; (J.W.K.); (M.H.); (J.K.); (E.J.K.); (Y.K.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea; (S.-O.O.); (H.J.H.)
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea; (S.-O.O.); (H.J.H.)
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Korea
- Institute of Medical Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
- Correspondence: (S.K.); (Y.H.K.); Tel.: +82-53-258-7359 (S.K.); +82-51-510-8091 (Y.H.K.); Fax: +82-53-258-7355 (S.K.); +82-51-510-8049 (Y.H.K.)
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea; (S.-O.O.); (H.J.H.)
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Correspondence: (S.K.); (Y.H.K.); Tel.: +82-53-258-7359 (S.K.); +82-51-510-8091 (Y.H.K.); Fax: +82-53-258-7355 (S.K.); +82-51-510-8049 (Y.H.K.)
| |
Collapse
|
19
|
Zhang G, Shen S, Yu Y, Yue X, Hu W, Li S. Kinesin family member 2C aggravates the progression of hepatocellular carcinoma and interacts with competing endogenous RNA. J Cell Biochem 2020; 121:4419-4430. [DOI: 10.1002/jcb.29665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Guo‐Pei Zhang
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shun‐Li Shen
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yang Yu
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Xiao Yue
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Wen‐Jie Hu
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shao‐Qiang Li
- Department of Liver Surgery the First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
20
|
Xu J, Zhu C, Yu Y, Wu W, Cao J, Li Z, Dai J, Wang C, Tang Y, Zhu Q, Wang J, Wen W, Xue L, Zhen F, Liu J, Huang C, Zhao F, Zhou Y, He Z, Pan X, Wei H, Zhu Y, He Y, Que J, Luo J, Chen L, Wang W. Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma. EBioMedicine 2019; 46:54-65. [PMID: 31324603 PMCID: PMC6710982 DOI: 10.1016/j.ebiom.2019.07.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with poor prognosis. Cancer-testis genes (CTGs) have been vigorously pursued as targets for cancer immunotherapy, but the expressive patterns and functional roles of CTGs remain unclear in ESCC. METHODS A systematic screening strategy was adopted to screen CTGs in ESCC by integrating multiple public databases and RNA expression microarray data from 119 ESCC subjects. For the newly identified ESCC prognosis-associated CTGs, an independent cohort of 118 patients with ESCC was recruited to validate the relationship via immunohistochemistry. Furthermore, functional assays were performed to determine the underlying mechanisms. FINDINGS 21 genes were recognized as CTGs, in particular, CDCA5 was aberrantly upregulated in ESCC tissues and significantly associated with poor prognosis (HR = 1.85, 95%CI: 1.14-3.01, P = .013). Immunohistochemical staining confirmed that positive CDCA5 expression was associated with advanced TNM staging and a shorter overall survival rate (45.59% vs 28.00% for CDCA5-/+ subjects, P = 1.86 × 10-3). H3K27 acetylation in CDCA5 promoter might lead to the activation of CDCA5 during ESCC tumorigenesis. Functionally, in vitro assay of gain- and loss-of-function of CDCA5 suggested that CDCA5 could promote ESCC cells proliferation, invasion, migration, apoptosis resistance and reduce chemosensitivity to cisplatin. Moreover, in vivo assay showed that silenced CDCA5 could inhibit tumor growth. Mechanistically, CDCA5 knockdown led to an arrest in G2/M phase and changes in the expression of factors that played fundamental roles in the cell cycle pathway. INTERPRETATION CDCA5 contributed to ESCC progression and might serve as an attractive target for ESCC immunotherapy. FUND: This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20181083 and BK20181496), Jiangsu Top Expert Program in Six Professions (No. WSW-003 and WSW-007), Major Program of Science and Technology Foundation of Jiangsu Province (No. BE2016790 and BE2018746), Jiangsu Medical Young Talent Project (No. QNRC2016566), the Program of Jiangsu Medical Innovation Team (No. CXTDA2017006), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1487) and Jiangsu Province 333 Talents Project (No. BRA2017545).
Collapse
Affiliation(s)
- Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chengxiang Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Thoracic Surgery, Cancer Institute and Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Xue
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fuxi Zhen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyuan Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhicheng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haixing Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaozhou He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinghua Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Wu X, Peng L, Zhang Y, Chen S, Lei Q, Li G, Zhang C. Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis. Int J Med Sci 2019; 16:800-812. [PMID: 31337953 PMCID: PMC6643108 DOI: 10.7150/ijms.34172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is a common malignant tumour of the female reproductive system that seriously threatens the health of women. The aims of this study were to identify key genes and pathways and to illuminate new molecular mechanisms underlying cervical cancer. Altogether, 1829 DEGs were identified, including 794 significantly down-regulated DEGs and 1035 significantly up-regulated DEGs. GO analysis suggested that the up-regulated DEGs were mainly enriched in mitotic cell cycle processes, including DNA replication, organelle fission, chromosome segregation and cell cycle phase transition, and that the down-regulated DEGs were primarily enriched in development and differentiation processes, such as tissue development, epidermis development, skin development, keratinocyte differentiation, epidermal cell differentiation and epithelial cell differentiation. KEGG pathway analysis showed that the DEGs were significantly enriched in cell cycle, DNA replication, the p53 signalling pathway, pathways in cancer and oocyte meiosis. The top 9 hub genes with a high degree of connectivity (over 72 in the PPI network) were down-regulated TSPO, CCND1, and FOS and up-regulated CDK1, TOP2A, CCNB1, PCNA, BIRC5 and MAD2L1. Module analysis indicated that the top 3 modules were significantly enriched in mitotic cell cycle, DNA replication and regulation of cell cycle (P < 0.01). The heat map based on TCGA database preliminarily demonstrated the expression change of the key genes in cervical cancer. GSEA results were basically coincident with the front enrichment analysis results. By comprehensive analysis, we confirmed that cell cycle was a key biological process and a critical driver in cervical cancer. In conclusion, this study identified DEGs and screened the key genes and pathways closely related to cervical cancer by bioinformatics analysis, simultaneously deepening our understanding of the molecular mechanisms underlying the occurrence and progression of cervical cancer. These results might hold promise for finding potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaqin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Shilian Chen
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Qian Lei
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Guancheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Chaoyang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Division of Functional Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Lu H, Wang C, Xue L, Zhang Q, Luh F, Wang J, Lin TG, Yen Y, Liu X. Human Mitotic Centromere-Associated Kinesin Is Targeted by MicroRNA 485-5p/181c and Prognosticates Poor Survivability of Breast Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2316237. [PMID: 31073307 PMCID: PMC6470426 DOI: 10.1155/2019/2316237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE This study aims to evaluate the prognostic value of human Mitotic Centromere-Associated Kinesin (MCAK), a microtubule-dependent molecular motor, in breast cancers. The posttranscriptional regulation of MCAK by microRNAs will also be explored. METHODS The large-scale gene expression datasets of breast cancer (total n=4,677) were obtained from GEO, NKI, and TCGA database. Kaplan-Meier and Cox analyses were used for survival analysis. MicroRNAs targeting MCAK were predicted by bioinformatic analysis and validated by a dual-luciferase reporter assay. RESULTS The expression of MCAK was significantly associated with aggressive features of breast cancer, including tumor stage, Elston grade, and molecular subtypes, for global gene expression datasets of breast cancer (p<0.05). Overexpression of MCAK was significantly associated with poor outcome in a dose-dependent manner for either ER-positive or ER-negative breast cancer. Evidence from bioinformatic prediction, coexpression assays, and gene set enrichment analyses suggested that miR-485-5p and miR-181c might target MCAK and suppress its expression. A 3'UTR dual-luciferase target reporter assay demonstrated that miR-485-5p and miR-181c mimics specifically inhibited relative Firefly/Renilla luciferase activity by about 50% in corresponding reporter plasmids. Further survival analysis also revealed that miR-485-5p (HR=0.59, 95% CI 0.37-0.92) and miR-181c (HR=0.54, 95% CI 0.34-0.84) played opposite roles of MCAK (HR=2.80, 95% CI 1.77-4.57) and were significantly associated with better outcome in breast cancers. CONCLUSION MCAK could serve as a prognostic biomarker for breast cancers. miR-485-5p and miR-181c could specifically target and suppress the MCAK gene expression in breast cancer cells.
Collapse
Affiliation(s)
- Huajun Lu
- Department of Oncological Radiotherapy, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
| | - Chaoqun Wang
- Department of Pathology, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100, China
| | - Lijun Xue
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Qi Zhang
- Department of Bioinformatics, Hangzhou Hepu Biotechnology Inc., Hangzhou, Zhejiang 310015, China
| | - Frank Luh
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Jianghai Wang
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Tiffany G. Lin
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
| | - Yun Yen
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
- Department of Tumor Biomarker Development, California Cancer Institute, Temple City, CA 91780, USA
| | - Xiyong Liu
- Sino-American Cancer Foundation, Temple City, CA 91780, USA
- Department of Tumor Biomarker Development, California Cancer Institute, Temple City, CA 91780, USA
| |
Collapse
|
23
|
Song YJ, Tan J, Gao XH, Wang LX. Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma. Cancer Manag Res 2018; 10:6097-6108. [PMID: 30538558 PMCID: PMC6252781 DOI: 10.2147/cmar.s168636] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors. Despite advances in lung cancer therapies, prognosis of non-small-cell lung cancer is still unfavorable. The aim of this study was to identify the prognostic value of key genes in lung tumorigenesis. Methods Differentially expressed genes (DEGs) were screened out by GEO2R from three Gene Expression Omnibus cohorts. Common DEGs were selected for Kyoto Encyclopedia of Genes and Genomes pathway analysis and Gene Ontology enrichment analysis. Protein– protein interaction networks were constructed by the STRING database and visualized by Cytoscape software. Hub genes, filtered from the CytoHubba, were validated using the Gene Expression Profiling Interactive Analysis database, and their genomic alterations were identified by performing the cBioportal. Finally, overall survival analysis of hub genes was performed using Kaplan–Meier Plotter. Results From three datasets, 169 DEGs (70 upregulated and 99 downregulated) were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that upregulated DEGs were significantly enriched in cell cycle, p53 pathway, and extracellular matrix–receptor interactions; the downregulated DEGs were significantly enriched in PPAR pathway and tyrosine metabolism. The protein–protein interaction network consisted of 71 nodes and 305 edges, including 49 upregulated and 22 downregulated genes. The hub genes, including AURKB, BUB1B, KIF2C, HMMR, CENPF, and CENPU, were overexpressed compared with the normal group by Gene Expression Profiling Interactive Analysis analysis, and associated with reduced overall survival in lung cancer patients. In the genomic alterations analysis, two hotspot mutations (S2021C/F and E314K/V) were identified in Pfam protein domains. Conclusion DEGs, including AURKB, BUB1B, KIF2C, HMMR, CENPF, and CENPU, might be potential biomarkers for the prognosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ying-Jian Song
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| | - Juan Tan
- Department of Gerontology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Xin-Huai Gao
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| | - Li-Xin Wang
- Department of Respiratory Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China,
| |
Collapse
|
24
|
Dong XH, Yang XJ. Role of kinesin superfamily in gastrointestinal cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:1789-1794. [DOI: 10.11569/wcjd.v26.i31.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kinesins constitute a protein superfamily that belongs to motor proteins. Kinesins move along microtubules to exert their functions. They play a crucial role in intracellular transportation, mitosis, cell formation, and cell function. Kinesin are not only responsible for the transport of various membrane organelles, protein complexes, mRNA and so on to ensure the basic activity of cells, but also can regulate intracellular molecular signal pathways. Numerous studies have shown that kinesins are closely associated with the development of a variety of human diseases, especially the formation and development of gastrointestinal tumors. This article reviews the role of kinesins in gastrointestinal cancer.
Collapse
Affiliation(s)
- Xiao-Hua Dong
- Ningxia Medical University, Yinchuan 750000, Ningxia Hui Autonomous Region, China
| | - Xiao-Jun Yang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
25
|
Liu X, Zhang Y, Hu Z, Li Q, Yang L, Xu G. The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation. Protein J 2018; 37:132-143. [PMID: 29564676 DOI: 10.1007/s10930-018-9766-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2-E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteomics, we identify the CDC34-interacting proteins and discover that the wild-type and mutant proteins have many differentially interacted proteins. Detailed examination finds that some of them are involved in the regulation of gene expression, cell growth, and cell proliferation. Cell proliferation assay reveals that both the wild-type and C93S proteins affect the proliferation of a cancer cell line. Database analyses show that CDC34 mRNA is highly expressed in multiple cancers, which is correlated with the reduced patient survival rate. This work may help to elucidate the enzymatic and non-enzymatic functions of this protein and might provide additional insights for drug discovery targeting E2s.
Collapse
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhanhong Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
26
|
van Dam PA, Rolfo C, Ruiz R, Pauwels P, Van Berckelaer C, Trinh XB, Ferri Gandia J, Bogers JP, Van Laere S. Potential new biomarkers for squamous carcinoma of the uterine cervix. ESMO Open 2018; 3:e000352. [PMID: 30018810 PMCID: PMC6045706 DOI: 10.1136/esmoopen-2018-000352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Aim An in silico pathway analysis was performed in an attempt to identify new biomarkers for cervical carcinoma. Methods Three publicly available Affymetrix gene expression data sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total 9 cervical cancer cell lines, 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples. An Agilent data set (GSE7410; 5 normal cervical samples, 35 samples from invasive cervical cancer) was selected as a validation set. Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. We compared the lists of differentially expressed genes between normal and CIN3 samples on the one hand (n=1923) and between CIN3 and invasive cancer samples on the other hand (n=628). Results Seven probe sets were identified that were significantly overexpressed (at least 2 fold increase expression level, and false discovery rate <5%) in both CIN3 samples respective to normal samples and in cancer samples respective to CIN3 samples. From these, five probes sets could be validated in the Agilent data set (P<0.001) comparing the normal with the invasive cancer samples, corresponding to the genes DTL, HMGB3, KIF2C, NEK2 and RFC4. These genes were additionally overexpressed in cervical cancer cell lines respective to the cancer samples. The literature on these markers was reviewed. Conclusion Novel biomarkers in combination with primary human papilloma virus (HPV) testing may allow complete cervical screening by objective, non-morphological molecular methods, which may be particularly important in developing countries.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium.,Fase 1 Unit for Experimental Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Patrick Pauwels
- Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium.,Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | | | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| | - Jose Ferri Gandia
- Fase 1 Unit for Experimental Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Johannes P Bogers
- AMBIOR Laboratory of Cell Biology and Histology, Antwerp University, Antwerp, Belgium
| | - Steven Van Laere
- Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| |
Collapse
|
27
|
Duan H, Zhang X, Wang FX, Cai MY, Ma GW, Yang H, Fu JH, Tan ZH, Fu XY, Ma QL, Wang XY, Lin P. KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients. Oncotarget 2018; 7:80493-80507. [PMID: 27563815 PMCID: PMC5348336 DOI: 10.18632/oncotarget.11492] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023] Open
Abstract
To determine the prognostic significance of Kinesin family member 2C (KIF-2C) expression in patients with operable esophageal squamous cell carcinoma (ESCC), we conducted an immunohistochemical analysis of KIF-2C expression in 415 surgically resected primary tumor tissues and 40 adjacent non-cancerous tissues from patients with operable ESCC. The median duration of postoperative follow-up was 76.0 months. Higher KIF-2C expression was associated with significantly increased risks of higher pathologic tumor (pT) status (P=0.038) and poorer tumor differentiation (P=0.022). For the entire cohort, KIF-2C expression was not an independent factor significantly associated with overall survival (OS) (P=0.097) or disease-free survival (DFS) (P=0.152). In female patients, KIF-2C expression had no effect on OS (P=0.880) and DFS (P=0.864). However, OS (hazard ratio (HR)=1.480, P=0.013) and DFS (HR=1.418, P=0.024) were worse for male patients with high KIF-2C expression compared with male patients with low KIF-2C expression. Moreover, the OS and DFS of male patients with high KIF-2C expression were also significantly shorter compared with female patients with low KIF-2C expression (P=0.022, P=0.029) and female patients with high KIF-2C expression (P=0.014, P=0.018). Based on these findings, KIF-2C expression in tumor tissues promises to serve as an independent prognostic marker for male, but not female, patients with operable ESCC. Prognosis was worse for male patients with high KIF-2C expression compared with patients with the same pathologic tumor-node-metastasis (pTNM) stage.
Collapse
Affiliation(s)
- Hao Duan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xu Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Fei-Xiang Wang
- Department of Thoracic Oncology, Cancer Center of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Mu-Yan Cai
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Guo-Wei Ma
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Hong Yang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Jian-Hua Fu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| | - Zi-Hui Tan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xia-Yu Fu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Qi-Long Ma
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Xin-Ye Wang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China
| | - Peng Lin
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, Guangdong Province, China.,Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
28
|
Wolter P, Hanselmann S, Pattschull G, Schruf E, Gaubatz S. Central spindle proteins and mitotic kinesins are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cell lines and are potential targets for therapy. Oncotarget 2017; 8:11160-11172. [PMID: 28061449 PMCID: PMC5355254 DOI: 10.18632/oncotarget.14466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
The MuvB multiprotein complex, together with B-MYB and FOXM1 (MMB-FOXM1), plays an essential role in cell cycle progression by regulating the transcription of genes required for mitosis and cytokinesis. In many tumors, B-MYB and FOXM1 are overexpressed as part of the proliferation signature. However, the transcriptional targets that are important for oncogenesis have not been identified. Given that mitotic kinesins are highly expressed in cancer cells and that selected kinesins have been reported as target genes of MMB-FOXM1, we sought to determine which mitotic kinesins are directly regulated by MMB-FOXM1. We demonstrate that six mitotic kinesins and two microtubule-associated non-motor proteins (MAPs) CEP55 and PRC1 are direct transcriptional targets of MuvB, B-MYB and FOXM1 in breast cancer cells. Suppression of KIF23 and PRC1 strongly suppressed proliferation of MDA-MB-231 cells. The set of MMB-FOXM1 regulated kinesins genes and 4 additional kinesins which we referred to as the mitotic kinesin signature (MKS) is linked to poor outcome in breast cancer patients. Thus, mitotic kinesins could be used as prognostic biomarker and could be potential therapeutic targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Patrick Wolter
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Steffen Hanselmann
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Grit Pattschull
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Schruf
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute, Biocenter, University of Wuerzburg and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Gu Y, Lu L, Wu L, Chen H, Zhu W, He Y. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA‑seq data analysis. Mol Med Rep 2017; 15:1661-1667. [PMID: 28260099 PMCID: PMC5364979 DOI: 10.3892/mmr.2017.6194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/06/2016] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to analyze RNA-seq data of kidney renal clear cell carcinoma (KIRC) to identify prognostic genes. RNA‑seq data were downloaded from The Cancer Genome Atlas. Feature genes with a coefficient of variation (CV) >0.5 were selected using the genefilter package in R. Gene co‑expression networks were constructed with the WGCNA package. Cox regression analysis was performed using the survive package. Furthermore, a functional enrichment analysis was conducted using Database for Annotation, Visualization and Integrated Discovery tools. A total of 533 KIRC samples were collected, from which 6,758 feature genes with a CV >0.5 were obtained for further analysis. The KIRC samples were divided into two sets: The training set (n=319 samples) and the validation set (n=214 samples). Subsequently, gene co‑expression networks were constructed for the two sets. A total of 12 modules were identified, and the green module was significantly associated with survival time. Genes from the green module were revealed to be implicated in the cell cycle and p53 signaling pathway. In addition, a total of 11 hub genes were revealed, and 10 of them (CCNA2, CDC20, CDCA8, GTSE1, KIF23, KIF2C, KIF4A, MELK, TOP2A and TPX2) were validated as possessing prognostic value, as determined by conducting a survival analysis on another gene expression dataset. In conclusion, a total of 10 prognostic genes were identified in KIRC. These findings may help to advance the understanding of this disease, and may also provide potential biomarkers for therapeutic development.
Collapse
Affiliation(s)
- Yanqin Gu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Linfeng Lu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Lingfeng Wu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Hao Chen
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
30
|
Bertalan Z, Budrikis Z, La Porta CAM, Zapperi S. Role of the Number of Microtubules in Chromosome Segregation during Cell Division. PLoS One 2015; 10:e0141305. [PMID: 26506005 PMCID: PMC4624697 DOI: 10.1371/journal.pone.0141305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/07/2015] [Indexed: 12/02/2022] Open
Abstract
Faithful segregation of genetic material during cell division requires alignment of chromosomes between two spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated so that coherent chromosome motion emerges from a large collection of random and deterministic processes. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation during mitosis. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compares well with early observations in mammalian cell spindles. Our results shed new light on the origin of several pathological conditions related to chromosomal instability.
Collapse
Affiliation(s)
- Zsolt Bertalan
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy
| | - Zoe Budrikis
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy
| | - Caterina A. M. La Porta
- Center for Complexity and Biosystems, Department of Bioscience, University of Milan, via Celoria 26, 20133 Milano, Italy
- * E-mail: (CAMLP); (SZ)
| | - Stefano Zapperi
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, via Celoria 16, 20133 Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto per l’Energetica e le Interfasi, Via R. Cozzi 53, 20125 Milano, Italy
- Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto, Espoo, Finland
- * E-mail: (CAMLP); (SZ)
| |
Collapse
|
31
|
Ritter A, Sanhaji M, Friemel A, Roth S, Rolle U, Louwen F, Yuan J. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle 2015; 14:3755-67. [PMID: 26148251 DOI: 10.1080/15384101.2015.1068481] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.
Collapse
Affiliation(s)
- Andreas Ritter
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| | - Mourad Sanhaji
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| | - Alexandra Friemel
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| | - Susanne Roth
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| | - Udo Rolle
- b Department of Pediatric Surgery and Pediatric Urology ; School of Medicine; JW Goethe-University ; Frankfurt , Germany
| | - Frank Louwen
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| | - Juping Yuan
- a Department of Gynecology and Obstetrics ; JW Goethe-University ; Frankfurt , Germany
| |
Collapse
|
32
|
Aung PP, Liu YC, Ballester LY, Robbins PF, Rosenberg SA, Lee CCR. Expression of New York esophageal squamous cell carcinoma-1 in primary and metastatic melanoma. Hum Pathol 2013; 45:259-67. [PMID: 24290058 DOI: 10.1016/j.humpath.2013.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/21/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Abstract
New York esophageal squamous cell carcinoma-1 (NY-ESO-1), a cancer testis antigen, is an ideal target for adoptive cell transfer immunotherapy. Evidence from several clinical trials in melanoma and other malignancies shows the potential value of targeting the NY-ESO-1 antigen in immune-based therapy of metastatic tumors. However, the incidence of NY-ESO-1 expression in metastatic melanoma is unknown, and thus, it is unclear how many patients might benefit from this therapy. In this study, we analyzed NY-ESO-1 expression in 222 melanoma specimens, including 16 primary and 206 metastatic tumors. Our results support previous findings showing higher expression of NY-ESO-1 in metastatic (58/206; 28.2%) versus primary (0/16) tumors. In addition, our results show that the epithelioid subtype of melanoma has the highest incidence of NY-ESO-1 expression. These findings provide evidence of the value of this specific adoptive cell transfer therapy for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Phyu P Aung
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Chun Liu
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leomar Y Ballester
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Liu X, Gong H, Huang K. Oncogenic role of kinesin proteins and targeting kinesin therapy. Cancer Sci 2013; 104:651-6. [PMID: 23438337 DOI: 10.1111/cas.12138] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022] Open
Abstract
The kinesin superfamily (KIF) is a group of proteins that share a highly conserved motor domain. Except for some members, many KIF proteins have adenosine triphosphatase activity and microtubule-dependent plus-end motion ability. Kinesins participate in several essential cellular functions, including mitosis, meiosis and the transport of macromolecules. Increasing evidence indicates kinesin proteins play critical roles in the genesis and development of human cancers. Some kinesin proteins are associated with maligancy as well as drug resistance of solid tumor. Thus, targeting KIF therapy seems to be a promising anticancer strategy. Inhibitors of KIF such as kinesin spindle protein (KSP/Eg5) have entered clinical trials for monotherapy or in combination with other drugs, and kinesins other than Eg5 with various potential anticancer target characteristics are also constantly being discovered and studied. Here, we summarize the oncogenic roles of kinesin proteins and potential cancer therapy strategies that target KIF.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
34
|
Nischalke HD, Schmitz V, Luda C, Aldenhoff K, Berger C, Feldmann G, Sauerbruch T, Spengler U, Nattermann J. Detection of IGF2BP3, HOXB7, and NEK2 mRNA expression in brush cytology specimens as a new diagnostic tool in patients with biliary strictures. PLoS One 2012; 7:e42141. [PMID: 22879911 PMCID: PMC3413695 DOI: 10.1371/journal.pone.0042141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/02/2012] [Indexed: 01/02/2023] Open
Abstract
Introduction It is a challenging task to distinguish between benign and malignant lesions in patients with biliary strictures. Here we analyze whether determination of target gene mRNA levels in intraductal brush cytology specimens may be used to improve the diagnosis of bile duct carcinoma. Materials and Methods Brush cytology specimens from 119 patients with biliary strictures (malignant: n = 72; benign: n = 47) were analyzed in a retrospective cohort study. mRNA of IGF-II mRNA-binding protein 3 (IGF2BP3), homeobox B7 (HOXB7), Forkhead box M1 (FOXM1), kinesin family member 2C (KIF2C) and serine/threonine kinase NEK2 was determined by semi-quantitative RT-PCR using the ΔCt method. Results IGF2BP3 (p<0.0001), HOXB7 (p<0.0001), and NEK2 (p<0.0001) mRNA expression levels were significantly increased in patients with cholangiocarcinoma or pancreatic cancer. Median ΔCt values differed by 3.5 cycles (IGF2BP3), 2.8 cycles (HOXB7) and 1.3 cycles (NEK2) corresponding to 11-fold, 7-fold and 2.5-fold increased mRNA levels in malignant versus benign samples. Sensitivity to detect biliary cancer was 76.4% for IGF2BP3 (80.9% specificity); 72.2% for HOXB7 (78.7% specificity) and 65.3% for NEK2 (72.3% specificity), whereas routine cytology reached only 43.1% sensitivity (85.4% specificity). Diagnostic precision was further improved, when all three molecular markers were assessed in combination (77.8% sensitivity, 87.2% specificity) and achieved 87.5% sensitivity and 87.2% specificity when molecular markers were combined with routine cytology. Conclusions Our data suggest that measuring IGF2BP3, HOXB7 and NEK2 mRNA levels by RT-PCR in addition to cytology has the potential to improve detection of malignant biliary disorders from brush cytology specimens.
Collapse
Affiliation(s)
| | - Volker Schmitz
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Carolin Luda
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | | | - Cordula Berger
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Georg Feldmann
- Center of Integrated Oncology Cologne-Bonn, Department of Internal Medicine 3, University of Bonn, Bonn, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine 1, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Mitosis phase enrichment with identification of mitotic centromere-associated kinesin as a therapeutic target in castration-resistant prostate cancer. PLoS One 2012; 7:e31259. [PMID: 22363599 PMCID: PMC3281954 DOI: 10.1371/journal.pone.0031259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 01/04/2012] [Indexed: 11/19/2022] Open
Abstract
The recently described transcriptomic switch to a mitosis program in castration-resistant prostate cancer (CRPC) suggests that mitotic proteins may be rationally targeted at this lethal stage of the disease. In this study, we showed upregulation of the mitosis-phase at the protein level in our cohort of 51 clinical CRPC cases and found centrosomal aberrations to also occur preferentially in CRPC compared with untreated, high Gleason–grade hormone-sensitive prostate cancer (P<0.0001). Expression profiling of chemotherapy-resistant CRPC samples (n = 25) was performed, and the results were compared with data from primary chemotherapy-naïve CRPC (n = 10) and hormone-sensitive prostate cancer cases (n = 108). Our results showed enrichment of mitosis-phase genes and pathways, with progression to both castration-resistant and chemotherapy-resistant disease. The mitotic centromere-associated kinesin (MCAK) was identified as a novel mitosis-phase target in prostate cancer that was overexpressed in multiple CRPC gene-expression datasets. We found concordant gene expression of MCAK between our parent and murine CRPC xenograft pairs and increased MCAK protein expression with clinical progression of prostate cancer to a castration-resistant disease stage. Knockdown of MCAK arrested the growth of prostate cancer cells suggesting its utility as a potential therapeutic target.
Collapse
|
36
|
Sanhaji M, Friel CT, Wordeman L, Louwen F, Yuan J. Mitotic centromere-associated kinesin (MCAK): a potential cancer drug target. Oncotarget 2011; 2:935-47. [PMID: 22249213 PMCID: PMC3282097 DOI: 10.18632/oncotarget.416] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 12/31/2011] [Indexed: 11/25/2022] Open
Abstract
The inability to faithfully segregate chromosomes in mitosis results in chromosome instability, a hallmark of solid tumors. Disruption of microtubule dynamics contributes highly to mitotic chromosome instability. The kinesin-13 family is critical in the regulation of microtubule dynamics and the best characterized member of the family, the mitotic centromere-associated kinesin (MCAK), has recently been attracting enormous attention. MCAK regulates microtubule dynamics as a potent depolymerizer of microtubules by removing tubulin subunits from the polymer end. This depolymerizing activity plays pivotal roles in spindle formation, in correcting erroneous attachments of microtubule-kinetochore and in chromosome movement. Thus, the accurate regulation of MCAK is important for ensuring the faithful segregation of chromosomes in mitosis and for safeguarding chromosome stability. In this review we summarize recent data concerning the regulation of MCAK by mitotic kinases, Aurora A/B, Polo-like kinase 1 and cyclin-dependent kinase 1. We propose a molecular model of the regulation of MCAK by these mitotic kinases and relevant phosphatases throughout mitosis. An ever-increasing quantity of data indicates that MCAK is aberrantly regulated in cancer cells. This deregulation is linked to increased malignance, invasiveness, metastasis and drug resistance, most probably due to increased chromosomal instability and remodeling of the microtubule cytoskeleton in cancer cells. Most interestingly, recent observations suggest that MCAK could be a novel molecular target for cancer therapy, as a new cancer antigen or as a mitotic regulator. This collection of new data indicates that MCAK could be a new star in the cancer research sky due to its critical roles in the control of genome stability and the cytoskeleton. Further investigations are required to dissect the fine details of the regulation of MCAK throughout mitosis and its involvements in oncogenesis.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Claire T. Friel
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Center for Cell Dynamics, Friday Harbor, Laboratories, Friday Harbor, WA 98250, USA
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
37
|
Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 2011; 108:16723-8. [PMID: 21933959 DOI: 10.1073/pnas.1110814108] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ipilimumab, a monoclonal antibody against cytotoxic T lymphocyte antigen 4 (CTLA-4), has been shown to improve survival in patients with advanced metastatic melanoma. It also enhances immunity to NY-ESO-1, a cancer/testis antigen expressed in a subset of patients with melanoma. To characterize the association between immune response and clinical outcome, we first analyzed NY-ESO-1 serum antibody by ELISA in 144 ipilimumab-treated patients with melanoma and found 22 of 140 (16%) seropositive at baseline and 31 of 144 (22%) seropositive following treatment. These NY-ESO-1-seropositive patients had a greater likelihood of experiencing clinical benefit 24 wk after ipilimumab treatment than NY-ESO-1-seronegative patients (P = 0.02, relative risk = 1.8, two-tailed Fisher test). To understand why some patients with NY-ESO-1 antibody failed to experience clinical benefit, we analyzed NY-ESO-1-specific CD4(+) and CD8(+) T-cell responses by intracellular multicytokine staining in 20 NY-ESO-1-seropositive patients and found a surprising dissociation between NY-ESO-1 antibody and CD8 responses in some patients. NY-ESO-1-seropositive patients with associated CD8(+) T cells experienced more frequent clinical benefit (10 of 13; 77%) than those with undetectable CD8(+) T-cell response (one of seven; 14%; P = 0.02; relative risk = 5.4, two-tailed Fisher test), as well as a significant survival advantage (P = 0.01; hazard ratio = 0.2, time-dependent Cox model). Together, our data suggest that integrated NY-ESO-1 immune responses may have predictive value for ipilimumab treatment and argue for prospective studies in patients with established NY-ESO-1 immunity. The current findings provide a strong rationale for the clinical use of modulators of immunosuppression with concurrent approaches to favor tumor antigen-specific immune responses, such as vaccines or adoptive transfer, in patients with cancer.
Collapse
|
38
|
Tsuji T, Matsuzaki J, Ritter E, Miliotto A, Ritter G, Odunsi K, Old LJ, Gnjatic S. Split T cell tolerance against a self/tumor antigen: spontaneous CD4+ but not CD8+ T cell responses against p53 in cancer patients and healthy donors. PLoS One 2011; 6:e23651. [PMID: 21858191 PMCID: PMC3155555 DOI: 10.1371/journal.pone.0023651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Erika Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Gerd Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: .
| |
Collapse
|