1
|
Zhang S, Lin T, Xiong X, Chen C, Tan P, Wei Q. Targeting histone modifiers in bladder cancer therapy - preclinical and clinical evidence. Nat Rev Urol 2024; 21:495-511. [PMID: 38374198 DOI: 10.1038/s41585-024-00857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
Bladder cancer in the most advanced, muscle-invasive stage is lethal, and very limited therapeutic advances have been reported for decades. To date, cisplatin-based chemotherapy remains the first-line therapy for advanced bladder cancer. Late-line options have historically been limited. In the past few years, next-generation sequencing technology has enabled chromatin remodelling gene mutations to be characterized, showing that these alterations are more frequent in urothelial bladder carcinoma than in other cancer types. Histone modifiers have functional roles in tumour progression by modulating the expression of tumour suppressors and oncogenes and, therefore, have been considered as novel drug targets for cancer therapy. The roles of epigenetic reprogramming through histone modifications have been increasingly studied in bladder cancer, and the therapeutic efficacy of targeting those histone modifiers genetically or chemically is being assessed in preclinical studies. Results from preclinical studies in bladder cancer encouraged the investigation of some of these drugs in clinical trials, which yield mixed results. Further understanding of how alterations of histone modification mechanistically contribute to bladder cancer progression, drug resistance and tumour microenvironment remodelling will be required to facilitate clinical application of epigenetic drugs in bladder cancer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xingyu Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Kato H, Hayami S, Ueno M, Suzaki N, Nakamura M, Yoshimura T, Miyamoto A, Shigekawa Y, Okada K, Miyazawa M, Kitahata Y, Ehata S, Hamamoto R, Yamaue H, Kawai M. Histone methyltransferase SUV420H1/KMT5B contributes to poor prognosis in hepatocellular carcinoma. Cancer Sci 2024; 115:385-400. [PMID: 38082550 PMCID: PMC10859612 DOI: 10.1111/cas.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 11/20/2023] [Indexed: 02/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has a high rate of recurrence and poor prognosis, even after curative surgery. Multikinase inhibitors have been applied for HCC patients, but their effect has been restricted. This study aims to clarify the clinical impact of SUV420H1/KMT5B, one of the methyltransferases for histone H4 at lysine 20, and elucidate the novel mechanisms of HCC progression. We retrospectively investigated SUV420H1 expression using HCC clinical tissue samples employing immunohistochemical analysis (n = 350). We then performed loss-of-function analysis of SUV420H1 with cell cycle analysis, migration assay, invasion assay and RNA sequence for Gene Ontology (GO) pathway analysis in vitro, and animal experiments with xenograft mice in vivo. The SUV420H1-high-score group (n = 154) had significantly poorer prognosis for both 5-year overall and 2-year/5-year disease-free survival than the SUV420H1-low-score group (n = 196) (p < 0.001 and p < 0.05, respectively). The SUV420H1-high-score group had pathologically larger tumor size, more tumors, poorer differentiation, and more positive vascular invasion than the SUV420H1-low-score group. Multivariate analysis demonstrated that SUV420H1 high score was the poorest independent factor for overall survival. SUV420H1 knockdown could suppress cell cycle from G1 to S phase and cell invasion. GO pathway analysis showed that SUV420H1 contributed to cell proliferation, cell invasion, and/or metastasis. Overexpression of SUV420H1 clinically contributed to poor prognosis in HCC, and the inhibition of SUV420H1 could repress tumor progression and invasion both in vitro and in vivo; thus, further analyses of SUV420H1 are necessary for the discovery of future molecularly targeted drugs.
Collapse
Affiliation(s)
- Hirotaka Kato
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinya Hayami
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Masaki Ueno
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Norihiko Suzaki
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Masashi Nakamura
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Tomohiro Yoshimura
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Atsushi Miyamoto
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yoshinobu Shigekawa
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Ken‐Ichi Okada
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Motoki Miyazawa
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yuji Kitahata
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Ryuji Hamamoto
- Division of Medical AI Research and DevelopmentNational Cancer Center Research InstituteTokyoJapan
| | - Hiroki Yamaue
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Manabu Kawai
- Second Department of Surgery, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
3
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi JL, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification and overexpression promotes breast cancer development and chemoresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542643. [PMID: 37398114 PMCID: PMC10312425 DOI: 10.1101/2023.05.28.542643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Activation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer. FOXK2 gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found that FOXK2 is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival. FOXK2 knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting that FOXK2 is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identified CCNE2, PDK1, and Estrogen receptor alpha (ESR1) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin-Ling Yi
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
5
|
Yang G, Wang H, Sun B. Construction of cuproptosis‑associated prognostic signature in colon adenocarcinoma based on bioinformatics and RT‑qPCR analysis. Oncol Lett 2023; 25:91. [PMID: 36817047 PMCID: PMC9932052 DOI: 10.3892/ol.2023.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Colon adenocarcinoma (COAD) is the most common pathological subtype of colon cancer with a high degree of malignancy. Cuproptosis is a newly discovered copper-dependent cell death pattern distinguished from all the other known programmed cell death. Hence, it can be used as a potential therapeutic target for cancer. The present study aimed to clarify the relationship between cuproptosis and prognosis of COAD. The variations of 12 cuproptosis-associated genes based on 623 patients with COAD were comprehensively identified. It was found that 8 out of 12 were differentially expressed in tumors and normal tissues and CDKN2A showed a higher prognostic value. Therefore, two molecular subtypes were explored and the subtype A, with higher expression of cuproptosis-associated genes, showed more enrichment of immune pathways and survival advantage over those with lower cuproptosis-associated genes expression. The risk score and a nomogram predicting pattern were constructed to quantify a single patient and the risk score could serve as an independent prognostic factor by multivariate Cox regression analysis (P<0.001, HR: 1.350, 95% CI: 1.189-1.534). The expression levels of key prognostic genes (PMM2, ACOX1, KDM3A, HSPB1, PPARGC1A, UPK3B and EPHB2) was analyzed by HCT-116 colon cancer cells and HT-29 colorectal cancer cells using reverse transcription-quantitative PCR. The high-risk group, characterized by higher immune infiltration, increased microsatellite instability-high, high tumor mutation burden and high expression level of immune checkpoints, indicated higher drug sensitivity. In conclusion, our analysis confirms the potential role of cuproptosis-associated genes in the prognosis of COAD and it will provide new ideas for immunotherapy.
Collapse
Affiliation(s)
- Guang Yang
- Medical Experimental Center, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China,Correspondence to: Dr Guang Yang, Medical Experimental Center, School of Medicine, Jianghan University, 8 Triangle Lake Road, Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, P.R. China, E-mail:
| | - Haiping Wang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Binlian Sun
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China,Dr Binlian Sun, Institute of Biomedical Sciences, School of Medicine, Jianghan University, 8 Triangle Lake Road, Wuhan Economic and Technological Development Zone, Wuhan, Hubei 430056, P.R. China, E-mail:
| |
Collapse
|
6
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
7
|
He L, Liang M, Guo W, Liu J, Yu Y. HOXA1 is a radioresistance marker in multiple cancer types. Front Oncol 2022; 12:965427. [PMID: 36119466 PMCID: PMC9478604 DOI: 10.3389/fonc.2022.965427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is an important therapeutic method for patients with cancer. However, radioresistance can cause treatment failure. Thus, there is an urgent need to investigate mechanisms of radioresistance and identity markers that could be used to predict radioresistance and prognosis of post-radiotherapy cancer patients. In the present study, we propose HOXA1 as a candidate biomarker of intrinsic radioresistance in multiple cancer types. By analyzing data from The Cancer Genome Atlas (TCGA), we found that HOXA1 was aberrantly upregulated in multiple cancers, and that elevated HOXA1 was significantly associated with poor prognosis of post-radiotherapy head and neck squamous cell carcinoma (HNSCC) and low-grade glioma (LGG) patients. Correlation analysis showed that HOXA1 expression was positively correlated with expression of EGFR, CDK6, and CAV1, which have been reported to enhance radioresistance. In addition, gene set enrichment analysis (GSEA) showed that the oxidative phosphorylation gene set was negatively enriched in HOXA1 high-expression samples in both HNSCC and LGG. Moreover, immunohistochemical assays indicated that high HOXA1 expression was significantly correlated with a high recurrence rate of nasopharyngeal carcinoma (NPC) after radiotherapy. Further in vitro experiments demonstrated that HOXA1 knockdown markedly attenuated the DNA repair capacity of NPC cells and sensibilized NPC cells to irradiation. Taken together, the results of this study demonstrate that HOXA1 has potential to be a predictive marker for radioresistance and post-radiotherapy prognosis that could help to guide individualized treatment in multiple cancer types.
Collapse
Affiliation(s)
- Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Min Liang
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weisheng Guo
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinquan Liu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| | - Yi Yu
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Yi Yu, ; Jinquan Liu,
| |
Collapse
|
8
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
9
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Blel A, Saadi A, Chakroun M, Naimi Z, Zaghbib S, Ksontini M, Meddeb K, Rammeh S, Ayed H, Chebil M, Piaggio G, Ouerhani S. An insight into the diagnostic and prognostic value of
HOX A13
’s expression in non‐muscle invasive bladder cancer. J Clin Lab Anal 2022; 36:e24606. [PMID: 35853090 PMCID: PMC9459288 DOI: 10.1002/jcla.24606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Several studies have interrogated the molecular pathways and their interacting genes underlying bladder cancer (BCa) tumorigenesis, yet, the role of homeobox genes is still poorly understood. Specifically, HOXA13, which plays an important role as a major actor in the urogenital tract's development. Methods Immunohistochemical (IHC) staining was performed to inspect the differential expression of HOXA13 protein in non‐muscle‐invasive bladder cancer (NMIBC) and non‐tumoral tissues. A semiquantitative scoring system was adopted to evaluate the IHC labeling. Correlation to clinical parameters was performed by descriptive statistics. Overall survival was estimated by the Kaplan–Meier method and Cox regression model. The functional HOX A13 protein association networks (PPI) were obtained using String 11.0 database. Results HOX A13 exhibited cytoplasmic and nuclear staining. Its expression levels were lower in high‐grade NMIBC (HG NMIBC) compared to low‐grade ones (LG NMIBC). The expression of HOX A13 was correlated to tumor grade (LG/HG) (p = 0.036) and stage (TA/T1) (p = 0.036). Nevertheless, its expression was not correlated to clinical parameters and was not able to predict the overall survival of patients with HG NMIBC. Finally, PPI analysis revealed that HOX A13 seems to be a part of a molecular network holding mainly PBX1, MEIS, ALDH1A2, HOX A10, and HOX A11. Conclusion The deregulation of HOX A13 is not associated with the prognosis of BCa. It seems to be rather implicated in the early initiation of urothelial tumorigenesis and thus may serve as a diagnostic marker in patients with NMIBC. Further experimentations on larger validation sets are mandatory.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Aymone Gurtner
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
- Institute of Translational Pharmacology (IFT) National Research Council (CNR) Rome Italy
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| | - Isabella Manni
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Ahlem Blel
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Ahmed Saadi
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Marouene Chakroun
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Zeineb Naimi
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Selim Zaghbib
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Meriam Ksontini
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Khedija Meddeb
- Medical Oncology Department Faculty of Medicine Salah Azaiez Institute University of Tunis‐El Manar Tunis Tunisia
| | - Soumaya Rammeh
- Pathology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis El Manar Tunis Tunisia
| | - Haroun Ayed
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Mohamed Chebil
- Urology Department Faculty of Medicine Charles Nicolle Hospital University of Tunis‐El Manar Tunis Tunisia
| | - Giulia Piaggio
- UOSD SAFU Department of Research, Diagnosis and Innovative Technologies IRCCS‐Regina Elena National Cancer Institute Rome Italy
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP‐MB) INSAT University of Tunis Carthage Tunis Tunisia
| |
Collapse
|
10
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
11
|
Wang W, Wang B. KDM3A-mediated SP1 activates PFKFB4 transcription to promote aerobic glycolysis in osteosarcoma and augment tumor development. BMC Cancer 2022; 22:562. [PMID: 35590288 PMCID: PMC9118730 DOI: 10.1186/s12885-022-09636-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lysine-specific histone demethylase 3A (KDM3A) is a potent histone modifier that is frequently implicated in the progression of several malignancies. However, its role in aerobic glycolysis of osteosarcoma (OS) remains unclear. METHODS KDM3A expression in OS tissues was determined by immunohistochemistry, and that in acquired OS cells was determined by RT-qPCR and western blot assays. KDM3A was silenced in OS cells to examine cellular behaviors and the aerobic glycolysis. Stably transfected cells were injected into nude mice for in vivo experiments. The downstream targets of KDM3A were predicted by bioinformatics systems and validated by ChIP-qPCR. Rescue experiments of SP1 and PFKFB4 were performed to examine their roles in the KDM3A-mediated events. RESULTS KDM3A was highly expressed in OS tissues and cells. Knockdown of KDM3A weakened OS cell growth and metastasis in vivo and in vitro, and it suppressed the aerobic glycolysis in OS cells. KDM3A enhanced the transcription of SP1 by demethylating H3K9me2 on its promoter. Restoration of SP1 rescued growth and metastasis of OS cells and recovered the glycolytic flux in cells suppressed by knockdown of KDM3A. SP1 bound to the PFKFB4 promoter to activate its transcription and expression. PFKFB4 expression in OS cells was suppressed by KDM3A silencing but increased after SP1 restoration. Overexpression of PFKFB4 significantly promoted OS cell growth and metastasis as well as the glycolytic flux in cells. CONCLUSION This paper elucidates that upregulation of PFKFB4 mediated by the KDM3A-SP1 axis promotes aerobic glycolysis in OS and augments tumor development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China
| | - Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China.
| |
Collapse
|
12
|
Zhang W, Liu R, Zhang L, Wang C, Dong Z, Feng J, Luo M, Zhang Y, Xu Z, Lv S, Wei Q. Downregulation of miR-335 exhibited an oncogenic effect via promoting KDM3A/YAP1 networks in clear cell renal cell carcinoma. Cancer Gene Ther 2022; 29:573-584. [PMID: 33888871 PMCID: PMC9113937 DOI: 10.1038/s41417-021-00335-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer affecting many people worldwide. Although the 5-year survival rate is 65% in localized disease, after metastasis, the survival rate is <10%. Emerging evidence has shown that microRNAs (miRNAs) play a crucial regulatory role in the progression of ccRCC. Here, we show that miR-335, an anti-onco-miRNA, is downregulation in tumor tissue and inhibited ccRCC cell proliferation, invasion, and migration. Our studies further identify the H3K9me1/2 histone demethylase KDM3A as a new miR-335-regulated gene. We show that KDM3A is overexpressed in ccRCC, and its upregulation contributes to the carcinogenesis and metastasis of ccRCC. Moreover, with the overexpression of KDM3A, YAP1 was increased and identified as a direct downstream target of KDM3A. Enrichment of KDM3A demethylase on YAP1 promoter was confirmed by CHIP-qPCR and YAP1 was also found involved in the cell growth and metastasis inhibitory of miR-335. Together, our study establishes a new miR-335/KDM3A/YAP1 regulation axis, which provided new insight and potential targeting of the metastasized ccRCC.
Collapse
Affiliation(s)
- Wenqiang Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ruiyu Liu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lin Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Chao Wang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Ziyan Dong
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Jiasheng Feng
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Mayao Luo
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Yifan Zhang
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Zhuofan Xu
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Shidong Lv
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Qiang Wei
- grid.284723.80000 0000 8877 7471Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
13
|
BIX01294 inhibits EGFR signaling in EGFR-mutant lung adenocarcinoma cells through a BCKDHA-mediated reduction in the EGFR level. Exp Mol Med 2021; 53:1877-1887. [PMID: 34876693 PMCID: PMC8741967 DOI: 10.1038/s12276-021-00715-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022] Open
Abstract
BIX01294 (BIX), an inhibitor of the G9a histone methyltransferase, has been reported to have antitumor activity against a variety of cancers. However, the molecular mechanisms underlying its anticancer effects, particularly those against lung cancer, remain unclear. Here, we report that BIX induces apoptotic cell death in EGFR-mutant non-small cell lung cancer (NSCLC) cells but not in their wild-type counterparts. Treatment with BIX resulted in a significant reduction in the EGFR level and inhibition of EGFR signaling only in EGFR-mutant NSCLC cells, leading to apoptosis. BIX also inhibited mitochondrial metabolic function and decreased the cellular energy levels that are critical for maintaining the EGFR level. Furthermore, BIX transcriptionally downregulated the transcription of branched-chain α-keto acid dehydrogenase (BCKDHA), which is essential for fueling the tricarboxylic acid (TCA) cycle. Interestingly, this BCKDHA downregulation was due to inhibition of Jumanji-domain histone demethylases but not the G9a histone methyltransferase. We observed that KDM3A, a Jumonji histone demethylase, epigenetically regulates BCKDHA expression by binding to the BCKDHA gene promoter. BIX exposure also led to a significant decrease in the EGFR level, causing apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Taken together, our current data suggest that BIX triggers apoptosis only in EGFR-mutant NSCLC cells via inhibition of BCKDHA-mediated mitochondrial metabolic function. A drug known as BIX that is effective against bladder and breast cancers may also be effective in fighting non-small cell lung cancer (NSCLC). Although advances have been made in treatment of NSCLC, one of the most effective drugs targets a protein called EGFR, and EGFR gene mutations that lead to acquired drug resistance are common. Jaekyoung Son at the University of Ulsan, Seoul, South Korea, and colleagues investigated whether BIX is effective against NSCLC and attempted to elucidate its mechanism of action. The researchers found that BIX caused death of NSCLC cells, especially those with mutations in the EGFR gene. Further investigation showed that BIX was effective even against drug-resistant NSCLC cells, by acting via a different metabolic pathway. BIX shows promise as an alternative therapy for lung cancer, to overcome drug resistance.
Collapse
|
14
|
Abstract
The epigenetic landscape, which in part includes DNA methylation, chromatin organization, histone modifications, and noncoding RNA regulation, greatly contributes to the heterogeneity that makes developing effective therapies for lung cancer challenging. This review will provide an overview of the epigenetic alterations that have been implicated in all aspects of cancer pathogenesis and progression as well as summarize clinical applications for targeting epigenetics in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yvonne L Chao
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| |
Collapse
|
15
|
Hu S, Cao P, Kong K, Han P, Deng Y, Li F, Zhao B. MicroRNA-449a delays lung cancer development through inhibiting KDM3A/HIF-1α axis. J Transl Med 2021; 19:224. [PMID: 34044859 PMCID: PMC8157436 DOI: 10.1186/s12967-021-02881-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Background It has been established that microRNA (miR)-449a is anti-tumorigenic in cancers, including lung cancer. Therefore, this study further explored miR-449a-mediated mechanism in lung cancer, mainly focusing on lysine demethylase 3A/hypoxia-induced factor-1α (KDM3A/HIF-1α) axis. Methods miR-449a, KDM3A and HIF-1α levels in lung cancer tissues and cell lines (A549, H1299 and H460) were measured. Loss- and gain-of-function assays were performed and then cell proliferation, cell cycle, apoptosis, invasion and migration were traced. The relationship between KDM3A, miR-449a and HIF-1α was verified. Tumor growth in vivo was also monitored. Results Both lung cancer tissues and cells exhibited reduced miR-449a and raised KDM3A and HIF-1α levels. miR-449a interacted with KDM3A; HIF-1α could bind with KDM3A. Up-regulating miR-449a hindered while suppressing miR-449a induced lung cancer development via mediating HIF-1α. Elevating KDM3A promoted cellular aggression while down-regulating KDM3A had the opposite effects. Up-regulating KDM3A or HIF-1α negated up-regulated miR-449a-induced effects on cellular growth in lung cancer. Restoring miR-449a impaired tumorigenesis in vivo in lung cancer. Conclusion It is eventually concluded that miR-449a delays lung cancer development through suppressing KDM3A/HIF-1α axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02881-8.
Collapse
Affiliation(s)
- Shan Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Cao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Kangle Kong
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Peng Han
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Qiaokou District, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Liu J, Zhao Z, Qiu N, Zhou Q, Wang G, Jiang H, Piao Y, Zhou Z, Tang J, Shen Y. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat Commun 2021; 12:2425. [PMID: 33893275 PMCID: PMC8065121 DOI: 10.1038/s41467-021-22407-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) antibodies are currently used in the clinic to interupt the PD-1/PD-L1 immune checkpoint, which reverses T cell dysfunction/exhaustion and shows success in treating cancer. Here, we report a histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), which inhibits tumour histone demethylase Jumonji domain-containing 1A (JMJD1A) and thus downregulates its downstream β-catenin and subsequent PD-L1, providing an antibody-independent paradigm interrupting the PD-1/PD-L1 checkpoint. Synergistically, IOX1 inhibits cancer cells’ P-glycoproteins (P-gp) through the JMJD1A/β-catenin/P-gp pathway and greatly enhances doxorubicin (DOX)-induced immune-stimulatory immunogenic cell death. As a result, the IOX1 and DOX combination greatly promotes T cell infiltration and activity and significantly reduces tumour immunosuppressive factors. Their liposomal combination reduces the growth of various murine tumours, including subcutaneous, orthotopic, and lung metastasis tumours, and offers a long-term immunological memory function against tumour rechallenging. This work provides a small molecule-based potent cancer chemo-immunotherapy. Some chemotherapeutic drugs, such as doxorubicin, induce immunogenic cell death (ICD) and promote anti-tumor immune responses. Here the authors report that the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1) reduces the expression of PD-L1 in cancer cells and enhances doxorubicin-induced ICD, promoting T cell infiltration and reducing tumor growth in preclinical models.
Collapse
Affiliation(s)
- Jing Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|
17
|
Lee JE, Kim MY. Cancer epigenetics: Past, present and future. Semin Cancer Biol 2021; 83:4-14. [PMID: 33798724 DOI: 10.1016/j.semcancer.2021.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Cancer was thought to be caused solely by genetic mutations in oncogenes and tumor suppressor genes. In the last 35 years, however, epigenetic changes have been increasingly recognized as another primary driver of carcinogenesis and cancer progression. Epigenetic deregulation in cancer often includes mutations and/or aberrant expression of chromatin-modifying enzymes, their associated proteins, and even non-coding RNAs, which can alter chromatin structure and dynamics. This leads to changes in gene expression that ultimately contribute to the emergence and evolution of cancer cells. Studies of the deregulation of chromatin modifiers in cancer cells have reshaped the way we approach cancer and guided the development of novel anticancer therapeutics that target epigenetic factors. There remain, however, a number of unanswered questions in this field that are the focus of present research. Areas of particular interest include the actions of emerging classes of epigenetic regulators of carcinogenesis and the tumor microenvironment, as well as epigenetic tumor heterogeneity. In this review, we discuss past findings on epigenetic mechanisms of cancer, current trends in the field of cancer epigenetics, and the directions of future research that may lead to the identification of new prognostic markers for cancer and the development of more effective anticancer therapeutics.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, Republic of Korea.
| |
Collapse
|
18
|
Li H, Wang X, Zhang M, Wang M, Zhang J, Ma S. Identification of HOXA1 as a Novel Biomarker in Prognosis of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:602068. [PMID: 33763449 PMCID: PMC7982851 DOI: 10.3389/fmolb.2020.602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Hox genes, a highly conserved homolog in most animals, play vital functions in cell development and organ formation. In recent years, researchers have discovered that it can act as a tumor regulator, and its members can participate in tumorigenesis by regulating receptor signaling, cell differentiation, apoptosis, migration, EMT, and angiogenesis. Hox genes and which major members play a vital role in the progress of head and neck squamous cell carcinoma (HNSCC) is still unclear. After analyzing the expression differences and prognostic value of all Hox genes through the TCGA-HNSC database, we use histochemistry stains in 52 pairs of HNSCC slices to verify the expression level of the key member-HOXA1. In correlation analysis, we found that high HOXA1 expression is related to poor pathological grade (p = 0.0077), advanced T stage (p = 0.021) and perineural invasion (PNI) (p = 0.0019). Furthermore, we used Cox univariate and multivariate regression analysis to confirm the independent predictive power of HOXA1 expression. To explore the underlying mechanisms behind HOXA1, we ran GSVA and GSEA and found fourteen mutual signaling pathways, including neuroprotein secretion and transport, tumor-associated signaling pathways, cell adhere junction and metabolic reprogramming. Finally, we found that the high expression of HOXA1 is significantly related to the decrease of CD8+ T cell infiltration and the decline of DNA methylation level. Our findings demonstrated that HOXA1, as a notable member of the HOX family, maybe an independent prognostic indicator in HNSCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
19
|
Zhang Y, Pan Q, Shao Z. Tumor-Suppressive Role of microRNA-202-3p in Hepatocellular Carcinoma Through the KDM3A/HOXA1/MEIS3 Pathway. Front Cell Dev Biol 2021; 8:556004. [PMID: 33520978 PMCID: PMC7843525 DOI: 10.3389/fcell.2020.556004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a malignant tumor predominantly arising in the setting of cirrhosis and is the third most common cause of cancer-associated death on a global scale. The heterogeneous nature of HCC and limited well-recognized biomarkers may contribute to poor patient prognosis and treatment failure. In this study, we identified expression pattern of microRNA-202-3p (miR-202-3p) in HCC and characterized its functional role as well as related mechanisms. First, we collected 50 HCC tissues and 38 normal liver tissues, and after bioinformatics prediction, the expression of miR-202-3p and KDM3A was determined in the tissues. We found lowly expressed miR-202-3p and overexpressed KDM3A in HCC tissues. Then, dual-luciferase reporter gene assay was employed to test the presence of miR-202-3p binding sites in the 3’UTR of KDM3A and chromatin immunoprecipitation (ChIP) assay to homeobox A1 (HOXA1) interaction with KDM3A and MEIS3. It has been confirmed that miR-202-3p negatively regulated KDM3A responsible for increasing the expression of HOXA1 by eliminating the histone H3 lysine 9 (H3K9)me2 in HCC cells. HOXA1 could evidently increase H3K4me1 and H3K27ac enrichment in the MEIS3 enhancer region and enhance the expression of MEIS3. Functional assays were also performed with the results showing that upregulated miR-202-3p or downregulated KDM3A retarded HCC cell viability, migration, and invasion. In addition, HepG2 cells were xenografted into nude mice, and we demonstrated that upregulated miR-202-3p reduced the growth of human HCC cells in vivo. Taken together, the present study elicits a novel miR-202-3p/KDM3A/HOXA1/MEIS3 pathway in HCC, potentiating an exquisite therapeutic target for HCC.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zigong Shao
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, Takahashi M, Jinnai S, Shimoyama R, Sakai A, Takasawa K, Bolatkan A, Shozu K, Dozen A, Machino H, Takahashi S, Asada K, Komatsu M, Sese J, Kaneko S. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers (Basel) 2020; 12:E3532. [PMID: 33256107 PMCID: PMC7760590 DOI: 10.3390/cancers12123532] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, advances in artificial intelligence (AI) technology have led to the rapid clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped medical devices have already been approved by the Food and Drug Administration (FDA) in the United States, and the active introduction of AI technology is considered to be an inevitable trend in the future of medicine. In the field of oncology, clinical applications of medical devices using AI technology are already underway, mainly in radiology, and AI technology is expected to be positioned as an important core technology. In particular, "precision medicine," a medical treatment that selects the most appropriate treatment for each patient based on a vast amount of medical data such as genome information, has become a worldwide trend; AI technology is expected to be utilized in the process of extracting truly useful information from a large amount of medical data and applying it to diagnosis and treatment. In this review, we would like to introduce the history of AI technology and the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and challenges of AI technology in the medical field.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kruthi Suvarna
- Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India;
| | - Masayoshi Yamada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Endoscopy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku Tokyo 104-0045, Japan
| | - Kazuma Kobayashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Norio Shinkai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masamichi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shunichi Jinnai
- Department of Dermatologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryo Shimoyama
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Akira Sakai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Takasawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Satoshi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Jun Sese
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Humanome Lab, 2-4-10 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
21
|
Ning K, Shao Y, He Y, Wang F, Cui X, Liu F, Li D, Li F. Histone demethylase Jumonji domain-containing 1A inhibits proliferation and progression of gastric cancer by upregulating runt-related transcription factor 3. Cancer Sci 2020; 111:3679-3692. [PMID: 32762126 PMCID: PMC7541000 DOI: 10.1111/cas.14594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
The histone demethylase Jumonji domain‐containing 1A (JMJD1A) is overexpressed in multiple cancers and promotes cancer progression. However, the role and mechanism of JMJD1A in gastric cancer (GC) remains poorly understood. Here, we found that JMJD1A could suppress GC cell proliferation and xenograft tumor growth. Using RNA sequencing, we identified runt‐related transcription factor 3 (RUNX3) as a novel target gene of JMJD1A. Mechanistically, we identified that JMJD1A upregulated RUNX3 through co–activating Ets‐1 and reducing the H3K9me1/2 levels at the RUNX3 promoter in GC cells. Functionally, JMJD1A inhibits the growth of GC cells in vivo, which is partially dependent on RUNX3. Moreover, JMJD1A expression was decreased in GC and low expression of JMJD1A was correlated with an aggressive phenotype and a poor prognosis in patients with GC. Importantly, JMJD1A expression was positively associated with RUNX3 expression in GC samples. These studies indicated that JMJD1A upregulates RUNX3 expression via co–activation of transcription factor Ets‐1 to inhibit proliferation of GC cells. Our findings provide new insight into the mechanism by which JMJD1A regulates RUNX3 transcription and suggest that JMJD1A and/or RUNX3 may be used as a therapeutic intervention for GC.
Collapse
Affiliation(s)
- Ke Ning
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Fei Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Xi Cui
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China
| |
Collapse
|
22
|
Sui Y, Gu R, Janknecht R. Crucial Functions of the JMJD1/KDM3 Epigenetic Regulators in Cancer. Mol Cancer Res 2020; 19:3-13. [PMID: 32605929 DOI: 10.1158/1541-7786.mcr-20-0404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic changes are one underlying cause for cancer development and often due to dysregulation of enzymes modifying DNA or histones. Most Jumonji C domain-containing (JMJD) proteins are histone lysine demethylases (KDM) and therefore epigenetic regulators. One JMJD subfamily consists of JMJD1A/KDM3A, JMJD1B/KDM3B, and JMJD1C/KDM3C that are roughly 50% identical at the amino acid level. All three JMJD1 proteins are capable of removing dimethyl and monomethyl marks from lysine 9 on histone H3 and might also demethylate histone H4 on arginine 3 and nonhistone proteins. Analysis of knockout mice revealed critical roles for JMJD1 proteins in fertility, obesity, metabolic syndrome, and heart disease. Importantly, a plethora of studies demonstrated that especially JMJD1A and JMJD1C are overexpressed in various tumors, stimulate cancer cell proliferation and invasion, and facilitate efficient tumor growth. However, JMJD1A may also inhibit the formation of germ cell tumors. Likewise, JMJD1B appears to be a tumor suppressor in acute myeloid leukemia, but a tumor promoter in other cancers. Notably, by reducing methylation levels on histone H3 lysine 9, JMJD1 proteins can profoundly alter the transcriptome and thereby affect tumorigenesis, including through upregulating oncogenes such as CCND1, JUN, and MYC This epigenetic activity of JMJD1 proteins is sensitive to heavy metals, oncometabolites, oxygen, and reactive oxygen species, whose levels are frequently altered within cancer cells. In conclusion, inhibition of JMJD1 enzymatic activity through small molecules is predicted to be beneficial in many different cancers, but not in the few malignancies where JMJD1 proteins apparently exert tumor-suppressive functions.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ruicai Gu
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ralf Janknecht
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
23
|
Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH, Kwon SH. Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers (Basel) 2020; 12:cancers12051098. [PMID: 32354028 PMCID: PMC7280979 DOI: 10.3390/cancers12051098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Lysine-specific histone demethylase 3 (KDM3) subfamily proteins are H3K9me2/me1 histone demethylases that promote gene expression. The KDM3 subfamily primarily consists of four proteins (KDM3A−D). All four proteins contain the catalytic Jumonji C domain (JmjC) at their C-termini, but whether KDM3C has demethylase activity is under debate. In addition, KDM3 proteins contain a zinc-finger domain for DNA binding and an LXXLL motif for interacting with nuclear receptors. Of the KDM3 proteins, KDM3A is especially deregulated or overexpressed in multiple cancers, making it a potential cancer therapeutic target. However, no KDM3A-selective inhibitors have been identified to date because of the lack of structural information. Uncovering the distinct physiological and pathological functions of KDM3A and their structure will give insight into the development of novel selective inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM3A in cancer. We also discuss existing KDM3A-related inhibitors and review their potential as therapeutic agents for overcoming cancer.
Collapse
Affiliation(s)
- Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Ha Young Cho
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (J.Y.); (Y.H.J.); (H.Y.C.); (S.W.L.); (G.W.K.); (D.H.L.)
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
24
|
Wang T, Luo R, Li W, Yan H, Xie S, Xiao W, Wang Y, Chen B, Bai P, Xing J. Dihydroartemisinin suppresses bladder cancer cell invasion and migration by regulating KDM3A and p21. J Cancer 2020; 11:1115-1124. [PMID: 31956358 PMCID: PMC6959076 DOI: 10.7150/jca.36174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidences have shown that Dihydroartemisinin (DHA), used in malaria treatment, possess anti-cancer activity. However, the study of its potential functional roles and the anti-cancer mechanisms in bladder cancer is limited. We performed this study to elucidate the influence of DHA in the biological behavior of bladder cancer cells and tried to explore the molecular mechanism. The results of CCK-8 assay showed that DHA significantly inhibited bladder cancer cell 5637, UMUC3 and T24 proliferation and the inhibitory effect is dose- and time- dependent. Further mechanism study showed that DHA performed its function via down-regulating the expression of histone demethylase KDM3A and inducing p21 expression. Moreover, wound healing and transwell migration/invasion assays revealed that DHA inhibited the ability of migration and metastasis in bladder cancer cell line T24. Finally, flow cytometry and colony formation assays demonstrated that DHA significantly promoted apoptosis of T24 cells and suppressed tumorigenesis as expected. Taken together, our study identifies the anti-cancer capacity of DHA in bladder cancer and explores the underlying mechanism.
Collapse
Affiliation(s)
- Tao Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Rongtuan Luo
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Wei Li
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Houyu Yan
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Shunqiang Xie
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Wen Xiao
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Yongfeng Wang
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Peide Bai
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| | - Jinchun Xing
- The Key Laboratory of Urinary Tract Tumors and Calculi, Department of Urology Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China 361003
| |
Collapse
|
25
|
Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine. Biomolecules 2019; 10:biom10010062. [PMID: 31905969 PMCID: PMC7023005 DOI: 10.3390/biom10010062] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations have been actively conducted for a long time, and a large number of achievements have already been reported. Indeed, genomic medicine is considered the core discipline of precision medicine, and currently, the clinical application of cutting-edge genomic medicine aimed at improving the prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been accomplished worldwide with the development of next-generation sequencing (NGS), explaining the mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile, the importance of epigenetics, which describes inheritance by mechanisms other than the genomic DNA sequence, has recently attracted attention, and, in particular, many studies have reported the involvement of epigenetic deregulation in human cancer. So far, given that genetic and epigenetic studies tend to be accomplished independently, physiological relationships between genetics and epigenetics in diseases remain almost unknown. Since this situation may be a disadvantage to developing precision medicine, the integrated understanding of genetic variation and epigenetic deregulation appears to be now critical. Importantly, the current progress of artificial intelligence (AI) technologies, such as machine learning and deep learning, is remarkable and enables multimodal analyses of big omics data. In this regard, it is important to develop a platform that can conduct multimodal analysis of medical big data using AI as this may accelerate the realization of precision medicine. In this review, we discuss the importance of genome-wide epigenetic and multiomics analyses using AI in the era of precision medicine.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Correspondence: ; Tel.: +81-3-3547-5271
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Takasawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.K.); (K.T.); (K.A.); (S.K.)
| |
Collapse
|
26
|
Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, Hamamoto R. Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma. Biomolecules 2019; 9:biom9120810. [PMID: 31805626 PMCID: PMC6995592 DOI: 10.3390/biom9120810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan–Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Sangchul Kim
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Correspondence: (S.K.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Nobutsugu Abe
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Correspondence: (S.K.); (R.H.); Tel.: +81-3-3547-5271 (R.H.)
| |
Collapse
|
27
|
Li Y, Li Z, Zhu WG. Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics. Curr Med Chem 2019; 26:1328-1350. [PMID: 28933282 DOI: 10.2174/0929867324666170921101947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is defined as somatically inheritable changes that are not accompanied by alterations in DNA sequence. Epigenetics encompasses DNA methylation, covalent histone modifications, non-coding RNA as well as nucleosome remodeling. Notably, abnormal epigenetic changes play a critical role in cancer development including malignant transformation, metastasis, prognosis, drug resistance and tumor recurrence, which can provide effective targets for cancer prognosis, diagnosis and therapy. Understanding these changes provide effective means for cancer diagnosis and druggable targets for better clinical applications. Histone modifications and related enzymes have been found to correlate well with cancer incidence and prognosis in recent years. Dysregulated expression or mutation of histone modification enzymes and histone modification status abnormalities have been considered to play essential roles in tumorigenesis and clinical outcomes of cancer treatment. Some of the histone modification inhibitors have been extensively employed in clinical practice and many others are still under laboratory research or pre-clinical assessment. Here we summarize the important roles of epigenetics, especially histone modifications in cancer diagnostics and therapeutics, and also discuss the developmental implications of activatable epigenetic targets in cancer theranostics.
Collapse
Affiliation(s)
- Yinglu Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
28
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
29
|
Hypoxia-inducible KDM3A addiction in multiple myeloma. Blood Adv 2019; 2:323-334. [PMID: 29444873 DOI: 10.1182/bloodadvances.2017008847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
In multiple myeloma (MM), the bone marrow (BM) microenvironment may contain a myeloma cell fraction that has acquired treatment resistance by undergoing an epigenetic gene expression change. Hypoxic stress is an important factor in the BM microenvironment. Recently, we demonstrated that miR-210 was upregulated in hypoxia and downregulated IRF4, which is known as an essential factor in myeloma oncogenesis in normoxia. In the study, we demonstrated that myeloma cells still showed a strong antiapoptotic phenotype despite IRF4 downregulation, suggesting that another antiapoptotic factor might be involved under hypoxic stress. To determine the factor or factors, we conducted gene expression analysis on myeloma cells (primary samples and cell lines) that were exposed to chronic hypoxia and observed upregulation of glycolytic genes and genes encoding H3K9 demethylases in myeloma cells with hypoxia. Among these, KDM3A was most significantly upregulated in all examined cells, and its knockdown induced apoptosis of myeloma cells in chronic hypoxia. Expression of KDM3A was dependent on HIF-1α, which is a transcription factor specifically upregulated in hypoxia. We further demonstrated that an essential target of KDM3A was a noncoding gene, MALAT1, whose upregulation contributed to acquisition of an antiapoptotic phenotype by accumulation of HIF-1α, leading to upregulation of glycolytic genes under hypoxia. This process was independent from IRF4. These results led us to conclude that the hypoxia-inducible HIF-1α-KDM3A-MALAT1 axis also contributes to acquisition of the antiapoptotic phenotype via upregulation of glycolysis-promoting genes. Thus, this axis is a promising therapeutic target against myeloma cells in the BM microenvironment.
Collapse
|
30
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|
31
|
Shigekawa Y, Hayami S, Ueno M, Miyamoto A, Suzaki N, Kawai M, Hirono S, Okada KI, Hamamoto R, Yamaue H. Overexpression of KDM5B/JARID1B is associated with poor prognosis in hepatocellular carcinoma. Oncotarget 2018; 9:34320-34335. [PMID: 30344945 PMCID: PMC6188148 DOI: 10.18632/oncotarget.26144] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
Background & aims Hepatocellular carcinoma (HCC) has high potential for recurrence, even in curative operative cases. Although several molecular-targeting drugs have been applied to recurrent HCC, their effectiveness has been limited. This study therefore aims to develop novel cancer drugs through protein methylation. Methods We investigated the role of KDM5B/JARID1B, a member of JmjC histone demethylase, in HCC. Expression profiles of KDM5B were examined by immunohistochemical analysis in 105 HCC clinical tissue samples. To examine functional effects of KDM5B using HCC cell lines, we performed loss-of-function analysis treated with KDM5B-specific small interfering RNAs (siKDM5B). Results All HCC cases were divided into KDM5B-positive expression group (n=54) and negative expression group (n=51). In five-year overall survival, KDM5B-positive group had poorer prognosis than KDM5B-negative (61% vs 77%, p=0.047). KDM5B-positive group had much poorer prognosis than that of the negative group, especially in HCC derived from persistent infection of hepatitis B virus (HBV) or hepatitis C virus (HCV) (54% vs 78%, p=0.015). Multivariate analysis indicated that KDM5B was the strongest risk factor for poor prognosis, especially in HCC derived from HBV/HCV. Inhibition of KDM5B could significantly suppress HCC cell proliferation through no promotion from G1 to S phase. Real-time PCR and Western blotting demonstrated that E2F1/E2F2 were downstream genes of KDM5B. Conclusions Overexpression of KDM5B results in poor prognosis in HCC that especially derived from HBV/HCV. KDM5B appears to be an ideal target for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Yoshinobu Shigekawa
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masaki Ueno
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Miyamoto
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Norihiko Suzaki
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Seiko Hirono
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
32
|
Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung Cancer Therapy Targeting Histone Methylation: Opportunities and Challenges. Comput Struct Biotechnol J 2018; 16:211-223. [PMID: 30002791 PMCID: PMC6039709 DOI: 10.1016/j.csbj.2018.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common malignancies. In spite of the progress made in past decades, further studies to improve current therapy for lung cancer are required. Dynamically controlled by methyltransferases and demethylases, methylation of lysine and arginine residues on histone proteins regulates chromatin organization and thereby gene transcription. Aberrant alterations of histone methylation have been demonstrated to be associated with the progress of multiple cancers including lung cancer. Inhibitors of methyltransferases and demethylases have exhibited anti-tumor activities in lung cancer, and multiple lead candidates are under clinical trials. Here, we summarize how histone methylation functions in lung cancer, highlighting most recent progresses in small molecular inhibitors for lung cancer treatment.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- DUSP3, dual-specificity phosphatase 3
- EMT, epithelial-to-mesenchymal transition
- Elk1, ETS-domain containing protein
- HDAC, histone deacetylase
- Histone demethylase
- Histone demethylation
- Histone methylation
- Histone methyltransferase
- IHC, immunohistochemistry
- Inhibitors
- KDMs, lysine demethylases
- KLF2, Kruppel-like factor 2
- KMTs, lysine methyltransferases
- LSDs, lysine specific demethylases
- Lung cancer
- MEP50, methylosome protein 50
- NSCLC, non-small cell lung cancer
- PAD4, peptidylarginine deiminase 4
- PCNA, proliferating cell nuclear antigen
- PDX, patient-derived xenografts
- PRC2, polycomb repressive complex 2
- PRMTs, protein arginine methyltrasferases
- PTMs, posttranslational modifications
- SAH, S-adenosyl-L-homocysteine
- SAM, S-adenosyl-L-methionine
- SCLC, small cell lung cancer
- TIMP3, tissue inhibitor of metalloproteinase 3
Collapse
Affiliation(s)
- Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Xinran Liu
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chuntao Quan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Yao J, Zheng S, Li B, Li X, Liu W. KDM3A is not associated with metastasis and prognosis of breast cancer. Oncol Lett 2018; 15:9751-9756. [PMID: 29928349 PMCID: PMC6004682 DOI: 10.3892/ol.2018.8578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/19/2018] [Indexed: 01/17/2023] Open
Abstract
Lysine demethylase 3A (KDM3A), also known as JMJD1A, has been associated with metastasis and poor prognosis in several cancer types, including renal cell carcinoma, prostate cancer and Ewing sarcoma. However, little is known regarding the clinicopathological significance of KDM3A expression in breast cancer (BCa). To investigate the clinical relevance of KDM3A expression in the setting of BCa, immunohistochemistry was performed on a tissue microarray consisting of 150 commercially available BCa samples. No significant correlation was identified between KDM3A expression and various clinicopathological variables, including clinical stage, pathological grade, tumor size and the expression statuses of human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. In addition, no significant association between KDM3A expression and overall prognosis was observed. Taken together, these findings suggest that there is no significant association between KDM3A expression and clinicopathological variables, indicating that KDM3A may not be associated with the malignant behavior of BCa.
Collapse
Affiliation(s)
- Juan Yao
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Shutao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China.,State Key Lab Incubation Base of Xinjiang Major Diseases Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Baiyan Li
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Xinxin Li
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| | - Wenya Liu
- The Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region 830054, P.R. China
| |
Collapse
|
34
|
Yoshioka Y, Suzuki T, Matsuo Y, Nakakido M, Tsurita G, Simone C, Watanabe T, Dohmae N, Nakamura Y, Hamamoto R. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1. Oncotarget 2018; 7:75023-75037. [PMID: 27626683 PMCID: PMC5342720 DOI: 10.18632/oncotarget.11898] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy.
Collapse
Affiliation(s)
- Yuichiro Yoshioka
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA.,Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yo Matsuo
- OncoTherapy Science, Inc., Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| | - Giichiro Tsurita
- Department of Surgery, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Cristiano Simone
- Division of Medical Genetics, Department of Biomedical Science and Human Oncology (DIMO), University of Bari 'Aldo Moro', Bari 70124, Italy
| | - Toshiaki Watanabe
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, MC2115 Chicago, IL 60637, USA
| |
Collapse
|
35
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
36
|
Li H, Li J, Yang T, Lin S, Li H. MicroRNA-433 Represses Proliferation and Invasion of Colon Cancer Cells by Targeting Homeobox A1. Oncol Res 2017; 26:315-322. [PMID: 29137689 PMCID: PMC7844791 DOI: 10.3727/096504017x15067856789781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aberrant expression of miR-433 has been validated in some types of cancers. However, the expression profile and the biological function of miR-433 on colon cancer are still elusive. This study was designed to investigate the function of miR-433 on the proliferation and invasion of colon cancer cells. We detected the expression of miR-433 in colon cancer tissues, adjacent normal tissues, and cell lines. CCK8 and Transwell assays were performed to explore the impact of miR-433 on colon cancer cell proliferation and invasion. The luciferase reporter assay was applied to identify the direct target of miR-433. The results demonstrated that miR-433 was downregulated in colon cancer tissues and cell lines when compared with the control. Overexpression of miR-433 significantly suppressed the ability of colon cancer cell proliferation and invasion, whereas knockdown of miR-433 remarkably enhanced cell proliferation and invasion. Homeobox A1 (HOXA1) was identified as a target of miR-433, and it mediated the functions of miR-433 on colon cancer cells. To conclude, we revealed that miR-433 was downregulated in colon cancer, and it inhibited colon cancer cell proliferation and invasion by directly targeting HOXA1.
Collapse
Affiliation(s)
- Heming Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Junfeng Li
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Taisheng Yang
- Emergency Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Shuwen Lin
- Hepatobiliary Surgery Department, 5th Hospital of Dongguan City, Dongguan, P.R. China
| | - Heng Li
- Cardiovascular Department, TungWah Hospital of Sun-Yat Sen University, Donggguan, P.R. China
| |
Collapse
|
37
|
Sechler M, Parrish JK, Birks DK, Jedlicka P. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene 2017; 36:4150-4160. [PMID: 28319067 PMCID: PMC5519422 DOI: 10.1038/onc.2017.44] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Abstract
Ewing Sarcoma is the second most common solid pediatric malignant neoplasm of bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. However, the mechanisms underpinning Ewing Sarcoma metastasis are currently not well understood. In the present study, we identify and characterize a novel metastasis-promotional pathway in Ewing Sarcoma, involving the histone demethylase KDM3A, previously identified by our laboratory as a new cancer-promoting gene in this disease. Using global gene expression profiling, we show that KDM3A positively regulates genes and pathways implicated in cell migration and metastasis, and demonstrate, using functional assays, that KDM3A promotes migration in vitro and experimental, post-intravasation, metastasis in vivo. We further identify the melanoma cell adhesion molecule (MCAM) as a novel KDM3A target gene in Ewing Sarcoma, and an important effector of KDM3A pro-metastatic action. Specifically, we demonstrate that MCAM depletion, like KDM3A depletion, inhibits cell migration in vitro and experimental metastasis in vivo, and that MCAM partially rescues impaired migration due to KDM3A knock-down. Mechanistically, we show that KDM3A regulates MCAM expression both through a direct mechanism, involving modulation of H3K9 methylation at the MCAM promoter, and an indirect mechanism, via the Ets1 transcription factor. Finally, we identify an association between high MCAM levels in patient tumors and poor survival, in two different Ewing Sarcoma clinical cohorts. Taken together, our studies uncover a new metastasis-promoting pathway in Ewing Sarcoma, with therapeutically targetable components.
Collapse
Affiliation(s)
- Marybeth Sechler
- Cancer Biology Graduate Training Program
- University of Colorado Denver, Anschutz Medical Campus, Aurora CO
| | - Janet K. Parrish
- Department of Pathology
- University of Colorado Denver, Anschutz Medical Campus, Aurora CO
| | - Diane K. Birks
- Department of Neurosurgery
- University of Colorado Denver, Anschutz Medical Campus, Aurora CO
| | - Paul Jedlicka
- Cancer Biology Graduate Training Program
- Department of Pathology
- University of Colorado Denver, Anschutz Medical Campus, Aurora CO
| |
Collapse
|
38
|
Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, Macleod RAF, Drexler HG, Hu Z. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma 2017; 59:204-213. [PMID: 28540746 DOI: 10.1080/10428194.2017.1324156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.
Collapse
Affiliation(s)
- Xin Xu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Stefan Nagel
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hilmar Quentmeier
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhanju Wang
- c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Claudia Pommerenke
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Wilhelm G Dirks
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Roderick A F Macleod
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hans G Drexler
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhenbo Hu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China.,c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| |
Collapse
|
39
|
Dysfunction of IKZF1/MYC/MDIG axis contributes to liver cancer progression through regulating H3K9me3/p21 activity. Cell Death Dis 2017; 8:e2766. [PMID: 28471446 PMCID: PMC6258834 DOI: 10.1038/cddis.2017.165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022]
Abstract
MDIG is known to be overexpressed in many types of human cancers and has demonstrated predictive power in the prognosis of cancer, although the functions and mechanisms of MDIG in liver cancer, especially in hepatocellular carcinoma (HCC), are still unknown. In this study, we report that MDIG and MYC were negatively regulated by IKZF1. MDIG overexpression substantially promoted HCC cell proliferation, cell migration and spreading, whereas knockdown of MDIG would reverse above-mentioned effect. MDIG effects on tumour cell growth were further demonstrated in a tumour xenograft model. Moreover, MDIG had effects on the level of p21(CIP1/WAF1) via H3K9me3 expression in HCC. MDIG was also found to be closely related to the sorafenib resistance of HCC cells in vitro. Clinically, we found that MDIG was frequently overexpressed in human HCCs (69.7% n=155) and was significantly associated with histological grade and hepatitis B virus infection. Our findings indicate that MDIG plays an important role in HCC progression via MDIG/H3K9me3/p21(CIP1/WAF1) signalling and serves as a potential therapeutic target.
Collapse
|
40
|
Yeyati PL, Schiller R, Mali G, Kasioulis I, Kawamura A, Adams IR, Playfoot C, Gilbert N, van Heyningen V, Wills J, von Kriegsheim A, Finch A, Sakai J, Schofield CJ, Jackson IJ, Mill P. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. J Cell Biol 2017; 216:999-1013. [PMID: 28246120 PMCID: PMC5379941 DOI: 10.1083/jcb.201607032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.
Collapse
Affiliation(s)
- Patricia L Yeyati
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Rachel Schiller
- Department of Chemistry, Chemistry Research Laboratory, OX1 3TA Oxford, England, UK
| | - Girish Mali
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Ioannis Kasioulis
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, OX1 3TA Oxford, England, UK
| | - Ian R Adams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Christopher Playfoot
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Jimi Wills
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Andrew Finch
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | | | - Ian J Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| |
Collapse
|
41
|
Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 2017; 36:3868-3877. [DOI: 10.1038/onc.2017.13] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
|
42
|
Chen J, Zhang J, Yang J, Xu L, Hu Q, Xu C, Yang S, Jiang H. Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats. Atherosclerosis 2016; 257:152-163. [PMID: 28135625 DOI: 10.1016/j.atherosclerosis.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Deregulation of histone demethylase KDM3a, an important regulator for H3K9 methylation, is correlated with obesity and abnormal metabolism in rodent models. However, the function of KDM3a in vascular remodeling under diabetic condition is unknown. METHODS Adenoviruses expressing KDM3a and lentiviruses expressing KDM3a-targeting siRNA were generated to study the role of KDM3a both in vivo and in vitro. The carotid artery balloon injury model was established in diabetic SD rats to evaluate the significance of KDM3a in vascular injury. RESULTS Diabetic vessels were associated with sustained loss of histone H3 lysine 9 di-methylation (H3K9me2) and elevation of KDM3a. This phenomenon was induced by high glucose (HG) and was persistently present even after removal from diabetic condition and high glucose in vascular smooth muscle cells (VSMCs). After 28-day balloon injury, KDM3a overexpression accelerated while KDM3a knockdown reduced neointima formation, following vascular injury in diabetic rats without glucose control. Microarray analysis revealed KDM3a altered the expression of vascular remodeling genes; particularly, it mediated the Rho/ROCK and AngII/AGTR1 pathways. In the in vivo study, HG and Ang II-stimulated proliferation and migration of VSMCs were enhanced by KDM3a overexpression, whereas markedly prevented by KDM3a knockdown. KDM3a regulated the transcription of AGTR1 and ROCK2 via controlling H3K9me2 in the proximal promoter regions. CONCLUSIONS Histone demethylase KDM3a promotes vascular neointimal hyperplasia in diabetic rats via AGTR1 and ROCK2 signaling pathways. Targeting KDM3a might represent a promising therapeutic approach for the prevention of coronary artery disease with diabetes.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
43
|
Rodrigues MFSD, Esteves CM, Xavier FCA, Nunes FD. Methylation status of homeobox genes in common human cancers. Genomics 2016; 108:185-193. [PMID: 27826049 DOI: 10.1016/j.ygeno.2016.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Approximately 300 homeobox loci were identified in the euchromatic regions of the human genome, of which 235 are probable functional genes and 65 are likely pseudogenes. Many of these genes play important roles in embryonic development and cell differentiation. Dysregulation of homeobox gene expression is a frequent occurrence in cancer. Accumulating evidence suggests that as genetics disorders, epigenetic modifications alter the expression of oncogenes and tumor suppressor genes driving tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. Here, we described the current knowledge regarding homeobox gene DNA methylation in human cancer and describe its relevance in the diagnosis, therapeutic response and prognosis of different types of human cancers.
Collapse
Affiliation(s)
| | | | | | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Vougiouklakis T, Sone K, Saloura V, Cho HS, Suzuki T, Dohmae N, Alachkar H, Nakamura Y, Hamamoto R. SUV420H1 enhances the phosphorylation and transcription of ERK1 in cancer cells. Oncotarget 2016; 6:43162-71. [PMID: 26586479 PMCID: PMC4791223 DOI: 10.18632/oncotarget.6351] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/11/2015] [Indexed: 01/04/2023] Open
Abstract
The oncogenic protein ERK, a member of the extracellular signal-regulated kinase (ERK) cascade, is a well characterized signaling molecule involved in tumorigenesis. The ERK signaling pathway is activated in a large proportion of cancers and plays a critical role in tumor development. Functional regulation by phosphorylation of kinases in the ERK pathway has been extensively studied, however methylation of the ERK protein has not been reported to date. Here, we demonstrated that the protein lysine methyltransferase SUV420H1 tri-methylated ERK1 at lysines 302 and 361, and that substitution of methylation sites diminished phosphorylation levels of ERK1. Concordantly, knockdown of SUV420H1 reduced phosphorylated ERK1 and total ERK1 proteins, and interestingly suppressed ERK1 at the transcriptional level. Our results indicate that overexpression of SUV420H1 may result in activation of the ERK signaling pathway through enhancement of ERK phosphorylation and transcription, thereby providing new insights in the regulation of the ERK cascade in human cancer.
Collapse
Affiliation(s)
- Theodore Vougiouklakis
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kenbun Sone
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vassiliki Saloura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hyun-Soo Cho
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Houda Alachkar
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Ryuji Hamamoto
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, Sihto H, Ventelä S, Elo L, Jokitalo E, Westermarck J, Kellokumpu-Lehtinen PL, Joensuu H, Grenman R, Ivaska J. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun 2016; 7:12237. [PMID: 27488962 PMCID: PMC4976218 DOI: 10.1038/ncomms12237] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
Tissue homeostasis is dependent on the controlled localization of specific cell types and the correct composition of the extracellular stroma. While the role of the cancer stroma in tumour progression has been well characterized, the specific contribution of the matrix itself is unknown. Furthermore, the mechanisms enabling normal-not cancer-stroma to provide tumour-suppressive signals and act as an antitumorigenic barrier are poorly understood. Here we show that extracellular matrix (ECM) generated by normal fibroblasts (NFs) is softer than the CAF matrix, and its physical and structural features regulate cancer cell proliferation. We find that normal ECM triggers downregulation and nuclear exit of the histone demethylase JMJD1a resulting in the epigenetic growth restriction of carcinoma cells. Interestingly, JMJD1a positively regulates transcription of many target genes, including YAP/TAZ (WWTR1), and therefore gene expression in a stiffness-dependent manner. Thus, normal stromal restricts cancer cell proliferation through JMJD1a-dependent modulation of gene expression.
Collapse
Affiliation(s)
- Riina Kaukonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Anja Mai
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Maria Georgiadou
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Markku Saari
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | - Timo Betz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Muenster, Germany
| | - Harri Sihto
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, University of Helsinki, 00290 Helsinki, Finland
| | - Sami Ventelä
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
- Department of Otorhinolaryngology, Head and Neck Surgery, Turku University and Turku University Hospital, 20521 Turku, Finland
| | - Laura Elo
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
- Department of Mathematics and Statistics, University of Turku, 20520, Turku, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, Electron Microscopy Unit University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Heikki Joensuu
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, University of Helsinki, 00290 Helsinki, Finland
- Department of Oncology, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Reidar Grenman
- Department of Otorhinolaryngology, Head and Neck Surgery, Turku University and Turku University Hospital, 20521 Turku, Finland
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
- Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
46
|
JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol 2016; 37:11237-47. [PMID: 26945572 DOI: 10.1007/s13277-016-4999-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for 80 to 85 % of all lung cancer. Although the standard treatment regimen has been established, long-term survival for NSCLC patients is still generally poor. The histone demethylase Jumonji domain containing 1A (JMJD1A) has been proposed as an oncogene in several types of human cancer, but its clinical significance and functional roles in NSCLC remain largely unclear. In the present study, JMJD1A was frequently upregulated in NSCLC compared with para-carcinoma tissues. JMJD1A knockdown significantly inhibited NSCLC cell growth, migration, and invasion in vitro and tumorigenesis in vivo. Further experiments demonstrated that JMJD1A knockdown could decrease the expression of EZH2, which has been shown to play a crucial role in the carcinogenesis of NSCLC and, in turn, increase the expression of anti-tumor microRNA let-7c. Also, let-7c directly targeted the 3'-untranslated regions of JMJD1A and EZH2. Taken together, JMJD1A could promote NSCLC tumorigenesis. JMJD1A/EZH2/let-7c constituted a feedback loop and might represent a promising therapeutic target for NSCLC.
Collapse
|
47
|
Bamodu OA, Huang WC, Lee WH, Wu A, Wang LS, Hsiao M, Yeh CT, Chao TY. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer 2016; 16:160. [PMID: 26917489 PMCID: PMC4768424 DOI: 10.1186/s12885-016-2108-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 02/01/2016] [Indexed: 12/17/2022] Open
Abstract
Background Triple negative breast cancers (TNBC) possess cell dedifferentiation characteristics, carry out activities connate to those of cancer stem cells (CSCs) and are associated with increased metastasis, as well as, poor clinical prognosis. The regulatory mechanism of this highly malignant phenotype is still poorly characterized. Accruing evidence support the role of non-coding RNAs (ncRNAs) as potent regulators of CSC and metastatic gene expression, with their dysregulation implicated in tumorigenesis and disease progression. Methods In this study, we investigated TNBC metastasis, metastasis-associated genes and potential inhibitory mechanisms using bioinformatics, tissue microarray analyses, immunoblotting, polymerase chain reaction, loss and gain of gene function assays and comparative analyses of data obtained. Results Compared with other breast cancer types, the highly metastatic MDA-MB-231 cells concurrently exhibited increased expression levels of Lysine-specific demethylase 5B protein (KDM5B) and long non-coding RNA (lncRNA), MALAT1, suggesting their functional association. KDM5B-silencing in the TNBC cells correlated with the upregulation of hsa-miR-448 and led to suppression of MALAT1 expression with decreased migration, invasion and clonogenic capacity in vitro, as well as, poor survival in vivo. This projects MALAT1 as a mediator of KDM5B oncogenic potential and highlights the critical role of this microRNA, lncRNA and histone demethylase in cancer cell motility and metastatic colonization. Increased expression of KDM5B correlating with disease progression and poor clinical outcome in breast cancer was reversed by hsa-miR-448. Conclusions Our findings demonstrate the critical role of KDM5B and its negative regulator hsa-miR-448 in TNBC metastasis and progression. Hsa-miR-448 disrupting KDM5B-MALAT1 signalling axis and associated activities in TNBC cells, projects it as a putative therapeutic factor for selective eradication of TNBC cells. KDM5B, MALAT1 and hsa-miR-448 are active looped components of the epigenetic poculo mortis in aggressive breast cancer. ![]()
Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2108-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Wen-Chien Huang
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan.
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.
| | - Alexander Wu
- Graduate Institute of Translational Medicine, Taipei Medical University, Taipei City, Taiwan. .,The PhD Program of Translational Medicine, Academia Sinica, Nankang, Taipei, Taiwan.
| | - Liang Shun Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Chi-Tai Yeh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| | - Tsu-Yi Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan. .,Tri-Service General Hospital, Neihu District, Taipei City, Taiwan.
| |
Collapse
|
48
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|
49
|
Retraction note to: KDM3A confers metastasis and chemoresistance in epithelial ovarian cancer. J Mol Histol 2016; 46:511-8. [PMID: 26779649 DOI: 10.1007/s10735-016-9653-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, Samur MK, Mimura N, Suzuki R, Tai YT, Carrasco RD, Raje N, Richardson PG, Munshi NC, Harigae H, Sanda T, Sakai J, Anderson KC. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 2016; 7:10258. [PMID: 26728187 PMCID: PMC4728406 DOI: 10.1038/ncomms10258] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022] Open
Abstract
KDM3A is implicated in tumorigenesis; however, its biological role in multiple myeloma (MM) has not been elucidated. Here we identify KDM3A–KLF2–IRF4 axis dependence in MM. Knockdown of KDM3A is toxic to MM cells in vitro and in vivo. KDM3A maintains expression of KLF2 and IRF4 through H3K9 demethylation, and knockdown of KLF2 triggers apoptosis. Moreover, KLF2 directly activates IRF4 and IRF4 reciprocally upregulates KLF2, forming a positive autoregulatory circuit. The interaction of MM cells with bone marrow milieu mediates survival of MM cells. Importantly, silencing of KDM3A, KLF2 or IRF4 both decreases MM cell adhesion to bone marrow stromal cells and reduces MM cell homing to the bone marrow, in association with decreased ITGB7 expression in MAF-translocated MM cell lines. Our results indicate that the KDM3A–KLF2–IRF4 pathway plays an essential role in MM cell survival and homing to the bone marrow, and therefore represents a therapeutic target. Several histone modifiers have been implicated in the survival of multiple myeloma cells. Here, the authors reveal a role for the histone demethylase KDM3A in the survival of this haematologic cancer, and show that mechanistically KDM3A removes H3K9 methylation from the promoters of KLF2 and IRF4, genes essential for myeloma cell survival.
Collapse
Affiliation(s)
- Hiroto Ohguchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Teru Hideshima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Gullu T Gorgun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Loredana Santo
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Michele Cea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Naoya Mimura
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Rikio Suzuki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Ruben D Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Noopur Raje
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,West Roxbury Division, VA Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|